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Abstract We establish Bohr inequalities for operator-valued functions, which can be viewed as analogues
of a couple of interesting results from scalar-valued settings. Some results of this paper are motivated
by the classical flavour of Bohr inequality, while others are based on a generalized concept of the Bohr
radius problem.

Keywords: Bohr radius; harmonic function; biholomorphic function

2010 Mathematics subject classification: Primary 47A56; 30B10; 47A63; 30C80

1. Introduction

The following remarkable result was proved by Harald Bohr [9] in 1914.

Theorem A. Let f(z) =
∑∞

n=0 anz
n be holomorphic in the open unit disk D and

|f(z)| < 1 for all z ∈ D, then

∞∑
n=0

|an|rn ≤ 1 (1.1)

for all z ∈ D with |z| = r ≤ 1/6.

This constant r ≤ 1/6 was sharpened to r ≤ 1/3 by Wiener, Riesz and Schur indepen-
dently, and the inequality (1.1) is popularly known as the Bohr inequality nowadays. This
theorem was an outcome of the investigation on the absolute convergence problem for
Dirichlet series of the form

∑
ann

−s, but presently it has become an independent area
of research. The Bohr radius problem saw a surge of interest from many mathematicians
after it found an application to the characterization problem of Banach algebras satisfy-
ing the von Neumann inequality [14]. A part of the subsequent research in this area is
directed towards extending the Bohr phenomenon in a multidimensional framework and
in more abstract settings (see, for example [3, 4, 8, 19, 23–25]). The Bohr phenomenon
is shown to have connections with local Banach space theory (cf. [12]). Also, the Bohr
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Bohr phenomenon for operator-valued functions 73

inequality is studied in the settings of ordinary and vector-valued Dirichlet series (see f.i.
[5, 13]).

We now give a brief overview of the approaches to extend the Bohr inequality in
two different settings. One of them aims at investigating the Bohr radius problem from
an operator theoretic perspective. To be more specific, the Bohr phenomenon has been
established in [22, Theorem 2.1] using positivity methods for operator-valued holomorphic
functions, i.e. holomorphic functions from D to B(H), where B(H) is the set of bounded
linear operators on a complex Hilbert space H. Suitable assumptions in terms of operator
inequalities are made to replicate the scalar-valued cases. It may be mentioned here
that the inequalities recorded in [22, Theorem 2.1] are operator-valued analogues of the
classical Bohr inequality in Theorem A. In the present article, we prove Bohr inequalities
of similar nature for harmonic functions from D to B(H). It is also worth mentioning that
some other versions of operator-valued Bohr inequality for non-commutative harmonic
functions are available in [24, 25].

Another aspect of the Bohr phenomenon thrives on considering the Bohr radius problem
for a holomorphic map g from D into a domain Ω � C other than D. The key idea to
accomplish that is to identify g as a member of S(f), S(f) being the class of functions
subordinate to f , while f is the covering map from D onto Ω satisfying f(0) = g(0). Here
we clarify that for two holomorphic functions g and f in D, we say that g is subordinate
to f if there exists a function φ, holomorphic in D with φ(0) = 0 and |φ(z)| < 1, satisfying
g = f ◦ φ. Throughout this article, we denote g is subordinate to f by g ≺ f . A suitable
definition for the Bohr phenomenon of g ∈ S(f) was given in [1] to serve the purpose
stated above, which we briefly describe here. Let the Taylor expansions of f and g in a
neighbourhood of the origin be

f(z) =
∞∑

n=0

anz
n (1.2)

and

g(z) =
∞∑

k=0

bkz
k, (1.3)

respectively. We will say that S(f) has the Bohr phenomenon if for any g ∈ S(f), where
f and g have the Taylor expansions of the form (1.2) and (1.3), respectively in D, there
is a r0, 0 < r0 ≤ 1 so that

∞∑
k=1

|bk|rk ≤ d(f(0), ∂Ω) (1.4)

for |z| = r < r0. Here d(f(0), ∂Ω) denotes the Euclidean distance between f(0) and the
boundary of the domain Ω = f(D). To see that this definition is indeed a generaliza-
tion of the classical Bohr phenomenon, we observe that whenever Ω = D; d(f(0), ∂Ω) =
1 − |f(0)|, and in this case (1.4) reduces to (1.1). However, to the best of our knowledge,
no attempt has been made so far to obtain operator-valued analogues of the Bohr phe-
nomenon for complex-valued functions treated according to the aforesaid definition from
[1]. Therefore, another goal of the present article is to find the same under appropri-
ate considerations and necessary restrictions. More precisely, we will consider a function
f from D to B(H), and prove the Bohr inequality when f is holomorphic and satisfies
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74 B. Bhowmik and N. Das

certain conditions which, when restricted to the scalar-valued case, coincide with the
situation that f maps D into its exterior, i.e. D

c
= {z ∈ C : |z| > 1}. Also, we prove the

Bohr phenomenon for any g ∈ S(f), when f is a convex or starlike biholomorphic func-
tion. Here we clarify that, given two complex Banach spaces X and Y and a domain
D ⊂ X, a holomorphic mapping f : D → Y is said to be biholomorphic on D if f(D) is
a domain in Y , and f−1 exists and is holomorphic on f(D). A biholomorphic function f
is said to be starlike on its domain D with respect to z0 ∈ D if f(D) is a starlike domain
with respect to f(z0), i.e. (1 − t)f(z0) + tf(z) ∈ f(D) for all z ∈ D and t ∈ [0, 1], and f is
called starlike biholomorphic on D if f is starlike with respect to 0 ∈ D and f(0) = 0. Now
a biholomorphic function f defined in D is said to be convex if f is starlike with respect
to all z ∈ D. In particular, here we will work with D = D, X = C and Y = B(H). It may
be noted that the definition of subordination and the class S(f) for operator-valued holo-
morphic functions can be adopted from the scalar case without any change. Now we fix
some notation for the rest of our discussions. For any A ∈ B(H), ‖A‖ will always denote
the operator norm of A, and A∗ is the adjoint of A. The operators Re(A) := (A+A∗)/2,
Im(A) := (A−A∗)/2i and |A| := (A∗A)1/2 bear their usual meaning, while B1/2 denotes
the unique positive square root of a positive operator B. Also, σ(A) will be recognized
as the spectrum of A, i.e. the set of all λ ∈ C such that A− λI is non-invertible, I being
the identity operator on H.

2. Main results

A function f : D → B(H) is harmonic if and only if

f(z) =
∞∑

n=0

Anz
n +

∞∑
n=1

B∗
nz

n, (2.1)

where An, Bn ∈ B(H) for all n ∈ N ∪ {0}, and the series converges absolutely and locally
uniformly in D (see, for example [17, Sec. 2.4, p. 352]). Bohr inequalities for complex-
valued harmonic functions have already been obtained in [1, Theorem 2]. The aim of
the first theorem is to derive inequalities of similar nature for operator-valued harmonic
functions. For this purpose, we need to establish the following analogue of the Cauchy–
Schwarz inequality.

Lemma 1. Let {Hn}∞n=0 be a sequence in B(H) such that
∑∞

n=0 |Hn|2 ∈ B(H). Then
for any fixed r ∈ [0, 1), and for any fixed non-negative integer k,

∞∑
n=k

|Hn|rn ≤ rk

√
1 − r2

( ∞∑
n=k

|Hn|2
)1/2

. (2.2)

Proof. For any fixed m ∈ N such that m > k, and for any x ∈ H, it is immediately
seen that 〈(

m∑
n=k

|Hn|rn

)2

x, x

〉
=

∥∥∥∥∥
m∑

n=k

rn|Hn|x
∥∥∥∥∥

2

≤
(

m∑
n=k

rn‖Hnx‖
)2

(2.3)
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for any fixed r ∈ [0, 1). Now, a use of the Cauchy–Schwarz inequality on the right-hand
side of the inequality (2.3) yields

〈(
m∑

n=k

|Hn|rn

)2

x, x

〉
≤
(

m∑
n=k

‖Hnx‖2

)(
m∑

n=k

r2n

)
, (2.4)

which implies that

〈(
m∑

n=k

|Hn|rn

)2

x, x

〉
≤
〈 m∑

n=k

|Hn|2x, x
〉 r2k

1 − r2
. (2.5)

Letting m→ ∞ in (2.5) we get

( ∞∑
n=k

|Hn|rn

)2

≤ r2k

1 − r2

( ∞∑
n=k

|Hn|2
)
, (2.6)

from which (2.2) will follow (cf. [11, p. 244, Ex. 12]). �

We now state the first theorem of this article after all these preparations.

Theorem 1. Let f : D → B(H) be a harmonic function with an expansion (2.1) such
that ‖f(z)‖ ≤ 1 for each z ∈ D. Then

(i) |Re(eiμA0)| +
∑∞

n=1 |eiμAn + e−iμBn|rn ≤ (
√

1 + 3r2/
√

1 − r2)I for |z| = r ∈
[0, 1), and for any μ ∈ R. In particular, if we assume in addition that eiμAn +
e−iμBn is normal for each n ∈ N, then the quantity in the right-hand side of the
above inequality can be replaced by (

√
1 + r2/

√
1 − r2)I.

(ii)
∑∞

n=1 ‖eiμAn + e−iμBn‖rn ≤ ‖I − Re(eiμA0)‖ for |z| = r ≤ 1/5, and for any μ ∈
R. Moreover, if we take eiμAn + e−iμBn to be normal for each n ∈ N, then the
above inequality will hold for r ≤ 1/3 instead of r ≤ 1/5.

(iii)
∑∞

n=1 |An|rn +
∑∞

n=1 |B∗
n|rn ≤ (1/2)I for |z| = r ≤ 1/3.

Proof. (i) It is easy to observe that for each z ∈ D, and for any μ ∈ R,

|Re(eiμf(z))|2 + |Im(eiμf(z))|2 = (1/2)(f(z)f(z)∗ + f(z)∗f(z)).

We here note that for any A ∈ B(H), 〈|A|2x, x〉 = ‖Ax‖2 ≤ ‖A‖2〈x, x〉 for any x ∈
H, i.e. |A|2 ≤ ‖A‖2I. Using this fact, and that ‖A‖ = ‖A∗‖ for any A ∈ B(H), we
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obtain |Re(eiμf(z))|2 + |Im(eiμf(z))|2 ≤ ‖f(z)‖2I, and therefore

|Re(eiμf(z))|2 ≤ I. (2.7)

Now

Re(eiμf(z)) = Re(eiμA0) + (1/2)
∞∑

n=1

(Pnz
n + P ∗

nz
n), (2.8)

where Pn = eiμAn + e−iμBn. Now from (2.7) we can write, for any z = reiθ ∈ D

and for any x ∈ H,

〈(Re(eiμf(reiθ)))∗(Re(eiμf(reiθ)))x, x〉 ≤ 〈x, x〉.
We plug the expression (2.8) in and fix r ∈ [0, 1) in the above inequality, and
thereafter integrating both sides of this inequality over θ from 0 to 2π we get

〈|Re(eiμA0)|2x, x〉 + (1/4)
∞∑

n=1

(〈P ∗
nPnx, x〉 + 〈PnP

∗
nx, x〉)r2n ≤ 〈Ix, x〉.

Therefore, we conclude

|Re(eiμA0)|2 + (1/4)
∞∑

n=1

(|Pn|2 + |P ∗
n |2) ≤ I,

which implies
∞∑

n=1

|Pn|2 ≤ 4(I − |Re(eiμA0)|2). (2.9)

Hence, a direct use of Lemma 1 (with Hn = Pn, k = 1) gives

|Re(eiμA0)| +
∞∑

n=1

|eiμAn + e−iμBn|rn ≤ T +
2r√

1 − r2
(I − T 2)1/2, (2.10)

where T = |Re(eiμA0)|. The first half of part (i) of our theorem will now follow from
a computation similar to the proof of [22, Theorem 2.1, part 4], applied to (2.10). For
the sake of completeness, we include brief details of the calculation. Considering the
real valued function ψ(x) = x+ (2r/

√
1 − r2)

√
1 − x2 on the interval [0, 1], we see

that ψ attains its maximum at x0 =
√

1 − r2/
√

1 + 3r2, and that ψ(x) ≤ ψ(x0) =√
1 + 3r2/

√
1 − r2 for any x ∈ [0, 1]. This validates our first assertion. Further, if

we assume that Pn is normal for each n ∈ N, then |Pn|2 = |P ∗
n |2, which implies that

the inequality (2.9) can be improved to
∑∞

n=1 |Pn|2 ≤ 2(I − |Re(eiμA0)|2). Rest of
the proof can be completed by following the similar lines of computation as we did
for the previous one.

(ii) In order to establish the second part of this theorem, we first observe that if K(z) =
eiμA0 +

∑∞
n=1 Pnz

n, then (2.8) implies that Re(K(z)) = Re(eiμf(z)), and hence
from (2.7), we get ‖Re(K(z))‖ ≤ 1. Now considering K̂(z) = 〈K(z)x, x〉 for any
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fixed x ∈ H with ‖x‖ = 1, it is easily seen that |Re(K̂(z))| ≤ 1. Therefore, K̂ is
holomorphic in D with an expansion

K̂(z) = 〈eiμA0x, x〉 +
∞∑

n=1

〈Pnx, x〉zn,

which maps D into the vertical strip |Re(z)| ≤ 1. As a consequence,

|〈Pnx, x〉| ≤ 2(1 − |Re(〈eiμA0x, x〉)|)
for all n ∈ N (see, f.i. [1, Lemma 3]). Further, using the triangle inequality, we
obtain

|〈Pnx, x〉| ≤ 2|〈(I − Re(eiμA0))x, x〉|. (2.11)

Taking supremum over x ∈ H with ‖x‖ = 1 on both sides of the inequality (2.11),
we get

sup
‖x‖=1

|〈Pnx, x〉| ≤ 2‖I − Re(eiμA0)‖,

and replacing A by Pn in [15, Theorem 1.2], we have

sup
‖x‖=1

|〈Pnx, x〉| ≥ (1/2)‖Pn‖.

Combining the above two results, we obtain

‖Pn‖ ≤ 4‖I − Re(eiμA0)‖ (2.12)

for all n ∈ N. The first half of part (ii) now follows from (2.12). Now it is known that
‖Pn‖ = sup{|〈Pnx, x〉| : x ∈ H, ‖x‖ = 1} whenever Pn is normal (cf. [15, p. 266], and
replace A by Pn). Hence from (2.11) we obtain ‖Pn‖ ≤ 2‖I − Re(eiμA0)‖, which
will prove the second assertion of part (ii).

(iii) Finally, since ‖f(z)‖ ≤ 1 if and only if |f(z)|2 ≤ I, using methods similar to the
proof of part (i) we are able to deduce

|A0|2 +
∞∑

n=1

(|An|2 + |B∗
n|2) ≤ I. (2.13)

Observing that |An|2 + |B∗
n|2 ≥ (1/2)(|An| + |B∗

n|)2 for all n ∈ N, (2.13) yields

∞∑
n=1

(|An| + |B∗
n|)2 ≤ 2I. (2.14)

Therefore, applying Lemma 1 (lettingHn = |An| + |B∗
n|, k = 1) and (2.14) together,

we get
∞∑

n=1

|An|rn +
∞∑

n=1

|B∗
n|rn ≤

(
r
√

2√
1 − r2

)
I, (2.15)

from which part (iii) will directly follow. �
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Remark. The following observations are made in connection with the above
theorem.

(i) Under the assumption that eiμAn + e−iμBn (μ ∈ R) is normal for each n ∈ N, from
part (ii) of Theorem 1, we can write

‖Re(eiμA0)‖ +
∞∑

n=1

‖eiμAn + e−iμBn‖rn ≤ ‖Re(eiμA0)‖ + ‖I − Re(eiμA0)‖

for r ≤ 1/3. When restricted to the scalar-valued case, this inequality reduces to

|Re(eiμA0)| +
∞∑

n=1

|eiμAn + e−iμBn|rn ≤ |Re(eiμA0)| + |1 − Re(eiμA0)| (2.16)

for r ≤ 1/3, where the coefficients A0, An, Bn are complex numbers. Now since
without loss of generality, we may consider Re(eiμA0) ≥ 0, therefore, the second
part of [1, Theorem 2] follows directly from (2.16).

(ii) Part (iii) of Theorem 1 can be thought of as an operator-valued analogue of the
very recent result from [18, p. 867, Sec. 4.4] which improves the first part of [1,
Theorem 2].

(iii) If we set Bn = 0 for all n ∈ N in (2.1), i.e. f is taken to be a holomorphic function
from D to B(H) with an expansion f(z) =

∑∞
n=0Anz

n, then (2.13) takes the form∑∞
n=0 |An|2 ≤ I. Therefore, an application of Lemma 1 (with Hn = An, k = 0)

yields
∞∑

n=0

|An|rn ≤
(

1√
1 − r2

)
I, r ∈ [0, 1). (2.17)

We observe that 1/
√

1 − r2 ≤ (1 + r2/(1 − r)2)1/2, and therefore (2.17) is an improve-
ment over the inequality recorded in [22, Remark 2.2]. Moreover, from the scalar
valued results (compare [10, Theorem 1.1]), we observe that the quantity 1/

√
1 − r2

in inequality (2.17) is the ‘best possible’, in the sense that for the function f(z) =
((z − 1/

√
2)/(1 − z/

√
2))I, z ∈ D, equality occurs in (2.17) at r = 1/

√
2.

In the next result, we establish an operator-valued analogue of Bohr’s inequality for
holomorphic mappings from D into the exterior of D, i.e. D

c
= {z ∈ C : |z| > 1} (cf. [2,

Theorem 2.1]). In order to prove this, we now introduce the notions of the spherical and
the Hausdorff distance. Let Ĉ = C ∪ {∞} be the extended complex plane. The spherical
distance λ between two points z1, z2 ∈ Ĉ is given by

λ(z1, z2) =

⎧⎪⎪⎨
⎪⎪⎩

|z1 − z2|√
1 + |z1|2

√
1 + |z2|2

, if z1, z2 ∈ C,

1√
1 + |z1|2

, if z2 = ∞.
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Also, it is well known that the collection C of compact subsets of C is a metric space with
respect to the Hausdorff distance dh given by

dh(A,B) = max
{

sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)
}
, A,B ∈ C,

where dist(p,E) := inf{|p− e| : e ∈ E} for any E ⊂ C and for any p ∈ C. Now since for
any A ∈ B(H), σ(A) ∈ C, we are able to consider the mapping A �→ σ(A) from B(H) to
the metric space(C, dh), which is continuous on the subset of normal operators, equipped
with the operator norm (see f.i. [20]).

Theorem 2. Suppose f : D → B(H) is holomorphic with an expansion

f(z) =
∞∑

n=0

Anz
n, z ∈ D (2.18)

such that |f(z)| > I for all z ∈ D. Also, suppose f(z) is normal for each z ∈ D, f(0) =
A0 > 0 and σ(f(z)) does not separate 0 from ∞ for any z ∈ D. Then

λ

( ∞∑
n=0

‖An‖rn, ‖A0‖
)

≤ λ (‖A0‖, 1) (2.19)

for |z| = r ≤ (2(log ‖A0‖/‖ logA0‖) − 1)/(2(log ‖A0‖/‖ logA0‖) + 1).

Proof. Since |f(z)| > I, we have 〈|f(z)|x, x〉 > 〈x, x〉 for any x ∈ H \ {0}, and for each
z ∈ D. A use of the Cauchy–Schwarz inequality exhibits that ‖f(z)x‖ > ‖x‖, which fur-
ther implies that ‖(f(z) − λI)x‖ > (1 − |λ|)‖x‖ for any λ ∈ C, i.e. f(z) − λI is bounded
below for any λ ∈ D. As f(z) is normal, σ(f(z)) ⊂ Dc for each z ∈ D. Since σ(f(z)) does
not separate 0 from ∞, it is therefore possible to choose a holomorphic single-valued
branch of complex logarithm on a simply connected domain Δz that contains σ(f(z)),
but does not contain 0. As a consequence, we are able to define log f(z) as follows:

log f(z) =
1

2πi

∫
Γ

(log ξ)(ξI − f(z))−1dξ, z ∈ D, (2.20)

where Γ is a system of closed, positively oriented, rectifiable curves inside Δz which
encloses σ(f(z)) (cf. [11, pp. 199–201]). Now it is also known that for each fixed
z ∈ D, log f(z) is normal, and (log f(z))∗ = F (f(z)∗), where F (z) = log z (see f.i. [11,
p. 205, Ex. 7, 8]). As exp z is an entire function and exp(log z) = z, it follows that
exp((log f(z))∗) = f(z)∗ (see [11, p. 205, Ex. 4]). As a consequence of these facts, we
obtain exp(2Re(log f(z))) = f(z)∗f(z). It is easy to see that for any x ∈ H \ {0},

〈exp(2Re(log f(z)))x, x〉 = 〈f(z)∗f(z)x, x〉 = ‖f(z)x‖2 > ‖x‖2,

which, after an application of the Cauchy–Schwarz inequality asserts that

‖ exp(2Re(log f(z)))x‖ > ‖x‖.
Therefore, σ(exp(2Re(log f(z)))) ⊂ Dc, and since the operator exp(2Re(log f(z)))
is positive, we conclude that σ(exp(2Re(log f(z)))) ⊂ [1,∞). Now we know that
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σ(2Re(log f(z))) ⊂ R, and hence exp(σ(2Re(log f(z)))) ⊂ (0,∞). As a result, choos-
ing the principal branch of complex logarithm over the slit plane C \ (−∞, 0], we get
log(exp(2Re(log f(z)))) = 2Re(log f(z)). Now applying the spectral mapping theorem,
we conclude that

σ(2Re(log f(z))) = log (σ(exp(2Re(log f(z))))) ⊂ [0,∞).

As 2Re(log f(z)) is self adjoint, 2Re(log f(z)) ≥ 0. Moreover, as A0 > 0, σ(A0) ⊂ [1,∞).
Hence to define logA0 from (2.20), we choose, in particular, the principal branch
of complex logarithm on the simply connected domain Δ0 = C \ (−∞, 0] containing
σ(A∗

0) = σ(A0). Now as F (z) = log z over [1,∞), F (z) = log z, z ∈ C \ (−∞, 0]. There-
fore, (logA0)∗ = logA∗

0 = logA0, which in turn gives logA0 ≥ 0. Our aim is now to show
that log f(z) is holomorphic at each z ∈ D. As f(z) is holomorphic, and therefore con-
tinuous on D, limh→0 ‖f(z + h) − f(z)‖ = 0. Since f(z) is also normal for each z ∈ D, we
have

lim
h→0

dh(σ(f(z + h)), σ(f(z))) = 0.

Thus, we infer that for any h ∈ C with |h| small enough, σ(f(z + h)) is enclosed by Γ
again. As a result, we are able to show that the limit

lim
h→0

1
2πih

∫
Γ

(log ξ)((ξI − f(z + h))−1 − (ξI − f(z))−1) dξ

exists and is equal to

1
2πi

∫
Γ

(log ξ)(ξI − f(z))−1f ′(z)(ξI − f(z))−1dξ,

thereby proving that log f(z) is holomorphic in D. In view of the above discussion, there
exist a Hilbert space K, a unitary operator U on K and a bounded linear operator
V : H → K such that 2 logA0 = V ∗V and Cn = V ∗UnV for all n ≥ 1, where log f(z) =
logA0 +

∑∞
n=1 Cnz

n, z ∈ D (see f.i. [21, Ex. 3.15, 3.16, 4.14]). Hence for any z ∈ D, we
have

2 log f(z) = V ∗(I + zU)(I − zU)−1V,

which immediately gives

f(z) = exp
(
(1/2)V ∗(I + zU)(I − zU)−1V

)
. (2.21)

From (2.21), it can be observed that all the ‘An’s are the combinations of U, V and V ∗,
associated with non-negative real constants only. Therefore, a use of the triangle inequal-
ity will provide the upper bounds for ‘‖An‖’s, which are the combinations of ‖U‖ = 1,
‖V ‖ = ‖V ∗‖, associated with the same constants. Hence after appropriate rearrangement,
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we find that
∞∑

n=0

‖An‖rn ≤
∞∑

n=0

1
n!

(‖V ‖2

2
1 + r

1 − r

)n

= exp
(‖V ‖2

2
1 + r

1 − r

)
(2.22)

for any |z| = r. As ‖V ‖2 = 2‖ logA0‖, we therefore get

∞∑
n=0

‖An‖rn ≤ exp(2 log ‖A0‖) = ‖A0‖2, (2.23)

whenever r ≤ r0 := (2(log ‖A0‖/‖ logA0‖) − 1)/(2(log ‖A0‖/‖ logA0‖) + 1). Now if
α, β, γ are non-negative real numbers satisfying γ ≤ α ≤ β, then it is easily seen that

(α− γ)2(1 + β2) − (β − γ)2(1 + α2) = (α− β)((α− γ) + (β − γ)

+ αγ(β − γ) + βγ(α− γ)) ≤ 0.

As a consequence, (α− γ)/
√

1 + α2 ≤ (β − γ)/
√

1 + β2, which readily gives

λ(α, γ) ≤ λ(β, γ). (2.24)

Setting α =
∑∞

n=0 ‖An‖rn, β = ‖A0‖2 and γ = ‖A0‖, we observe that γ ≤ α ≤ β if r ≤
r0, and therefore from (2.24), we get

λ

( ∞∑
n=0

‖An‖rn, ‖A0‖
)

≤ λ
(‖A0‖2, ‖A0‖

)

for r ≤ r0. A little computation using the AM–GM inequality yields

λ(‖A0‖2, ‖A0‖) ≤ ‖A0‖(‖A0‖ − 1)/(
√

1 + ‖A0‖2
√

2‖A0‖)
= (‖A0‖ − 1)/(

√
2
√

1 + ‖A0‖2) = λ(‖A0‖, 1).

It is now clear that an application of the above inequality upon the right-hand side of
the previous one will complete the proof. �

Remark. It does not seem plausible that we can get a uniform bound on |z| which
is not dependent on A0 and will still imply (2.19). Nevertheless, if f is taken to be
scalar valued, then since it is always possible to assume that f(0) > 0, the quantity
(2(log ‖A0‖/‖ logA0‖) − 1)/(2(log ‖A0‖/‖ logA0‖) + 1) converts to the constant 1/3, and
λ(‖A0‖, 1) = λ(A0, ∂Ω), A0 being an element of C and ∂Ω being the boundary of D

c
.

Therefore, Theorem 2 provides an operator-valued analogue of [2, Theorem 2.1]. It is
interesting to note that here one has to consider the spherical distance between complex
numbers to obtain the Bohr inequality instead of the Euclidean distance used in (1.4).

We will now discuss the operator-valued analogues of the Bohr radius problem for
the subordination classes of functions which belong to well-known subclasses of scalar-
valued univalent functions. We therefore consider f to be biholomorphic for our purpose.
Now it is possible to carry out further investigation if we restrict f to some subclass

https://doi.org/10.1017/S0013091520000395 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091520000395


82 B. Bhowmik and N. Das

of biholomorphic functions. In particular, we intend to establish Bohr inequalities for
g ∈ S(f) where f : D → B(H) is a convex or starlike biholomorphic function. Apart from
the definitions given in the introduction, the reader is urged to glance through [16] for a
rich exposition of Banach space valued starlike and convex biholomorphic functions. For
our purpose, we suppose that g ∈ S(f) has an expansion

g(z) =
∞∑

k=0

Bkz
k, z ∈ D. (2.25)

Also, we mention that for any scalar-valued univalent function F defined on D, the
Euclidean distance between F (0) and the boundary ∂Ω of Ω = F (D) is given by
d(F (0), ∂Ω) = lim inf |z|→1− |F (z) − F (0)|, which will be used frequently in our forthcom-
ing discussions.

Theorem 3. Let f : D → B(H) be a convex biholomorphic function and g ∈ S(f)
with expansions (2.18) and (2.25), respectively. Then for |z| = r ≤ 1/(1 + 2‖A1‖‖A−1

1 ‖),
we have

∞∑
k=1

‖Bk‖rk ≤ lim inf
|z|→1−

‖f(z) − f(0)‖. (2.26)

Also, for |z| = r ≤ 1/3 we have

∞∑
k=1

|Bk|rk ≤ (1/2)|A1|. (2.27)

Proof. We observe that the well-known argument used in proving [26, Theorem X]
can be used in a similar fashion for g ∈ S(f), where f is an operator-valued convex
biholomorphic function. Thus, we have Bk = φ′(0)f ′(0), k ≥ 1 for some holomorphic map
φ : D → D with φ(0) = 0. Therefore, we immediately see ‖Bk‖ ≤ ‖A1‖ and hence the
following inequality will hold:

∞∑
k=1

‖Bk‖rk ≤ (r/1 − r)‖A1‖. (2.28)

Now for any fixed a ∈ D, we construct the familiar Koebe transform as follows:

G(z) = (1 − |a|2)−1(f ′(a))−1
(
f
(
(z + a)(1 + az)−1

)− f(a)
)
, z ∈ D. (2.29)

We see thatG(z) is convex biholomorphic with the normalizationG(0) = 0 andG′(0) = I.
From [16, Theorem 6.3.5], we get that G satisfies

zG′′(z) +G′(z) = p(z)G′(z),

where p : D → C is holomorphic with Re(p(z)) > 0 for all z ∈ D and p(0) = 1. Therefore,
for any fixed x ∈ H with ‖x‖ = 1, the function Ĝ : D → C defined by

Ĝ(z) = 〈G(z)x, x〉
satisfies Ĝ(0) = Ĝ′(0) − 1 = 0 and zĜ′′(z) + Ĝ′(z) = p(z)Ĝ′(z), which together imply
that Ĝ(z) is a complex valued normalized convex univalent function (see
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[16, Theorem 2.2.3]). As a consequence, lim inf |z|→1− |Ĝ(z)| ≥ 1/2 (cf. [16, Theorem
2.2.9]), which, after an application of the Cauchy–Schwarz inequality for inner product
yields

lim inf
|z|→1−

∥∥(1 − |a|2)−1(f ′(a))−1
(
f
(
(z + a)(1 + az)−1

)− f(a)
)∥∥ ≥ 1/2. (2.30)

Now inequality (2.30) will further give

lim inf
|z|→1−

∥∥(f ((z + a)(1 + az)−1
)− f(a)

)∥∥ ≥ (1 − |a|2)/(2‖(f ′(a))−1‖). (2.31)

In particular, for a = 0 we get

lim inf
|z|→1−

‖f(z) − f(0)‖ ≥ 1/2‖A−1
1 ‖. (2.32)

From (2.28) and (2.32), a little computation reveals that (2.26) will hold if

(r/1 − r)‖A1‖ ≤ 1/2‖A−1
1 ‖, or equivalently if r ≤ 1/(1 + 2‖A1‖‖A−1

1 ‖).

Now going back to the relation Bk = φ′(0)f ′(0), it is readily seen that |Bk| ≤ |A1| for
any k ≥ 1, and therefore

∞∑
k=1

|Bk|rk ≤ (r/1 − r)|A1|. (2.33)

It is easy to see that for r ≤ 1/3, (2.33) is converted to (2.27). �

Remark. We make the following observations related to Theorem 3.

(i) The quantity 1/(1 + 2‖A1‖‖A−1
1 ‖) in Theorem 3 will turn into 1/3 for scalar-valued

functions, as whenever A1 is a scalar, ‖A1‖‖A−1
1 ‖ = 1. Therefore, (2.26) gives an

operator-valued analogue of the Bohr phenomenon for the subordinating family of
a complex-valued convex univalent function defined on D (compare [1, Remark 1]).

(ii) The right-hand side of the inequality (2.27) can be further estimated to observe
(1/2)|A1| ≤ d(f(0), ∂Ω) when scalar-valued functions are being considered (see [1,
Lemma 3]), ∂Ω being the boundary of Ω = f(D). Due to this fact, it can be thought
of as a generalization of the Bohr phenomenon mentioned in [1, Remark 1].

Before we proceed further, we prove the following lemma which will be required to
establish the subsequent results.

Lemma 2. Let f : D → B(H) be holomorphic and g ∈ S(f) with expansions (2.18)
and (2.25), respectively. Then for |z| = r ≤ 1/3 we have

(i)
∑∞

k=1 |Bk|rk ≤ (
∑∞

n=1 ‖An‖rn)I.

(ii)
∑∞

k=1 ‖Bk‖rk ≤∑∞
n=1 ‖An‖rn.
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Proof. Since g ≺ f , there exists a function φ, holomorphic in D, satisfying φ(0) = 0
and φ(D) ⊂ D such that

g = f ◦ φ. (2.34)

Since φ is holomorphic, the Taylor expansion of the tth power of φ, where t ∈ N, can be
written as

φt(z) =
∞∑
l=t

αl
(t)zl. (2.35)

Now we plug equality (2.35) into (2.34), and equating the coefficients for zk from both
sides we have, for any k ≥ 1:

Bk =
k∑

n=1

α
(n)
k An.

Now we see that
m∑

k=1

|Bk|rk =
m∑

k=1

∣∣∣∣∣
k∑

n=1

α
(n)
k An

∣∣∣∣∣ rk

≤
(

m∑
k=1

∥∥∥∥∥
k∑

n=1

α
(n)
k An

∥∥∥∥∥ rk

)
I ≤

(
m∑

k=1

k∑
n=1

|α(n)
k |‖An‖rk

)
I.

We observe that the rightmost term of the above inequality can be written as
(
∑m

n=1 ‖An‖M (n)
m (r))I, where M (n)

m (r) :=
∑m

k=n |α(n)
k |rk. The proof of part (i) can now

be completed by adopting the techniques similar to the proof of [6, Lemma 1] hereafter.
Further, part (ii) can be proved by directly following the same line of computations as in
the proof of [6, Lemma 1]. �

We now state and prove a theorem including the Bohr phenomenon for S(f), where f
is an operator- valued normalized starlike biholomorphic function. It may be mentioned
that the known techniques to find out the coefficient bounds for functions subordinate
to a complex-valued normalized starlike univalent function do not seem to be directly
applicable in this situation, while a use of Lemma 2 will prove the following theorem.

Theorem 4. Let f : D → B(H) be a normalized starlike biholomorphic function with
an expansion f(z) = zI +

∑∞
n=2Anz

n and g ∈ S(f) with an expansion (2.25). Then for

|z| = r ≤ 3 − 2
√

2 we have

(i)
∑∞

k=1 ‖Bk‖rk ≤ lim inf |z|→1− ‖f(z)‖.
(ii)

∑∞
k=1 |Bk|rk ≤ (1/4)I.

Proof. From [16, Theorem 6.2.6], it is seen that a starlike biholomorphic function
f : D → B(H) normalized by f(0) = f ′(0) − I = 0 satisfies

zf ′(z) = p(z)f(z), z ∈ D, (2.36)

where p : D → C is holomorphic with Re(p(z)) > 0 for all z ∈ D and p(0) = 1. Here we
mention that a holomorphic function f : D → C, normalized by f(0) = f ′(0) − 1 = 0 is
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starlike univalent if and only if (2.36) holds. Now a standard method based on induc-
tion (see f.i. [16, Theorem 2.2.16]) yields ‖An‖ ≤ n for all n ≥ 2. As a consequence,∑∞

n=1 ‖An‖rn ≤ r/(1 − r)2, where A1 = I. Now let us define G : D → C by

G(z) = 〈f(z)x, x〉,

where x ∈ H with ‖x‖ = 1. It is easy to see that G(0) = G′(0) − 1 = 0. Therefore, follow-
ing the similar lines of argument as in the proof of Theorem 3, (2.36) implies that G is a
starlike univalent function. Hence lim inf |z|→1− |G(z)| ≥ 1/4 (see [16, Theorem 1.1.5], and
observe that the Koebe function k(z) = z/(1 − z)2 which skips the value −1/4 is star-
like univalent), and as a result the Cauchy–Schwarz inequality for inner product gives
lim inf |z|→1− ‖f(z)‖ ≥ 1/4. From a direct calculation, we get that

∑∞
n=1 ‖An‖rn ≤ 1/4

for |z| = r ≤ 3 − 2
√

2, which is less than 1/3. By virtue of the Lemma 2, our proofs for
both part (i) and (ii) will be complete. �

Remark. We end the article with the following observations.

(i) It is immediately seen that for a complex-valued function f , part (i) of the Theorem
4 converts to the Bohr inequality for S(f), where f is a normalized starlike univalent
function. Again, if f is a complex-valued normalized starlike univalent function
defined on D, then the right-hand side of the inequality in part (ii) is converted to
1/4 which is known to be less than or equal to d(f(0), ∂Ω), ∂Ω being the boundary
of Ω = f(D). This shows that part (ii) can also be considered as an operator-valued
analogue of the Bohr phenomenon for S(f). We note that the scalar-valued result
is a direct consequence of [1, Theorem 1].

(ii) In view of Theorems 3 and 4, it is a natural question to ask if the inequality
(2.26) holds for |z| = r ≤ r0 for some r0 > 0, where f is any function in the entire
family of biholomorphic functions from D to B(H) and g ∈ S(f). The Bohr radius
1/(1 + 2‖A1‖‖A−1

1 ‖) determined in the first part of the Theorem 3 is not bounded
below by a positive constant if we allow A1 to be any invertible operator from B(H),
H varying on the family of complex Hilbert spaces. Therefore, we remark that the
answer of the aforesaid question could possibly be negative, even when f is convex
biholomorphic, and that this can be an interesting problem for future research.
However, a similar problem for Banach space valued holomorphic functions in D has
already been settled (cf. [7, Theorem 1.2]), where the notion of the Bohr inequality
is analogous to (1.1).
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