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In this work, we study the lift force on spherical nanoparticles suspended in a shear
flow of rarefied binary gas mixtures. Analytical formulae are developed using the gas
kinetic theory by considering non-rigid-body intermolecular interactions between the
particle and gas molecules. It has been shown that the lift force formulae can be
reduced to those in pure gases. It is also found that the direction of the lift force
on nanoparticles in binary gas mixtures can be changed by varying the temperature,
gas–particle interaction and/or gas concentrations.
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1. Introduction
A small particle in a shear flow usually experiences a force perpendicular to the

flow direction due to the flow velocity gradient (Stone 2000). This phenomenon
was first observed in capillaries where blood corpuscles tended to keep away from
the walls (Poiseuille 1836). The force acting on the particle is termed ‘lift force’,
which directly affects the particle migration and plays a crucial role in a variety
of areas such as aerosol mechanics, chemical engineering, environmental science
and biology (Herron, Davis & Bretherton 1975; Gavze & Shapiro 1998; Loth 2008;
Zheng & Silber-Li 2009). Therefore, it is of great importance to develop a quantitative
description for the lift force in shear flows.

In a gaseous medium, the Knudsen number Kn (Kn = λ/R, where λ is the mean
free path of the gas and R is the particle radius) plays a key role in the study of
the lift force. In the continuum regime (Kn � 1), the linear analysis based on the
Stokes solution predicts no lift force (Bretherton 1962; Dandy & Dwyer 1990). Thus,
the lift force can be attributed to the small inertia effects, and perturbation methods
have been used to study the inertia terms in the Navier–Stokes equations (McLaughlin
1991; Asmolov 1999). Saffman (1965) gave an asymptotic solution for the lift force
on a rigid sphere at low Reynolds numbers. The Saffman lift force in this regime
is in the same direction as the flow velocity gradient, which is consistent with many
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experimental results (Merzkirch & Bracht 1978; Busnaina, Taylor & Kashkoush 1993).
The particle in a shear flow may rotate in response to the torque induced by the
shear stress (Bagchi & Balachandar 2002). Nevertheless, there is very weak coupling
between the shear effect and the rotation effect at low Reynolds numbers (Saffman
1965; Kurose & Komori 1999; Bagchi & Balachandar 2002). In the free-molecule
regime (Kn � 1), the velocity distribution of the gas molecules is not affected by
the presence of the nanoparticles and the collisions between gas molecules and the
particle dominate the gas–particle momentum transfer (Li 2009). The magnitude and
direction of the lift force in this case can be determined by evaluating the momentum
transfer upon collisions between gas molecules and the particle. Kröger & Hütter
(2006) studied the lift force on a translationally moving particle in a shear flow at
high Knudsen numbers. Their investigation suggests that the direction of the lift force
is opposite to the flow velocity gradient, which is different from Saffman’s result.
Several years ago, Liu & Bogy (2008, 2009) derived an expression for the lift force on
spherical particles in a gas shear flow based on the rigid-body collision model between
gas molecules and the particle, which is given by

FL =− 1
3πρGR2λV, (1.1)

where ρ is the gas density, G is the velocity gradient in the shear flow and V is
the velocity of the particle relative to the gas. The lift force in (1.1) is also in the
opposite direction to the velocity gradient, which confirms the prediction by Kröger
& Hütter (2006). It should be noted that the rigid-body collision assumption for (1.1)
is reasonable for relatively large particles. For nanoparticles, the molecular interactions
between gas molecules and the particle may be significant and play an essential role
(Li & Wang 2003a,b, 2004, 2005; Wang & Li 2011, 2012). Hence, (1.1) may not
work well for nanoparticles. Recently, Luo et al. (2016) considered the influence of
gas–particle intermolecular interactions on the lift force in pure gases and obtained a
lift force formula, which is given by

FL = 1
3
πρGR2λV

(
5
Ω (1,1)∗

gp

Ω (2,2)∗
g

− 6
Ω (1,2)∗

gp

Ω (2,2)∗
g

)
, (1.2)

where Ω (1,1)∗
gp and Ω (1,2)∗

gp are reduced collision integrals, which refer to gas–particle
interactions, and Ω (2,2)∗

g is the reduced collision integral for gas–gas interactions.
Equation (1.2) includes (1.1) as a special case as the reduced collision integrals
are equal to 1 for rigid-body collisions. Moreover, it is found that the lift force on
nanoparticles could be in the same direction as or in the opposite direction to the
velocity gradient, depending on the gas–particle interaction potential and temperature.

In practical applications, the motion of particles in shear flows of gas mixtures
is often encountered (Zou et al. 2007; Kleinstreuer, Zhang & Donohue 2008;
Salmanzadeh et al. 2012). For binary gas mixtures, where the velocity distribution of
gas molecules depends on the concentration distribution and the interactions between
the two gas species, a nonlinear dependence of the lift force on the gas component
concentration is expected according to the Chapman–Enskog theory (Chapman &
Cowling 1970; Wang & Li 2011). Unfortunately, the lift force on nanoparticles
in shear flows of gas mixtures is poorly understood. This is primarily due to the
complexity of mathematical analysis of the velocity distribution function in gas
mixtures.
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FIGURE 1. (Colour online) (a) Collision model between a gas molecule and a small
particle in a linear shear flow. (b) Relationship among various vectors.

This work is devoted to generalize our previous work in pure gases to binary
gas mixtures. The rest of the paper is organized as follows. Section 2 gives the
assumptions and the velocity distribution function of the gas molecules in a binary
gas mixture under a velocity gradient. In § 3, the formulae for the lift forces on
nanoparticles in a binary gas mixture are derived on the basis of gas kinetic theory.
It is shown that the lift force formulae can be simplified to those in pure gases. As
an example, the lift forces on a silver nanoparticle in gas mixtures are illustrated in
§ 4. Finally, we conclude the paper in § 5.

2. Assumptions and velocity distribution function
Consider a spherical particle moving at velocity Vp in a linear shear flow, where

Vp is in the same direction as the velocity of the shear flow. The local mass velocity
of the gas mixture is V0, and vi is the velocity of the gas molecule relative to V0, i.e.
vi is the peculiar velocity and the subscript i denotes the gas species i. The particle
velocity relative to the local mass velocity of the gas is V (V = Vp − V0), and its
direction is perpendicular to the velocity gradient of the shear flow G. A reference
frame is introduced with origin located at the mass centre of the particle, as shown in
figure 1. The relative velocity V is in the positive z-direction and the velocity gradient
G is in the negative y-direction.

Based on the gas kinetic theory (Chapman & Cowling 1970; Bird 1994; Li &
Wang 2003a,b), the force acting on the particle can be obtained by finding the
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FIGURE 2. (Colour online) Gas molecules travel in a cylindrical region.

total momentum transfer from the gas molecules to the particle. The gas molecules
travelling in a cylindrical shell with the same impact parameter l and the same relative
velocity gi (gi = vi − V) will undergo collisions with the particle during a short time
dt. Then, the length of this cylinder is L= gi dt (see figure 2), and the number of gas
molecules in the small sector of this cylindrical shell is figil dl dξ dt, where fi is the
velocity distribution of the gas molecules. The total momentum transfer of the gas
molecules in the whole real space and velocity space can be obtained by integrating
the momentum transfer of the gas molecules over l, ξ and vi. As a result, the force
experienced by the particle upon collisions with gas molecules is given by

Fi =mip

∫
vi

gigi fiQ(gi) dvi, i= 1, 2, (2.1)

where mip = mimp/(mi +mp) is the reduced mass, with mp and mi being the particle
mass and gas molecular mass of species i, respectively. In (2.1), Q(gi) represents
the collision cross-section, which depends on the scattering scenario of the gas
molecules upon collisions with the particle. Specular and diffuse scattering are the
two limiting models of collision (Hirschfelder et al. 1954; Chapman & Cowling
1970). For specular scattering,

Qs(gi)= 2π

∫ ∞
0
(1− cos χ)l dl, (2.2)

with χ being the scattering angle given by

χ =π− 2l
∫ ∞

rm

dr

r2

√
1− l2

r2
− U(r)

mipg2
i /2

, (2.3)

where r is the separation between the particle and gas molecule, rm is the distance
of closest encounter and U(r) is the gas–particle interaction potential. The collision
cross-section for diffuse scattering is defined as

Qd(gi)= 2π

[∫ l0

0

(
1+ 1

gi

√
πkBT
2mip

sin
χ

2

)
+
∫ ∞

l0

(1− cos χ)

]
l dl, (2.4)
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where kB is the Boltzmann constant, T is the temperature l0 is the critical impact
parameter. Diffuse scattering can only occur if the impact parameter is less than l0
and the gas molecule collides with the particle physically; if the impact parameter is
greater than l0, then the gas molecule just grazes the particle and the scattering is
considered to be specular.

As mentioned above, the velocity distribution of the gas molecules is required to
calculate the force acting on the particle. In the free-molecule regime, whereby the
mean free path of the gas is much larger than the radius of the spherical particle,
the interactions between the incident gas molecules and those reflected by the particle
can be ignored. Hence, the velocity distribution of gas molecules can be obtained by
neglecting the presence of the particle (Liu & Bogy 2008). For a binary gas mixture,
the velocity distribution function of the two gas species is more complicated than that
of pure gases. According to the Chapman–Enskog theory (Chapman & Cowling 1970),
in the presence of a velocity gradient, the second-order approximation to the velocity
distribution function is fi= f (0)i + f (1)i , where the first term f (0)i is the molecular velocity
distribution function in uniform state, and the second term f (1)i accounts for the flow
velocity gradient. Thus, the integral in (2.1) consists of two terms, the first of which
is the drag force and the second of which is the lift force. The present paper focuses
on the lift force, which involves f (1)i (Chapman & Cowling 1970; Bird 1994)

f (1)i =−2f (0)i Bi : ∇V0, i= 1, 2, (2.5)

where f (0)i is the velocity distribution function in uniform state given by

f (0)i = ni

(
mi

2πkBT

)3/2

exp
(
−miv

2
i

2kBT

)
, i= 1, 2, (2.6)

where ni is the number density of gas i, and Bi is a symmetrical and non-divergent
tensor, which is obtained as a series of Sonine polynomials. Under the first-order
approximation,

Bi = bi
mi

2kBT
◦

vivi, i= 1, 2, (2.7)

where bi is a function of gas composition, temperature, gas molecular mass and the
intermolecular potential among gas molecules. The superscript ‘◦’ above vivi denotes
that the tensor is non-divergent. For the flow in figure 1, f (1)i can be written as

f (1)i =−f (0)i bi
mi

kBT
vy,ivz,iG, i= 1, 2, (2.8)

where vy,i and vz,i are the peculiar velocity components in y- and z-directions,
respectively.

3. Lift force in a binary gas mixture
3.1. Lift force formula on a spherical nanoparticle by gas i

By substituting (2.8) into (2.1), the lift force FL,i can be written as

FL,i =−mipmibiG
kBT

∫
vi

gigi f (0)i vy,ivz,iQ(gi) dvi. (3.1)
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As shown in figure 1(b), φ and θ are the colatitude and azimuthal angles of gi in the
frame of reference, respectively. The relative velocity vector gi is therefore given by

gi = gi sin φ cos θ i+ gi sin φ sin θ j+ gi cos φ k. (3.2)

Since the lift force is collinear with the velocity gradient, only the y-component of
gi needs to be considered, and it is easy to check that the first and third terms in
(3.2) vanish upon integration over the angles in spherical coordinates. This simplifies
(3.1) to

FL,i = mipmibiG
kBT

∫
vi

g3
i sin2 φ sin2 θ (gi cos φ + V) f (0)i Q(gi) dvi. (3.3)

Substituting (2.6) into (3.3), we obtain the lift force (a detailed derivation is given in
appendix A)

FL,i = 8
15 mip

√
2πkBT/mi GVR2nibi[5Ω (1,1)∗

ip − 6Ω (1,2)∗
ip ], (3.4)

where Ω (k,q)∗
ip is the reduced collision integral given by

Ω
(k,q)∗
ip =

∫ ∞
0

e−γi
2
γi

2q+3Qk(gi) dγi

[(q+ k)!/2]{1− [1+ (−1)k]/(2+ 2k)}πR2
, (3.5)

and γi = gi
√

mi/(2kBT). More details can be found in appendix A.

3.2. Total lift force on a spherical nanoparticle in binary gas mixtures
Since the mass of the particle is usually much larger than that of a gas molecule, i.e.
mi/mip ≈ 1, then the total lift force can be expressed as

FL =FL1 +FL2 = 8GVR2
√

2πkBT
15

[ n1b1
√

m1(5Ω
(1,1)∗
1p − 6Ω (1,2)∗

1p )

+ n2b2
√

m2(5Ω
(1,1)∗
2p − 6Ω (1,2)∗

2p )]. (3.6)

In (3.6), the coefficients b1 and b2 are given by (Chapman & Cowling 1970)

b1 = β1b22 − β2b12

B
, b2 = β2b11 − β1b12

B
, (3.7a,b)

where β1 = 5n1/(2n2), β2 = 5n2/(2n2) and B is the symmetric determinant,

B=
∣∣∣∣b11 b12
b12 b22

∣∣∣∣ . (3.8)

For binary gas mixtures, the expressions for the elements of determinant B are

b11 =
√

kBT
2πm0

{
4n2

1

n2

√
2

M1
Ω
(2,2)
11 +

16n1n2

3n2
M2

√
1

M1M2

[
5M1Ω

(1,1)
12 +

3
2

M2Ω
(2,2)
12

]}
,

(3.9)
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b22 =
√

kBT
2πm0

{
4n2

2

n2

√
2

M2
Ω
(2,2)
22 +

16n1n2

3n2
M1

√
1

M1M2

[
5M2Ω

(1,1)
12 +

3
2

M1Ω
(2,2)
12

]}
,

(3.10)

b12 =
√

kBT
2πm0

{√
1

M1M2

(
−16n1n2

3n2

)
M1M2

[
5Ω (1,1)

12 −
3
2
Ω
(2,2)
12

]}
, (3.11)

where M1 = m1/m0, M2 = m2/m0 and m0 = m1 + m2. Here, Ω (k,q)
ij is defined as

(Hirschfelder et al. 1954)

Ω
(k,q)
ij =

∫ ∞
0

e−γ
2
ij γ

2q+3
ij Qk(gij) dγij, (3.12)

which depends on the intermolecular interactions between gas molecules. It should be
noted that the mass in the dimensionless quantity γij is the reduced mass between two
gas molecules.

For simplicity, hereafter, (3.9)–(3.11) will be represented by

b11 =
√

kBT
2πm0

b̃11, b22 =
√

kBT
2πm0

b̃22, b12 =
√

kBT
2πm0

b̃12, (3.13a−c)

where b̃11, b̃22 and b̃12 denote the terms in the curly braces in (3.9), (3.10) and (3.11),
respectively. Then (3.7) can be rewritten as

b1 = β1b22 − β2b12

B
= β1b̃22 − β2b̃12√

kBT
2πm0

(b̃11b̃22 − b̃2
12)

=
√

2πm0

kBT
b̃1, (3.14a)

b2 = β2b11 − β1b12

B
= β2b̃11 − β1b̃12√

kBT
2πm0

(b̃11b̃22 − b̃2
12)

=
√

2πm0

kBT
b̃2. (3.14b)

Putting (3.14) into (3.6), the total lift force reads

FL = 16πm0GVR2

15
[n1b̃1
√

M1(5Ω
(1,1)∗
1p − 6Ω (1,2)∗

1p )+n2b̃2
√

M2(5Ω
(1,1)∗
2p − 6Ω (1,2)∗

2p )].
(3.15)

It should be noted that Mi and Ω (k,q)∗
ip in (3.15) are dimensionless, whereas nib̃i has

the same unit as 1/R2. Letting Π∗i =R2nib̃i
√

Mi(5Ω
(1,1)∗
ip − 6Ω (1,2)∗

ip ), the lift force can
be expressed as

FL = 16πm0GV
15

(Π∗1 +Π∗2 ), (3.16)

where Π∗1 and Π∗2 are dimensionless quantities, which contain the interactions
between gas species and the particle. It is worth mentioning that FL1 and FL2 in
(3.6) are coupled with each other via the coefficients b1 and b2, which depend on the
interactions between the two gas species. Thus, the total lift force FL is not simply
the linear summation of the lift force exerted by each gas component.
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3.3. Lift force in a pure gas
It is expected that (3.6) can be simplified to (1.2) for pure gases if the two species are
identical. Letting Ω (1,1)∗

1p =Ω (1,1)∗
2p =Ω (1,1)∗

gp , Ω (1,2)∗
1p =Ω (1,2)∗

2p =Ω (1,2)∗
gp and m1=m2=mg,

equation (3.6) becomes

FL = 8GVR2
√

2πkBTmg

15
(5Ω (1,1)∗

gp − 6Ω (1,2)∗
gp )(n1b1 + n2b2), (3.17)

and (3.9)–(3.11) can be rewritten as

b11 =
√

kBT
πmg

{
4n2

1

n2
Ω (2,2)

g + 8n1n2

3n2

[
5
2
Ω (1,1)

g + 3
4
Ω (2,2)

g

]}
, (3.18)

b22 =
√

kBT
πmg

{
4n2

2

n2
Ω (2,2)

g + 8n1n2

3n2

[
5
2
Ω (1,1)

g + 3
4
Ω (2,2)

g

]}
, (3.19)

b12 =
√

kBT
πmg

(
8n1n2

3n2

) [
3
4
Ω (2,2)

g − 5
2
Ω (1,1)

g

]
. (3.20)

By using (3.7) and (3.8),

n1b1 + n2b2 = 5
2

[
n2

1b22 − 2n1n2b12 + n2
2b11

n2(b11b22 − b2
12
)

]
. (3.21)

Then, by substituting (3.18)–(3.20) into (3.21), we obtain

n1b1 + n2b2 = 5

8

√
kBT
πmg

Ω (2,2)
g

. (3.22)

As a result, (3.17) is simplified to

FL =
√

2πmg

3Ω (2,2)
g

GR2V[5Ω (1,1)∗
1p − 6Ω (1,2)∗

1p ], (3.23)

which is the same as (1.2) by using ρ = mgn, Ω (2,2)∗
g = Ω (2,2)

g /(2πσ 2
g ) and λ =

1/(
√

2πσ 2
g n), where σg is the collision diameter of the gas molecules.

As another test of consistency, we consider the case in which the concentration of
one gas component tends to zero. For instance, in the limit of n2→ 0 and n1→ n,
b1n1 = 5

√
πm1/(8Ω

(2,2)
11

√
kBT), b2n2 = 0 and (3.6) converges to that in a pure gas.

For large particles, the gas–particle interactions can be neglected and the rigid-body
collision model is reasonable. In this case, (3.23) can be easily reduced to (1.1)
by assuming rigid-body collisions. However, as the particle size decreases to the
nanoscale, the influence of the van der Waals interactions between the gas molecules
and particle on lift force becomes notable. This influence is manifested in the
term Ω

(k,q)∗
ip .

The lift force given by (1.2) could be positive (5Ω (1,1)∗
gp > 6Ω (1,2)∗

gp ) or negative
(5Ω (1,1)∗

gp < 6Ω (1,2)∗
gp ), depending on the gas–particle interactions. In most cases, the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

67
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.676


Lift force on nanoparticles in shear flows of binary gas mixtures 353

direction of the lift force on nanoparticles in pure gases (1.2) is negative, i.e. opposite
to the velocity gradient, which is consistent with (1.1). However, the positive lift force
takes place in a certain temperature range for a given gas–particle interaction. The
physical reason for the direction change is that the gas molecules on the low-velocity
side transfer more momentum to the nanoparticle due to its larger scattering angles
upon non-rigid-body collisions. As for binary gas mixtures, the total lift force is a
nonlinear combination of individual lift forces contributed from species 1 and 2. A
direction change of the lift force is expected if the lift forces of gas species 1 and 2
are in opposite directions, as will be demonstrated in the following section.

4. Lift force on a silver spherical nanoparticle in gas mixtures
As an example, a suspended silver nanoparticle in a Ne–Ar binary gas mixture is

considered. A widely used model to describe the van der Waals interactions is the
Lennard-Jones (LJ) 12–6 potential,

U12−6(r)= 4ε
[(σ

r

)12 −
(σ

r

)6
]
, (4.1)

where ε and σ represent the binding energy and collision diameter, respectively. The
LJ potential parameters for Ne (σ1=2.82 Å and ε1/kB=32.8 K), Ar (σ2=3.47 Å and
ε2/kB = 114.0 K) and Ag (σp = 2.57 Å and εp/kB = 4075.0 K) are adopted from the
literature (Svehla 1962; Hippler, Troe & Wendelken 1983; Agrawal, Rice & Thompson
2002). The potential parameters for the interactions between different species 1 and 2
are obtained using the conventional Lorentz–Berthelot rules, i.e. σ12= (σ1+ σ2)/2 and
ε12 =√ε1ε2.

Figure 3 shows the dimensionless quantity Π∗i of a silver nanoparticle in a rarefied
Ne–Ar gas mixture as a function of reduced Ne concentration n1/n. It is seen that
FL converges to FL,1 (open circle) or FL,2 (open triangle) as n1 → n or n2 → n,
respectively. It is also found that Π∗i varies nonlinearly with Ne concentration. In
(3.6), it seems that the total lift force is simply a linear superposition of the lift forces
given by the gas components. However, both b1 and b2 depend on the composition
ratio and the interactions between the two gas species, by which the dependence of
the total lift force on the concentration is nonlinear.

As discussed by Luo et al. (2016), if the LJ 12–6 potential function is employed for
the gas–particle interaction, a positive lift force that directs towards the high-velocity
side exists in a certain reduced temperature range, 0.417< T∗= kBT/ε < 0.951 (Wang
& Li 2012; Khrapak 2014; Luo et al. 2016). Therefore, the lift forces acting on the
nanoparticle in pure neon gas (FL1) and pure argon gas (FL2) become positive when
the temperature is roughly in the ranges of 154–347 K and 286–648 K, respectively.
If the temperature is extremely high or low, as shown in figure 3(a) for T=100 K and
figure 3(d) for T = 700 K, since the lift forces in both gas species are negative, the
total lift forces are definitely negative. At moderate temperatures, positive FL1 (Ne)
and/or FL2 (Ar) can take place, as shown in figures 3(b) and 3(c). As previously
mentioned, the total lift force consists of two contributions from species 1 and 2. If
the lift forces of gas species 1 and 2 are in opposite directions, it is expected that the
direction of the total lift force changes as the gas concentration varies. For example, in
the case of T= 500 K (see figure 3c), FL1 (Ne) is negative and FL2 (Ar) is positive; as
a result, the direction of FL changes from positive to negative as the Ne concentration
varies. This means that in a certain temperature range, there exists a critical value of
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FIGURE 3. (Colour online) Variation of Π∗i as a function of reduced Ne concentration
n1/n at T = 100 K (a), T = 300 K (b), T = 500 K (c) and T = 700 K (d). Open symbols
corresponding to the results in pure gases.

n1/n, where the total lift force changes its direction. However, the complex nonlinear
dependence of the lift force on the gas concentrations makes it difficult to predict this
critical value.

Figure 4 shows the dimensionless quantity Π∗i of a silver nanoparticle in other gas
mixtures (He–Ar and He–Kr gas mixtures). The collision diameter σ and binding
energy ε/kB for He and Kr are 2.55 Å, 10.22 K and 3.66 Å, 178.9 K, respectively
(Svehla 1962). As can be seen from (3.16), the total molecular mass of the two
species m0 appears in the coefficient of (Π∗1 + Π∗2 ), and Π∗1 depends on 1/m0 as
n1/n converges to 1. Since the total molecular mass of He and Ar is different from
that of He and Kr, the values of Π∗1 in figures 4(a) and 4(b) are not equal to each
other as n1/n converges to 1 (pure He gas). It has been checked that the values of
Π∗1 in He–Ar and He–Kr gas mixtures are equal to each other if Π∗1 is multiplied
by m0. By comparing figures 3(b) with 4, it is seen that the dependence of the total
lift force on the concentration is still nonlinear and the degree of the nonlinearity
between Π∗i and n1/n is different for different gas mixtures. The nonlinearity in
the case of figure 4(b) is the most distinct one because the differences between the
potential parameters and the molecular masses of He and Kr are the largest. Similarly,
for the case in figure 3(b), the nonlinearity is weak because the potential parameters
and the molecular mass of Ne are close to those of Ar. This is consistent with the
discussion in § 3.3: if the potential parameters and molecular mass of species 1 are
identical to those of species 2, the formulae reduce to those in pure gases and the
nonlinearity disappears.

It should be noted that the LJ 12–6 potential might not be an adequate model to
describe the interactions between gas molecules and a particle. A rigorous description
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FIGURE 4. (Colour online) Variation of Π∗i as a function of reduced He concentration
n1/n in He–Ar gas mixtures at T = 300 K (a) and in He–Kr gas mixtures at T =
300 K (b).

of the gas–particle interaction is unavailable. As a coarse approach, the potential for
gas–particle interactions can be determined as a sum of the LJ interactions of gas
molecules with all atoms in the particle. If the distribution of atoms in the particle
is assumed to be continuous, integration can be carried out in place of summation
(Rouquerol et al. 2013). In this way, the interaction between gas molecules and a
single solid lattice plane is given by (Everett & Powl 1976)

U10−4(r)= 10
3
ε

[
1
5

(σ
r

)10 − 1
2

(σ
r

)4
]
, (4.2)

and the interaction between gas molecules and a semi-infinite slab of solid is given
by (Everett & Powl 1976)

U9−3(r)= 3√
10
ε

[
2
15

(σ
r

)9 −
(σ

r

)3
]
. (4.3)

Although there is no evidence that these two potential functions are suitable for
gas–particle interactions, in the present paper, we consider them as a possible choice
for illustrative purposes. It is expected that the r dependence for the gas–particle
interaction potential is covered by these three cases (12–6, 10–4 and 9–3) or their
combinations (Luo et al. 2016).

In figure 5, Π∗1 +Π∗2 is depicted as a function of reduced Ne concentration n1/n
in a Ne–Ar gas mixture at various temperatures, wherein (4.1)–(4.3) are employed
to model the interactions between the particle and gas molecules. Being similar to
the results in figure 3, for interaction potentials given by (4.1)–(4.3), the dependence
of Π∗1 + Π∗2 on the single-species concentration ratio is also nonlinear. A positive
lift force can be observed at certain temperature associated with the direction change
from positive to negative with increasing Ne concentration. Furthermore, at the same
concentration of Ne, the temperature value corresponding to the lift force direction
change (if there is a change in lift force direction) increases from 12–6, to 10–4, to
9–3 potentials. This trend may be due to the increasing attractive interactions between
gas molecules and the particle. Since we can observe the direction change of the lift
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FIGURE 5. (Colour online) Variation of Π∗1 + Π∗2 (Ne–Ar) as a function of reduced
Ne concentration n1/n for the different gas–particle interaction potential functions at
T = 400 K (a), T = 600 K (b), T = 800 K (c) and T = 1000 K (d).

force with all three types of interaction potentials, it is expected that the direction
change can be observed experimentally. Owing to the computational complexity of
the reduced collision integrals, it is not easy to offer a rigorous treatment of the gas–
particle interactions. Further intensive experimental studies and theoretical analyses are
needed on this issue.

5. Conclusions
To summarize, the lift force on spherical nanoparticles in shear flows of rarefied

binary gas mixtures is investigated. In the light of the importance of the molecular
interactions between the gas molecules and a nanoparticle, we take into account the
non-rigid-body collision effect in our model. On the basis of gas kinetic theory, we
derive an analytical lift force formula by calculating the momentum transfer upon
collisions between the nanoparticle and surrounding gas molecules. The expression
involves terms of the collision integrals, which relies on the intermolecular interactions.
The present formula is consistent with its counterpart in pure gases and can be
simplified to that in the case of rigid-body collisions. For a particle suspended in
a binary gas mixture, the total lift force acting on the particle is considered as the
combination of the individual lift forces contributed by the two species, and the
dependence of the total lift force on the gas concentration is nonlinear, which can
contribute to the molecular interactions between two gas species.

Furthermore, it is illustrated that the positive lift force, which is in the opposite
direction of the lift force in the case of rigid-body collisions and drives nanoparticles
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towards high-velocity regions, may occur in binary gas mixtures. The emergence of
a positive lift force is a result of the higher gas–particle momentum transfer in the
low-velocity region compared with that in the high-velocity region. Three types of gas–
particle interaction potential models are employed to evaluate the lift force. It is found
that the direction of the lift force acting on nanoparticles depends on temperature, gas
concentrations and potential parameters and the direction change of the lift force can
be observed with varying gas concentration.
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Appendix A. Derivation of lift force on a spherical nanoparticle by gas i

By substituting (2.6) into (3.3), one obtains

FL,i =
√

2πmipnibiG
4π2

(
mi

kBT

)5/2 ∫
vi

g3
i sin2 φ sin2 θ (gi cos φ + V) exp

(
−miv

2
i

2kBT

)
Q(gi) dvi.

(A 1)
Considering the fact that the particle relative velocity V is much smaller than the
peculiar velocity of the gas molecules vi, the exponential term in (A 1) can be
simplified to

exp
(
−miv

2
i

2kBT

)
= exp

(
−g2

i + 2giV cos φ + V2

2kBT/mi

)
≈ exp

(
−mig2

i

2kBT

)
exp
(
−migiV cos φ

kBT

)
,

(A 2)
where exp[−migiV cos φ/(kBT)] can be expanded to

exp
(
−migiV cos φ

kBT

)
=1− migiV cos φ

kBT
+ 1

2

(
migiV cos φ

kBT

)2

− 1
6

(
migiV cos φ

kBT

)3

+· · · .
(A 3)

Since kBT ∼mig2
i �migiV and migiV/(kBT)� 1, the second- and higher-order Taylor

expansion terms in (A 3) can be neglected. Therefore, (A 2) can be simplified to

exp
(
−miv

2
i

2kBT

)
= exp

(
−mig2

i

2kBT

)(
1− migiV cos φ

kBT

)
. (A 4)

Moreover, in the short time dt, V can be treated as constant, thus

dvi = dgi = g2
i sin φ dφ dθ dgi. (A 5)

Substituting (A 4) and (A 5) into (A 1), we obtain

FL,i =
√

2πmipnibiG
4π2

(
mi

kBT

)5/2 ∫
vi

g3
i sin2 φ sin2 θ (gi cos φ + V)

× exp
(
−mig2

i

2kBT

)(
1− migiV cos φ

kBT

)
Q(gi) dvi
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=
√

2πmipnibiG
4π

(
mi

kBT

)5/2 ∫ ∞
0

∫ π

0
g5

i sin3 φ (gi cos φ + V)

× exp
(
−mig2

i

2kBT

)(
1− migiV cos φ

kBT

)
Q(gi) dφ dgi. (A 6)

Integrating over φ, we have

FL,i=
√

2πmipnibiGV
π

(
mi

kBT

)5/2 ∫ ∞
0

(
1
3

g5
i −

1
15

mig7
i

kBT

)
exp
(
−mig2

i

2kBT

)
Q(gi) dgi. (A 7)

By using the definition of the reduced collision integrals (3.5) and γi= gi
√

mi/(2kBT),
equation (A 7) can be rewritten as

FL,i = 8mipnibiGV
15π

√
2πkBT/mi

∫ ∞
0
(5γ 5

i − 2γ 7
i ) exp(−γ 2

i )Q(gi) dγi

= 8
15

mip

√
2πkBT/mi GVR2nibi[5Ω (1,1)∗

ip − 6Ω (1,2)∗
ip ], (A 8)

which is (3.4).
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