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On the Chow Ring of Cynk–Hulek
Calabi–Yau Varieties and Schreieder
Varieties

Robert Laterveer and Charles Vial

Abstract. his note is about certain locally complete families of Calabi–Yau varieties constructed by
Cynk and Hulek, and certain varieties constructed by Schreieder. We prove that the cycle class map
on the Chow ring of powers of these varieties admits a section, and that these varieties admit amulti-
plicative self-dualChow–Künneth decomposition. As a consequence of both results,we prove that the
subring of the Chow ring generated by divisors, Chern classes, and intersections of two cycles of posi-
tive codimension injects into cohomology via the cycle classmap. We alsoprove that the smalldiagonal
of Schreieder surfaces admits a decomposition similar to that of K3 surfaces. As a by-product of our
main result,we verify a conjecture ofVoisin concerning zero-cycles on the self-product of Cynk–Hulek
Calabi–Yau varieties, and in the odd-dimensional case we verify a conjecture of Voevodsky concern-
ing smash-equivalence. Finally, in positive characteristic,we show that the supersingularCynk–Hulek
Calabi–Yau varieties provide examples of Calabi–Yau varieties with “degenerate” motive.

Introduction

In the course of a quest for Calabi–Yau varieties that are modular, Cynk and Hulek
[7] constructed certainCalabi–Yau varieties X of arbitrary dimension n overC. heir
construction starts from aproductof n complex elliptic curves E1 , . . . , En . heCalabi–
Yau variety X is obtained by considering

E1 × ⋅ ⋅ ⋅ × En

p
��

X
f
// (E1 × ⋅ ⋅ ⋅ × En)/G ∶= X ,

where G is a certain group of automorphisms (speciûcally G ≅ Zn−1
2 , or G ≅ Zn−1

3 and
E1 = ⋅ ⋅ ⋅ = En is an elliptic curve with an order-3 automorphism), and f is a crepant
resolution of singularities. We refer the reader to heorems 1.1 and 1.2 for explicit
deûnitions, and to Propositions 4.3 and 4.4 together with the proof of Claim 4.8 for
an explicit construction.

he diòerence between the two types of Cynk–Hulek varieties (G = Zn−1
2 and G =

Zn−1
3 ) is illustrated by their Hodge diamond. In the ûrst case (i.e., G = Zn−1

2 ), the
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Hodge diamond looks like

1
∗
⋮

1 ∗ . . . . . . . . . ∗ 1
⋮
∗
1

(where ∗ means some unspeciûed number, and all empty entries are 0), whereas for
the second case (i.e., G = Zn−1

3 ), theHodge diamond is

1
∗
⋮

1 0 . . . 0 ∗ 0 . . . 0 1
⋮
∗
1.

Recently, Stefan Schreieder [28] generalized the construction of Cynk–Hulek in
order to solve some construction problems for Hodge numbers. His construction
startswith the hyperelliptic curveC,which is the smooth projectivization of the aõne
curve {y2 = x3c − 1} equipped with the action of a primitive 3c-th root of unity ζ
acting as (x , y)↦ (ζ ⋅ x , y). he variety X is an explicit smooth projective birational
model of Cn/G, where G is a certain subgroup of (Z3c)n isomorphic to (Z3c)n−1 (see
Proposition 4.5 and the proof of Claim 4.8). he Hodge diamond of a Schreieder
variety looks like

1
∗
⋮
⋮

0 . . . 0 g 0 . . . 0 ∗ 0 . . . 0 g 0 . . . 0
⋮
⋮
∗
1,

where g = (3c − 1)/2 can occur at any desired place ha ,b with a + b = n.
From an arithmetic perspective, the construction of Schreieder has been used by

Flapan and Lang [11] to construct motives associated with certain algebraic Hecke
characters, thereby generalizing themodularity result of Cynk andHulek [7].

he varieties of Cynk–Hulek and of Schreieder are thus both very special from a
Hodge-theoretic point of view and from an arithmetic point of view. he aim of this
note is to conûrm that these varieties are also very special from a cycle-theoretic point
of view.
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Let CHi(X) denote the Chow groups with rational coeõcients, let CHi
num(X)

denote the subgroup of numerically trivial cycles, and let CHi(X) denote the quo-
tient. Our main result concerns themultiplicative structure of the Chow ring of X.

heorem 1 (heorem 4.1) Let X be either a Cynk–Hulek Calabi–Yau variety as in
heorem 1.1 or 1.2, or a Schreieder variety as in heorem 1.4. hen the Q-algebra epi-
morphism CH∗(Xm) → CH∗(Xm) admits a section whose image contains the Chern
classes of Xm , for all positive integers m.

Moreover, assuming n ∶= dimX ≥ 2, the graded subalgebra R∗(X) ⊆ CH∗(X)
generated by divisors, Chern classes, and by cycles that are the intersection of two cycles
in X of positive codimension injects into CH∗(X). In particular, for any k, the sum of
the images of the intersection maps

CHi(X)⊗CHk−i(X)→ CHk(X) (0 < i < k)
injects into cohomology.

heorem 4.1 is similar to results in the Chow ring of K3 surfaces [3], and is closely
related to the conjectural “splitting property” of Beauville [4]. Presumably, the fact
that Rn(X) = Qcn(X) is true for any Calabi–Yau variety;1 for instance, this was
established for Calabi–Yau complete intersections [12, 36]. On the other hand, the
full statement of heorem 4.1 is certainly not true for all Calabi–Yau varieties [4,
Example 2.1.5]; this behavior is peculiar to the Cynk–Hulek Calabi–Yau varieties.

Somewhat surprisingly, the Schreieder varieties give examples in any dimension,
and with arbitrarily large geometric genus, for which the intersection product in the
Chow ring is “as degenerate as possible”. (his should be contrastedwith the behavior
of the surfaces S ⊂ P3 exhibited in [26], forwhich the rank of Im(CH1(S)⊗CH1(S)→
CH2(S)) gets arbitrarily large when the degree of S grows.) Schreieder surfaces of
genus 1 areK3 surfaces,while Schreieder surfaces of higher genus aremodular elliptic
of Kodaira dimension 1 (see [10] and Remark 1.5). For those, we obtain as a corollary
the existence of a decomposition of the small diagonal similar to that of K3 surfaces
proved by Beauville and Voisin [3]:

Corollary 1 Let S be a Schreieder surface. hen there exists a point p ∈ S such that

(x , x , x) − (x , x , p) − (x , p, x) − (p, x , x) + (p, p, x) + (p, x , p) + (x , x , p) = 0

in CH4(S × S × S). Here (x , x , x), (x , x , p), (x , p, p) are the classes of the images of S
into S × S × S by themaps x ↦ (x , x , x), x ↦ (x , x , p), x ↦ (x , p, p).

In order to show that the Q-algebra epimorphism CH∗(Xm) → CH∗(Xm) of
heorem 4.1 admits a section, we prove that X satisûes a certain condition (⋆) (cf.
Deûnition 2.6), which was introduced in [14]. he “moreover” part of heorem 4.1
is not a formal consequence of the existence of a section, and is obtained, via

1his expectation is perhaps overly optimistic. Voisin [37, p. 101] writes more prudently: “It would
be very interesting to understand the class of Calabi–Yau varieties satisfying conclusions analogous to”
Calabi–Yau complete intersections. Bazhov [2] states (and proves in certain cases) aweaker version of this
expectation, only considering 0-cycles that are intersections of divisors.
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Proposition 2.10, by computing the motive of X and by establishing yet another re-
sult related to the splitting property (see §2.1 for the notion of multiplicative Chow–
Künneth decomposition).

heorem 2 (heorem 4.2) Let X be either a Cynk–Hulek Calabi–Yau variety as in
heorem 1.1 or 1.2, or a Schreieder variety as in heorem 1.4. hen X admits a multi-
plicative self-dual Chow–Künneth decomposition in the sense of [30].

Other varieties admitting amultiplicative Chow–Künneth decomposition include
abelian varieties, hyperelliptic curves,Hilbert schemes of points ofK3 surfaces and of
abelian surfaces [33], and generalized Kummer varieties [13]. heorem 4.2 provides
the ûrst examples of Calabi–Yau varieties of dimension greater than 2 with a multi-
plicative Chow–Künneth decomposition, whileheorem 4.1 provides the ûrst exam-
ples of Calabi–Yau varieties of dimension greater than 2 for which the subalgebra of
the Chow ring generated by divisors and the Chern classes injects into cohomology
via the cycle class map.
Along the way, we compute (Corollary 3.7) the Chowmotive of certain ûnite quo-

tients of products of (hyper)elliptic curves (including the quotients considered in
heorems 1.1, 1.2, and 1.4), but also compute (Claim 4.9) the Chow motive of the
Cynk–Hulek Calabi–Yau varieties and of the Schreieder varieties. In Section 5, we
oòer three applications.
First, we use Corollary 3.7 to establish the following theorem.

heorem 3 (heorem 5.3) Let X be a Cynk–Hulek Calabi–Yau variety of dimension
n as in heorem 1.1 or 1.2. hen any a, a′ ∈ CHn

num(X) satisfy

a × a′ = (−1)n a′ × a in CH2n(X × X).

According to an old conjecture ofVoisin ([35], cf. also Section 5.1 below), the state-
ment ofheorem 5.3 should hold for any Calabi–Yau variety. As far as we are aware,
heorem 5.3 gives the ûrst examples of Calabi–Yau varieties of arbitrary dimension
verifying Voisin’s conjecture.

Second, a consequence of Claim 4.9 concerns Voevodsky’s conjecture on smash-
equivalence; we refer the reader to [34] and Section 5.2 below for the deûnition and
background of smash-equivalence.

Proposition (Proposition 5.8) Let X be either a Cynk–Hulek Calabi–Yau variety
as in heorem 1.1 or 1.2, or a Schreieder variety as in heorem 1.4. Assume that X is
odd-dimensional. hen smash-equivalence and numerical equivalence coincide for all
CHi(X).

Finally, in a brief excursion to positive characteristic, we exhibit, as a consequence
of Claim 4.9, examples of Calabi–Yau varieties in characteristic at least 5whosemotive
is “degenerate”.

Proposition (Proposition 5.9) Let k be an algebraically closed ûeld of characteristic
≥ 5. Let X be a Cynk–Hulek Calabi–Yau variety over k as in heorem 1.1 or 1.2, where
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the elliptic curves are assumed to be supersingular and X is even-dimensional. hen the
Chowmotive of X is isomorphic to a direct sum of Lefschetzmotives. Consequently, the
cycle class map to ℓ-adic cohomology induces isomorphisms

CHi(X)Qℓ

≅Ð→ H2i(X ,Qℓ(i))

for all i (where ℓ is a prime diòerent from char k).

1 The Varieties of Cynk–Hulek and Schreieder

We denote by Zn the cyclic group of order n. Given a smooth projective variety, we
denote by Htr(X) its transcendental cohomology; it is the orthogonal complement
(with respect to the choice of a polarization) of the subspace spanned by algebraic
classes.

1.1 The Cynk–Hulek Construction

heorem 1.1 (Cynk–Hulek [7]) Let E1 , . . . , En be elliptic curves. For any n ∈ N, let

G = {(m1 , . . . ,mn) ∈ Zn
2 ∶ m1 + ⋅ ⋅ ⋅ +mn = 0} ≅ Zn−1

2

act on E1 × ⋅ ⋅ ⋅ × En , where the generator of Z2 acts on E i by the [−1]-involution. hen
there exists a crepant resolution

f ∶X Ð→ X ∶= (E1 × ⋅ ⋅ ⋅ × En)/G ,

and so X is a Calabi–Yau variety. Moreover, such Calabi–Yau varieties form a locally
complete family.

Proof his is [7, Corollary 2.3]. In fact, the crepant resolution X can be constructed
explicitly, inductively on the number of elliptic curves, cf. the proof of Proposition 4.3.
hat such Calabi–Yau varieties form a locally complete family can be seen as fol-
lows: since elliptic curves have a one-dimensional deformation family, X clearly ûts
into an n-dimensional deformation family. On the other hand, Hn(X) is isomor-
phic to H1(E1) ⊗ ⋅ ⋅ ⋅ ⊗ H1(En) plus possibly some algebraic classes, and in partic-
ular h1,n−1(X) = n; see [7, Lemma 2.4] or Corollary 3.7 below. By Serre duality
H1(X ,TX) ≅ Hn−1(X ,Ω1

X) so that dimH1(X ,TX) = n. ∎

In the case of elliptic curveswith extra endomorphisms (precisely, automorphisms
of order 3), Cynk and Hulek construct examples of Calabi–Yau varieties with coho-
mology “as simple as possible”.

heorem 1.2 (Cynk–Hulek [7]) Let E be an elliptic curve with an order 3 automor-
phism ν. For any n ∈ N, let

G = {(m1 , . . . ,mn) ∈ Zn
3 ∶ m1 + ⋅ ⋅ ⋅ +mn = 0} ≅ Zn−1

3

act on En by νm i on the i-th factor. here exists a crepant resolution

f ∶X → X ∶= En/G ,
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and so X is a Calabi–Yau variety. Moreover, for n > 2, such Calabi–Yau varieties are
rigid, and their transcendental cohomology has Hodge numbers hp ,q

tr = 1 if {p, q} =
{n, 0}, and hp ,q

tr = 0, otherwise.

Proof his is [7,heorem 3.3] (the construction of X is also explained in [16, Section
5.3]). In fact, the crepant resolution X can be constructed explicitly, inductively on
the number of elliptic curves (cf. the proof of Proposition 4.4).
Arguing as in the proof of heorem 1.1, we see that such X is rigid because

h1,n−1(X) = 0; see [7,heorem 3.3] or Corollary 3.7. ∎

Remark 1.3 he Cynk–Hulek varieties X of heorem 1.2 are N 1-maximal, in the
sense of [6]; this means that dimHn

tr(X ,Q) = 2.

1.2 The Schreieder Construction

By using iterated resolutions of Z3-quotient singularities, Schreieder generalizes (see
however Remark 1.6) the Cynk–Hulek construction of heorem 1.2 and proves the
following theorem.

heorem 1.4 (Schreieder [28]) Let c be a positive integer, and let ζ be a primitive
3c-th roof of unity. Let C be the smooth projective hyperelliptic curve obtained as the
smooth projectivization of the aõne curve {y2 = x3c + 1}. Endow C with the action of
Z3c given by (x , y)↦ (ζ ⋅x , y). For any n ∈ N and any integers a, b ≥ 0 such that a > b
and a + b = n, let

Ga ,b = {(m1 , . . . ,mn) ∈ Zn
3c ∶ m1 + ⋅ ⋅ ⋅ +ma −ma+1 −ma+b = 0} ≅ Zn−1

3

act on Cn by ζm i on the i-th factor. hen Cn/Ga ,b admits a smooth projective model
X whose transcendental cohomology has Hodge numbers hp ,q

tr = (3c − 1)/2 if {p, q} =
{a, b}, and hp ,q

tr = 0 otherwise.

Schreieder provides in [28, §8] an explicit construction of X. he construction is
inductive on the number of factors C, and is recalled in Section 4.3. When referring
to the “Schreieder varieties”, we will mean those explicit models.

Remark 1.5 A Schreieder variety of dimension 2 is a K3 surface when c = 1 (these
K3 surfaces have been intensively studied by Shioda–Inose [31]), and is an elliptic
modular surface ofKodaira dimension 1 for all c > 1 [10,heorems 3.2 and 9.2]. hese
surfaces are very special: they are ρ–maximal (in the sense of [5]) and haveMordell–
Weil rank 0 [10, Corollary 6.1].

Remark 1.6 In case c = 1 and b = 0, the Schreieder variety XS (given by heo-
rem 1.4) and the Cynk–Hulek variety XCH (given by heorem 1.2) are both resolu-
tions of the same singular variety Cn/Gn ,0. hey share the sameHodge numbers hp ,q

for p /= q, but they are (a priori) diòerent; indeed, XCH is Calabi–Yau, whereas XS is
only “numerically Calabi–Yau”. he diòerence in the construction of XS and XCH is
outlined in Remark 4.7.
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2 Multiplicative Chow–KünnethDecompositions andDistinguished
Cycles

he aim of this section is to brie�y recall the notions ofmultiplicative Chow–Künneth
decomposition, and of distinguished cycle on varieties with motive of abelian type.
Combining both notions, we reduce the proof of the main heorem 4.1 to showing
that the transcendental cohomology H i

tr(X) is concentrated in degree i = dimX,
and that themotive of X satisûes a certain condition (⋆) (Deûnition 2.6); cf. Propo-
sition 2.10 and the ûnal Remark 2.11.

2.1 Multiplicative Chow–Künneth Decompositions

Deûnition 2.1 (Murre [25]) Let X be a smooth projective variety of dimension n.
We say that X has a Chow–Künneth decomposition if there exists a decomposition of
the diagonal

∆X = π0
X + π1

X + ⋅ ⋅ ⋅ + π2n
X in CHn(X × X),

such that the π i
X are mutually orthogonal idempotents and (π i

X)∗H∗(X) = H i(X).
Given a Chow–Künneth decomposition for X, we set

CHi(X)( j) ∶= (π2i− j
X )∗CHi(X).

he Chow–Künneth decomposition is said to be self-dual if

π i
X = tπ2n−i

X in CHn(X × X)
for all i. (Here, tπ denotes the transpose of a cycle π.)

Remark 2.2 he existence of a Chow–Künneth decomposition for any smooth pro-
jective variety is part ofMurre’s conjectures [25]. It is expected that for any X with a
Chow–Künneth decomposition, one has

CHi(X)( j)
??= 0 for j < 0, CHi(X)(0) ∩CHi

num(X) ??= 0.

hese areMurre’s conjectures B and D, respectively.

Deûnition 2.3 ([29, Deûnition 8.1]) Let X be a smooth projective variety of dimen-
sion n. Let δX ∈ CH2n(X × X × X) be the class of the small diagonal

δX ∶= {(x , x , x) ∶ x ∈ X} ⊂ X × X × X .

A Chow–Künneth decomposition {π i
X} of X is multiplicative if it satisûes

πk
X ○ δX ○ (π i

X ⊗ π j
X) = 0 in CH2n(X × X × X) for all i + j /= k.

In that case,
CHi(X)( j) ∶= (π2i− j

X )∗CHi(X)
deûnes a bigraded ring structure on the Chow ring; that is, the intersection product
has the property that

Im(CHi(X)( j) ⊗CHi′(X)( j′)
⋅Ð→ CHi+i′(X)) ⊆ CHi+i′(X)( j+ j′) .
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he property of having amultiplicative Chow–Künneth decomposition is severely
restrictive and is closely related to Beauville’s “(weak) splitting property” [4]. For
more ample discussion, and examples of varieties admitting a multiplicative Chow–
Künneth decomposition, we refer the reader to [29, Chapter 8], as well as [13,30,33].

2.2 Distinguished Cycles on Varieties with Motive of Abelian Type

he following crucial notion was introduced by O’Sullivan [27].

Deûnition 2.4 (Symmetrically distinguished cycles on abelian varieties [27]) Let A
be an abelian variety and α ∈ CH∗(A). For each integer m ≥ 0, denote by Vm(α) the
Q-vector subspace of CH∗(Am) generated by elements of the form

p∗(αr1 × αr2 × ⋅ ⋅ ⋅ × αrn),

where n ≤ m, r j ≥ 0 are integers and p∶An → Am is a closed immersion with each
component An → A being either a projection or the composite of a projection with
[−1] ∶ A → A. hen α is symmetrically distinguished if for every m the restriction of
the projection CH∗(Am)→ CH∗(Am) to Vm(α) is injective.

hemain result of [27] is the following theorem.

heorem 2.5 (O’Sullivan [27]) Let A be an abelian variety. hen DCH∗(A), the
symmetrically distinguished cycles in CH∗(A), form a graded sub-Q-algebra that con-
tains symmetric divisors and that is stable under pull-backs and push-forwards along
homomorphisms of abelian varieties. Moreover, the composition

DCH∗(A)↪ CH∗(A)↠ CH∗(A)

is an isomorphism ofQ-algebras.

Let X be a smooth projective variety such that its Chow motive h(X) belongs to
the strictly full and thick subcategory of Chow motives generated by the motives of
abelian varieties. We say that X has motive of abelian type. A marking for X is an
isomorphism ϕ∶h(X) ≃→ M of Chow motives with M a direct summand of a Chow
motive of the form⊕i h(A i)(n i) cut out by an idempotentmatrix P ∈ End(⊕i h(A i)
(n i))whose entries are symmetrically distinguished cycles,whereA i is an abelian va-
riety and n i is an integer (the Tate twist). We refer the reader to [14, Deûnition 3.1]
for a precise deûnition. Given a marking ϕ∶h(X) ≃→ M, we deûne the subgroup of
distinguished cycles of X, denoted DCH∗

ϕ(X), to be the pre-image of DCH∗(M) ∶=

another smooth projective variety Y with a marking ψ∶h(Y) → N , the tensor prod-
uct ϕ ⊗ ψ∶h(X × Y) → M ⊗ N deûnes naturally a marking for X × Y . A morphism
f ∶X → Y will be said to be a distinguishedmorphism if its graph is distinguished with
respect to the product marking ϕ ⊗ ψ.

he composition

DCH∗
ϕ(X)↪ CH∗(X)↠ CH∗(X)
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is clearly bijective. In other words, ϕ provides a section (as graded vector spaces)
of the natural projection CH∗(X) ↠ CH∗(X). In [14], suõcient conditions on the
marking ϕ are given for DCH∗

ϕ(X) to deûne aQ-subalgebra of CH∗(X).

Deûnition 2.6 ([14, Deûnition 3.7]) We say that the marking ϕ∶h(X) ≃Ð→ M
satisûes the condition (⋆) if the following two conditions are satisûed:
(⋆Mult) the small diagonal δX belongs to DCH∗

ϕ⊗3(X3); that is, under the induced

isomorphism ϕ⊗3
∗ ∶ CH∗(X3) ≃Ð→ CH∗(M⊗3), the image of δX is symmet-

rically distinguished, i.e., in DCH∗(M⊗3).
(⋆Chern) all Chern classes c i(X) belong to DCH∗

ϕ(X);
If in addition X is equipped with the action of a ûnite group G, then we say that the
marking ϕ∶h(X) ≃Ð→ M satisûes (⋆G) if
(⋆G) the graph gX of g∶X → X belongs to DCH∗

ϕ⊗2(X2) for all g ∈ G.

Proposition 2.7 ([14, Proposition 3.12]) If the marking ϕ∶h(X) ≃Ð→ M satisûes the
condition (⋆), then there is a section, as graded algebras, for the natural surjectivemor-
phism CH∗(X) → CH∗(X) such that all Chern classes of X are in the image of this
section.

In other words, under (⋆), we have a gradedQ-sub-algebraDCH∗
ϕ(X) of the Chow

ring CH∗(X) that contains all the Chern classes of X and is mapped isomorphically to
CH∗(X). Elements of DCH∗

ϕ(X) are called distinguished cycles.

We refer the reader to [14] for examples of varieties satisfying (⋆); for our pur-
pose here, we mention that these include abelian varieties, hyperelliptic curves (see
Proposition 3.3), and varieties with trivial Chow groups.2 he property (⋆) is very
�exible; in [14, Section 4], it is shown that this property is stable under products,
projectivization of vector bundles, and blow-ups, under certain conditions on some
Chern classes. hose will be utilized in the proof of our main theorems, where the
smooth models will be obtained by blowing up subvarieties with trivial Chow groups
inside a product of hyperelliptic curves, taking ûnite quotients, and iterating; see the
arguments in Section 4. For the record, let us write down explicitly one of the results
of [14]:

Proposition 2.8 ([14, Propositions 4.5 and 4.8]) Let X be a smooth projective variety
and let i∶Y ↪ X be a closed smooth subvariety. Let X̃ be the blow-up of X along Y and
let E be the exceptional divisor, so that we have a commutative diagram

E �
� j

//

p
��

X̃

τ
��

Y �
� i // X .

2A smooth projective variety X is said to have trivial Chow groups if the Chow groups of X base-
changed to a universal domain are ûnite-dimensional Q-vector spaces.
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If we have markings satisfying the condition (⋆) for X and Y such that i∶Y ↪ X is
distinguished, then E and X̃ have natural markings that satisfy (⋆) and are such that
themorphisms i , j, τ, and p are all distinguished.

If in addition X is equipped with the action of a ûnite group G such that G ⋅ Y = Y
and such that themarkings of X and Y satisfy (⋆G), then the natural markings of E and
X̃ also satisfy (⋆G). ∎

heorem 4.1 andheorem 4.2 are related by the following proposition.

Proposition 2.9 ([14, Proposition 6.1]) Let X be a smooth projective variety with a
marking ϕ that satisûes (⋆Mult). hen X has a self-dual multiplicative Chow–Künneth
decomposition, consisting of distinguished cycles inCH∗(X×X), with the property that

DCH∗
ϕ(X) ⊆ CH∗(X)(0)

(and equality holds for ∗ = 0, 1, dimX − 1, dimX). ∎

hus, if we have a smooth projective variety X with a marking ϕ that satisûes
(⋆Mult), we have a chain of homomorphisms

DCH∗
ϕ(X)↪ CH∗(X)(0) ↪ CH∗(X)↠ CH∗(X),

whose composition is an isomorphism, and where the le� inclusion arrow is conjec-
turally an isomorphism (by Murre’s conjecture D).

2.3 A Crucial Proposition

he following proposition is crucial to the proof of the second part ofheorem 4.1.

Proposition 2.10 Let X be a smooth projective variety of dimension n ≥ 2 that admits
a marking satisfying the condition (⋆) of Deûnition 2.6. Assume that the cohomology
of X is spanned by algebraic classes in degree ≠ n. hen the graded subalgebra R∗(X) ⊆
CH∗(X) generated by divisors, Chern classes, and cycles that are the intersection of two
cycles in X of positive codimension injects into CH∗(X).

Proof Fix amarking ϕ∶h(X) → M that satisûes (⋆); in particular, X has motive of
abelian type. First we exploit the condition on the cohomology of X. his condition
means that H2i+1(X) = 0 for 2i + 1 ≠ n, and that the cycle class map CHi(X) →
H2i(X) is surjective for 2i ≠ n. By using the nondegenerate cup-product pairing
betweenH2i(X) andH2n−2i(X),we obtain aKünneth decomposition of the diagonal
∆X = pn

X + ∑2i≠n p2i
X ∈ H2n(X × X), where the classes p j

X are algebraic and such
that the homological motives (X , p2i

X ) are isomorphic to a direct sum of copies of the
Lefschetz motive 1(−i) for 2i ≠ n, and where (pn

X)∗H∗(X) = Hn(X). By ûnite-
dimensionality of themotive of X, this decomposition li�s to a decomposition of the
Chow motive of X:

(2.1) h(X) ≃ hn(X)⊕⊕1(∗),

where H∗(hn(X)) = Hn(X).
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By Proposition 2.7, it is enough to show that R∗(X) ⊆ DCH∗
ϕ(X). Sincewe already

know thatDCH∗
ϕ(X) is a subalgebra of CH∗(X) that contains the Chern classes of X,

it is enough to show that DCH1
ϕ(X) = CH1(X) and that the intersection of any two

cycles of positive codimension belongs to DCH∗
ϕ(X). hat DCH1

ϕ(X) = CH1(X)
is clear from the description of the motive of X given in (2.1). By Proposition 2.9,
X has a multiplicative self-dual Chow–Künneth decomposition {π i

X ∶ 0 ≤ i ≤ 2n}
that induces a bigrading on the Chow ring of X with the property that DCH∗

ϕ(X) ⊆
CH∗(X)(0). By ûnite-dimensionality of X, any two Chow–Künneth decompositions
of themotive of X are isomorphic; therefore, by (2.1), the bigrading on CH∗(X) has
the form

(2.2) CHi(X) = CHi(X)(0) ⊕CHi(X)(2i−n) .

By multiplicativity, we have

Im ( CHi(X)(s) ⊗CH j(X)(t) → CHi+ j(X)) ⊆ CHi+ j(X)(s+t) .

Combining themultiplicativity with (2.2), we ûnd that, for 0 < i , j < n, we have

Im ( CHi(X)⊗CH j(X)→ CHi+ j(X)) =
Im ( CHi(X)(0) ⊗CH j(X)0 Ð→ CHi+ j(X)) ⊆ CHi+ j(X)(0) .

Now the motive (X , π2i
X ) is isomorphic to a direct sum of Lefschetz motives 1(−i)

for all i ≠ n
2 , so that CHi(X)(0) maps isomorphically to CH

i(X) for all i ≠ n
2 .

Since DCHi
ϕ(X) maps isomorphically to CH

i(X) for all i, we see that the inclusion
DCHi

ϕ(X) ⊆ CHi(X)(0) is an equality for all i ≠ n
2 . his establishes that the inter-

section of any two cycles of positive codimension belongs toDCH∗
ϕ(X), and thereby

ûnishes the proof of Proposition 2.10. ∎

Remark 2.11 In view of Proposition 2.7 (together with the fact that the property
(⋆) is stable under product by [14, Proposition 4.1]), Proposition 2.9, and Proposi-
tion 2.10, the proof of the main heorems 4.1 and 4.2 reduces to showing that the
relevant varieties X satisfy the following two properties:
(i) the cohomology of X is spanned by algebraic classes in degree ≠ n;
(ii) X admits amarking that satisûes the condition (⋆).

3 The Motive of X

3.1 Hyperelliptic Curves

Let C be a smooth projective hyperelliptic curve of genus g ≥ 0, that is, C comes
equipped with a 2-to-1 morphism π∶C → P1. his morphism induces an involution
on C that we call the hyperelliptic involution. By deûnition, theWeierstraß points of
C are the 2g + 2 ramiûcation points of the morphism π∶C → P1, that is, the 2g + 2
ûxed points of the involution. An elliptic curve will be seen as a hyperelliptic curve
via its [−1]-involution. We have the following basic lemma.
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Lemma 3.1 he ûxed points for the hyperelliptic involution are pairwise rationally
equivalent, i.e., deûne the same class in CH0(C)Q.

Proof Since π is �at of degree 2, we see that any two Weierstraß points P and Q of
C satisfy 2[P] = 2[Q] ∈ CH0(C). herefore, theWeierstraß points on C deûne the
same class in CH0(C)Q. ∎

3.2 The Hyperelliptic Curves y2 = x2g+1 + D

Let g be a natural number, let D be a non-zero rational number, and let Cg ,D be the
smooth projective model of the aõne curve Y = {y2 = x2g+1 + D}. When g > 1, the
projective closure X of Y has a cusp at the point∞, and the hyperelliptic curve Cg ,D
is its normalization. In particular, Cg ,D is obtained from Y by adding one additional
point at∞.

he curve Cg ,D is endowed with the hyperelliptic involution σ , which on the open
subset Y is given by (x , y) ↦ (x ,−y). he ûxed points for that action are called the
Weierstraß points, and are explicitly given by the 2g + 2 points

{(ζ ⋅ ∣D∣
1

2g+1 , 0) ∶ ζ ∈ µ2g+1} ∪ {∞}.
he curve Cg ,D is also endowed with an action of µ2g+1, which on the open subset

Y is given by ζ ⋅ (x , y) = (ζ ⋅ x , y). Its ûxed points are the points (0,
√
D), (0,−

√
D),

and∞. Note that these points are deûned over Q if D = 1.

Lemma 3.2 he ûxed points for the hyperelliptic involution and for the µ2g+1-action
are pairwise rationally equivalent, i.e., deûne the same class in CH0(Cg ,D)Q.

Proof By Lemma 3.1, the ûxed points for the hyperelliptic involution onCg ,D (which
include the∞ point) deûne the same class in CH0(Cg ,D)Q.
Consider the lines {y =

√
D}, {y = −

√
D}, and {x = 0} in A2. hese lines

intersect the curve Y in (2g + 1)[(0,
√
D)], (2g + 1)[(0,−

√
D)] and [(0,

√
D)] +

[(0,−
√
D)], respectively. We deduce that these 3 cycles are rationally equivalent onY .

By excision, we see that the points (0,
√
D), (0,−

√
D) and∞ deûne the same class

in CH0(Cg ,D)Q. (Note that in the case g = 1, i.e., in the case where (Cg ,D ,∞) is an
elliptic curve, the points (0,

√
D) and (0,−

√
D) are 3-torsion points.) ∎

3.3 Key Proposition

Proposition 3.3 Let C be a smooth projective curve equipped with the action of a
ûnite group H. Assume that (C ,H) is one of the following:
(i) a hyperelliptic curve equipped with its hyperelliptic involution;
(ii) a hyperelliptic curve Cg ,D as in subsection 3.2 equipped with the action of µ2g+1.
hen C has a marking that satisûes the conditions (⋆) and (⋆H), with the additional
property that if P is a ûxed point of H, then the embedding P ↪ C is distinguished.

Proof By [14, Corollary 5.4], the embedding of a hyperelliptic curve inside its Jaco-
bianAJ∶C → J(C), x ↦ OC(x−q),where q is aWeierstraß point, provides amarking
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for C that satisûes (⋆). Moreover the embedding q ↪ C is distinguished by construc-
tion. Since by Lemma 3.2 all ûxed points ofH and allWeierstraß points are rationally
equivalent, we see that the embedding P ↪ C is distinguished for any choice of ûxed
point P of H.

It remains to show that for any h ∈ H, the graph Γh ∈ CH1(C ×C) is distinguished
with respect to the product marking AJ ⊗ AJ. Let P be a ûxed point of H (which by
Lemma 3.2 is rationally equivalent to any Weierstraß point) and consider the follow-
ing Chow–Künneth decomposition:

π0
C = P × C , π2

C = C × P, and π1
C = ∆C − π0

C − π2
C .

hese are distinguished cycles in C × C, and by Proposition 2.9 they deûne a multi-
plicative Chow–Künneth decomposition such thatDCH∗(C ×C) ⊆ CH∗(C ×C)(0).
Since in codimension 1 the previous inclusion is an equality (see Proposition 2.9), we
are reduced to showing that Γh belongs to CH1(C × C)(0) with respect to the prod-
uct Chow–Künneth decomposition on the product C × C. hat is, we are reduced to
showing that

(π0
C ⊗ π1

C + π1
C ⊗ π0

C)∗Γh = 0 in CH1(C × C).
By orthogonality and symmetry, we are reduced to showing that

π1
C ○ Γh ○ π2

C = 0 in CH1(C × C).
But Γh ○ π2

C = C × h(P) = C × P = π2
C (since P is a ûxed point of H). We can then

conclude, by orthogonality of π1
C and π2

C . ∎

3.4 The Motive of X

In this subsection, we consider a projective variety of the form

X = (C1 × ⋅ ⋅ ⋅ × Cn)/G ,
where the C i are hyperelliptic curves and G is a certain ûnite subgroup of automor-
phisms of C1 × ⋅ ⋅ ⋅ × Cn . Speciûcally, we assume one of the following:
(a) Each C i is a hyperelliptic curve equipped with the action of H ≅ Z2 induced by

its hyperelliptic involution, and

G = {(h1 , . . . , hn) ∈ Hn ∶ h1 + ⋅ ⋅ ⋅ + hn = 0}.
(b) Let g be a positive integer and let a, b ≥ 0 be integers such that n = a + b and

a > b. Each C i is a hyperelliptic curve of genus g as in Subsection 3.2 equipped
with the action of H = µ2g+1 given by (x , y)↦ (ζ ⋅ x , y), and
G = Ga ,b = {(h1 , . . . , hn) ∈ Hn ∶ h1 + ⋅ ⋅ ⋅ + ha − ha+1 − ⋅ ⋅ ⋅ − ha+b = 0} .

Note that in case (a) if the curves are chosen to be elliptic curves endowed with the
[−1]-involution, then X is the variety considered in heorem 1.1, while in case (b) if
the curves are chosen to be elliptic curves with an order 3 automorphism, and one
takes b = 0, then X is the variety considered in heorem 1.2.

he goal of this subsection is to determine themotive of X; this will be used later
on in Section 4. We also show how the formalism of distinguished cycles (and mul-
tiplicative Chow–Künneth decomposition) works for X. his is done for the reader’s
beneût, and is not necessary for the results in Section 4.
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Inwhat follows, ahyperelliptic curveC is always endowedwith theChow–Künneth
decomposition given by

π0
C ∶= P × C , π2

C = C × P, π1
C = ∆C − π0

C − π2
C ,

where P is the class of aWeierstraß point. A product of hyperelliptic curves C1 × ⋅ ⋅ ⋅ ×
Cn is endowed with the product Chow–Künneth decomposition

πk ∶= ∑
k=k1+⋅⋅⋅+kn

πk1
C1
⊗ ⋅ ⋅ ⋅ ⊗ πkn

Cn
.

In the case where C is an elliptic curve endowed with the [−1]-involution, note that
the 0 element is a Weierstraß point, so that the above Chow–Künneth decomposi-
tion is the Deninger–Murre decomposition [8]. By unicity of the Deninger–Murre
decomposition [8, heorem 3.1], the above product Chow–Künneth decomposition
for a product of elliptic curves is the one of Deninger–Murre [8].

Since the variety X is obtained as the quotient of the smooth projective variety
C1×⋅ ⋅ ⋅×Cn by a ûnite groupG, and sincewe are only concernedwith algebraic cycles
with rational coeõcients, the motive of X identiûes with the G-invariant part of the
motive of C1 × ⋅ ⋅ ⋅ × Cn , as algebra objects. In particular, the notion ofmultiplicative
Chow–Künneth decomposition and the condition (⋆Mult) make sense for X, so that
Proposition 2.10 holdswith the Chern classes omitted. hese are established for X via
the following proposition, which is themain result of this section.

Proposition 3.4 Let X = (C1 × ⋅ ⋅ ⋅ × Cn)/G with C1 , . . . ,Cn and G as in (a) or (b)
above. hen the Q-subalgebra of CH∗(X) generated by CH1(X) and by the images of
the intersection products

CHk−l(X)⊗CHl(X)→ CHk(X) (0 < l < k)
injects into CH∗(X).

In the next section, this statement, together with the existence of a multiplicative
Chow–Künneth decomposition, will be extended from X to the crepant resolution X
for Calabi–Yau varieties as in heorems 1.1 and 1.2, and to the Schreieder resolution
X for varieties as in heorem 1.4.

Note that Proposition 3.3 (together with [14, Remark 4.3 and Proposition 4.12])
establishes the existence of amarking for X that satisûes (⋆Mult). herefore the proof
of Proposition 3.4 reduces, thanks to Proposition 2.10 and Remark 2.11, to an explicit
computation of the Chowmotive of X. his is achieved in Corollary 3.7. hese com-
putations will also be used in Section 5.1 in order to establish heorem 5.3. First, we
start with a general lemma and a general proposition.

Lemma 3.5 Let C be a smooth projective curve endowed with the action of a ûnite
group H such that C/H is rational. hen, choosing a degree-1 zero-cycle α on C that
is H-invariant (e.g., α = 1

∣H∣ ∑h∈H h∗[P] for any choice of point P ∈ C), and denoting
π0
C ∶= α × C, π2

C ∶= C × α and π1
C ∶= ∆C − π0

C − π2
C , we have

(3.1) ∑
h∈H

Γh ○ π1
C = 0 in CH1(C × C),
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whereas

(3.2) Γh ○ π j
C = π j

C in CH1(C × C), for j = 0 or 2, and for all h ∈ H.

In particular, if E is an elliptic curve and H is a non-trivial subgroup of the group of
automorphisms, then ∑h∈H Γh ○ π1

E = 0, where π1
E is the Chow–Künneth projector of

Deninger–Murre.

Proof hat Γh ○ π0
C = π0

C and Γh ○ π2
C = π2

C for all h ∈ H is clear. Let p∶C → C/H be
the projection morphism. On the one hand, we have

tΓp ○ Γp = ∑
h∈H

Γh .

On the other hand, since C/H is rational, we have ∆C/H = π0
C/H + π2

C/H with π0
C/H =

β × C/H and π2
C/H = C/H × β for any choice of degree-1 zero cycle β on C/H. We

also have
tΓp ○ Γp = tΓp ○ (π0

C/H + π2
C/H) ○ Γp = (p × p)∗(π0

C/H + π2
C/H) = ∣H∣(π0

C + π2
C).

We conclude by orthogonality of the Chow–Künneth projectors π i
C . ∎

Proposition 3.6 Let C1 , . . . ,Cn be smooth projective curves endowed with the action
of a ûnite abelian group H such that each C i/H is rational. For integers a, b ≥ 0 such
that a + b = n and a > b, consider the group

G = Ga ,b = {(h1 , . . . , hn) ∈ Hn ∶ h1 + ⋅ ⋅ ⋅ + ha − ha+1 − ⋅ ⋅ ⋅ − ha+b = 0H}
together with its natural action on the product C1 × ⋅ ⋅ ⋅ × Cn and with the induced
quotient morphism p∶C1 × ⋅ ⋅ ⋅ ×Cn → (C1 × ⋅ ⋅ ⋅ ×Cn)/G. hen we have the implication

0 < ∣{ j ∶ i j = 1}∣ < n Ô⇒ Γp ○ (π i1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π in

Cn
) ○ tΓp = 0.

In particular, the Chow motive of (C1 × ⋅ ⋅ ⋅ × Cn)/G decomposes into a direct sum of
Lefschetz motives and one copy of themotive

T ∶= (C1 × ⋅ ⋅ ⋅ × Cn ,
1
∣G∣ ∑g∈G

Γg ○ (π1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
)) .

Proof Let uswriteΠ for π i1
C1
⊗⋅ ⋅ ⋅⊗π in

Cn
. he action ofG commuteswithΠ; therefore,

1
∣G∣Γp ○Π ○ tΓp is an idempotent, and it is zero if and only if

∑
g∈G

Γg ○Π = 0.

Assume that 0 < ∣{ j ∶ i j = 1}∣ < n. By symmetry, we can assume without loss of
generality that Π = π1

C1
⊗Π′⊗πCn ,where πCn = π0

Cn
or π2

Cn
, andΠ′ = π i2

C2
⊗⋅ ⋅ ⋅⊗π in−1

Cn−1
.

hen, partitioning G by the ûrst entry of its elements, we have

∑
g∈G

Γg ○Π = ∑
g′∶=(h2 , . . . ,hn−1)∈Hn−2

(∑
h∈H

(Γh ○ π1
C1
)⊗ (Γ′g ○Π′)⊗ πCn) = 0.

he ûrst equality follows from (3.1), and the second equality follows from (3.2) of
Lemma 3.5.

519

https://doi.org/10.4153/S0008414X19000191 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000191


R. Laterveer and Ch. Vial

Now assume ∣{ j ∶ i j = 1}∣ = 0, i.e., Π = π i1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π in

Cn
with {i1 , . . . , in} ⊆ {0, 2}.

In that case, we also have for all g ∈ G that Γg ○ Π = Π, and thus ∑g∈G Γg ○ Π ≠ 0.
Moreover, themotive ((C1×⋅ ⋅ ⋅×Cn)/G , 1

G Γp ○Π○ tΓp) is isomorphic to the Lefschetz
motive 1(−k), where k = ∣{ j ∶ i j = 2}∣.
Finally, when considering ∣{ j ∶ i j = 1}∣ = n, one is le� with themotive

((C1 × ⋅ ⋅ ⋅ × Cn)/G ,
1
∣G∣Γp ○ (π1

C1
× ⋅ ⋅ ⋅ × π1

Cn
) ○ tΓp) ,

which (under Γp) is isomorphic to

T ∶= (C1 × ⋅ ⋅ ⋅ × Cn ,
1
∣G∣ ∑g∈G

Γg ○ (π1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
)) . ∎

Corollary 3.7 Let X = (C1 × ⋅ ⋅ ⋅ × Cn)/G with C1 , . . . ,Cn and G as in (a) or (b)
above. hen the Chow motive of X decomposes into a direct sum of Lefschetz motives
and one copy of themotive

T ∶= (C1 × ⋅ ⋅ ⋅ × Cn ,
1
∣G∣ ∑g∈G

Γg ○ (π1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
)).

In case (a), T ∶= (C1 × ⋅ ⋅ ⋅ × Cn , π1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
), and in case (b) the motive T is such

that H j(T) = 0 for j /= n, and its transcendental cohomology has Hodge numbers

hp ,n−p
tr (T) =

⎧⎪⎪⎨⎪⎪⎩

g for p ∈ {a, b},
0 for p /= n

2 .

Proof By Proposition 3.6, we only need to compute T .
(a)Denote σi the non-trivial hyperelliptic involution ofC i . By Lemma 3.5,we have

σi ○ π1
C i
= −π1

C i
.

Writing Π = π1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
, we therefore have for all g ∈ G that g ○Π = Π, and thus

∑g∈G g○Π = ∣G∣Π ≠ 0. In particular,we see that themotive ((C1×⋅ ⋅ ⋅×Cn)/G , 1
∣G∣Γp ○

(π1
C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
) ○ tΓp) is isomorphic to themotive (C1 × ⋅ ⋅ ⋅ × Cn , π1

C1
⊗ ⋅ ⋅ ⋅ ⊗ π1

Cn
).

(b) In case g = 1 and b = 0 (which is the set-up of heorem 1.2), it was proved in
[7, heorem 3.3] that Hn(T) has dimension 2 when n is odd, and that Hn

tr(T) has
dimension 2 when n is even.
For the case g > 1, this is essentially done in Schreieder [28]. he proof goes as fol-

lows in the case where each curve C i is the curve Cg ,1. A basis of H1,0(Cg ,1) is given
by the diòerential forms ω i = x i−1

y dx, 1 ≤ i ≤ g, and for ζ ∈ µ2g+1 we have ζ∗ω i =
ζ iω i . he proof then consists in understanding the invariants in H0,1(Cg ,1)⊗d ⊗
H1,0(Cg ,1)⊗(n−d). Since this result will not be used in this paper, let us only mention
that this can be done combinatorially andwas essentially carried out by Schreieder in
[28, Lemma 8]. ∎

Proof of Proposition 3.4 In view of Proposition 3.3 and Corollary 3.7, this is an im-
mediate consequence of Proposition 2.10 (with the Chern classes omitted). ∎
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4 The Motive of X

his section contains the proof of themain result of this note.

heorem 4.1 Let X be either a Calabi–Yau variety as in heorem 1.1 or 1.2, or the
Schreieder variety of heorem 1.4. hen for all integers m ≥ 1, the Q-algebra epimor-
phisms CH∗(Xm) → CH∗(Xm) admit a section whose image contains the (Chow-
theoretic) Chern classes of Xm . Moreover, assuming dimX ≥ 2, the graded subalgebra
R∗(X) ⊆ CH∗(X) generated by divisors, Chern classes, and by cycles that are the in-
tersection of two cycles in X of positive codimension injects into CH∗(X).

We also establish the following theorem.

heorem 4.2 Let X be either a Cynk–Hulek Calabi–Yau variety of dimension n as in
heorem 1.1 or 1.2, or a Schreieder variety as in heorem 1.4. hen X admits a multi-
plicative self-dual Chow–Künneth decomposition, in the sense of [30].

Before giving the proofs ofheorems 4.1 and 4.2,we detail the inductive construc-
tions of Cynk–Hulek [7] and Schreieder [28]. hiswill allow us to prove the theorems
by applying the reduction argument outlined in Remark 2.11. hat is, the proofs will
consist in checking that each step of the construction only changes algebraic classes
in cohomology, and preserves the condition (⋆) of Deûnition 2.6.

4.1 Z2-actions

Proposition 4.3 Let X i , i = 1, 2, be smooth projective varieties endowed with an
action of H i = Z2. Assume that, for i = 1, 2, (X i ,H i) enjoys the following properties:

(i) X i has amarking that satisûes (⋆) and (⋆H i );
(ii) the quotients X i/H i are smooth;
(iii) B i ∶= FixX i (H i) is a smooth divisor;
(iv) B i has trivial Chow groups (in particular, B i has amarking that satisûes (⋆));
(v) the inclusion morphism B i ↪ X i is distinguished with respect to the abovemark-

ings.

Let Z be the blow-up of X1 × X2 along B1 × B2, and let B̃ be the exceptional divisor; the
action of H1 ×H2 on X1 × X2 naturally endows Z with an action of H1 ×H2. Let

G ∶= {(h1 , h2) ∈ H1 ×H2 ∶ h1 + h2 = 0}.

hen the quotient variety X ∶= Z/G is smooth and the pair (X ,H) ∶= (Z/G , (H1 ×
H2)/G) enjoys properties (i)–(v), with B̃ = FixX(H).

Proof his is our take on the inductive construction of Cynk–Hulek [7,Propositions
2.1 and 2.2] (where the X i are in addition assumed to be Calabi–Yau, and it is proved
that the resulting variety X ∶= Z/G is again Calabi–Yau). As in loc. cit., the various
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varieties ût into a commutative diagram

Z //

��

X1 × X2

��

X ∶= Z/G //

��

(X1 × X2)/G

��

Y ∶= Z/(H1 ×H2) // X1/H1 × X2/H2 =∶ Y1 × Y2

(where we adhere to the notation of [7]). Here, horizontal arrows are blow-ups, and
vertical arrows are 2-to-1 morphisms. his (doubly !) explains why X is smooth. On
the one hand, X is the blow-up of the quotient (X1 × X2)/G along the singular locus
(which is isomorphic to B1 × B2) consisting of A1 singularities. On the other hand,
X is the double cover of the smooth variety Y branched along the smooth divisor
obtained by blowing up the smooth image of B1 × B2 in Y1 × Y2. his also shows that
the ûxed loci FixZ(H1 ×H2) and FixZ(G)(which coincide with the branch loci of the
covers Z → Y , resp., Z → X) are isomorphic to the exceptional divisor B̃ [7, Proof of
Proposition 2.1].

Let us endow X1 × X2 and B1 × B2 with the product markings; these satisfy (⋆)
by [14, Proposition 4.1], the inclusion morphism B1 × B2 ↪ X1 × X2 is distinguished
by [14, Proposition 3.5], and the pushforwards and pullbacks along the projection
morphisms X1 × X2 → X i and B1 × B2 → B i are distinguished. Moreover, the pair
(X1 × X2 ,H1 × H2), where FixX1×X2(H1 × H2) = B1 × B2, satisûes properties (i) and
(v) by [14, Proposition 4.1] (and also [14, Remark 4.3]). Since B̃ is a P1-bundle over
B1 × B2, property (iv) is satisûed.

Since B̃ = FixZ(H1 × H2) = FixZ(G), it follows that (Z ,H1 × H2) satisûes (iii).
Now this is enough to ensure that (Z ,H1 × H2) satisûes properties (i)–(v) by [14,
Proposition 4.8].
Consider now the quotient morphism Z → X = Z/G; it is a Z2-covering branched

along the smooth divisor B̃ (which we view as a divisor on Z and X via the quotient
morphism). We have already seen that B̃ satisûes (⋆); and X satisûes (⋆) by [14,
Proposition 4.12]. hat the inclusion morphism B̃ → X is distinguished follows from
the fact that the inclusion morphism B̃ → Z is distinguished and the fact that the
quotientmorphism Z → X is distinguished [loc. cit.]. In order to conclude, it remains
to see that X satisûes (⋆H). But then this again follows from the fact that the quotient
morphism Z → X is distinguished, together with the fact that Z satisûes (⋆H1×H2). ∎

4.2 Z3-actions

We take care of the inductive approach in order to treat the case of the Cynk–Hulek
Calabi–Yau varieties ofheorem 1.2. his is very similar to the arguments in the next
subsection, but we include detailed arguments here for the sake of readability.

Proposition 4.4 Let X i , i = 1, 2, be smooth projective Calabi–Yau varieties endowed
with an action of H i = Z3. Assume the following properties:
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(i) the action of H i on X i does not preserve the canonical form of X i ;
(ii) X i has amarking that satisûes (⋆) and (⋆H i );
(iii) B1 ∶= FixX1(H1) is a smooth divisor, whereas B2 ∶= FixX2(H2) is the disjoint

union of a smooth divisor B2,1 and a smooth codimension 2 subvariety B2,2;
(iv) B i has trivial Chow groups (in particular, B i has amarking that satisûes (⋆));
(v) the inclusion morphism B i ↪ X i is distinguished with respect to the abovemark-

ings.
Let

G ∶= {(h1 , h2) ∈ H1 ×H2 ∶ h1 + h2 = 0} .
hen there exists a crepant resolution of singularities

X Ð→ (X1 × X2)/G
and an action of H = (H1 × H2)/G ≅ Z3 on X (induced by the action of id×H2 on
X1 × X2), such that the pair (X ,H) satisûes the same assumptions as (X2 ,H2).

Proof his is essentially the inductive argument of [7, Proposition 3.1], on which
we have additionally gra�ed condition (⋆). We brie�y resume the construction of X
given in [7, Proposition 3.1] (retaining the notation of loc. cit.).

he quotient (X1 × X2)/G has A2-singularities along a codimension 2 stratumW1
(isomorphic to B1 × B2,1), plus other singularities along a codimension 3 stratum W2
(isomorphic to B1 × B2,2). A crepant resolution

X → (X1 × X2)/G
is explicitly described in local coordinates in [7, Proof of Proposition 3.1]. Moreover, it
is checked in [7, Proof of Proposition 3.1] that (X ,H) satisûes conditions (i) and (iii)
(just as (X2 ,H2)). herefore, it only remains to check that X also satisûes conditions
(ii), (iv), and (v).
As explained in loc. cit., the variety X can also be obtained as follows: Let Z1 be the

blow-up of X1 × X2 along B1 × B2. he action of

G ∶= {(h1 , h2) ∈ H1 ×H2 ∶ h1 + h2 = 0} .

on X1 × X2 naturally endows Z with an action of G. Let Z2 → Z1 be the blow-up with
center the codimension 2 part of FixZ1(G) (this center consists of two disjoint copies
ofW1, as can be seen from [28, Lemma 18]). he action of G li�s to Z2, and we deûne
Z ∶= Z2/G . he crepant resolution X is now attained by performing a blow-down
b∶ Z → X , where the exceptional divisor of b in Z corresponds to the strict transform
of the exceptional divisor of the ûrst blow-up Z1 → X1 × X2. he exceptional locus
V ⊂ X of b is an isomorphic copy ofW1 (this exceptional locus V ≅ W1 corresponds
to the intersection of the 2 irreducible components of the exceptional divisor in X
lying over the stratum W1).

Once again, we endow X1 × X2 and B1 × B2 with the product markings. hese
markings satisfy (⋆) by [14, Proposition 4.1]; the inclusion morphism B1 ×B2 ↪ X1 ×
X2 is distinguished by [14,Proposition 3.5], and the pushforwards and pullbacks along
theprojectionmorphisms X1×X2 → X i andB1×B2 → B i are distinguished. Moreover,
the pair (X1 × X2 ,H1 ×H2), where FixX1×X2(H1 ×H2) = B1 × B2, satisûes properties
(ii), (iv), and (v) by [14, Proposition 4.1] (and also [14, Remark 4.3], plus the fact that
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condition (iv) is stable under taking products). In view of [14, Proposition 4.8], this
implies that (Z1 ,H1 ×H2) and (Z1 ,G) satisfy (ii).

he codimension 2 part of FixZ1(G) consists of 2 disjoint copies ofW1 ≅ B1 × B2,1,
and so it has a marking satisfying (⋆). Let E1 ⊂ Z1 denote the exceptional divi-
sor. he inclusion of the 2 copies of W1 in Z1 is distinguished, because the inclu-
sion morphism W1 → E1 is distinguished (indeed, both W1 and E1 have trivial Chow
groups), and the inclusion morphism E1 → Z1 is also distinguished. Again apply-
ing [14, Proposition 4.8] and reasoning as before, this implies that (Z2 ,H1 ×H2) and
(Z2 ,G) in turn satisfy (ii), (iv), and (v).

he next step is to take the quotient Z2 → Z ∶= Z2/G. Here, [14, Proposition 4.12]
ensures that Z has amarking satisfying (⋆) and that the quotient morphism Z2 → Z
is distinguished. his last fact, combined with the fact that (Z2 ,H1 ×H2) veriûes (ii),
ensures that (Z ,H) also veriûes (ii). he fact that (Z2 ,H1 ×H2) veriûes (v), plus the
fact that the quotient morphism Z2 → Z is distinguished, ensures that (Z ,H) also
veriûes (v). Condition (iv) is satisûed for (Z ,H), since the ûxed locus is dominated
by the ûxed locus of (Z2 ,G) which satisûes (iv).

he ûnal step in the inductive process is the blow-down b from Z to X. Here, we
know that the exceptional divisor E ⊂ Z of b has a marking that veriûes (⋆) and is
such that the inclusion is distinguished. Also, we know that the exceptional locus
V ⊂ X (is isomorphic to W1 and so) has trivial Chow groups, and thus veriûes (⋆).
We remark that the correspondence

tΓb ○ Γb ∈ CHn(Z × Z)
is supported on ∆Z ∪ E ×V E (by reûned intersection). he ûber product E ×V E is
a P1 × P1-bundle over V ; as such, it is smooth irreducible of dimension n and has
trivial Chow groups. he inclusion E ×V E ⊂ E × E is distinguished (both sides have
trivial Chow groups), and the inclusion E × E ⊂ Z × Z is distinguished (as E ⊂ V is
distinguished). herefore, E ×V E ⊂ Z × Z is distinguished, and so we can conclude
that tΓb ○ Γb is distinguished in CHn(Z × Z).

Now, applying [14, Proposition 4.9], it follows that X has a marking that veriûes
(⋆Mult) and such that the blow-up morphism b is distinguished. To show that the
marking of X also veriûes (⋆Chern), one can reason as in the technical [30,Lemma 6.4],
withDCH∗(−) instead of CH∗(−)(0) (cf. also [14, Remark 4.15],which dealswith the
same situation). Alternatively, one can argue as follows: according to Porteous’ for-
mula [15,heorem 15.4], the diòerence

d ∶= c i(Z) − b∗c i(X) ∈ CHi(Z)
can be expressed in terms of (push-forwards to Z of pullbacks to E of) Chern classes
of V and Chern classes of the normal bundle of V in X. But any cycle on E is dis-
tinguished (since E has trivial Chow groups), and the inclusion morphism E → Z is
distinguished, and hence this diòerence d is distinguished. As the Chern classes c i(Z)
are distinguished, this implies that b∗c i(X) is distinguished. Since the morphism b
is distinguished, this implies that

c i(X) = b∗b∗c i(X) ∈ DCHi(X);
i.e., condition (⋆Chern) (and hence condition (⋆)) is veriûed for X.
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To ûnish the proof, we observe that the inclusion of (each copy of) W1 in the ex-
ceptional divisor of Z1 → X1 ×X2 is distinguished (since bothW1 and the exceptional
divisor have trivial Chow groups). his implies that the same is true for the inclusion
of (each copy of) W1 in the strict transform of this exceptional divisor in Z2. Since
the inclusion of the exceptional divisor in Z2 is distinguished, this implies that the
inclusion of (each copy of) W1 in Z2 is distinguished. Since the quotient morphism
Z2 → Z and the blow-up b are distinguished, it follows that the inclusion of V ≅ W1
in X is distinguished.

he fact that (Z ,H) veriûes (ii), plus the fact that b isdistinguished, guarantees that
(X ,H) veriûes (ii). he ûxed locus FixX(H) is the disjoint union of the codimension
2 component V and a divisor (which is the isomorphic image in X of the exceptional
divisor in Z2 lying over the codimension 3 stratumW2 ⊂ X1×X2). In viewof the above,
this implies that (X ,H) veriûes conditions (ii), (iv), and (v), and so we are done. ∎

4.3 Z3c -actions

In this section,wewant to show that the inductive approach of Schreieder in [28, §8.2]
can be strengthened to take into account the motivic structure and to keep track of
the condition (⋆). For clarity, we follow the notations of [28].

Precisely, for natural numbers a ≠ b and c ≥ 0, let Sa ,bc denote the family of pairs
(X , ϕ), consisting of a smooth projective complex variety X of dimension a + b and
an automorphism ϕ ∈ Aut(X) of order 3c , such that properties (i)–(v) below hold.
Here, ζ denotes a ûxed primitive 3c-th root of unity and g ∶= (3c − 1)/2.

(i) he decomposition h(X) = T ⊕ h(X)⟨ϕ⟩ is such that ha ,b(T) = hb ,a(T) =
g and hp ,q(T) = 0 for all other p ≠ q, and such that the summand h(X)⟨ϕ⟩
(which is the ϕ-invariant part of themotive of X) is isomorphic to a direct sum
of Lefschetz motives⊕1(∗).

(ii) he action of ϕ on Ha ,b(X) has eigenvalues ζ , . . . , ζ g .
(iii) he set FixX(ϕ3c−1) can be covered by local holomorphic charts such that ϕ acts

on each coordinate function by multiplication with some power of ζ.
(iv) For 0 ≤ l ≤ c − 1, the motive of FixX(ϕ3 l ) is isomorphic to a sum of Lefschetz

motives, and the action of ϕ on that motive is the identity.
(v) X has amarking that satisûes the condition (⋆) and the condition (⋆⟨ϕ⟩). More-

over, the inclusion morphism FixX(ϕ3 l )↪ X is distinguished for 0 ≤ l ≤ c − 1.

In condition (v), note that itmakes sense to say that the inclusionmorphism is dis-
tinguished: by (iv) themotive of FixX(ϕ3 l ) is isomorphic to a sum of Lefschetz mo-
tives, and in particular, it admits amarking that satisûes (⋆) (cf. [14, Proposition 5.2]).

Our condition (i) (resp., (iv)) is amotivic version of conditions (1) and (3) (resp., (5))
of Schreieder. Our conditions (ii) and (iii) are exactly the conditions (2) and (4) of
Schreieder. he new feature is our condition (v).
As in [28, §8.2], we note that it follows from (iii) that FixX(ϕ3 l ) is smooth for all

0 ≤ l ≤ c − 1.

525

https://doi.org/10.4153/S0008414X19000191 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000191


R. Laterveer and Ch. Vial

With this strengthened deûnition of Sa ,bc (compared to that of [28]), we have the
exact same statement as [28, Proposition 19].

Proposition 4.5 Let (X1 , ϕ1) ∈ Sa1 ,b1c and (X2 , ϕ2) ∈ Sa2 ,b2c . hen

(X1 × X2)/⟨ϕ1 × ϕ2⟩
admits a smooth model X such that the automorphism id × ϕ2 on X1 × X2 induces an
automorphism ϕ ∈ Aut(X) with (X , ϕ) ∈ Sa ,bc , where a = a1 + a2 and b = b1 + b2.

Precisely, the variety X is constructed inductively as follows. Consider the sub-
group of Aut(X) given by

G ∶= ⟨ϕ1 × id, id × ϕ2⟩.
For each 1 ≤ i ≤ c, consider the element of order 3i in G given by η i ∶= (ϕ1 × ϕ2)3c−i

,
generating a cyclic subgroup G i ∶= ⟨η i⟩ ⊆ G. We obtain a ûltration

0 = G0 ⊂ G1 ⊂ ⋅ ⋅ ⋅ ⊂ Gc = ⟨ϕ1 × ϕ2⟩,
such that each quotient G i/G i−1 is cyclic of order 3, generated by the image of η i . We
set Y0 ∶= X1 × X2 equipped with the natural action of G. We deûne the following
inductively:

Yi = Y ′′
i−1/⟨η i⟩,

Y ′
i = Blow up of Yi along FixYi (η i+1),

Y ′′
i = Blow up of Y ′

i along FixY ′i (η i+1).
Here the action of the group G carries at each step. Schreieder shows that each Yi is
a smooth model of Y0/G i , so that the variety X of Proposition 4.5 is nothing but Yc
equipped with the action of G/Gc . To summarize, we have the following diagram:

(4.1) Y ′′
c−1

�� ��

⋅ ⋅ ⋅

�� ��

Y ′′
1

�� ��

Y ′′
0

�� ��

Yc Yc−1 Y2 Y1 Y0 .

Each arrow to the right corresponds to the composition Y ′′
i → Y ′

i → Yi of two blow-
ups along ûx loci (which turn out to be smooth), and each arrow to the le� corre-
sponds to a 3 − 1 cover, branched along a smooth divisor; see [28].

Proof of Proposition 4.5 Since there isnopoint in repeating Schreieder’s arguments
in full, we only indicate how to adapt his proof to show that the motivic statements
and the condition (v) carry through.
First, since our conditions (i)–(v) imply Schreieder’s conditions (1)–(5), we only

need to prove that X satisûes conditions (i), (iv), and (v). Concerning the latter two,
they are contained in the following strengthening of [28, Lemma 20].

Lemma 4.6 Let Γ ⊆ G be a subgroup that is not contained in G i . hen FixYi (Γ),
FixY ′i (Γ), and FixY ′′i (Γ) are smooth; their motives are isomorphic to direct sums of
Lefschetzmotives; theirG-actions restrict to actions on each irreducible component, and
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the Gc-ûxed part of their motive is also ûxed by G. Moreover, Yi , Y ′
i , and Y ′′

i are natu-
rally equippedwithmarkings that satisfy (⋆) and (⋆G)with the additional property that
the embeddings FixYi (Γ)↪ Yi , FixY ′i (Γ)↪ Y ′

i , and FixY ′′i (Γ)↪ Y ′′
i are distinguished.

Proof We followword-for-word the proof of [28, Lemma 20],which is by induction
on i. hemotivic statement is obtained from Schreieder’s arguments simply by noting
the following:

(a) he ûxed locus of Γ on Y0 is described as the product of ûxed loci on X1 and X2.
(b) he irreducible components of the ûxed locus of Γ on Y ′

i are described either as
projective bundlesover irreducible componentsof a ûxed locusonYi , or as strict
transforms of irreducible component of some ûxed locus, which are themselves
blow-ups of irreducible components of some ûxed locus along the irreducible
component of some other ûxed locus.

(c) he irreducible components of the ûxed locus of Γon Y ′′
i are described similarly

as for Y ′
i .

(d) he ûxed locus of Γ onYi+1 is described either as the isomorphic image of a ûxed
locus on Y ′′

i , or its irreducible components are quotients by ⟨η i⟩ of irreducible
components of ûxed loci on Y ′′

i .

In all aforementioned descriptions, the property that the Chow groups are trivial is
preserved. We then note that the motive of a variety is a direct sum of Lefschetz
motives if and only if itsChow groups are ûnite-dimensional vector spaces if and only
if the total cycle class map CH∗(X) → H∗(X) is an isomorphism; see [17, 21, 32]. In
particular, assuming Z is a smooth projective variety with trivial Chow groups, if the
Gc-invariant part of the cohomology of Z is spanned by G-invariant algebraic cycles,
then theGc-invariant part of themotive of this variety Z is isomorphic to a direct sum
of G-invariant Lefschetz motives. Together with [28, Lemma 20], this establishes the
ûrst part of the lemma.
Concerning the “moreover” part, we ûrst recall that any smooth projective variety

Z whose motive is isomorphic to a direct sum of Lefschetz motives satisûes condi-
tion (⋆) (cf. [14, Proposition 5.2]). In addition, since for any choice of marking we
have DCH∗(Z × Z) = CH∗(Z × Z), any action of a ûnite group G on Z satisûes the
condition (⋆G).
By induction, assuming that FixYi (Γ) and Yi have a marking satisfying (⋆) and

(⋆G) such that FixYi (Γ)↪ Yi is distinguished, it only remains to show that the graphs
of the embeddings FixY ′i (Γ) ↪ Y ′

i , FixY ′′i (Γ) ↪ Y ′′
i , and FixYi+1(Γ) ↪ Yi+1 are dis-

tinguished for suitable choices ofmarkings satisfying (⋆) and (⋆G). In fact, we only
need to show this component-wise for the irreducible components of the ûxed loci
of Γ.

In case (a), which is the initial case, this is obvious (see [14, Proposition 3.5]).
In case (b) (and also case (c),which is similar),we have the following more precise

description ([28, pp. 326–27]) of the irreducible components of the ûxed locus of Γ
on Y ′

i . Let P be an irreducible component of FixY ′i (Γ), and let Z be the image of P
inside Yi . hen, depending on whether Z is contained in FixYi (⟨Γ, η i+1⟩) or not, one
of the following occurs:
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● Z is an irreducible component of FixYi (⟨Γ, η i+1⟩) and P → Z is a projective sub-
bundle of the projective bundle E′i ∣Z → Z, where E′i is the exceptional divisor of
the blow-up Y ′

i → Yi .
● Z is an irreducible component of FixYi (Γ) and P is the strict transform of Z in
Y ′

i ; in particular P → Z is the blow-up along FixZ(η i).
In the ûrst case,wehave the composition of inclusions P ↪ E′i ↪ Y ′

i . he le� inclusion
is distinguished, because aswe saw, both P and E′i have trivialChow groups. As for the
right inclusion, Y ′

i is the blow-up of Yi along FixYi (Γ), by induction Yi satisûes (⋆)
and (⋆G), and FixYi (Γ) has trivial Chow groups and has a suitable marking making
the inclusion FixYi (Γ)↪ Yi distinguished; therefore, by [14, Proposition 4.8], E′i and
Y ′

i have markings that satisfy (⋆) and (⋆G) such that E′i ↪ Y ′
i is distinguished. In

the second case, by arguing as in the proof of [30, Proposition 3.4] (with CH∗(−)(0)
replaced with DCH∗(−)) and using the fact that P has trivial Chow groups, one can
show that P ↪ Y ′

i is distinguished.
In case (d), ûnally, we have that π∶Y ′′

i → Yi+1 is a Z3-cyclic covering branched
along the smooth divisor FixY ′′i (η i). hat Y ′′

i satisûes (⋆) and (⋆G), together with
the fact proved above (case (c)) that FixY ′′i (η i) ↪ Y ′′

i is distinguished, is enough
to conclude that the quotient Yi+1 satisûes (⋆) and (⋆G); see [14, Proposition 4.12].
It remains to show that FixYi+1(η i) ↪ Yi+1 is distinguished. By the projection for-
mula, any generically ûnite morphism f ∶ Z1 → Z2 of degree d between smooth pro-
jective varieties induces a surjective morphism f∗∶h(Z1) → h(Z2) with a section
1
d f

∗∶h(Z2)→ h(Z1).
If in addition Z1 has amarking, then f is distinguished for themarking on Z2 in-

duced by that of Z1. Let P be an irreducible component of FixYi+1(Γ). We know that
there is an irreducible component Z of some ûxed locus in Y ′′

i such that π restricts to
either an isomorphism or a 3-to-1 morphism Z → P. By induction, Z has amarking
such that the inclusion Z ↪ Y ′′

i is distinguished. Endow P with themarking induced
by that of Z; in particular f is distinguished. hen the inclusion P ↪ Yi+1 is distin-
guished, because it is the composite of π, the inclusion Z ↪ Y ′′

i , and
1

deg f f
∗, all of

which are distinguished.
he proof of Lemma 4.6 is complete. ∎

We have now established properties (ii)–(v) for X. With Lemma 4.6, we have in
fact shown that

h(X) ≃ h(Y0)Gc ⊕⊕1(∗),
where the right-hand side summand is ûxed by the action ofG. Since themotive of Y0
is of abelian type (and hence ûnite-dimensional in the sense of Kimura), in order to
establish (i), it thus suõces to see that the Gc-invariant cohomology of Y0 is spanned
by G-invariant algebraic classes, by g linearly independent (a, b)-forms, and their
conjugates. his follows from conditions (i) and (ii) for (X1 , ϕ1) and for (X2 , ϕ2), as
in [28, pp. 329–30].

he proof of Proposition 4.5 is now complete. ∎

Remark 4.7 Asmentioned before (Remark 1.6), theCynk–Hulek variety XCH (given
by heorem 1.2) and the Schreieder variety XS (given by the c = 1, b = 0 case of
heorem 1.4) are not necessarily the same. he diòerence in their construction is clear
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from comparison of Subsections 4.2 and 4.3: in the construction of XCH , there is at
each step the blow-down b∶ Z → X (in order to have a crepant resolution), whereas in
the construction of XS the varieties Z and X coincide.

4.4 Proof of the Main Theorem 4.1

In view of Remark 2.11,heorem 4.1 follows from the following two claims:

Claim 4.8 Let X be the n-dimensional Calabi–Yau variety ofheorem 1.1 or 1.2, or
a Schreieder variety as in heorem 1.4. hen X admits a marking ϕ∶h(X) ≃Ð→ M that
satisûes (⋆).

Claim 4.9 Let X be the n-dimensional Calabi–Yau variety ofheorem 1.1 or 1.2, or
a Schreieder variety as in heorem 1.4. hen there is a decomposition of Chow motives

h(X) = T ⊕⊕1(∗),
where T is such that H j(T) = 0 for j ≠ n, and T is isomorphic to a direct summand
of the Chow motive of E1 × ⋅ ⋅ ⋅ × En (if X is as in heorem 1.1), resp., of En ( for X as in
heorem 1.2), resp., of Cn ( for X as in heorem 1.4).

Proof of Claim 4.8 he Cynk–Hulek varieties of heorem 1.1 (resp., heorem 1.2)
are constructed inductively using the process of Proposition 4.3 (resp., Proposition
4.4), by adding an elliptic curvewith [−1]-involution (resp., an elliptic curvewithnon-
trivial Z3-action), at each step. Repeatedly applying Proposition 4.3 (resp., Proposi-
tion 4.4), we ûnd that they admit amarking satisfying (⋆).

Likewise, the Schreieder varieties are obtained inductively using Proposition 4.5,
by adding the hyperelliptic curve Cg ,1 at each step. A repeated application of Propo-
sition 4.5 establishes Claim 4.8 for the Schreieder varieties. ∎

Proof of Claim 4.9 heCynk–Hulek varieties ofheorem1.1 are constructed induc-
tively using the process of Proposition 4.3, by adding at each step an elliptic curve E
with [−1]-involution. Note that the quotient E/[−1] is isomorphic toP1 and hence has
Chowmotive isomorphic to1⊕1(−1). In particular, the Chowmotive of E is isomor-
phic to T ⊕ (1 ⊕ 1(−1)), where [−1] acts trivially on the right-hand side summand.
herefore, in order to prove Claim 4.9 for the Cynk–Hulek varieties ofheorem 1.1, it
is enough to remark that Proposition 4.3 continues to hold if one adds the following
property:
(vi) the decomposition h(X i) = Ti ⊕ h(X i)H i is such that h(X i)H i ≃ ⊕1(∗), and

H j(Ti) = 0 if j ≠ dimX i .
Recall that X is the quotient byG ≃ Z2 of the blow-up Z of X1×X2 along B1×B2,where
B i is the ûxed locus of H i acting on X i and is assumed to havemotive isomorphic to
a direct sum of Lefschetz motives. By the blow-up formula, we have

h(Z) ≃ h(X1)⊗ h(X2)⊕ (h(B1)⊗ h(B2)⊕ h(B1)⊗ h(B2)(−1)) .
he right-hand side summand is ûxed under the action of H1 ×H2 and is isomorphic
to a direct sum of Lefschetz motives. hus, in order to conclude, it is enough to note
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that (T1 ⊗ h(X2)H2)G = 0 (and similarly h(X1)H1 ⊗ T2)G = 0) and the (H1 × H2)-
invariant part of themotive h(X1)⊗ h(X2) is a direct sum of Lefschetz motives; this
follows at once from the assumption that TH i

i = 0.
he proof of Claim 4.9 for the Schreieder varieties was already taken care of. In-

deed, thanks to Proposition 4.5 we know that Schreieder varieties X are in the class
Sa ,bc ; this entails in particular (by deûnition of Sa ,bc ) that themotive of X decomposes
as

h(X) = T ⊕⊕1(∗) in Mrat ,

where T is such that H j(T) = 0 for all j /= dimX. In fact, at the end of the proof
of Proposition 4.5), we constructed T as a direct summand of h(Y0)Gc , and so T is
indeed a direct summand of the Chow motive of Cn .
Finally, to prove Claim 4.9 for the Cynk–Hulek varieties XCH of heorem 1.2 we

argue as follows: the variety XCH is dominated by the Schreieder variety XS (of the
same dimension, and where c = 1 and b = 0 in the Schreieder construction). hus,
the truth of Claim 4.9 for XS implies the truth of Claim 4.9 for XCH . ∎

4.5 Proof of Theorem 4.2

his is immediate: in view of Proposition 2.9,heorem 4.2 follows from Claim 4.8.∎

Remark 4.10 Alternatively, we could have established the existence of a self-dual
multiplicative Chow–Künneth decomposition for X as in heorem 4.2 directly (i.e.,
without invoking Proposition 2.9 ([14, Proposition 6.1]) by using the results of [30]
instead of those of [14].

4.6 Proof of Corollary 1

By Claim 4.8, we know that any Schreieder surface S has amarking that satisûes (⋆).
Since the cycle

(x , x , x) − (x , x , p) − (x , p, x) − (p, x , x) + (p, p, x) + (p, x , p) + (x , x , p)

is numerically trivial (this cycle is numerically trivial for any regular surface), it suf-
ûces to show that there exists a point p in S such that each summand is distinguished.
By deûnition of (⋆Mult), the cycle (x , x , x) is distinguished. By [14, Lemma 3.8], the
diagonal ∆S = (x , x) is distinguished in S×S; and it is clear that the fundamental class
of S is distinguished in S (see also [14, Remark 3.4]). herefore, it suõces to exhibit a
point p that is distinguished in S. he variety S is constructed using the diagram (4.1)
starting from Y0 the product of two hyperelliptic curves. Choose a ûxed point p0 ofG
in Y0. By Proposition 3.3 and the fact that (⋆) is stable under product, Y0 has amark-
ing that satisûes (⋆) such that p0 is distinguished. Now, by inspection of the proof of
Proposition 4.5, by deûning p i inductively as the image of p′′i−1 under Y ′′

i−1 → Yi , p′i
as a point in the pre-image of p i under Y ′

i → Yi , and p′′i as a point in the pre-image
of p′i under Y ′′

i → Y ′
i , we see that pc = p is a distinguished point in S = Yc .

Alternately, Corollary 1 is a consequenceofheorem4.2 combinedwith [29,Propo-
sition 8.14] and with the fact that there exists a point p in S that is distinguished. ∎
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4.7 Final Remarks

We remark that heorems 4.1 and 4.2 also hold in the following two situations. First,
in the Schreieder construction, we can add via Proposition 4.5 at each step, instead
of the hyperelliptic curve Cg ,1, more generally the hyperelliptic curve Cg ,D for any
non-zero rational number D. Second, in the construction of a smooth model of the
Cynk–Hulek varieties of heorem 1.1, one can add via Proposition 4.3 at each step
a hyperelliptic curve equipped with its hyperelliptic involution instead of an elliptic
curve equipped with its [−1]-involution.

5 Applications

5.1 Voisin’s Conjecture

Voisin [35] has formulated the following intriguing conjecture, which is a special in-
stance of the Bloch–Beilinson conjectures.

Conjecture 5.1 (Voisin [35]) Let X be a smooth projective variety of dimension n,
with pg(X) ∶= hn ,0(X) = 1 and h j ,0(X) = 0 for 0 < j < n. hen any two zero-cycles
a, a′ ∈ CHn

num(X) satisfy

a × a′ = (−1)na′ × a in CH2n(X × X).
(Here, a × a′ is the exterior product (p1)∗(a) ⋅ (p2)∗(a′) ∈ CH2n(X × X), where p j is
projection to the j-th factor.)

For background and motivation for Conjecture 5.1, cf. [37, Section 4.3.5.2].
Conjecture 5.1 has been proved in some scattered special cases [6, 22–24, 35], but is
still widely open for a general K3 surface.

Remark 5.2 Conjecture 5.1 can be thought of as a version of Bloch’s conjecture for
motives. Indeed, given X as in Conjecture 5.1, consider the Chow motive M deûned
as

M ∶=
⎧⎪⎪⎨⎪⎪⎩

∧2hn(X) ∶= (X × X , 1
2∑σ∈S2sgn(σ)Γσ ○ (πn

X × πn
X), 0) if n is even,

Sym2hn(X) ∶= (X × X , 1
2∑σ∈S2Γσ ○ (πn

X × πn
X), 0) if n is odd.

(Here, for hn(X) to make sense, we need to assume that X has a Chow–Künneth
decomposition, in the sense of Deûnition 2.1). he condition on pg(X) implies that
h2n ,0(M) = 0, and so M is amotive with h j ,0(M) = 0 for all j. Amotivic version of
Bloch’s conjecture would then imply that CH0(M) = 0. On the other hand, the con-
dition on h j ,0(X) conjecturally implies that CHn

num(X) = (πn
X)∗CHn(X). It follows

that given two zero-cycles a, a′ ∈ CHn
num(X), one conjecturally has

a × a′ − (−1)na′ × a = (πn
X × πn

X)∗(a × a′) − (−1)n ι∗(πn
X × πn

X)∗(a × a′)
in CH0(M) = 0, where ι is the non-trivial element ofS2. his heuristically explains
Conjecture 5.1.

We now prove Voisin’s conjecture for Cynk–Hulek Calabi–Yau varieties.
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heorem 5.3 Let X be a Calabi–Yau variety of dimension n as in heorem 1.1 or 1.2.
hen Conjecture 5.1 is true for X: any a, a′ ∈ CHn

num(X) satisfy

a × a′ = (−1)na′ × a in CH2n(X × X).

Proof Consider morphisms

E1 × ⋅ ⋅ ⋅ × En

p
��

X
f

// X

as in heorem 1.1 or 1.2. he Chow group of 0-cycles is a birational invariant amongst
varieties that are global quotients (this follows for instance from [15, Example 17.4.10]),
and so f ∗∶CHn(X)→ CHn(X) is an isomorphism. Consequently, it suõces to prove
Conjecture 5.1 for X. Using Corollary 3.7, we see that CHn

num(X) is contained in
p∗CHn(E1×⋅ ⋅ ⋅ En)(n). herefore,we are reduced to proving that a×a′ = (−1)na′×a
for all a, a′ ∈ CHn(E1 × ⋅ ⋅ ⋅×En)(n); this is a special case of the following proposition.

Proposition 5.4 (Voisin, [37, Example 4.40]) Let B be an abelian variety of dimen-
sion n. Let a, a′ ∈ CHn(B)(n). hen

a × a′ = (−1)na′ × a in CH2n(B × B).

his concludes the proof of the theorem. ∎

5.2 Voevodsky’s Conjecture

In this paragraph, we give an application of our results to Voevodsky’s conjecture on
smash-equivalence.

Deûnition 5.5 (Voevodsky [34]) Let X be a smooth projective variety. A cycle
a ∈ CHi(X) is called smash-nilpotent if there exists m ∈ N such that

am ∶= a × ⋅ ⋅ ⋅ × a
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(m times)

= 0 in CHmi(X × ⋅ ⋅ ⋅ × X) .

Two cycles a, a′ are called smash-equivalent if their diòerence a − a′ is smash-
nilpotent. We will write CHi

⊗(X) ⊆ CHi(X) for the subgroup of smash-nilpotent
cycles.

Conjecture 5.6 (Voevodsky [34]) Let X be a smooth projective variety. hen

CHi
num(X) ⊆ CHi

⊗(X) for all i.

Remark 5.7 It is known [1,héorème 3.33] that Conjecture 5.6 for all smooth pro-
jective varieties implies (and is strictly stronger than) Kimura’s conjecture “all smooth
projective varieties have ûnite-dimensional motive” [20].
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hanks to Claim 4.9, we can verify Voevodsky’s conjecture for odd-dimensional
Cynk–Hulek varieties and Schreieder varieties.

Proposition 5.8 Let X be a Cynk–Hulek Calabi–Yau variety as in heorem 1.1 or 1.2,
or a Schreieder variety as in heorem 1.4. Suppose the dimension n of X is odd. hen

CHi
num(X) ⊆ CHi

⊗(X) for all i .

Proof According to Claim 4.9, we have a decomposition of Chow motives

h(X) = T ⊕⊕1(∗),
with H j(T) = 0 for j /= n, and T isomorphic to a direct summand of h(C1 × ⋅ ⋅ ⋅ ×Cn).
Here, theC i are elliptic curves in case X is a Cynk–Hulek variety, and the hyperelliptic
curves of Section 3.2 in case X is a Schreieder variety.
By Kimura ûnite-dimensionality, T is isomorphic to a direct summand of themo-

tive (C1 × ⋅ ⋅ ⋅ ×Cn , πn , 0), where πn is any Chow–Künneth projector on the degree-n
cohomology. But the Chow motive (C1 × ⋅ ⋅ ⋅ × Cn , πn , 0) is oddly ûnite-dimensional
(in the sense of [20]). Hence, together with the fact that CHi

num(X) = CHi
num(T),

the corollary is implied by the fact thatCHi(M) ⊆ CHi
⊗(M) for all i and for all oddly

ûnite-dimensional Chowmotives M (this is due to Kimura [20, Proposition 6.1], and
is also used in [19]). ∎

5.3 Supersingularity

he construction of theCynk–HulekCalabi–Yau varieties alsomakes sense in positive
characteristic ≥ 5. In this ûnal section, we present supersingular Calabi–Yau varieties
for which themotive behaves in stark contrast to the characteristic zero case.

Proposition 5.9 Let k be an algebraically closed ûeld of characteristic at least 5. Let
X be a Calabi–Yau variety over k obtained as in heorem 1.1 or 1.2, where the elliptic
curves are assumed to be supersingular. Assume X is even-dimensional. hen the Chow
motive of X is isomorphic to a direct sum of Lefschetz motives. Consequently, the cycle
class map to ℓ-adic cohomology induces isomorphisms

CHi(X)Qℓ

≅Ð→ H2i(X ,Qℓ(i))
for all i, (where ℓ is a prime diòerent from char(k)).

Proof First of all,we observe that the construction of the smooth projective Calabi–
Yau varieties of Cynk–Hulek carries over to characteristic greater than or equal to 5.
Using Claim 4.9, we have a decomposition of Chow motives

h(X) = T ⊕⊕1(∗),
with H j(T) = 0 for j /= n, and T isomorphic to a direct summand of h(E1 × ⋅ ⋅ ⋅ ×
En). By Kimura ûnite-dimensionality, T is isomorphic to a direct summand of the
motive (E1×⋅ ⋅ ⋅×En , πn , 0),where πn is anyChow–Künneth projector on the degree-
n cohomology. herefore, by Kimura ûnite-dimensionality again, one is reduced to
proving that (E1 × ⋅ ⋅ ⋅ × En , πn , 0) is isomorphic to a direct sum of Lefschetz motives
when the elliptic curves E1 , . . . , En are supersingular.
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Recall that there is only one isogeny class of supersingular elliptic curve; let us de-
note it by E. We endow E with its canonical Chow–Künneth decomposition, namely
the one given by hi(E) = (E , π i

E , 0) with

π0
E ∶= 0E × E , π2

E = E × 0E , π1
E = ∆E − π0

E − π2
E .

Since E is supersingular, we have that End(h1(E)) = End(E) ⊗Q is 4-dimensional.
his implies that

(5.1) h1(E)⊗ h1(E) ≃ 1(−1)⊕4 .

Now πn
En can be chosen as follows:

πn
En = ∑

i1+⋅⋅⋅+in=n
π i1
E ⊗ ⋅ ⋅ ⋅ ⊗ π in

E .

But for i1 + ⋅ ⋅ ⋅ + in even, (En , π i1
E ⊗ ⋅ ⋅ ⋅ ⊗ π in

E , 0) = hi1(E) ⊗ ⋅ ⋅ ⋅ ⊗ hin(E) is isomor-
phic to a direct sum of Lefschetz motives thanks to (5.1). Consequently, for n even,
(En , πn

En , 0) is isomorphic to a direct sum of Lefschetz motives, thereby establishing
the proposition. ∎

Remark 5.10 For the proof of Proposition 5.9, we could alternatively have used
the description of the Chow groups of supersingular abelian varieties given by
Fakhruddin [9]. Finally, in case the ground ûeld k is ûnite, the fact that the cycle class
map to ℓ-adic cohomology induces isomorphismsCHi(X)Qℓ

≅Ð→H2i(X ,Qℓ(i)) for all
i and for allCynk–HulekCalabi–Yau varieties is truewithout the assumption of super-
singularity and also without the restriction on the parity of the dimension, as follows
from [18] (but beware that the Chow motive is then not necessarily isomorphic to a
direct sum of Lefschetz motives, even in the even-dimensional case).

Acknowledgments hanks to Julius Ross, for asking whether there exist Calabi–
Yau varieties of arbitrarily high dimension for which Voisin’s conjecture is known.
His question sparked this project.
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