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Abstract

The q-colour Ramsey number of a k-uniform hypergraph H is the minimum integer N
such that any q-colouring of the complete k-uniform hypergraph on N vertices contains
a monochromatic copy of H. The study of these numbers is one of the central topics in
Combinatorics. In 1973, Erdős and Graham asked to maximise the Ramsey number of a
graph as a function of the number of its edges. Motivated by this problem, we study the anal-
ogous question for hypergaphs. For fixed k ≥ 3 and q ≥ 2 we prove that the largest possible
q-colour Ramsey number of a k-uniform hypergraph with m edges is at most twk(O(

√
m)),

where tw denotes the tower function. We also present a construction showing that this bound
is tight for q ≥ 4. This resolves a problem by Conlon, Fox and Sudakov. They previously
proved the upper bound for k ≥ 4 and the lower bound for k = 3. Although in the graph
case the tightness follows simply by considering a clique of appropriate size, for higher
uniformities the construction is rather involved and is obtained by using paths in expander
graphs.

2020 Mathematics Subject Classification: 05D10 (Primary)

1. Introduction

For a k-uniform hypergraph H and a positive integer q, we denote by rk(H; q) the q-colour
Ramsey number of H defined as the minimum integer N such that any q-colouring of the
complete k-uniform hypergraph on N vertices, denoted by K(k)

N , contains a monochromatic
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2 DOMAGOJ BRADAČ, JACOB FOX AND BENNY SUDAKOV

copy of H. When H = K(k)
n , we simply write rk(n; q). The existence of these numbers was

famously shown by Ramsey [21] in 1930. Since then, finding good bounds on rk(H; q) for
various (hyper)graphs H has been one of the most major areas of study in Discrete mathe-
matics. The first important results in this direction were exponential bounds on the so-called
diagonal graph Ramsey number, namely that

√
2

n
< r2(n; 2) < 4n, where the upper bound

was proven by Erdős and Szekeres [14] and the lower bound by Erdős [8] as one of the
first applications of the probabilistic method. Both of these arguments easily extend to give
similar bounds for any fixed number of colours q. Despite a great amount of interest and
the fact that these bounds are at least 70 years old, until very recently they have been only
improved by lower order terms. In March 2023, a major breakthrough was obtained by
Campos, Griffiths, Morris and Sahasrabudhe [2], who improved the upper bound to (4 − ε)n.

In the case of hypergraphs, Erdős and Rado [13] showed that for some constant c = c(k, q),
the Ramsey numbers satisfy rk(n; q) ≤ twk(cn), where twk(x) denotes the tower function
defined as tw1(x) = x and twk(x) = 2twk−1(x) for k ≥ 2. On the other hand, an ingenious con-
struction of Erdős and Hajnal (see e.g. [17]), known as the stepping-up lemma, allows one
to obtain a lower bound for hypergraphs of uniformity k + 1 from lower bounds for uni-
formity k, essentially gaining an extra exponential. However, this construction only works
if the number of colors, q, is at least 4 or the uniformity, k, is at least 3. In particular, we
have the bounds rk(n; 2) ≥ twk−1(cn2) and rk(n; 4) ≥ twk(cn). The first bound comes from
applying a random construction for uniformity 3 and then applying the stepping-up lemma.
Erdős, Hajnal and Rado [12] conjectured that r3(n; 2) > 22cn

, which would, by the stepping-
up lemma, imply rk(n; 2) ≥ twk(ckn), thus determining the correct tower height of these
numbers. However, this remains a major open problem.

Given the difficulty of finding good bounds for complete graphs and hypergraphs, Burr
and Erdős [1] initiated the study of Ramsey numbers of sparse graphs and, in particular,
conjectured that for any integer �, there is c(�) such that r2(G; 2) ≤ c(�)n for any n-vertex
graph with maximum degree at most �. This conjecture was proven by Chvátal, Rödl,
Szemerédi and Trotter [3] using Szemerédi’s celebrated regularity lemma. The develop-
ment of the hypergraph regularity lemma lead to the generalisation of this result to bounded
degree hypergraphs proven by Cooley, Fountoulakis, Kühn and Osthus [7]. Burr and Erdős
also made the stronger conjecture that r2(G; 2) < c(d)n should also hold for all d-degenerate
graphs on n vertices and it was proved by Lee [20].

In 1973, Erdős and Graham [11] posed a natural question of maximising the Ramsey
number of a graph as a function of the number of its edges. Since Ramsey numbers of sparse
graphs grow slowly, it is natural to guess that in order to maximise the Ramsey number of
a graph with m edges, one should make it as dense as possible. This has motivated Erdős
and Graham to conjecture that among all graphs with m = (n

2

)
edges, the complete graph Kn

has the largest Ramsey number. This conjecture appears extremely difficult and there has
been no real progress on it. Therefore Erdős [10] made a weaker conjecture that there is a
constant c such that r2(G; 2) ≤ 2c

√
m for any graph G with m edges and no isolated vertices,

which would be sharp by the above-mentioned lower bound for the Ramsey number of the
complete graph. This conjecture has been resolved by Sudakov [22]. In contrast to many
results mentioned above, the argument in [22] only works for two colours and it would be
interesting to extend this result to more colours.

In this paper we consider the Erdős and Graham question for hypergaphs. Naively
one might expect that for fixed k and q, there exists c = c(k, q) such that any k-uniform
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Ramsey numbers of hypergraphs with a given size 3

hypergraph H with m edges satisfies rk(H; q) ≤ twk(cm1/k), i.e., the complete hypergraph
is a maximiser. This however, was shown to be false by Conlon, Fox and Sudakov [4]
who constructed a 3-uniform hypergraph with m edges whose 4-colour Ramsey number

at least 22c
√

m
for some positive absolute constant c. On the other hand, they showed that

any k-uniform hypergraph H with m edges satisfies rk(H; q) ≤ twk(c
√

m), for k ≥ 4, while
rk(H; q) ≤ twk(c

√
m log m) for k = 3, where the constant c depends only on k and q. In a

survey on graph Ramsey theory [5], they further asked whether it is possible to remove the
logarithmic factor for the 3-uniform case.

Problem 1·1. Show that for any q ≥ 2, there exists cq such that r3(H; q) ≤ 22cq
√

m
for any

3-uniform hypergraph H with m edges and no isolated vertices.

In the present paper, we resolve Problem 1·1. Moreover, our proof extends to larger
uniformities as well so we present a unified proof for all k ≥ 3.

THEOREM 1·2. For any k ≥ 3, and any fixed number of colours q, there is a constant Ck,q

such that the q-colour Ramsey number of any k-uniform hypergraph H with m edges and no
isolated vertices is at most twk(Ck,q

√
m).

We also provide a construction showing that the above bound is tight up to a constant
factor in front of

√
m. Although in the graph case the tightness follows simply by considering

a clique of appropriate size, for higher uniformities the construction is rather involved and
is obtained by using the paths in expander graphs. Due to our reliance on the stepping-up
lemma, the construction requires 4 colours.

THEOREM 1·3. For any k ≥ 2, there exist a constant ck > 0 such that for any positive integer
m there is a k-uniform hypergraph with m hyperedges and no isolated vertices whose 4-
colour Ramsey number is at least twk(ck

√
m).

The rest of this short paper is organised as follows. In Section 2 we prove Theorem 1·2
and in Section 3 we prove Theorem 1·3. We systematically ignore floor and ceiling signs
whenever they are not crucial for the argument. In the use of asymptotic notation we some-
times omit the dependence on the uniformity, k, and the number of colours, q, since we treat
them as constants.

2. Proof of Theorem 1·2
Before presenting the proof, let us give a brief outline. The main new idea is to show that

every hypergraph with m edges has a strong colouring (see Definition 2·2) with t = O(
√

m)
colours such that the product of the sizes of the colour classes is 2O(

√
m). Given a coloured

complete k-uniform hypergraph G on twk(C
√

m) vertices, we then apply Erdős and Rado’s
upper bound on hypergraph Ramsey numbers mentioned in the introduction along with a
simple supersaturation argument to find many monochromatic cliques of size t in G. Then,
it is enough to find a set of cliques of one colour which form a complete t-partite hypergraph
with part sizes corresponding to the colour classes of the given strong colouring. This will
follow from a version of the hypergraph extension of the Kővári–Sós–Turán theorem [19].
Such an extension was first proved by Erdős [9]. In our setting, the number of parts and
their sizes are allowed to grow with the size of the hypergraph. The aforementioned result
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4 DOMAGOJ BRADAČ, JACOB FOX AND BENNY SUDAKOV

of Erdős does not provide such a bound, though it can easily be extracted from most of the
known proofs.

Let Ks1,...,st denote the complete t-partite t-uniform hypergraph with part sizes s1, . . . , st

and denote by ex(n, Ks1,...,st ) the maximum number of edges in a t-uniform hypergraph not
containing Ks1,...,st as a subgraph.

We require an upper bound on ex(n, Ks1,...st ), where the number of parts and their sizes
are allowed to grow with n. Such an upper bound is surely widely known, but we have not
found a reference which contains the bound we need. Hence, we include the short proof for
completeness. Note that the exponent of n in our bound is not best possible, however, it is
sufficient for our purposes and allows for a cleaner proof.

LEMMA 2·1. Let s1, . . . , st be positive integers and denote P = ∏t
i=1 si. Then, for all

n ≥ 1,

ex(n, Ks1,...,st ) < Pnt−P−1
.

Proof. We prove the statement by induction on t. For t = 1, the claim is trivial. Assume
now t ≥ 2 and let H be a t-uniform hypergraph with m ≥ Pnt−P−1

edges. We need to show
that H contains a copy of Ks1,...,st . For W ∈ (V(H)

st

)
, let

N(W) =
{

f ∈
(

V(H)

t − 1

)
| f ∪ {w} ∈ E(H), ∀w ∈ W

}
.

For f ∈ (V(H)
t−1

)
, let d(f ) denote the number of edges of H containing the set f . Double

counting, we have

∑
W∈(V(H)

st )

|N(W)| =
∑

f ∈(V(H)
t−1 )

(
d(f )

st

)
.

Using that
(x

s

)
is convex and

∑
f ∈(V(H)

t−1 )
d(f ) = tm, we can apply Jensen’s inequality to obtain

∑
W∈(V(H)

st )

|N(W)| ≥
(

n

t − 1

)(
tm/

( n
t−1

)
st

)
≥ n · · · (n − t + 2)

(t − 1)! ·
(

t!m
st · n · · · (n − t + 2)

)st

≥ mst

sst
t · n(t−1)(st−1)

.

Denoting P′ = ∏t−1
i=1 si = P/st, by the pigeonhole principle, there is a set W with

|N(W)| ≥
(

n

st

)−1

· mst

sst
t · n(t−1)(st−1)

≥ (Pnt−P−1
)st

sst
t · n(t−1)(st−1)+st

≥ sst
t P′ntst−(P′)−1

sst
t · ntst−t+1

= P′nt−1−(P′)−1
.

By the induction hypothesis, the (t − 1)-uniform hypergraph formed by the edge set N(W)
contains a copy of Ks1,...,st−1 , which together with W forms Ks1,...,st , as required.

Definition 2·2. A strong colouring of a hypergraph H is a partition of V(H) into colour
classes V1, . . . , Vt such that every edge of H contains at most one vertex from each of the
sets V1, . . . , Vt.
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Ramsey numbers of hypergraphs with a given size 5

LEMMA 2·3. Fix k ≥ 2 and let H be a k-uniform hypergraph with m edges and no iso-
lated vertices. Then, there is a strong colouring V1 ·∪ . . . ·∪Vt of H such that t = O(

√
m) and

moreover,
∏t

i=1 |Vi| ≤ 2O(
√

m).

Proof. We first partition the vertices of H according to their degree as follows. Set
�: = √

m and denote s = 
log2 �� + 1. Let U0 = {v ∈ V(H) | d(v) > �} and for 1 ≤ i ≤ s,
let Ui = {v ∈ V(H) | �/2i < d(v) ≤ �/2i−1}. Since V(H) has no isolated vertices, it is clear
that U0 ·∪ . . . ·∪Us is a partition of V(H). We colour each of the sets Ui using distinct colours.
Each vertex in U0 receives a distinct colour. For i ≥ 1, the vertices in Ui are greedily coloured
one by one using at most ti: = k�/2i−1 colours. This is possible since having coloured
some vertices in Ui, the next vertex v ∈ Ui to be coloured shares an edge with at most
(k − 1)d(v) ≤ (k − 1)�/2i−1 ≤ ti − 1 previously coloured vertices in Ui.

Let V1, . . . , Vt denote the colour classes produced by the colouring described above. It
remains to verify that it satisfies the desired properties. To this end, for 0 ≤ i ≤ s, we denote
ni = |Ui| and mi = ∑

v∈Ui
d(v). Clearly,

∑s
i=0 mi = ∑

v∈V(H) d(v) = km and for 0 ≤ i ≤ s, we
have km ≥ mi ≥ ni · �/2i. In particular, n0 ≤ km/� = k

√
m.

The number of colours used, t, satisfies

t ≤ n0 +
s∑

i=1

ti ≤ k
√

m +
s∑

i=1

k
√

m/2i−1 = O(
√

m).

Recall that ti = k�/2i−1 and ni ≤ 2imi/� ≤ 2ikm/�. By the AM-GM inequality, the
product of the sizes of the colour classes used to colour Ui, i ≥ 1 is at most

(
ni

ti

)ti
<

(
4im

�2

)k�/2i−1

= (4i)k�/2i−1 = 2k�i/2i−2
.

Multiplying the above bound for all 1 ≤ i ≤ s and using that the series
∑∞

i=1 i/2i−2

converges, we obtain

t∏
j=1

|Vj| ≤
s∏

i=1

2k�i/2i−2 = 2Ok(
√

m).

As mentioned in the outline, we will use the following bound on the Ramsey number of a
complete k-uniform hypergraph.

THEOREM 2·4 (Erdős, Rado [13]). For positive integers q, k there is a constant C′ = C′(q, k)
such that rk(n; q) ≤ twk(C′n).

Proof of Theorem 1·2. Let m = e(H) and let N = twk(C
√

m) where C = C(k, q) is a large
constant to be chosen implicitly later. Consider an arbitrary q-colouring of the complete k-
uniform hypergraph on N vertices and call this colored hypergraph G. We need to show that
G contains a monochromatic copy of H.

Let V1 ·∪ . . . ·∪Vt = V(H) be a strong colouring of H satisfying t ≤ O(
√

m) and P: =∏t
i=1 |Vi| ≤ 2O(

√
m) given by Lemma 2·3. We remark that P will correspond to the value

of P in our application of Lemma 2·1. We denote si = |Vi| for i ∈ [t]. Let R = rk(t; q) ≤
twk(O(

√
m)), where the bound holds by Theorem 2·4. A standard supersaturation argument

allows us to find many monochromatic copies of K(k)
t in G of the same colour. Indeed,
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6 DOMAGOJ BRADAČ, JACOB FOX AND BENNY SUDAKOV

by definition, every set of R vertices of G contains a monochromatic copy of K(k)
t . On the

other hand, any copy of K(k)
t is contained in

(N−t
R−t

)
sets of R vertices of G. Putting these two

facts together and applying the pigeonhole principle, there is a colour, say red, such that the
number of red copies of K(k)

t in G is at least
(

N

R

)
/

(
q

(
N − t

R − t

))
≥

(
N

R

)t

/q. (1)

We construct an auxiliary t-uniform hypergraph � on the vertex set V(G) where a t-set
forms an edge if it forms a red t-clique in G. Provided that e(�) > ex(N, K(t)

s1,...,st ), there
must exist a copy of K(t)

s1,...,st in � which corresponds to a red complete t-partite k-uniform
hypergraph with part sizes s1, . . . , st in G and by the existence of the strong colouring
V(H) = V1 ·∪ . . . ·∪Vt, it contains a red subgraph isomorphic to H.

It remains to ensure that e(�) > ex(N, K(t)
s1,...,st ). Recall that P = ∏t

i=1 |Vi| = 2O(
√

m).
Hence, by (1) and Lemma 2·1, it is enough to show that

(
N

R

)t

/q > Nt−2−O(
√

m)
,

or equivalently,

Rtq < N2−O(
√

m)
.

It will be convenient to compare the logarithms of the two sides. We remind the reader that
twk(x) = 2twk−1(x) for k ≥ 2. Thus, we have

log2 (Rtq) = t log2 (R) + O(1) = O(
√

m) · twk−1(O(
√

m)) = twk−1(O(
√

m)),

where in the last inequality we used that k ≥ 3. On the other hand,

log2

(
N2−O(

√
m)

)
= log2 (N) · 2−O(

√
m) = twk−1(C

√
m) · 2−O(

√
m) ≥ twk−1(C/2 · √m),

where in the last inequality we used that k ≥ 3 and chose C to be large enough compared
to the implicit constant in the O notation. It follows that for large enough C, we have Rtq <

N2−O(
√

m)
, as needed.

3. Proof of Theorem 1·3
In this section, we prove Theorem 1·3. We shall start with a few definitions which are

used in the proof and present a variant of the step-up colouring that we use. After that, we
give an informal discussion of the main ideas behind the proof and then we present the proof
itself.

3·1. Setup

To begin, we recall an important function used in this construction. For a nonnegative inte-
ger x, let x = ∑∞

i=0 ai2i be its unique binary representation (where ai = 0 for all but finitely
many i). We denote bit(x, i) = ai. Then δ(x, y): = max{i ∈Z≥0 | bit(x, i) = bit(y, i)}. For non-
negative integers x1 < x2 < . . . < xt, we denote δ({x1, . . . , xt}) = (δ1, . . . , δt−1) where for
i ∈ [t − 1], δi = δ(xi, xi+1). The following properties of this function are well known and
easy to verify.
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Ramsey numbers of hypergraphs with a given size 7

(P1) x < y ⇐⇒ bit(x, δ(x, y)) < bit(y, δ(x, y)).

(P2) For any x < y < z, δ(x, y) = δ(y, z).

(P3) For any x1 < x2 < . . . < xk, δ(x1, xk) = max1≤i≤k−1 δ(xi, xi+1).

Let us now define the colouring which will be used to prove Theorem 1·3. For a pos-
itive integer n, we start with a red-blue colouring φ

(2)
n of the complete graph with vertex

set {0, . . . , N2 − 1}, where N2 = N2(n) = 2n/2, containing no monochromatic clique of size
n. Such a colouring exists by the well known result of Erdős mentioned in the introduc-
tion. For k ≥ 3, the colouring φ

(k)
n is on the vertex set {0, . . . , Nk − 1}, where Nk = Nk(n) =

2Nk−1(n) = twk(n/2) and is defined as follows. For a set {x1, . . . , xk} with 0 ≤ x1 < . . . <

xk < Nk, we consider the vector δ({x1, . . . , xk}) = (δ1, . . . , δk−1). Note that 0 ≤ δi < Nk−1

for all i ∈ [k − 1]. Hence for distinct δi, the set {δ1, . . . , δk−1} forms an edge of the com-
plete (k − 1)-uniform hypegraph on {0, . . . , Nk−1 − 1} with colour φ

(k−1)
n ({δ1, . . . , δk−1}).

For k = 3, the 4-colouring is given as:

φ(3)
n ({x1, x2, x3}) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1, if δ1 < δ2 and φ
(2)
n ({δ1, δ2}) is red;

C2, if δ1 < δ2 and φ
(2)
n ({δ1, δ2}) is blue;

C3, if δ1 > δ2 and φ
(2)
n ({δ1, δ2}) is red;

C4, if δ1 > δ2 and φ
(2)
n ({δ1, δ2}) is blue.

We denote by arg maxi∈[k−1]δi the unique index j ∈ [k − 1] such that δj = maxi∈[k−1] δi,
where the uniqueness follows from Properties (P2) and (P3). For k ≥ 4, the colouring is
given as:

φ(k)
n ({x1, . . . , xk}) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ
(k−1)
n ({δ1, . . . , δk−1}), if δ is a monotone sequence;

C1, if δ is not monotone and arg maxi∈[k−1]

δi ∈ {1, k − 1};
C2, if arg maxi∈[k−1]δi ∈ {1, k − 1}.

3·2. Proof outline

Let us now discuss the main ideas of our proof. First, we recall Erdős and Hajnal’s
proof of the lower bound rk(n; 4) ≥ twk(2−kn). Their proof uses a slightly different colour-
ing than given above, but the same proof works with our colouring, so we consider it
instead. Suppose that φ

(k)
n contains a monochromatic clique of size nk = 2kn. Denote by

x1 < x2 < . . . < xnk the vertices of this clique and let δ = (δ1, . . . , δnk−1) = δ({x1, . . . , xnk}).
It is not difficult to show that δ must contain a monotone contiguous subsequence δ′ =
(δa, δa+1, . . . , δb) of length at least nk/2. By Property (P3) and the definition of φ

(k)
n , it fol-

lows that {δa, δa+1, . . . δb} forms a monochromatic clique in φ
(k−1)
n of size at least nk/2.

Applying the same argument to this clique in φ
(k−1)
n , we find a monochromatic clique of

size at least nk/4 in φ
(k−2)
n and so on. After k − 2 steps, we thus reach a monochromatic

clique of size 4n in φ
(2)
n , a contradiction.

We will show that instead of a clique, we can take a much sparser hypergraph Hk on
nk = αkn vertices with m = O(n2

k) = Ok(n2) edges and reach a similar conclusion, i.e. that

φ
(k−1)
n contains a monochromatic copy of some (k − 1)-uniform hypergraph Hk−1 on αk−1n

vertices, where Hk−1 is “of the same form” as Hk. For the argument to work, we need to
make sure of a few a things. With x1 < x2 < . . . < xnk and δ = (δ1, . . . , δnk−1) defined as
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8 DOMAGOJ BRADAČ, JACOB FOX AND BENNY SUDAKOV

above, we need that δ contains a monotone subsequence of length �(nk). Furthermore, this
monotone subsequence should imply the existence of a hypergraph Hk−1 on αk−1n vertices
on which we can apply induction. We remark here that Hk−1 will not be a fixed hypergraph,
but rather some large enough hypergraph of the same form as Hk. Finally, after k − 2 steps,
we should reach a graph containing a clique of size n to obtain a contradiction. Given that
this argument works for a clique and we want a much sparser hypergraph, it should be no
surprise that our construction is based on an expander graph. We next define our construction
formally and carry out the outlined proof strategy.

3·3. Formal proof

Given a graph G and an integer k ≥ 2, we define a k-uniform hypergraph H = H(G, k) on
the same vertex set where for every path (v1, . . . , vk−1) in G and any vertex vk ∈ V(G) not
on this path, we put the k-edge {v1, . . . , vk} in H. Note that for k = 2, H(G, k) is simply the
complete graph on the vertex set V(G).

Given a k-uniform hypergraph � with a colouring φ : E(�) → C and a hypergraph H,
a set of vertices X ⊆ V(�) forms a monochromatic copy of H if there exists a bijection
	 : V(H) → X such that φ(	(e)) = φ(	(e′)) for all e, e′ ∈ E(H).

We shall need the following simple lemma about sparse random graphs.

LEMMA 3·1. For any d ≥ 109 and M sufficiently large, there is a graph G on M vertices
such that:

(a) for all disjoint subsets S, T ⊆ V(G) with |S|, |T| ≥ M
d1/3 , we have

∣∣eG(S, T) − d

M
|S||T|∣∣ ≤ 1

2

d

M
|S||T|;

and

(b) the maximum degree of G is at most 2d.

Proof. Let H ∼ G(M, d/M), that is, H is a random graph on M vertices where every pos-
sible edge is present with probability d/M independently. Let G be the graph obtained from
H by removing all edges incident to vertices of degree greater than 2d. Thus, G satisfies b)
deterministically. The expected number of edges removed from H to obtain G is at most

∑
{u,v}⊆V(H)

P[uv ∈ E(H)] · P[ max{dH(u), dH(v)} > 2d | uv ∈ E(H)]

≤
(

M

2

)
d

M
· 2P[Bin(M − 2, d/M) ≥ 2d] ≤ 2Mde−d/3 < M,

where we used a standard Chernoff bound (e.g. [18, corollary 2·3]) and that d ≥ 109. By
Markov’s inequality, with probability at least 3/4, we have e(H) − e(G) ≤ 4M. For fixed
disjoint sets of vertices S and T of size at least M/d1/3 using the same form of the Chernoff
bound, we have

P

[∣∣eH(S, T) − d

M
|S||T|∣∣ >

1

4

d

M
|S||T|

]
≤ 2e− d

M |S||T|/48 ≤ 2e−Md1/3/48 < 2e−20M .
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Taking a union bound over all sets S, T as above, with probability at least 1 − 2M · 2M ·
2e−20M > 3/4, we have

∣∣eH(S, T) − d

M
|S||T|∣∣ ≤ 1

4

d

M
|S||T|, ∀S, T ⊆ V(H), S ∩ T = ∅, |S|, |T| ≥ M

d1/3
. (2)

By a union bound, with probability at least 1/2 we have e(H) − e(G) ≤ 4M and (2). Noting

that 4M ≤ (1/4)(d/M)
(
M/d1/3

)2
, it follows that G satisfies (a) with probability at least 1/2,

finishing the proof.

Proof of Theorem 1·3. Fix k ≥ 3, let n be a large enough integer, set d = 1020k and
let G be a graph on nk = dn vertices satisfying (a) and (b) for d whose existence is
given by Lemma 3·1. Let Hk = H(G, k). We will show that there is no monochromatic
copy of Hk in φ

(k)
n , where we remind the reader that φ

(k)
n is a colouring of the com-

plete k-graph with vertex set {0, . . . , Nk(n) − 1}, where Nk(n) = twk(n/2). This would prove
the theorem since, by construction, e(Hk) ≤ nk · #{paths of length k − 2 in G} ≤ n2

k(2d)k−2 =
O(n2), while rk(Hk; 4) > Nk(n) = twk(n/2) = twk(�(

√
e(H))). We make repeated use of the

following lemma.

LEMMA 3·2. Let U ⊆ V(G), |U| ≥ nk/(1000k−1) and let 
 ≥ 3 be an integer. Denote H =
H(G[U], 
) and suppose there is a monochromatic copy of H in φ

(
)
n . Then, there exists a

set U′ ⊆ U such that |U′| ≥ |U|/1000 and there exists a monochromatic copy of the (
 −
1)-uniform hypergraph H′ = H(G[U′], 
 − 1) in φ

(
−1)
n .

First, let us finish the proof of Theorem 1·3 given Lemma 3·2. By repeated uses of the
lemma, it follows that there are subsets V(G) = Uk ⊇ Uk−1 ⊇ . . . ⊇ U2 such that there is a
monochromatic copy of H(G[U
], 
) in φ

(
)
n for all 2 ≤ 
 ≤ k and |U
| ≥ |U
+1|/1000 for all

2 ≤ 
 ≤ k − 1. Hence, we have |U2| ≥ nk/1000k = 1020kn/1000k > n and a monochromatic
copy of H(G[U2], 2) in φ

(2)
n . Recall that by definition, H(G[U2], 2) is a clique on |U2| > n

vertices, hence there is no monochromatic copy of H(G[U2], 2) in φ
(2)
n , a contradiction.

Proof of Lemma 3·2. Let s = |U| = |V(H)|, let X = {x1, . . . , xs} ⊆ {0, . . . , N
 − 1}, where
x1 < . . . < xs, form a mononchromatic copy of H and denote by 	 : V(H) → {0, . . . , N
 −
1} the given monochromatic embedding.

Claim 3·3. There is a set Y = {y1, . . . , yt} ⊆ X of size t ≥ s/200 where y1 < . . . < yt such
that δ({y1, . . . , yt}) is a monotone sequence.

First we finish the proof of the lemma given Claim 3·3. Let Y ⊆ X with |Y| = t ≥ s/200 be
given by Claim 3·3 and assume that δ(Y) is increasing, the other case being analogous. We
denote L = {	−1(y1), . . . , 	−1(yt/2)} ⊆ U and let U′ ⊆ U be the set of all vertices 	−1(yj)
with t/2 < j ≤ t which in G have at least one neighbour in L. We have that |U′| ≥ t/4, as
otherwise there is a set of t/4 vertices with no edges toward L, contradicting (a) since

|L| ≥ t/4 ≥ s/800 ≥ nk/(1000k) > nk/(1020k/3) = nk/d1/3.

Let us verify that φ
(
−1)
n contains a monochromatic copy of H′ = H(G[U′], 
 − 1). Let

z1, z2, . . . , zt′ be the elements of 	(U′) in increasing order and recall that yi < zj for all
i ∈ [t/2], j ∈ [t′]. Denote a1 = δ(y1, z1) and ai = δ(zi−1, zi) for 2 ≤ i ≤ t′. We will show that
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the set A= {a1, . . . , at′ } forms a monochromatic copy of H’ in φ
(
−1)
n with the natural cor-

respondence 	 ′ : U′ →A defined by 	 ′(	−1(zi)) = ai for all i ∈ [t′]. We do so by showing
that, for an edge e ∈ E(H′), the colour φ

(
−1)
n (	 ′(e)) is inherited from the colour of φ

(
)
n (	(f ))

of some edge f ∈ E(H).
By monotonicity of δ({y1, . . . , yt}), using (P3), we have δ(zi, zj) = aj for any 1 ≤ i <

j ≤ t′ and δ(yi, zj) = aj for any i ∈ [t/2] and j ∈ [t′]. Now, consider an arbitrary edge
e = {	−1(zj1), . . . , 	−1(zj
−1 )} ∈ E(H′), where j1 < j2 < . . . < j
−1. By construction, some

 − 2 of these vertices form a path P’ in G. By definition of U’, any vertex on this path,
in particular one of its endpoints, has a neighbour L. So, we can attach a vertex w ∈ L to
one of the endpoints of P’ to obtain a path on 
 − 1 vertices in G. Hence, f = e ∪ {w} is a
set of 
 vertices, some 
 − 1 of which form a path in G, implying that f is an edge of H.
Note that δ(	(f )) = (aj1 , aj2 , . . . , aj
−1 ), which is an increasing sequence. If 
 ≥ 4, we have

φ
(
)
n (	(f )) = φ

(
−1)
n (δ(	(f ))) = φ

(
−1)
n (	 ′(e)). In the case 
 = 3, if φ

(2)
n (	 ′(e)) = red, then

φ
(
)
n = C1, and if φ

(2)
n (	 ′(e)) = blue, then φ

(
)
n = C2. In either case, it follows that A forms a

monochromatic copy of H’ in φ
(
−1)
n , as needed.

Proof of Claim 3·3. Consider the following procedure. Start with Z = X. At each step, let q
be the largest integer such that not all elements of Z have the same bit at position q. Consider
the partition Z = Z0 ·∪Z1, where Zp denotes the set of elements z ∈ Z with bit(z, q) = p. Then,
let Z be the larger of Z0, Z1 and continue the procedure. Eventually we reach a point where
s/4 ≤ |Z| ≤ s/2, where the lower bound follows since |Z| drops by a factor of at most 2 in
each step. Let Z∗ denote the final set Z and let q∗ be the last value of q before this point.
Then, for all distinct u, v ∈ Z∗, w ∈ X \ Z∗, we have δ(u, v) < q∗ ≤ δ(u, w). Also, note that
the elements of Z∗ form an interval in the ordered set X. Indeed, at each step all elements
in Z0 are smaller than all elements of Z1, since all elements in Z have the same bit on all
positions larger than q. Hence, if Z was an interval in the ordered set X before step i, it is
also an interval after step i. We shall assume that at least s/4 vertices in X \ Z∗ are smaller
than all elements of Z∗, the other case being analogous. Let W denote the set of elements
in X \ Z∗ smaller than every element of Z∗. Now, let A = 	−1(W) ⊆ U and let B be the set
of all vertices in 	−1(Z∗) ⊆ U that have at least one neighbour of G in A. By a), it follows
that

|B| ≥ |	−1(Z∗)|/2 ≥ s/8,

as otherwise we obtain a set of s/8 vertices with no edge towards A, which is a contradiction
since |A| ≥ s/8 ≥ nk/1000k > nk/d1/3.

Now, we analyse the set S1: = 	(B) using a similar procedure as above in steps i =
1, . . . , h, where the number of steps, h, is to be determined by the procedure. At the begin-
ning of step i, we have a set Si of size at least 2. Let qi be the largest integer such that not
all elements of Si have the same bit at position qi. Let Si = S0

i ·∪S1
i , where Sp

i consists of the

elements z ∈ Si with bit(z, qi) = p. Let pi ∈ {0, 1} be such that |Spi
i | ≥ |S1−pi

i |. Let Si+1 = Spi
i .

If |Si+1| < s/100, stop the process, otherwise continue to step i + 1.
Assume first that the procedure runs for at least s/100 steps. Then, there is a set I, |I| ≥

s/200 and p ∈ {0, 1} such that for all i ∈ I, we have pi = p and so Si+1 = Sp
i . For each i ∈ I,

let yi be an arbitrary element in S1−p
i and let Y = {yi, | i ∈ I}. Using 3, we have δ(yi, yi′) = qi

for any i, i′ ∈ I, i < i′. Moreover, the sequence (yi)i∈I is increasing if p = 1, and decreasing
otherwise. Observing that qi > qi′ for i < i′, it follows that Y is the desired set.
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Therefore, we may assume that the above procedure runs for h < s/100 steps and we will
show that this leads to a contradiction. First, we require the following claim.

Claim 3·4. There exists i ∈ [h] such that |S1−pi
i | ≥ 2 and there is a path P of length 
 − 2 in

G with an endpoint v ∈ 	−1(S1−pi
i ) and having its remaining vertices in 	−1(Spi

i ).

Proof of Claim 3·4. Let Q = ⋃
i∈[h],|S1−pi

i |≥2
	−1(S1−pi

i ) and T0 = 	−1(Sh+1), where Sh+1

is the final set after halting the procedure. Note that |T0| ≥ s/200. We repeatedly remove
from T0 vertices that have fewer than 
 neighbours in G in the current set T0. Let T denote
the final set after these deletions. Then, |T| ≥ s/400 ≥ nk/(1000)k, as otherwise at the point
when we removed half of the vertices, we have two sets of size q ≥ s/400 ≥ n/d1/3 with
at most 
q edges between them, contradicting that G satisfies a). Using a) again, it follows
that there is an edge vu with v ∈ Q and u ∈ T since |Q| ≥ |S1| − |Sh+1| − h ≥ s/8 − s/100 −
s/100 > s/16 > n/d1/3. Since G[T] has minimum degree at least 
, we can extend this edge
to a path of length 
 − 2 using only vertices in T . Let i be the index such that v ∈ 	−1(S1−pi

i ).
Note that S

pj
j ⊆ S

pj−1
j−1 for all 2 ≤ j ≤ h and T ⊆ 	−1(Sh+1) = 	−1(Sph

h ). It follows that T ⊆
	−1(Spi

i ), so the abovementioned path indeed has all vertices but the first in 	−1(Spi
i ). By

definition of Q, we also have |S1−pi
i | ≥ 2, as needed.

Let i, v, P be given by Claim 3·4 and let w be an arbitrary vertex in 	−1(S1−pi
i ) distinct

from v. We will show that then 	 is not a valid embedding, that is, we will find two edges
of H whose images get different colours. Let e = P ∪ {w} ∈ E(H). We now find another edge
f ∈ E(H) whose image under 	 gets a different colour than e.

Consider first the case 
 = 3. Then, the path P consists of a single edge vu for some
u ∈ 	−1(Spi

i ). Let u’ be an arbitrary vertex in Spi
i distinct form u, which clearly exists since

|Spi
i | ≥ |S1−pi

i | ≥ 2, and let f = {v, u, u′}. Note that, by construction, δ(u, u′), δ(v, w) < qi,

while δ(z, z′) = qi for any (z, z′) ∈ Spi
i × S1−pi

i . It follows that if pi = 1, then δ(	(e)) is
increasing, while δ(	(f )) is decreasing whereas if pi = 0, then δ(	(e)) is decreasing, while
δ(	(f )) is increasing. In either case, 	(e) and 	(f ) are coloured differently by φ

(3)
n , as

claimed.
Now, consider 
 ≥ 4 and see Figure 1 for an illustration. Recall that e = P ∪ {w}, so e

has exactly two vertices in 	−1(S1−pi
i ) and the other vertices are in 	−1(Spi

i ). Let δ =
(δ1, . . . , δ
−1) = δ(	(e)). Then, arg maxj∈[
−1]δj = 2 if pi = 1 and arg maxj∈[
−1]δj = k − 2

if pi = 0. In either case, φ
(
)
n (	(e)) = C2. We will find an edge f ∈ E(H) whose image

receives colour C1. Recall that every vertex in B ⊇ 	−1(S1−pi
i ) has a neighbour in A. Hence,

we can extend P by attaching a vertex a ∈ A to v and then remove its last vertex (which is in
	−1(Spi

i )) to obtain a path P’ of length 
 − 2 whose first vertex is a ∈ A, the second vertex

is v ∈ 	−1(S1−pi
i ) and the remaining vertices are in 	−1(Spi

i ).
If pi = 1, then let f = V(P′) ∪ {w} ∈ E(H). Consider δ = (δ1, . . . , δ
−1) = δ(	(f )). Since f

has one vertex in A and the rest are in B, it follows that arg maxj∈[
−1]δj = 1. Additionally,

	(f ) has two vertices in S0
i and the remaining ones are in S1

i . Hence, δ2 < qi = δ3, so δ is not

monotone, implying that φ
(
)
n (	(f )) = C1.

If pi = 0, then let u be an arbitrary vertex in 	−1(S0
i ) \ V(P′), which exists since |S0

i | ≥
s/100 ≥ 
. Let f = V(P′) ∪ {u} ∈ E(H) and denote δ = (δ1, . . . , δ
−1) = δ(	(f )). As before,
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(a)

(b)

Figure 1. The two chosen edges in the case 
 = 5. Sets 	(A), 	(B), S0
i and S1

i are depicted by
ovals. The vertices appearing in both e and f are depicted by points, the vertices in e \ f by squares
and the vertices in f \ e by crosses. The vertices further to the right are mapped by 	 to larger
values. The black triangles correspond to the value of δ of consecutive vertices, where higher
triangles represent larger bit positions. The curves connecting the points and crosses represent
edges between the corresponding vertices in G.

we have arg maxj∈[
−1]δj = 1. The largest element of 	(f ) is 	(v) ∈ S1
i , while the second

and third largest elements are in S0
i . Hence, δ
−1 > δ
−2 < δ1, which gives φ

(
)
n (	(f )) = C1.

4. Concluding remarks

There are many remaining interesting problems on Ramsey numbers of hypergraphs.
Maybe most notably, while for four or more colours we have lower bound constructions on
hypergraph Ramsey numbers for cliques and certain other hypergraphs essentially match-
ing the upper bounds, the bounds are still far apart for two and three colours. It would be
interesting to close the gap in these cases.
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Another well-studied question is to bound the q-colour Ramsey number of bounded
degree k-uniform hypergraphs on n vertices. It is known that there is a constant c = c(k, q, �)
such that r(H;q) ≤ c(k, q, �)n for any n-vertex k-uniform hypergraph H with maximum
degree at most � and the main question is to understand the value of the factor c(k, q, �) as
a function of the maximum degree. In the graph case with two colours, the best lower bound
is c(2, 2, �) = 2�(�) due to Graham, Rödl and Ruciński [16], while the best upper bound
is c(2, 2, �) < 2O(� log �) due to Conlon, Fox and Sudakov [6]. For more than two colours
the known upper bound proved in [15] is much worse and is of the form c(2, q, �) ≤ 2cq�

2
.

Turning to hypergraphs, [4] showed c(3, q, �) ≤ tw3(c′� log �) and c(k, q, �) ≤ twk(c′�)
for k ≥ 4, where c’ is a constant depending on k and q. It is an outstanding open problem
to show that c(k, q, �) ≤ twk(c′�) also when k = 2, 3, i.e., for graphs and 3-uniform hyper-
graphs. Such a result would provide a different proof of the upper bound for 3-uniform
hypergraphs, presented in this paper. Conlon, Fox and Sudakov [4] also constructed, for
any positive integer �, a 3-uniform n-vertex hypergraph H with maximum degree � and
r(H;4) ≥ tw3(c′�)n for some absolute constant c′. The hypergraph we constructed in the
proof of Theorem 1·3 has n vertices, maximum degree � ≤ ckn and 4-colour Ramsey
number at least twk(c′

kn)n, so it can be viewed as a generalization of the aforementioned
result to larger uniformities. These results show that in general, it is necessary to have
c(k, 4, �) ≥ twk(c′

k�). However, both our construction and that in [4] have � = �(n) and it
would be interesting to find a construction which works for any � and sufficiently large n
similar to the abovementioned lower bound of Graham, Rödl and Ruciński which works for
any � and n � �.

Finally, we think it would be interesting to study the following generalization of Ramsey
numbers. For a k-uniform hypergraph H and positive integers N and q with q ≤ e(H), let
f (N,H,q) be the minimum number r such that in every r-colouring of the edges of K(k)

N there
is a copy of H receiving fewer than q colours. The case q = 2 is just the inverse (as a function
of the number of colours) of the Ramsey number of H. The case H is a clique was introduced
by Erdős and Gyarfas and has been well-studied (see for example [5]).
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[22] B. SUDAKOV. A conjecture of Erdős on graph Ramsey numbers. Adv. Math. 227(1) (2011), 601–609.

https://doi.org/10.1017/S0305004124000409 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004124000409

	Introduction
	Proof of Theorem 1.2
	Proof of Theorem 1.3
	Setup
	Proof outline
	Formal proof

	Concluding remarks

