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I n t r o d u c t i o n . The characters of the representations of a finite group G 
over a field K of characteristic zero generate a ring oK(G) of functions on G, 
the K-character ring of G, which is readily seen to be Z<£i + . . . + Z$n, where 
Z is the ring of rational integers and 0i , . . . , <j>n are the characters of the 
different irreducible representations of G over K. The theorem t h a t every 
irreducible representation of G over an algebraically closed field 12 of charac­
teristic zero is equivalent to a representation of G over the subfield of 12 which 
is generated by the g0th roots of unity (go the exponent of G) was proved by 
Brauer (4) via the theorems tha t 

(1) OQ(G) is additively generated by the induced characters of representa­
tions of elementary subgroups of G, and 

(2) the irreducible representations over 12 of any elementary group are 
induced by one-dimensional subgroup representations (3). 

Brauer 's original proof of (1), being rather complicated in some of its 
details, was simplified considerably by Roquet te (5) with the aid of suitable 
p-adic extensions of OQ(G). In turn , Wi t t (7) extended the use of Roquet te ' s 
method to generalize (1) to arbi t rary fields, or, rather, to finite-dimensional 
division algebras over an arbi t rary field. The case for arbi t rary fields was 
again treated by Berman (2), who used similar techniques, and by Solomon 
(6), whose approach is more like t ha t in (4). 

The main object of this note is to obtain a theorem analogous to (1) which 
is still strong enough to be of use as a step in proving tha t every irreducible 
representation of G over a field containing all goth roots of uni ty is absolutely 
irreducible, bu t whose proof is substantial ly simpler than those mentioned. 
This will be done by means of a direct determination of the maximal ideals 
of 0K(G) for arbi t rary K, which dispenses with p-adic extensions as well as 
other tools previously employed. Moreover, it will be shown t h a t the knowl­
edge of the maximal ideals of oK(G) can also be used to prove Wi t t ' s generali­
zation of (1). 

T h e desired description of the maximal ideals of 0K(G) actually requires 
only very few of the properties of the rings oK(G), and the material presented 
here has been arranged accordingly. Thus , the first section of this paper deals 
with the maximal ideals of certain rings of functions which are defined on a 
finite set and take their values in a suitable integral domain. The second 
section brings the application of the result obtained to the rings oK(G), leading 
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to the theorems referred to above. The paper closes with some remarks pointing 
out further consequences of the method used here. 

Thanks are due to the referee, whose comments led to some improvements 
in the work presented here. 

1. Maximal ideals. Let X be a finite set, I an integral domain of charac­
teristic zero, which is finitely generated as an additive group, and o a ring 
of functions 0 : X —» I such that (i) the constant function e whose value is 
1 Ç / belongs to o and (ii) o is additively generated by finitely many functions 
0i, . . . , 4>n which are linearly independent over I. Then, the maximal ideals 
of o are described as follows. 

PROPOSITION 1. For any c G X and any maximal ideal p in / , 

a(c, p) = {0 | </> G o,0(c) G PÎ 

is a maximal ideal of o, and each maximal ideal of o is of this type. 

Proof. Clearly, any ct(c, p) is a prime ideal of o, proper because e $ ct(c, p). 
Moreover, po C ct(c, p) for the prime number p G p, and since o/po is finite, 
the integral domain o/ct(c, p) is also finite. Thus, o/ct(c, p) is, in fact, a field 
and therefore a(c, p) is a maximal ideal. 

Conversely, let m be any maximal ideal in o. Then, the field o/m is finitely 
generated under addition in view of (ii) and hence has non-zero characteristic 
p since any subgroup of a finitely generated additive group is again finitely 
generated, whereas the additive group of all rationals is not. Now let p be 
any maximal ideal in I containing p. Choose xi, . . . , xn G X such that 
8 = det(0i(x^)) 9e 0, and take h to be the natural number with 8 G p'*-1 but 
8 $ p7*. Here, such xi, . . . , xn exist by the linear independence over / of the 
0i, . . . , 4>n, and the choice of h is possible since 5 ^ 0 and 

n f1 = o. 
m 

Next, consider any 0 G P\ct(x, p) (x G X), and put <t>h = J^c^i with suitable 
Ci G Z. Then, one has 

J2ci<t>i(xj) = </>"(̂ -) = <t>(xj)h G p*, for each j = 1, . . . , n 

and by using the adjugate (ajk) of the matrix (<t>i(xj)) one obtains 

ck8 = H<l>h(Xj)ajk € p7* for & = 1, . . . , w. 

Now, if some ^ were not in p, there would exist p G / and 7r G p with 
1 = @ck + 7T, which would lead to 8 = jSĉ o + 7rô G p7*, contradicting the choice 
of h. Therefore, one has ck G p C\ Z = Ẑ >, i.e. ck = 6 ^ with suitable bk G Z 
for each &. It now follows that <f>h = pYJ>i<&i € £o; thus <j>n G m by po C m 
(£ was the characteristic of o/m), and finally 0 G m since m is prime. This 
shows that 

Pi a(x, p) C m, 
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and, again, by the primeness of m, one must have a(c, p ) C m for some c £ X. 
The maximality of a(c, p) finally leads to m = ct(c, p). 

Remark 1. The condition that the domain I be finitely generated under 
addition is not fully needed in the above proof. It is enough to assume I to 
be noetherian and such that no prime number has an inverse in I, and then 
to restrict the ideals p C I in Proposition 1 to those for which 7/p has prime 
characteristic. 

Remark 2. The arguments used in the above proof also lead to the deter­
mination of all prime ideals of the ring o. In fact, any ideal 

a(c) = {</> | 0 G o,«(c) = 0} 

is a non-maximal prime ideal of o, and every such ideal of o is of this type. It 
is obvious that these a(c) are prime ideals, non-maximal since a(c) is not of 
the type a(c, p). Conversely, let r Ç o be any prime ideal. If the integral 
domain o/r has prime characteristic, then, as above, o/r is finite, hence a 
field, and thus r maximal. Now, let o/r have characteristic zero. First, one has 
a(c) Ç r for some c since 

H a(c) = 0 £ r . 
ceX 

Now, o/a(c) is also an integral domain of characteristic zero, finitely generated 
as an additive group, and therefore any one of its non-zero prime ideals is 
maximal. It follows that the prime ideal x/a(c) of o/a(c) is either maximal or 
zero, and since maximality here would imply the maximality of r in o, one 
has r = a(c). 

2. Character rings. Let G be a finite group of exponent g0 and K a field 
of characteristic zero. Then, the i£-character ring 0K(G) of G defined in the 
Introduction satisfies the hypotheses concerning the ring o in the previous 
section: the functions </> Ç oK(G) map G into the integral domain I generated 
by Z and the g0th roots of unity in the algebraic closure 12 of K, the unit 
character e belongs to oK(G), and the irreducible X-characters <£i, . . . , <j>n of G 
are linearly independent over 7, the latter since the linear extensions </>* of 
the <t>i to functions on the group ring K[G] with values in £2 satisfy the con­
ditions 4>i{ej) — dfjdj, where e;- are the unit elements of the n simple com­
ponents of K[G] and the dj are the dimensions of the corresponding irreducible 
representation modules. It follows now that the maximal ideals of oK(G) are 
determined according to Proposition 1. However, in the present situation, a 
more specific statement holds: 

PROPOSITION 2. The maximal ideals of oK(G) are all of the type a(c, p) where 
c is p-regular for the prime number p Ç p. 

Proof. Recall that ^-regularity means that p does not divide the order m 
of c. If this is not the case, let m = m0p

k with natural numbers ra0 and k 
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such that p \ ra0, and, accordingly, 1 = umQ + vpk with suitable M , ^ Z . 
Then, for 5 = cvpk and t = cum°, one has c = st, p does not divide the order 
of s, and the order of t is a power of p. Now the restriction of each character 
<j>i to the cyclic subgroup (c) of G is an integral linear combination of the 
irreducible O-characters £1, . . . , £m of (c). Since the orders of the roots of 
unity £;•(/) are powers of p one sees that %j(t) — 1 G p; hence 

£yto - £ , ( * ) ={,(*)(£,( ') - 1) € P, 

and thus 0*(c) — 0z-(s) G P, which extends to </>(c) — <j)(s) G p for any 
0 € Oif(G). This clearly implies that <f>(c) G p if and only if <f>(s) G p for any 
* G ox(G), i.e. a(c, p) = a(s, p). 

Remark. The second comment on Proposition 1 gives a description of all 
prime ideals of oK(G). This is also contained in (1), but the proof there makes 
use of results which, in the present setting, follow rather than precede the 
determination of the maximal ideals of oK(G). 

Next, the process of inducing functions on the whole group G by means of 
functions on a subgroup H Ç G has to be mentioned. If ^ is any function on 
H (with values in a ring, say) then let i/'* be the function on G defined by 
the formula 

**(*) = Z tlr^sr) (r~V eH,r G R), 
r 

where R is a set of representatives for the cosets xH, x G G. If yp is the charac­
ter of a representation of H, then ^* is the character of the corresponding 
induced representation of G. In general, the mapping \p —> ^* is additive, and 
if 0 is defined on G and constant on the conjugate classes, then <f>-\f/* = (</)\H• \//)*, 
where 4>\II denotes the restriction of <f> to H. It follows from this that 
(oK(G)\H)* = {O|i7)*|0 G oK(G)} is an ideal of oK(G), namely the principal 
ideal generated by e^*, eH being the unit character of II. 

Now, consider the set § of all subgroups H Ç G such that H = (c)P where, 
for some prime number p, c is ^-regular and P a /?-Sylow subgroup of the 
normalizer N(c) of the cyclic subgroup (c). § plays the following important 
role for the ring oK(G): 

PROPOSITION 3. oK(G) = ^(oK(G) | H)* (H G § ) , i.e. the ideal generated by 
the induced characters e^*, H G § , is ^^ whole ring oK(G). 

Proof. Assume that the ideal in question is proper. Then, there exists a 
maximal ideal ct(c, p) containing all e#*, and by Proposition 2 the element c 
may be taken ^-regular for the prime number p G p. Next, let H = (c)P with 
a ^-Sylow subgroup P of N(c). By definition, one has 

«**(c) = E 1 O-"1^ G (c)P,r G -R), 
r 

R being a set of representatives for the cosets xH, x G C7. If r G R contributes 
to this sum, then one has r~xcr = cH with suitable integer h and t G P. Now 
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t~lct = cm for some integer m and ord(/) = pk for some natura l number k, 
and therefore 

(r-l
cr)

vk = (cht)pk = ^ ( - + - 2 + - + ^ ) ; 

since p does not divide the order of c, this leads to r~lcr G (c) and hence to 
r~1(c)r = (c), i.e. r G iV(c). Of course, if r G iV(c), then obviously r~lcr G (c)P, 
and it follows tha t 

***(c) = (N(c):(c)P). 

However, P being a ^-Sylow subgroup of N(c), £ does not divide this index, 
and hence eH*(c) $ p, which contradicts the assumption t h a t €#* G ct(c, p) for 
all H £ § . This proves the proposition. 

As an immediate consequence, based on the obvious inclusion 

o*(G) \HQoK(H) 

for any subgroup H, one has the following corollary. 

COROLLARY 1. oK(G) = ! > * : ( # ) * (H G ©). 

Proposition 3 readily leads to a similar s ta tement about the ideals of oK(G) : 

ft = ]C ( a l ^0* f ° r a n Y ideal a C oK(G). 

A particular ideal, considered by Wi t t (7), may be described as follows. Let A 
be a division ring with centre K, of finite dimension over K. Then , any repre­
sentation $ of G over A determines an associated representation QK over K 
obtained by considering the representation module for $ as a i^-module, and 
the character of $ is defined to be the character of $K. Calling the characters 
obtained in this fashion the A-characters of G, one can make the following 
remarks (7). The set of all A-characters is closed under addition, the product 
of a A-character with any i^-character is a A-character, and the A-characters 
of a subgroup of G induce A-characters on G. As a result of this, the differences 
of A-characters of G form an ideal <1A(G) of oK(G), and for any subgroup H of 
G one has CIAC^O* £ O,A(G). Hence, the comment a t the beginning of this 

paragraph and the fact t ha t (U | H Ç ctA (H) for any subgroup H of G lead 
to the following analogue of Satz 6 in (7). 

COROLLARY 2. 

aA(G) = £ aA(#)*. 

Remark 1. Although Corollary 1 refers to somewhat more complicated sub­
groups of G t han (1) since the products (c)P need not be direct here, it is 
still good enough for a proof of the absolute irreducibility of the irreducible 
representations of G over a field containing all g0th roots of unity. This follows 
from Wi t t ' s generalization of Blichfeldt's theorem (7) according to which the 
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irreducible representations over an algebraically closed field of a group G 
with abelian normal subgroup A QG such that the factors in the principal 
series of G/A are cyclic are all induced by one-dimensional subgroup repre­
sentations. The abelian normal subgroup in the present case is, of course, (c). 

Remark 2. For analogous reasons, Corollary 2 is sufficient to obtain Satz 7 
of (7). 

It will now be shown how (1) and its generalization referred to in the 
Introduction may also be proved with the aid of Proposition 2. The argument 
is contained essentially in Section 6 of (7), and it will be enough to indicate 
briefly how it applies here. 

Let go = pkgu with natural numbers k and gi such that p \ gi, K* = K(£) 
with a primitive gith root of unity f, JK the set of those natural numbers i 
for which f —>fz determines an automorphism of K*/K> and &K the set of 
all subgroups £ Ç G such that E = (c)P where, for some prime p, c is a 
^-regular element of G and P a ^-Sylow subgroup of the normalizer NCK of 
the set CK = {c1 \ i G JK). Clearly, for K* = K one has CK = {c}, and 
E = (c)P is then the direct product of (c) and P , i.e. E is elementary in the 
sense of Brauer (3). On the other hand, if K* has the greatest possible dimen­
sion over K, then (&K = § , the set of subgroups used in Proposition 3. 

PROPOSITION 4. 

oK(G) = E oK(E)*. 
Et&K 

Proof. Suppose the ideal 

e = E OK(E)* 
Ee®K 

is proper. Then e Ç a(c, p) with some ^-regular c £ G and some prime ideal 
p C J such that p £ p. Now, consider any E = (c)P Ç &K. 

According to (7), the linear combination 

E &-% 
Z,stCK 

ranging over all absolutely irreducible characters of (c), is of the form Y.^iVi 
with i£-characters 771 of (c) and coefficients at d I since 

£ (̂s-1) = E KO = E to"1) 
s e CK seCK s e CK 

for each i Ç J^. Moreover, by the way E is defined in relation to the auto­
morphisms of K*/K, every K-character of (c) is the restriction of a K-character 
of E (7, Section 6, Hilfssatz; also 6). With extensions \i of the rjt to £ , 
which therefore exists, one now considers the function ]£«**?** on G. Since 
t~lct 6 E holds if and only if t~lct Ç (c) by the same argument as in the proof 
of Proposition 3, one has, with a set R of representatives for the cosets xE, 
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£ amif'cr) {r € R, r'hr £ (c)) 
i,r 

Z.S,T 

Z tts-1)^-1*) (s € CK;r G * , r^cr € C*) 

= (NCK'.E) ordc, 

where the second equation follows from the definition of the at and rjt1 and 
the last two from the orthogonality relations for the absolutely irreducible 
characters £ of (c). 

On the other hand, e Ç a(c, p) implies that x*M € P fc>r any X-character 
X of £ and hence 

(NCK:E) ordc= £ atXt*(c) G P, 
i 

a contradiction because £ contains a ^-Sylow subgroup of NCK and c is p-
regular. It follows that c = OJS;(G). 

Remark. Comparing Proposition 3 (or, more precisely, its first corollary) 
with Proposition 4, one can make the following observations. In either case, 
the number of subgroups of G which enter into the proof is the same; these 
are, first, the cyclic subgroups which ensure that the ideal of induced charac­
ters is not contained in any ct(c, p) with g0 $ p, and, secondly, one subgroup 
for each a(c, p), where the prime number p Ç p divides g0 and c is ^-regular. 
However, the subgroups used to get outside the latter maximal ideals may 
differ in the two cases. Those that occur in the proof of Proposition 3 have 
the advantage of not depending on the field K but they may be larger and, 
therefore, more complicated than those used in the proof of Proposition 4. In 
any case, for each a(c, p) of the second type the two subgroups can always be 
chosen such that one is contained in the other: for E = (c)P in (&K one can 
take H = (c)Pf in § such that the £-Sylow subgroup P' of N(c) contains 
the ^-Sylow subgroup P of NCKy in view of NCK C N(c). Another noteworthy 
feature of the proof of Proposition 3 is that the orthogonality relations for 
characters are not required here and only the identity characters enter into it. 

3. Conclusion. For a finite abelian group A, Proposition 1 leads to the 
following observation. The simple Z[^4]-modules are the additive groups 
M(xi P)> images of Z[A] under the homomorphism I>PX> where x is the linear 
extension to Z[A] of any absolutely irreducible character of A and vp is the 
natural homomorphism I —> / /p for some maximal ideal p C / , with a Ç A 
acting on Af(x, p) by a(vpx(x)) = v$x(ax)- This is an immediate consequence 
of the natural isomorphism Z[A] —> On(̂ 4*), A* the character group of A, in 
view of which the maximal ideals of Z[A] are all of the type 

X) onXi*(c) 
i 
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û ( x , P) = {x\x G Z[A],x(x) G p } , 

with % and p as above. 
The methods employed in the previous sections can also be used to obtain 

the following analogue of Proposition 2. Let O be the ring of functions on 
the finite group G with values in the domain I of the g0th roots of unity which 
consists of all linear combinations, with coefficients from I, of the absolutely 
irreducible characters of G. Then, the maximal ideals of O are again the 
ideals 21 (c, p) = {</> \ $ Ç £), <t>(c) G p} with c G G and p any maximal ideal 
in / . As in the previous case, 21 (a, p) = 21(6, p) if a and b are ^-conjugate, i.e. 
have conjugate ^-regular parts. Moreover, in this case one can also show the 
converse, using an argument from (5), and therefore the different maximal 
ideals in D associated with the same p C I correspond to the different p-
conjugate classes in G. From this one can easily deduce the results of (5) con­
cerning the extension of OQ(G) by means of arbitrary coefficients from the 
ring Ip of p-adic integers. 
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