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Hypersonic boundary layer transition on a
concave wall: stationary Görtler vortices
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This study investigates the stability and transition of Görtler vortices in a hypersonic
boundary layer using linear stability theory and direct numerical simulations. In the
simulations, Görtler vortices are separately excited by wall blowing and suction with
spanwise wavelengths of 3, 6 and 9 mm. In addition to primary streaks with the same
wavelength as the blowing and suction, secondary streaks with half the wavelength
also emerge in the 6 and 9 mm cases. The streaks develop into mushroom structures
before breaking down. The breakdown processes of the three cases are dominated
by a sinuous-mode instability, a varicose-mode instability and a combination of the
two, respectively. Both fundamental and subharmonic instabilities are relevant in
all cases. Multiple modes are identified in the secondary-instability stage, some of
which originate from the primary instabilities (first and second Mack modes). We
demonstrate that the first Mack mode can be destabilized to either a varicose-mode or
sinuous-mode streak instability depending on its frequency and wavelength, whereas
the second Mack mode undergoes a stabilizing stage before turning into a varicose
mode in the 6 and 9 mm cases. An energy analysis reveals the stabilizing and
destabilizing mechanisms of the primary instabilities under the influence of Görtler
vortices, highlighting the role played by the spanwise production based on the
spanwise gradient of the streamwise velocity in both varicose and sinuous modes. The
effects introduced by the secondary streaks are examined by filtering the secondary
streaks in two new simulations with nominally identical conditions to those of the
6 and 9 mm cases. Remarkably, the secondary streaks can destabilize the Görtler
vortices, therefore advancing the transition. The stability theory results are in good
agreement with those from direct numerical simulations.

Key words: Boundary layer stability, transition to turbulence

1. Introduction
The process by which a laminar boundary layer flow transitions to turbulence is of

fundamental interest in fluid dynamics. Two-dimensional boundary-layer flows over
a concave wall and other near-wall flows having curved streamlines are subject to
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0003-3276-2918
https://orcid.org/0000-0003-1552-1346
mailto:cblee@mech.pku.edu.cn
https://doi.org/10.1017/jfm.2019.24


2 X. Chen, G. L. Huang and C. B. Lee

the Görtler instability. The Görtler instability is physically induced by the imbalance
between inertial and centrifugal forces, resulting in the formation of counter-rotating
streamwise vortices. Görtler vortices can be excited by many factors, such as
free stream vortices penetrating into the boundary layer (Wu, Zhao & Luo 2011;
Xu, Zhang & Wu 2017; Borodulin et al. 2018), self-sustained coherent structures
concentrated in the outer edge of the boundary layer (Dempsey, Hall & Deguchi
2017), roughness (Denier, Hall & Seddougui 1991; Sescu et al. 2015), blowing
and suction (Souza et al. 2004), vertical wires (Tandiono, Winoto & Shah 2008) and
riblet-like walls (Bertolotti 1993). In particular, Wu et al. (2011) and Xu et al. (2017)
have shown that low-frequency free stream vortices are efficient in generating Görtler
vortices. Compared with the receptivity process, the linear behaviour of Görtler
vortices is better understood; reviews by Hall (1990), Floryan (1991) and Saric
(1994) contain further details. Perhaps one of the most important findings is that the
neutral-curve concept is not attainable for the Görtler instability, and the results of
parallel stability analyses for Görtler vortices with large wavelengths compared to
the boundary-layer thickness should be treated with caution (Hall 1982, 1983; Day,
Herbert & Saric 1990). However, owing to the difficulties in exciting and measuring
steady Görtler vortices, successful comparisons between experimental results and
linear stability theory (LST) have only recently been accomplished by Boiko et al.
(2010), who excited and measured very low-frequency unsteady (quasi-stationary)
Görtler vortices. Extensive successful comparisons were also reported by Wu et al.
(2011) and Xu et al. (2017). For compressible flows, Spall & Malik (1989) showed
that the Görtler instability is stabilized by compressibility. Ren & Fu (2015a)
demonstrated that, in subsonic and moderately supersonic boundary layers, Görtler
vortices are located near the wall, as in the incompressible case, whereas in hypersonic
flows, Görtler vortices tend to concentrate at the edge of the boundary layer; in other
words, they are trapped in the temperature adjustment layer (Fu, Hall & Blackaby
1993). Ren & Fu (2015b) studied the discrete spectrum and mode synchronization
in a Mach 4.5 flow, and found that slow acoustic waves can develop into unsteady
Görtler modes, while quasi-stationary Görtler modes emanate from the continuous
spectrum of the vorticity/entropy wave.

As the Görtler vortices grow, the boundary layer flow changes to form low- and
high-speed streaks in the spanwise direction. When these streaks reach a certain
amplitude, a high-frequency secondary instability may set in. Two distinct types of
secondary instabilities, i.e. a varicose (symmetric) mode and a sinuous (antisymmetric)
mode, have been extensively investigated. These two modes are known to be
associated with inflectional streamwise velocity profiles in the wall-normal direction
and the spanwise direction, respectively (Yu & Liu 1994). Generally, the sinuous
mode sets in earlier than the varicose mode and causes the streaks to meander.
The varicose mode may become dominant further downstream (where the streaks
become stronger) and develop horseshoe/hairpin structures. The secondary instability
of the Görtler instability has also received considerable attention. Swearingen &
Blackwelder (1987) successfully visualized both the varicose and sinuous modes
in experiments, and took detailed measurements of the fluctuations. They proposed
that the spanwise shear plays a more prominent role in the transition to turbulence
than the vertical shear. Their results were confirmed by Liu & Domaradzki (1993)
through a series of temporal numerical simulations. Li & Malik (1995) found that
the relative significance of these two secondary-instability modes depends upon the
vortex wavelengths, i.e. short-wavelength vortices exhibit a stronger tendency towards
the sinuous mode and long-wavelength vortices tend towards the varicose mode.
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Hypersonic transition 3

Schrader, Brandt & Zaki (2011) performed a spatial direct numerical simulation
(DNS) of the boundary layer transition caused by Görtler vortices. Under broadband
free stream disturbances which are represented by continuous spectra, they identified
both varicose and sinuous instabilities in a single simulation. Sescu et al. (2015)
calculated the nonlinear evolution of the roughness-induced Görtler vortices, and used
stability analysis to demonstrate that the varicose mode is most dangerous. By seeding
unsteady disturbances via blowing and suction at locations where Görtler vortices
have saturated, Souza (2017) found that sinuous modes appear first and dominate
the transition process. Xu et al. (2017) showed that sinuous modes are dominant for
Görtler vortices excited by free stream turbulence.

Secondary instabilities of Görtler vortices in incompressible boundary layers have
been studied extensively, but their hypersonic counterpart is not well understood.
Wang & Zhong (2001) simulated the evolution of nonlinear Görtler vortices in a
Mach 15 curved-wall boundary layer and studied the secondary instability using
bi-global analysis. They identified both varicose and sinuous modes, although both
were linearly stable over the whole simulation region, and showed that the varicose
mode is more unstable than the sinuous mode. In a Mach 6 study by Li et al.
(2010a), however, the most dangerous mode was demonstrated to be the sinuous
mode. Ren & Fu (2015a) studied the nonlinear evolution and secondary instabilities
of Görtler vortices at various Mach numbers with nonlinear parabolized stability
equations and bi-global analysis. They showed that, in contrast to the incompressible
case, the sinuous mode becomes the most dangerous at Mach numbers greater than
3, regardless of the spanwise wavelength.

The stability analyses mentioned above were performed only for ‘clear’ flows, in
which the Görtler vortices are dominated by a single wavenumber or wavelength.
However, under certain conditions, vortex generators not only excite the primary
Görtler vortex with a wavelength equal to the spacing of the vortex generators, but
also trigger the first harmonic with a comparable amplitude. Moreover, if the harmonic
happens to be linearly unstable (which is quite possible as the range of unstable
wavenumbers of Görtler vortices is broad), then the harmonic can grow and induce
secondary streaks between the primary streaks. In fact, large-amplitude harmonic or
secondary streaks have been reported in previous studies on incompressible flows.
Souza et al. (2004) utilized blowing and suction to excite Görtler vortices. They
showed that, for large imposed wavelengths, the first harmonic can be generated and
may even become the dominant mode downstream. Sescu et al. (2015) numerically
simulated the evolution of Görtler vortices triggered by roughness with various shapes,
heights and diameters. They found that the roughness with the smallest diameter
triggered Görtler vortices with double the wavenumber. In a series of wind-tunnel
experiments, Mitsudharmadi and co-workers (Mitsudharmadi, Winoto & Shah 2005,
2006; Winoto et al. 2008) excited Görtler vortices using distributed vertical wires.
At the largest spanwise spacing of the wires, secondary streaks emerged between
the primary streaks. They called this the splitting of Görtler vortices, and attributed
it to the Eckhaus instability (Guo & Finlay 1991). Experiments on the transition
of Görtler vortices were recently conducted in a Mach 6.5 wind tunnel at Peking
University (personal communication) over a concave wall with a unit Reynolds
number (4 × 106 m−1). The Görtler vortices were excited by a series of distributed
roughness elements (small cylinders of height 0.6 mm and diameter 2 mm). The
spacing of the roughness elements was 3 and 14 mm, respectively. Figure 1 shows
the top view of the flow structures obtained by a CO2 Rayleigh-scattering technique.
For the 3 mm case, the sinuous instability of the streaks is obvious. For the 14 mm
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FIGURE 1. (Colour online) Single-shot spanwise images for a concave wall with
roughness elements showing the emergence of streaks. The spacing of the roughness
elements is 3 mm (a) and 14 mm (b).

case, however, the flow pattern is much more complex, and secondary streaks with
a wavelength of 7 mm can be clearly observed. Furthermore, secondary streaks may
also be relevant in the study of Xu et al. (2017), who demonstrated the dominance
of the harmonic for high-frequency free stream disturbances. For some phases of
the flow fields in their study, secondary streaks may be present. It is expected that
these secondary streaks would significantly change the flow profiles. However, the
corresponding stability characteristics remain unknown.

In this study, we numerically excited Görtler vortices with various wavelengths in a
hypersonic boundary layer by blowing and suction. The results described in this paper
demonstrate that, for cases with large blowing and suction wavelengths, secondary
streaks are likely to appear. The stability characteristics of the Görtler vortices
with secondary streaks are analysed in detail for the first time. The secondary
streaks significantly affect the stability of the boundary layer. Furthermore, we
emphasize the importance of the transformation processes from primary instabilities
to secondary instabilities, whereas previous studies have mostly focused on the
secondary instabilities.

The rest of this article is organized as follows. In the next section, we present
the model and numerical settings, and describe the mean flow characteristics. In § 3,
we briefly introduce the linear stability analysis and energy analysis applied to the
undisturbed mean flow as well as the streak flow field. In § 4, detailed DNS results
and the stability theory results are presented. Finally, the outcomes of this study are
summarized in § 5.
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Simulation region
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Flow R = 160 mm
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Re∞ = 9 ÷ 106 m-1

Te = 53 K
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FIGURE 2. Sketch of the concave wall and the body-oriented coordinates.

2. Model and numerical settings
2.1. Numerical tools

The model is sketched in figure 2. The flow conditions correspond to a free stream
Mach number of 6.5, free stream pressure (pe) of 570 Pa, free stream temperature
(Te) of 53 K and unit Reynolds number (Re∞) of 9.0× 106 m−1. This model consists
of a sharp flat plate and a 295 mm-long flared afterbody located 80 mm downstream
from the leading edge. The flared body is generated by a circular curve with a
radius (R) of 1.6 m. Thus, the global streamwise curvature, K ≡ −Re∞R (Ren &
Fu 2015a), is −6.2 × 10−8. The region of interest is x ∈ [80, 350] mm, resulting
in Re ≡

√
Re∞x ∈ [848, 1773] and a Görtler number G = Re

√
δx/R ∈ [6.5, 19.7].

Here, δx =
√

x/Re∞ denotes the boundary layer length scale. This range of Görtler
number indicates that a local stability analysis is applicable (Bottaro & Luchini 1999).
Qualitatively similar models have been used in supersonic experiments (Wang, Wang
& Zhao 2018) and hypersonic experiments (de Luca et al. 1993). Here, the curved
plane has been designed so that the Görtler instability can be easily observed while
avoiding reversed flow.

The simulation starts from x = 10 mm, where a similarity solution is forced.
The leading-edge shock effect is negligible because it is weak and far away from
the vortices. A buffer zone near the outflow boundary is defined in which all
disturbances gradually damp down to zero. Another buffer domain, located near
the inflow boundary, is also implemented. These two buffer regions are used to avoid
disturbances from reflections. No-slip and adiabatic conditions are prescribed at the
wall. The wall-normal velocity component at the wall is specified in the blowing and
suction strip regions, where the disturbances are introduced. The function used for
the wall-normal velocity at the disturbance generator strip is

vbs(x, 0, z, t)=A sin3

(
π

x− x1

x2 − x1

)
cos(βz), x1 6 x 6 x2, (2.1)

where A is a real constant chosen to set the amplitude of the disturbance. The
variables x1 and x2 indicate the boundaries of the strip. The same function was used
by Rogenski, Souza & Floryan (2016) and Souza (2017).

In this paper, we consider three different blowing–suction spanwise wavelengths,
i.e. 3, 6 and 9 mm, and study the transition process for each case. Thus, the
corresponding wavelength parameters, Λ ≡ Re∞λz

√
λz/R, are 1170, 2340 and 3507,

respectively. For simplicity, these three cases are hereafter denoted by L3, L6 and L9,
respectively. The main blowing–suction region is located between 56.5 and 62.6 mm
in the flat-plate region. A large initial amplitude, 15 % of the free stream velocity,
is chosen to ensure there is an earlier saturation stage. Random fluctuations of 2 %
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are seeded downstream via a secondary blowing–suction strip (75 mm< x< 78 mm)
to trigger the transition. Note that the upward/downward flow brings low-/high-speed
fluid, inducing a velocity deficit/increase in the low-/high-speed region. Therefore,
low-speed/high-temperature streaks should appear in the blowing regions (vbs > 0),
whereas high-speed/low-temperature streaks are expected in the suction regions
(vbs < 0).

The parallel computational fluid dynamics software OPENCFD, developed by Li,
Fu & Ma (2008), was used for the DNS. Jacobian-transformed compressible Navier–
Stokes equations in curved coordinates are solved numerically using high-order finite-
difference methods. Convection terms are subjected to Steger–Warming splitting and
discretized with a seventh-order weighted essentially non-oscillatory scheme, whereas
viscous terms are discretized with an eighth-order centred finite-difference scheme. A
third-order total variation diminishing-type Runge–Kutta method is used for the time
stepping. Validation of the code can be found in a series of papers (Li et al. 2008;
Liang et al. 2010; Li, Fu & Ma 2010b).

The width of the simulation region is chosen to cover an even number of blowing–
suction wavelengths in order to account for both fundamental and subharmonic
disturbances. For L3 and L9, the width is 18 mm, whereas for L6 it is 24 mm. The
physical domain is resolved by 1000 × 201 × 150 grid points in the streamwise,
wall-normal and spanwise directions, respectively, giving a total of 30 million points.
The resolution is 1x+ = 6.0, 1y+min = 0.6, 1z+ = 2.4 for cases L3 and L9, and
1z+ = 3.2 for L6. The solution was tested by changing the number of grid points
and it was found to be grid-independent.

2.2. Mean flow field
Figure 3(a) shows the development of the boundary layer thickness and wall pressure
in the streamwise direction. The edge of the boundary layer is determined by the point
at which the gradient of the streamwise velocity falls below a small constant. It can be
seen that the curvature of the concave surface induces a significant pressure increase.
As a result, the boundary layer thickness increases very slowly, and even decreases
over the curved wall. This adverse pressure gradient also affects the mean flow profiles
in at least two aspects, as shown in figure 3(b). First, there is a weak inflection point
in the streamwise velocity, which is absent in the similarity solutions. Second, the
temperature and velocity do not exactly take the free stream values at the boundary
layer edge. In fact, a large inviscid region beyond the boundary layer is required for
the main variables to recover the free stream values.

3. Stability analysis
3.1. Stability theory

In this paper, we consider the stability characteristics along the wall-normal direction
(η, one-dimensional LST) or in a η–z cross-section (two-dimensional LST or
bi-global). The respective decompositions of the flow field are given by

q(ξ , η, z, t)= q̄(η)+ q′(η)= q̄(η)+ q̂(η) exp(iαξ + iβz− iωt)+ c.c. (3.1)

and

q(ξ , η, z, t)= q̄(η, z)+ q′(η, z)= q̄(η, z)+ q̂(η, z) exp(iαξ − iωt)+ c.c., (3.2)
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FIGURE 3. Mean flow characteristics: (a) the boundary layer thickness and wall pressure;
(b) normalized streamwise velocity and temperature at x = 250 mm. The dotted lines
represent the similarity profiles.

where q = (ρ, u, v, w, T), q̄ denotes the basic states, q′ denotes the disturbances,
q̂ is the shape function of the disturbances, α and β represent the streamwise and
spanwise wavenumbers, respectively, with corresponding wavelengths denoted by λ
in the streamwise direction and λz in the spanwise direction and ω is the angular
frequency with corresponding dimensional frequency denoted by f . After substituting
the above decompositions into the Navier–Stokes equations, subtracting the basic
states and neglecting the non-parallel and nonlinear terms, one obtains the eigenvalue
problems

L1(η, α, β, ω)q̂(η)= 0 (3.3)

for one-dimensional LST and

L2(η, z, α, β, ω)q̂(η, z)= 0 (3.4)

for two-dimensional LST. Here, L is a linear operator that has been described in the
literature (e.g. Malik 1990). The boundary conditions are

û= v̂ = ŵ=
∂T̂
∂η
= 0 at η= 0 and û= v̂ = ŵ= T̂ = 0 at η→∞. (3.5a,b)

Note that the Neumann boundary condition for temperature perturbations is used for
consistency with the DNS boundary conditions. Numerical experiments show that
using a Dirichlet boundary condition for temperature produces similar results. For
one-dimensional LST, the spatial analysis is applied by specifying ω and determining
the eigenvalue α. For two-dimensional LST, a temporal analysis is considered for the
sake of simplicity, where α is given and ω is to be determined. The temporal growth
rate can then be converted into the spatial growth rate via the group-velocity approach
(Gaster 1962) if necessary. The linear operator is discretized using the Chebyshev and
Fourier collocation methods in the η and z directions, respectively. For the bi-global
analysis, the discretized L is a square matrix of size 5NηNz × 5NηNz, the eigenvalues
of which can be determined using Arnoldi’s method.

Figure 4 displays the contours of the constant amplification rate for planar and
three-dimensional disturbances. The unstable region in figure 4(a) is caused only by
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FIGURE 4. Contours of the constant amplification rate −αi (mm−1) in the (x–f ) plane
for planar disturbances (a) and in the (λz–f ) plane for three-dimensional waves at (b) x=
228 mm and (c) x= 228 mm with the curvature turned off. All the plots have the same
contour levels.

the second Mack-mode instability. The two-dimensional first Mack-mode instability
is very weak and is not shown here. Figure 4(b) depicts the unstable regions of
three-dimensional disturbances at x= 228 mm. The region located above f = 100 kHz
is associated with the second Mack-mode instability, which is more unstable for
larger spanwise wavelengths. The first Mack-mode and Görtler instabilities lie in
the low-frequency region and are highly dependent on the spanwise wavelengths. To
distinguish these two instabilities, we turned off the curvature effect in the LST solver
and display the unstable regions at the same location in figure 4(c). By comparing
figure 4(b,c), one can easily see that the first Mack mode is centred around (10 mm,
50 kHz), whereas the Görtler instability lies in a triangle-like region with vertices at
approximately (10 mm, 0 kHz), (1 mm, 0 kHz) and (1 mm, 150 kHz).

3.2. Energy analysis
Knowing the production terms associated with the local kinetic energy transfer
provides further understanding of the mechanism for the instability modes. The local
streamwise rate of change of the integrated kinetic energy is given by (Paredes,
Choudhari & Li 2017a)

∂K(x)
∂x
= P(x)−D(x), (3.6)

where K is the kinetic energy of the disturbance, defined as

K(x)=
∫

z

∫
η

ρ̄(ûû∗ + v̂v̂∗ + ŵŵ∗) dη dz, (3.7)
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FIGURE 5. Comparison of LST (dashed lines) and DNS (solid lines) results of the most
amplified second Mack-mode wave ( f = 135 kHz). (a) Amplitude evolution of normalized
wall pressure disturbances. (b) Streamwise velocity fluctuation at x= 300 mm.

in which the superscript * denotes the complex conjugate, D is the viscous dissipation
and P is the production. The two components of P that are of most interest are

Puη =
∫

z

∫
η

−Re(ûv̂∗)ρ̄ūη dη dz and Puz =

∫
z

∫
η

−Re(ûŵ∗)ρ̄ūz dη dz. (3.8a,b)

4. Numerical results
Prior to conducting the nonlinear simulations, DNS was performed with very low

amplitudes to ensure that the linear regime was maintained throughout the entire
computational domain. These simulations allow a direct comparison of the DNS
results with LST. In figure 5(a), the downstream development of wall pressure
disturbances (absolute values) is compared with that from LST for the most amplified
second Mack-mode wave ( f = 135 kHz). There is a good agreement between the
DNS and LST data. The disturbance in the DNS grows slightly faster than that in
the LST, which is likely due to non-parallel effects. Figure 5(b) displays the mode
shapes of the second Mack-mode wave at x= 220 mm based on DNS and LST data.
Good agreement can again be observed, with slight differences likely to be caused
by non-parallel effects.

4.1. Visualizations
First, we display the temperature contours at various locations in the x–z and z–η
planes. These contours mimic the experimental visualizations obtained from the
Rayleigh scattering of CO2 for other problems (Auvity, Etz & Smits 2001; Zhang,
Tang & Lee 2013). In experiments, CO2 is injected upstream and undergoes phase
changes across the boundary layer owing to large temperature variations. In the free
stream, as the static temperature is low, the CO2 condenses and forms nanometre-scale
clusters. When the CO2 clusters become entrained in the boundary layer, the high
temperature above the sublimation point causes the condensed particles to vaporize.
The boundary layer is, therefore, imaged as a region of low-intensity Rayleigh signals,
bounded by bright regions corresponding to the free stream fluid. In our numerical
visualizations, the bright regions are occupied by fluid at temperatures below 2.7Te
(or 143 K), which is close to the sublimation value of CO2 under a pressure of
approximately 1 kPa.
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FIGURE 6. Snapshot of temperature contours at various distances from the wall for L3:
(a) η= 0.7 mm; (b) η= 2.75 mm. Regions with a temperature below 2.7Te are not shown.
A darker region represents a higher temperature.
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FIGURE 7. Snapshot of temperature contours at various streamwise locations for L3 (see
supplementary movie 1 available at https://doi.org/10.1017/jfm.2019.24): (a) x= 197 mm;
(b) x= 258 mm; (c) x= 292 mm; (d) x= 313 mm; (e) x= 319 mm; ( f ) x= 322 mm; (g)
x= 332 mm; (h) x= 344 mm.

Figure 6 shows top views for L3 at two distances from the wall. The high-
temperature streaks (dark regions) formed at the blowing positions, as expected,
move upwards, and become larger downstream, as indicated by figure 6(b). These
streaks remain straight over a long distance until x ≈ 310 mm, at which point they
start oscillating and soon break down. The meandering of streaks is likely to be
caused by sinuous instabilities with a streamwise wavelength of approximately 9 mm.

The end views in figure 7 show the detailed evolution of the streak structures. The
vertical fluctuation initially induces wave profiles with the same period as the blowing
and suction. These wave profiles develop into bell shapes at x = 258 mm, followed
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FIGURE 8. Snapshot of temperature contours at various distances from the wall for
case L6.

by mushroom structures at x = 292 mm. Farther downstream, the symmetry of the
structures soon breaks down as secondary instabilities set in at x = 313 mm. The
oscillation of the streaks intensifies and eventually causes them to break down at
x= 344 mm, as shown in figure 7(h).

Increasing the blowing–suction wavelength from 3 to 6 mm leads to significantly
different results, as shown in figure 8. In contrast to expectations, strong high-
temperature streaks appear downstream of the suction regions and are dominant in
the near-wall region. We denote these as secondary streaks to distinguish them from
the primary streaks aligned with the blowing regions. In the next section, we show
that the secondary streaks are induced by the first harmonic of the primary Görtler
vortices and are nonlinearly generated through large-amplitude blowing and suction.
These secondary streaks broaden rapidly, with tiny structures developing on their
sides, and then saturate and break down after x ≈ 310 mm. The primary streaks
gradually disappear in the near-wall region and move upwards downstream. On top
of the primary streaks, knotty structures develop and split into isolated parts, which
appear to be associated with varicose modes.

Finally, we consider case L9. Like L6, both primary and secondary streaks appear,
with the former dominating the upper boundary layer and the latter the near-wall
region, as shown in figure 10. Figure 10(a,c) clearly shows that the secondary streaks
are susceptible to sinuous instabilities, while the primary streaks are subject to
varicose instabilities. In contrast to L6, the widths of the secondary streaks remain
nearly constant before gradually decaying. More interestingly, the sinuous and varicose
instabilities can coexist in the same plane, as shown in figure 10(b).

The end views of L9 exhibit some similarities to those of L6, as shown in figure 11.
The initially excited wave profiles also contain two periodic waves. The primary waves
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FIGURE 9. Snapshot of temperature contours at various streamwise locations for L6 (see
movie 2): (a) x = 74.9 mm; (b) x = 197.1 mm; (c) x = 258.2 mm; (d) x = 273.4 mm;
(e) x= 288.7 mm; ( f ) x= 304 mm; (g) x= 319.3 mm; (h) x= 334.5 mm.
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FIGURE 10. Temperature contours at various distances from the wall for L9.

develop into mushroom structures and soon break down. Triangle-like structures also
evolve from the secondary waves and start to oscillate from x= 288.7 mm. Consistent
with the top view in figure 10(a), the secondary streaks are still visible at the end of
the simulation domain.
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FIGURE 11. Snapshot of temperature contours at various streamwise locations for L9 (see
movie 3): (a) x= 74.9 mm; (b) x= 166.5 mm; (c) x= 227.6 mm; (d) x= 273.4 mm; (e)
x= 288.7 mm; ( f ) x= 304 mm; (g) x= 319.3 mm; (h) x= 346.8 mm.

Figure 12 presents the time-averaged wall temperature variations relative to
the laminar adiabatic values. This is similar to the temperature-sensitive painting
visualization that is often used to detect temperature variations in hypersonic
experiments (e.g. Chou et al. 2011; Zhu et al. 2018). Although absolute temperature
distributions seem to be more relevant to temperature-sensitive painting visualization,
relative temperature variations can clearly show the effect of Görtler vortices. Several
observations can be made. First, streak-like high-temperature regions are present
in all three cases, which are surely induced by the Görtler vortices. The largest
temperature increase appears for L9 and can be up to 0.7 times the free stream
temperature (i.e. 37.1 K). Second, the locations of the high-temperature rises in L3
initially lie in the suction region (or the low-thermal streaks in figure 6) and then
shift to the blowing regions after x= 290 mm. In contrast, the high-temperature rises
in L6 always appear in the blowing regions, as shown in figure 12(b). There are
two regions in the streamwise direction where the temperature rises. The upstream
one is located at 230–280 mm, where the mushroom structures are prominent. The
downstream region is where the primary streaks have broken down, and it is likely
caused by the secondary streaks. The temperature rises for L9 exhibit the opposite
behaviour of those for L3. They initially lie in the blowing region, and then shift
to the suction region after x = 260 mm. This shift is probably due to the rise of
the primary streaks revealed in figure 10. Interestingly, noticeable temperature-drop
streaks emerge at x = 320 mm, right after the temperature-rise streaks, whereas the
near-wall streaks do not exhibit significant changes in this transition region, as shown
in figure 10(a). The reason for this is not yet clear.

Increases in temperature or heat flux caused by Görtler vortices have also been
repeatedly observed in hypersonic experiments (de Luca et al. 1993; Chevalerie et al.
1997; Roghelia et al. 2017), but the mechanism is still not thoroughly understood. In
the incompressible regime, heat transfer induced by Görtler vortices is treated as a
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FIGURE 12. Time-averaged wall temperature variations relative to laminar flow for the
three cases.

linear transport problem, with temperature simply acting as a passive scalar (Liu &
Sabry 1991; Liu 2008; Malatesta et al. 2015). As a result, the temperature distribution
essentially depends on the velocity distribution. Hypersonic flow, however, is more
complex. For example, one can observe in figure 12(a) that the high-temperature
streaks initially lie in the high-speed region at x ≈ 280 mm and gradually shift to
the low-speed region. This cannot be explained by the linear transport equation.
One must solve the momentum and energy equations in tandem to predict the
temperature distribution. Heat streaks could also emerge in other transition scenarios
(Franko & Lele 2013; Sivasubramanian & Fasel 2015). The similarity is that the
heat streaks are all generated by (quasi-)streamwise vortices. The difference is that
Görtler vortices are unstable and grow by themselves, whereas streamwise vortices
in other transition regimes are generated by the nonlinear interaction of first and
second Mack-mode waves. It is interesting to note that the temperature increase in
the Purdue experiments (Berridge et al. 2010; Chou et al. 2011), which is believed
to be caused by the fundamental breakdown (Sivasubramanian & Fasel 2015), is
only approximately 10 K, or 20 % of the static temperature. This indicates that the
increase in heat caused by Görtler vortices may be larger than those in other transition
regimes.

Finally, the flow structures for all three cases are plotted using the Q criterion (Hunt,
Wray & Moin 1988) in figure 13. Note that we have chosen a relatively large Q to
make the secondary instability structures more prominent. As a result, however, the
Görtler vortices become less visible. Figure 13(a) reveals that the flow structures for
L3 mainly consist of sinuously oscillating streamwise vortices. Such a flow pattern
is a typical feature of the sinuous instability, as shown in figure 6. For L6 and L9,
the flow structures are initially concentrated around the primary streaks, and gradually
expand downstream. The near-wall regions are occupied by streamwise vortices, above
which hairpin vortices appear periodically. The wavelengths of the hairpin vortices
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FIGURE 13. Visualization of flow structures using isosurfaces of Q criterion (Q= 0.042)
for L3 (a), L6 (b) and L9 (c). The isosurfaces are coloured according to the streamwise
velocity magnitude.

range from 5 to 10 mm in both cases. The hairpin vortices confirm the existence of
varicose instabilities in these two cases.

4.2. Stability analysis
4.2.1. Fundamental instability

We now consider the stability of the boundary layer in the presence of Görtler
vortices. Figure 14 shows the growth rate of the unstable sinuous modes (dashed lines)
and varicose modes (solid lines) at various stream locations for L3, along with the
corresponding phase velocities. Here, the sinuous and varicose modes are defined by
the mode shapes, regardless of whether the secondary instability occurs. For simplicity,
we denote the sinuous modes as mode S1, mode S2, . . . , and varicose modes as mode
V1, mode V2, . . . , according to the order in which they appear. At x= 166 mm, only
varicose mode V1 is present, and this is a modified second Mack-mode instability.
Compared with the laminar case, this mode is stabilized by Görtler vortices, and its
peak frequency first increases and then decreases. Farther downstream, at x= 252 mm,
a sinuous mode of secondary instability, S1, emerges in a low-frequency range with
low phase velocities. It quickly becomes significantly unstable with a much wider
frequency range at x= 289 mm, where a less unstable sinuous mode, S2, also appears.

Similar stability results were also obtained for L6, as depicted in figure 15. The LST
results (dotted lines) for the laminar boundary layer are also presented for comparison.
The black dotted line represents the second Mack-mode instability, whereas the blue
dotted line denotes the Görtler instability (low frequency), the first Mack-mode
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FIGURE 14. Growth rates of unstable modes (fundamental instability) for L3 at (a) x=
166 mm, (c) x= 252 mm and (e) x= 289 mm. The growth rate is normalized by Ue/δ,
where δ = 0.0725 mm is the reference length and Ue is the free stream velocity. The
corresponding phase velocities are shown in (b), (d) and ( f ), respectively. For the local
LST results, black dots denote two-dimensional disturbances.

instability (moderate frequency) and the oblique second Mack-mode instability (high
frequency). At x = 151 mm, where the Görtler vortices are still too small to induce
a secondary instability, only (modified) primary instabilities are present. Mode S1 is
likely to originate from the first Mack-mode instability, having a peak frequency of
around 80 kHz and exhibiting an increasing phase velocity with increasing frequency.
Mode V1 has two peaks in its growth rate. The lower one probably develops from
the first Mack-mode instability, whereas the higher one evolves from the second
Mack-mode instability. Comparison with the LST results clearly shows that mode
V1 (S1) is stabilized (destabilized) by the Görtler vortices. At x ≈ 212 mm, mode
S1, which has a higher frequency range, is further destabilized. Mode V1 moves
to a lower frequency range, suggesting that its first Mack-mode component is more
destabilized than its second Mack-mode component. Furthermore, a new type of
low-frequency sinuous mode, S2, appears. Its phase velocity is much lower than
those of the primary instabilities, indicating that it is a secondary instability mode
with no origin in the primary instability. Farther downstream, at x= 258 mm, mode
V1 continues to shift to lower frequencies with a slightly enhanced growth rate. In
contrast, mode S2 is significantly enhanced, becoming the most unstable mode, and
shifts to a higher frequency range. In addition, a new type of high-frequency varicose
mode, V2, emerges. Its phase velocity increases with increasing frequency, like mode
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FIGURE 15. Growth rates of unstable modes (fundamental instability) for L6 at (a) x=
151 mm, (c) x= 212 mm, (e) x= 258 mm and (g) x= 289 mm. The corresponding phase
velocities are shown in (b), (d), ( f ) and (h), respectively. For the local LST results, black
dots denote two-dimensional disturbances and blue dots denote the disturbances with the
fundamental spanwise wavelength.

S1, whereas the phase velocities of modes V1 and S1 exhibit the opposite trend. This
characteristic may be used to distinguish different types of secondary instability modes.
At the last location, x= 289 mm, all modes are remarkably promoted, with mode V2
growing fastest, followed by mode V2, mode S2 and mode S1. Moreover, modes V1
and S1, which have higher frequencies and faster growth rates, are now far away from
the primary instability range, indicating that these are already secondary-instability
modes.

Figure 16 illustrates the downstream evolution of various modes for L9. The LST
results are also included for comparison. As in case L6, mode S1 comes from the
first Mack-mode instability and is continuously enhanced relative to the laminar case.
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FIGURE 16. Growth rates of unstable modes (fundamental instability) for L9 at (a) x=
166 mm, (c) x = 197 mm, (e) x = 227 mm, (g) x = 273 mm and (i) x = 289 mm. The
corresponding phase velocities are shown in (b), (d), ( f ), (h) and ( j), respectively. For the
local LST results, black dots denote two-dimensional disturbances and blue dots denote
the disturbances with the fundamental spanwise wavelength.

Its peak frequency remains at around 60 kHz until x = 252 mm, where it starts
to rapidly increase. The varicose mode V1 for L9 now splits into two branches,
mode V1 and mode V2, due to stronger secondary streaks than for L6. Both modes
initially consist of first and second Mack-mode components. Later, it will be shown
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FIGURE 17. Fundamental instability characteristics for different cases: (a) L3, (b) L6 and
(c) L9. Column (i) presents the maximum spatial growth rate of the sinuous (dashed lines)
and varicose (solid lines) modes at various streamwise locations. Columns (ii) and (iii)
show the corresponding frequencies and phase velocities.

that mode V1 is associated with the primary streaks and mode V2 is related to the
secondary streaks. Thus, mode V1 behaves like mode V1 for L6, that is, it first
shifts to the low-frequency region with moderate growth rates, and then moves to
the high-frequency region with large growth rates. In contrast, mode V2 shifts to
the first Mack-mode frequency region and remains there. When the streaks attain a
sufficiently large amplitude, modes S2 and V3 appear and soon become the most
unstable sinuous and varicose modes, respectively.

The overall mode evolution in all three cases is summarized in figure 17. Only the
modes that produce the locally most unstable varicose or sinuous modes are displayed.
By comparing these three cases, we can make some interesting observations. Firstly,
the secondary instability occurs earliest for L9, then for L6 and finally for L3.
Secondly, L3 has the maximum growth rate, followed by L6 and then L9. Thirdly,
within the secondary-instability regime, the sinuous mode is most unstable for L3
and L9, whereas the varicose mode is more dangerous for L6. As reported by Li &
Malik (1995) for the incompressible case, the sinuous mode is the first to become
unstable, although the varicose mode catches up farther downstream. Finally, the peak
frequencies of almost all the modes increase sharply during the secondary-instability
stage.

The temperature contours of unstable modes at x= 289 mm are shown in figure 18,
together with the base flow state (dashed lines) in the background. The frequency of
each mode is chosen to be the most amplified one. We note that the main difference
between the modes originating from primary instabilities (S1 for L6 and L9; V1 for all
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FIGURE 18. Normalized magnitudes of temperature disturbances for selected unstable
secondary modes at x= 289 mm in the three cases. Contours of the base flows are also
plotted (dashed lines). The contour level increment is 0.1.

three cases; and V2 for L9) and other modes is that the former exhibit a remarkable
distribution on the upper part of the mushroom, whereas the latter are only present in
the lower part. In particular, mode V3 for L9 is mainly distributed around the top
of the secondary-streak structures, indicating that this mode is likely to have been
induced by the secondary streaks. The most interesting observation is that mode V2
for L6 and mode V3 for L9 are quite different from the typical varicose mode, V1,
but look very similar to mode S2 in these two cases. This new type of varicose mode
has not been reported before. It is likely to play an important role in the breakdown
processes of Görtler vortices, as it exhibits remarkable growth rates in the secondary
instability stage.

The above results indicate that the primary instabilities are remarkably affected by
Görtler vortices and may even transform into secondary instabilities. To study them,
we examine the spatial evolution of the fixed-frequency disturbances. For simplicity,
let the second varicose mode, first varicose mode and first sinuous mode denote the
varicose mode from the second Mack mode, the varicose mode from the first Mack
mode and the sinuous mode from the first Mack mode, respectively. Figure 19(a)
shows the N-factors of the second varicose mode (corresponding to mode V1 in
figures 14, 15 and 16) with a frequency of 135 kHz in all three cases, along with
the laminar results for comparison. To obtain the N-factors, we have converted the
temporal growth rate to the spatial one. We can see that the second Mack mode is
initially stabilized by the Görtler vortices, and the stabilization effect increases with
the blowing–suction wavelength. Farther downstream, the second varicose mode in
L3 remains less unstable than the second Mack mode in the laminar case, whereas
the N-factors for L6 and L9 grow much faster after x = 260 mm because of the
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FIGURE 19. N-factors for fundamental primary–secondary modes: (a) second varicose
modes with the same frequency of 135 kHz for three cases; (b) first varicose modes with
a frequency of 95 kHz for L6 and a frequency of 85 kHz for L9; (c) first sinuous modes
with a frequency of 95 kHz for L6 and a frequency of 58 kHz for L9. The dashed lines
denote the corresponding laminar cases. The dotted lines represent the case in which the
upstream mode changes to a new type of mode with higher growth rates and lower phase
velocities.

secondary instability. The overall effect is that the second varicose mode for L6 can
reach the same amplitude level as the laminar curve, whereas the second varicose
mode in the other two cases is stabilized to some degree.

Figure 19(b) depicts the development of the first varicose modes for L6 and L9 with
frequencies of 95 and 85 kHz, respectively. It is evident that the first modes, after
being slightly stabilized, are strongly destabilized after x = 200 mm. The resulting
N-factors are slightly lower than that of the second varicose mode for L6, but higher
than that of the second varicose mode for L9. Figure 19(c) illustrates the spatial
evolution of the first sinuous modes for L6 and L9 with frequencies of 95 and
58 kHz, respectively. In both cases, the first sinuous modes are moderately promoted
by the Görtler vortices if they follow the same type of mode, i.e. mode S1. However,
the mode development shown in figures 15 and 16 suggests that the first Mack mode
is also likely to become mode S2 (dotted lines) with the same frequency, much
higher growth rates and lower phase velocities. Note that there is a discontinuity
in the phase velocity between mode S1 and mode S2, and an adjustment region is,
thus, required to connect these two modes. A similar adjustment region was observed
by Chen, Zhu & Lee (2017) when studying the secondary instability of saturated
second Mack-mode waves in a Mach 6 flared-cone boundary layer. In their case,
the phase velocities of certain low-frequency modes were largely reduced during
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FIGURE 20. Normalized magnitudes of temperature disturbances of the second varicose
modes at various locations for all three cases. The streamwise locations are (i) 151 mm,
(ii) 212 mm, (iii) 258 mm and (iv) 289 mm. Contours of the base flows are also plotted
(dashed lines). The contour level increment is 0.1.

the primary–secondary instability transformation process. Because of the adjustment
region, the amplitudes of the first sinuous modes would lie between the dotted line
and the solid line. Noted also that the evolution of mode S1 to mode S2 may not
happen or not be accomplished if the transformation progresses too slowly.

The spatial evolution of the fixed-frequency disturbances can be further illustrated
by the mode shapes. Figure 20 shows the temperature profiles of the second varicose
modes at various locations in all three cases. The mode shapes initially exhibit
two peaks in the wall-normal direction, one being close to the wall and the other
concentrated at the boundary edge, which is a typical feature of the second Mack
mode. As the streak amplitude increases, the temperature disturbances gradually
become centred around the top of the primary-streak structure.

The temperature distributions of the first sinuous mode at various locations are
shown in figure 21. The disturbances are initially concentrated around the boundary
layer edge, resembling the first Mack-mode instability. Farther downstream, the first
varicose mode follows the evolution of mode S1, as denoted by the upright arrow,
or changes to the evolution of mode S2, as denoted by the downward arrow. Note
that both routes are possible because the upstream projections of mode S1 in the
downstream region are non-zero for both modes. Because mode S2 grows much faster,
its mode shapes gradually come to dominate.

To further understand the mechanisms of the effects of Görtler vortices on the
primary instability, we calculate the production terms associated with the streamwise
velocity gradients for each primary–secondary instability mode. Figure 22 shows the
results for the second varicose modes of all three cases, along with the LST results
for comparison. The production terms are normalized with the disturbance energy
defined by (3.7). As the streaks increase in amplitude, the wall-normal term Puη/K
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FIGURE 21. Normalized magnitudes of temperature disturbances of the first sinuous
modes at various locations for L6 and L9. The streamwise locations are (i) 151 mm, (ii)
212 mm, (iii) 258 mm and (iv) 289 mm. Contours of the base flows are also plotted
(dashed lines). The contour level increment is 0.1.
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FIGURE 22. Evolution of the ratio between the production terms associated with the
streamwise velocity gradients and the kinetic energy of the perturbation for second
varicose modes in figure 19(a): (a) L3, (b) L6 and (c) L9. The dotted lines represent the
laminar case.

rapidly decreases relative to the unperturbed case, which denotes a stabilizing effect,
and the spanwise term Puz/K notably increases, which denotes a destabilizing effect.
The combined effect leads to the stabilization of the second varicose modes. The
decrease in Puη/K and increase in Puz/K can be simply explained by the bending of
the base flow, which turns the wall-normal gradient region into the spanwise gradient
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FIGURE 23. Evolution of the ratio between the production terms associated with the
streamwise velocity gradients and the kinetic energy of the perturbation for first varicose
modes in figure 19(b): (a) L6 and (b) L9. The dotted lines represent the laminar case.
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FIGURE 24. Evolution of the ratio between the production terms associated with the
streamwise velocity gradients and the kinetic energy of the perturbation for first sinuous
modes in figure 19(c): (a) L6 and (b) L9. The dotted lines represent the laminar case.

region. Farther downstream, as the streak amplitudes become larger, the production
terms change in each case. For L3, Puz/K decreases while Puη/K increases to
become dominant. For L6, Puz/K and Puη/K have comparable amplitudes and exhibit
oscillations. For L9, Puz/K is dominant for most of the streamwise stations. This is
quite contrary to expectation, as the wall-normal term is usually responsible for the
varicose mode (Yu & Liu 1994; Saric 1994). The evolution of the production terms
for the first varicose modes for L6 and L9, shown in figure 23, also demonstrates
the dominance of the spanwise production terms. Note that the varicose mode mainly
consists of a planar component, which is marginally stable. Therefore, the wall-normal
term is much smaller than the LST result based on oblique first Mack-mode waves.

Finally, we examine the energy analysis results for the first sinuous modes for L6
and L9, as depicted in figure 24. As for the second varicose modes, the wall-normal
terms deviate from the laminar cases, showing a stabilizing effect, while the spanwise
terms rapidly increase and become dominant. The results for mode S2 are also
displayed, in which the spanwise terms are remarkably large in both cases.
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FIGURE 25. Subharmonic instability characteristics for different cases: (a) L3, (b) L6 and
(c) L9. Column (i) presents the maximum spatial growth rate of the sinuous (dashed lines)
and varicose (solid lines) modes at various streamwise locations. Columns (ii) and (iii)
show the corresponding frequencies and phase velocities.

4.2.2. Subharmonic instability
We now consider the subharmonic secondary instability of the Görtler vortices

in all three cases. The main stability characteristics are illustrated in figure 25,
which depicts the evolution of the most unstable varicose and sinuous modes, and
in figure 26, which illustrates the local characteristics at x= 289 mm for each mode.
The analysis is like that for the fundamental instability, but the results show some
differences. In all cases, mode S1 originates from the first Mack-mode instability, with
the peak frequency decreasing with increasing wavelength of the blowing and suction.
While varicose mode V1 for L3 emerges as a result of the secondary instability
far downstream, mode V1 for L6 and L9 first arises from the second Mack-mode
instability, and then amplifies fastest in the first Mack-mode frequency region. Owing
to the symmetry, subharmonic second varicose modes arise from oblique second
Mack-mode disturbances rather than planar components as in fundamental varicose
modes. Therefore, the peak frequency and the growth rates of the second varicose
mode depend on the wavelength of the Görtler vortices. In particular, second varicose
modes with large wavelengths (as for L9) would be more unstable than those with
small wavelengths (as for L3). Farther downstream, secondary instability modes S2
and V2 arise for L6 and L9, with much lower phase velocities, and soon become
dominant. The subharmonic modes for L6 and L9 can reach growth rates comparable
to those of the fundamental ones; thus, both mode types can be observed in the flow
visualizations. Although the peak growth rates of subharmonic instabilities for L3
are appreciably lower than those of fundamental instabilities, sinuous mode S1 can
also attain a sufficiently large amplitude to become relevant in the transition, as it
amplifies at almost the same peak frequency over most of the simulation region.
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FIGURE 26. Growth rates of unstable modes (subharmonic instability) at x= 289 mm for
L3 (a), L6 (c) and L9 (e). The corresponding phase velocities are plotted in (b), (d) and
( f ), respectively.

The normalized eigenfunctions (magnitude) of subharmonic modes at x= 289 mm
are presented in figure 27, together with the base flow state (dashed lines) in the
background. The frequency of each mode is selected to correspond with the most
amplified instance. Although not shown here, each subharmonic mode undergoes
a phase change of 180◦ from one mushroom to the next. These eigenfunctions
look like those of the fundamental modes, except for mode V1 in each case, which
concentrates in the lower part of the mushroom. A more interesting observation is that
the eigenfunctions for L6 and L9 exhibit a mixed-type feature owing to the secondary
streaks, that is, the eigenfunctions are symmetric with respect to the primary streaks
and antisymmetric with respect to the secondary streaks, and vice versa. This feature
is clearly visible in the flow visualizations shown in figures 9( f ) and 11( f ).

Next, we examine the possibility of a transformation from a primary to a secondary
instability. Like the fundamental counterpart, the second varicose mode is first
stabilized and then destabilized when a secondary instability occurs, as shown
in figure 28(a). The overall N-factors of mode V1 are lower than those of their
fundamental counterparts, but mode V1 possibly changes to mode V2 to reach a
much higher amplitude. The first Mack-mode instability can be converted to both
varicose and sinuous secondary instability modes, as depicted in figure 28 (b,c). For
the first varicose modes, the selected frequency components of mode V1 for L6
and L9 could be continuously enhanced to reach slightly greater N-factors than their
fundamental counterparts. In addition, disturbances from mode V1 could possibly
jump to mode V2 with higher growth rates and lower phase velocities, resulting in an
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FIGURE 27. Normalized magnitudes of temperature disturbances of subharmonic modes
at x = 289 mm for the three cases. Contours of the base flows are also plotted (dashed
lines). The contour level increment is 0.1.

even larger amplitude. For the first sinuous modes, the selected frequency components
of mode S1 in all three cases could be continuously amplified, but the N-factors are
smaller than those of the first varicose modes. By combining the results of the
fundamental and subharmonic instabilities, we can summarize the possible routes for
the primary–secondary instability transformation, as shown in figure 29. For L3, only
one route likely exists connecting the first Mack mode with the subharmonic sinuous
mode. For L6 and L9, the first Mack mode can be converted to all four kinds of
secondary-instability modes, whereas the second Mack mode can only morph into
varicose modes.

4.3. Statistical results from DNS
In this subsection, we focus on the statistical results from DNS and compare them
with those from the stability analysis. Figure 30 shows the mode amplitude evolution
for all three cases. For L3, the primary mode (0, β) first undergoes a transient decay
after generation, a common feature in the development of Görtler vortices excited
by wall inhomogeneities (Souza et al. 2004; Schrader et al. 2011), and then starts
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FIGURE 28. N-factors for selected subharmonic primary–secondary modes: (a) second
varicose modes with a frequency of 145 kHz for L6 and a frequency of 125 kHz for L9;
(b) first varicose modes with a frequency of 95 kHz for L6 and a frequency of 65 kHz for
L9; (c) first sinuous modes with a frequency of 95 kHz for L3, a frequency of 65 kHz for
L6 and a frequency of 36 kHz for L9. The dashed lines denote the corresponding laminar
cases. The dotted lines represent the case in which the upstream mode changes to a new
type of mode with higher growth rates and lower phase velocities.

to grow exponentially at x≈ 100 mm. Farther downstream, nonlinear processes cause
the saturation and decay of this mode. The harmonics evolve similarly. For L6, the
first harmonic quickly grows to an amplitude comparable to that of the primary mode.
Then, it soon evolves into a mode with exponential amplification, as its wavelength
lies in the linearly unstable region (see figure 4), which is seen as secondary streaks
in the visualizations. The initial decay of the primary mode is slower than that for
L3. Therefore, during the receptivity, the Görtler vortices attain larger amplitudes than
for L3, which in turn leads to more developed streak structures and earlier saturation.
For L9, the first harmonic becomes even more prominent, causing the larger secondary
streaks shown in figure 11. Despite this, the amplitude evolution for L9 is quite like
that for L6.

The high-frequency disturbances in figure 30 consist of modes (mf0, nβ), m =
1, 2, 3, 4, 5, n = 0, 1, 2, 3, f0 = 50 kHz. These disturbances roughly cover the
unstable spectrum predicted by the secondary-instability theory. After generation,
these disturbances undergo a long-term complex evolution, with different growth
rates for various modes. Farther downstream, the disturbances grow much faster
due to the secondary instabilities of the Görtler vortices. The amplitude evolution
based on the stability theory is also plotted in the figure, with the slopes indicating
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FS: Fundamental sinuous mode

SV: Subharmonic varicose mode
SS: Subharmonic sinuous mode

Continuous transformation

Either continuous transformation
or jump to a new mode with higher
growth rates

FV

First Mack mode
SS

FS

SV

FV

SV

Second Mack mode
FV

SV

L3

L6

L9

FIGURE 29. Summary of the primary–secondary instability transformation.
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FIGURE 30. Amplitude evolution of various modes for three cases: (a) L3, (b) L6 and
(c) L9. The numbers denote the steady modes (0, nβ), n= 1, 2, 3, 4, 5. The first harmonic
is depicted by the dashed line. Grey lines represent high-frequency modes (mf0, nβ),m=
1, 2, 3, 4, 5, n = 0, 1, 2, 3, f0 = 50 kHz. Parameter β is the wavenumber of the Görtler
mode. Thick lines represent amplitude evolutions based upon the local maximum growth
rates predicted by the stability theory.
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FIGURE 31. Normalized temperature r.m.s. distribution for three cases: (a) L3, x =
289 mm; (b) L3, x = 313 mm; (c) L6, x = 289 mm; (d) L9, x = 289 mm. Symbols
represent the time sampling locations in the spectrum analysis.

the local maximum growth rates. One can see that the disturbances for L3 and L9
amplify more slowly than predicted until far downstream. This is because the most
unstable modes in the primary- and secondary-instability stages are quite different,
and secondary-instability modes require time to become dominant. In contrast, the
agreement between DNS and stability theory for L6 is generally good over the
distances considered, because the dominant V1 mode in the primary-instability stage
is still (nearly) the most unstable mode in the secondary-instability stage.

Figure 31 shows the normalized temperature root-mean-square (r.m.s.) distribution
from DNS for all three cases at certain locations. For L3, the r.m.s. at x= 289 mm
exhibits a typical varicose-mode distribution with two peaks, one in the top region
of the streak and the other in the shoulder region. As discussed above, such an
r.m.s. distribution is likely to reflect the primary-instability characteristics, although
the sinuous mode of the secondary instability is predicted to be more unstable here.
Note that the r.m.s. distribution depends on the upstream evolution process, and does
not necessarily match exactly the locally most unstable mode shape. The locally
most unstable mode should be more prominent farther downstream, as depicted in
figure 31(b). At x = 313 mm, the r.m.s. distribution is very similar to that of the
sinuous mode.

The r.m.s. distribution for L6 at x = 289 mm is mainly concentrated around the
top region of the primary streak and the shoulder region of the secondary streak. In
addition to these two regions, the r.m.s. distribution for L9 in the same area also
has significant amplitudes in the shoulder and stem regions of the primary streak, as
well as the top region of the secondary streak. In both cases, the disturbances in the
top region are likely to be caused by the varicose modes, whereas those in the other
regions are probably the result of both sinuous and varicose modes.
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FIGURE 32. Spectra for the high r.m.s. regions marked in figure 31: (a) L3, x= 289 mm;
(b) L3, x= 313 mm; (c) L6, x= 289 mm; (d) L9, x= 289 mm. For (b), the red and blue
lines represent the spectra in the shoulder and stem regions, respectively. For the other
three plots, the red and blue lines represent the spectra in the top and shoulder regions,
respectively.

Studying the spectra may help to clarify further the components of the disturbances.
Figure 32 shows the spectra at the sampling points marked in figure 31. Note that
the spectra in the shoulder and stem of the primary streak and in the shoulder of
the secondary streak for L6 and L9 are very similar; hence, we need to sample at
only one of these regions for each case. For L3 at x= 289 mm, the spectra at both
sampling points exhibit a significant peak at f ≈ 135 kHz, which corresponds to the
second varicose instability. Farther downstream, at x= 313 mm, a new peak centred
at f ≈ 90 kHz appears in the spectra at both sampling points, which is likely to be
related to the secondary instabilities. The frequency peak at f ≈ 135 kHz, although
invisible in the stem region, is still present in the shoulder region. For L6, the top
disturbances have a wide spectrum, ranging from 90 to 140 kHz, with the largest
component at around 135 kHz. The frequency peak indicates the significance of
the second varicose mode, whereas the lower frequency components are likely to
be associated with other secondary-instability modes. In particular, the amplitude
of the second varicose mode is much larger than that for L3 at the same location,
which is consistent with the amplitude evolution predicted by the stability theory
(figure 19). The spectrum in the shoulder region has two peaks with much smaller
amplitudes, one at around 70 kHz and the other at approximately 135 kHz. For L9,
the disturbances at the top also have a wide spectrum, ranging from 50 to 140 kHz,
with the largest component at around 60 kHz. This frequency peak coincides with
the peak frequency of (fundamental and subharmonic) first sinuous modes before
the onset of the secondary instability, highlighting the role played by the primary
instability. The spectrum in the shoulder region is more uniformly distributed from
40 to 160 kHz.
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FIGURE 33. Skin friction coefficient averaged in span and time for the three cases.

Figure 33 displays the time-averaged skin friction for the three cases. The skin
friction coefficient was calculated as

Cf =
2µ(∂ ū/∂η)|η=0

Re
. (4.1)

The values obtained from the simulations are compared with a turbulent boundary
layer correlation from White (2006) (p. 558). The skin friction curves initially show
large defects due to the blowing–suction perturbation, then recover and follow the
laminar curve. Farther downstream, the skin friction for L6 is the first to depart from
the laminar curve, followed by those for L9 and L3, before rapidly increasing well
above the turbulent curve and remaining at a high level. The skin friction for L9
rapidly decreases after x = 260 mm and increases again after x = 300 mm, which
seem to be caused by the decay of the Görtler vortices and the growth of secondary
disturbances, respectively. These two factors are also likely to control the skin-shear
evolution in the other two cases, resulting in a slight change for L6 when the two
are almost balanced, and causing a rapid decay for L3 when the former is dominant.
Nevertheless, the skin friction in all three cases overshoots the turbulent value, which
is a prominent feature of Görtler vortices and streamwise vortices (Kravchenko, Choi
& Moin 1993; Schultz & Volino 2003; Girgis & Liu 2006; Tandiono, Winoto &
Shah 2009; Franko & Lele 2013). Moreover, the skin friction does not return to the
turbulent value by the end of the simulation, suggesting that the flow fields in these
three cases do not have fully developed turbulence.

4.4. Instability of filtered Görtler vortices
To clarify the effects of the first harmonic/secondary streaks on the secondary
instability of the primary streaks for L6 and L9, we eliminate the harmonics at
x= 80 mm, immediately after the blowing–suction region, and simulate the evolution
of the filtered Görtler vortices. The corresponding simulations are denoted as FL6
and FL9, respectively.

Figure 34 presents the temperature contours at various distances from the wall
for FL6. Note that the secondary streaks disappear. One can see that both sinuous
and varicose instabilities occur, causing the streaks to meander near the wall and the
formation of knotty structures above. Compared with the unfiltered case displayed in
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FIGURE 34. Temperature contours at various distances from the wall for FL6: (a) η =
2.43 mm; (b) η= 4.07 mm.

5

0

˙ 
(m

m
)

5

˙ 
(m

m
)

0 6 12 18 24
z (mm)

0 6 12 18 24
z (mm)

(a) (b)

(c) (d)

FIGURE 35. Temperature contours at various streamwise locations for FL6: (a) x =
105 mm; (b) x= 304 mm; (c) x= 335 mm; (d) x= 347 mm.

figure 8, the flow structures are much simpler and the secondary instabilities emerge
farther downstream. The end views of the flow structures are shown in figure 35.
Again, the secondary streaks are absent, and the mushroom structures start to break
down farther downstream than in the unfiltered case. Figure 36 displays the evolution
of the mode amplitude for two cases. Several observations can be made. First, the
harmonics now have low amplitudes and are essentially driven by the primary mode.
Second, the amplitudes of the primary modes in both the filtered and unfiltered
cases match well until x ≈ 250 mm. Farther downstream, the primary modes in the
unfiltered cases are largely attenuated, whereas the primary modes in the filtered
cases remain saturated. This discrepancy is caused by the intensity of the secondary
instability, that is, the secondary instability becomes much weaker in the absence of
the strong first harmonic. Therefore, we can conclude that the harmonics in unfiltered
cases do not directly interact with the primary mode. Instead, they strongly enhance
the secondary instability of the Görtler vortices.
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FIGURE 36. Amplitude evolution of various modes for two cases: (a) FL6 and (b) FL9.
The numbers denote the steady modes (0, nβ), n = 1, 2, 3, 4, 5. The primary mode in
the unfiltered cases is represented by the dashed line. Grey lines represent high-frequency
modes (mf0,nβ),m=1,2,3,4,5,n=0,1,2,3, f0=50 kHz. Parameter β is the wavenumber
of the Görtler mode. Thick lines represent the amplitude evolution based upon the local
maximum growth rates predicted by the stability theory.
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FIGURE 37. Fundamental instability characteristics (a) and subharmonic instability
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spatial growth rate of the sinuous mode (dashed lines), the first Mack-mode components
of the varicose mode (solid lines) and the second Mack-mode components of the varicose
mode. Columns (ii) and (iii) show the corresponding frequencies and phase velocities.

To support the above conclusion, we calculated the stability along the streamwise
direction. The results are summarized in figure 37. The stability calculations for
FL9 do not indicate an unstable secondary-instability mode, which is consistent
with the amplitude evolutions from DNS, and are, therefore, not shown here.
For the fundamental instability, the varicose mode V1 is firstly dominated by the
second-varicose components, and then overtaken by the first-varicose components
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FIGURE 38. Mean streamwise velocity contours (i), wall-normal shear (∂U/∂η) contours
(ii) and spanwise shear (∂U/∂z) contours (iii) on the z–η plane at x= 289 mm for FL6
(a) and L6 (b). The contours have been normalized by the maximum values. Dashed lines
denote negative values. The contour level increment is 0.1.

for x > 230 mm. The sinuous mode appears as a secondary-instability mode when
the streak amplitude becomes large enough, and soon becomes more unstable than
the varicose mode until very far downstream. The peak growth rate of the sinuous
mode is comparable with that in the unfiltered case, although the varicose mode is
much less unstable. For the subharmonic instability, both varicose and sinuous modes
seem to arise from the primary instabilities, and appear to be less unstable than
those in the unfiltered case. The oblique second-varicose components are initially
dominant, whereas the first-varicose components turn out to be more unstable for
x > 210 mm. The sinuous mode emerges from the first Mack-mode instability. The
theoretical evolution of disturbance amplitudes based on the locally most unstable
mode is displayed in figure 36(a). The broadband disturbances roughly follow the
evolution of the most unstable modes for x> 290 mm. In conclusion, the filtered case
is more stable than the unfiltered case; this supports the idea that destabilization is
caused by the secondary streaks. The destabilization mechanism can be understood by
examining the base flows in the unfiltered and filtered cases. As shown in figure 38,
the primary streak for L6 appears to be finer (i.e. narrowed by the secondary streaks),
and therefore has more intense streamwise velocity gradients. These, in turn, act as
the source of the disturbance energy.

Finally, we compare the skin friction evolution with the unfiltered cases in figure 39.
One can see that the locations at which the skin friction curves start to depart from
the laminar curve are further downstream. Like the unfiltered cases, the skin friction
overshoots the turbulent curve by a comparable degree, even though the secondary
instability is much weaker. The remarkable decay in the skin friction for L9 is not
observed for FL9, because the Görtler vortices for FL9 remain saturated rather than
rapidly decaying. The increase in the skin friction for FL6 near the end of the
simulation is likely to be caused by the secondary instability.

5. Summary and discussion
The transition of stationary Görtler vortices in a hypersonic curved-wall boundary

layer has been studied in detail using DNS and stability analysis. Görtler vortices were
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FIGURE 39. Skin friction coefficient averaged in span and time for the filtered cases (solid
lines). The results for the unfiltered cases (dotted lines) are included for comparison.

triggered by steady blowing and suction on the wall, for three spanwise wavelengths,
i.e. 3 mm (L3), 6 mm (L6) and 9 mm (L9), covering the main part of the Görtler
instability according to LST. Görtler vortices induce low-speed streaks in the flow
field. In addition to primary streaks with the same wavelength as the blowing and
suction, secondary streaks with half the fundamental wavelength also emerge for L6
and L9. Downstream, the streaks develop into mushroom structures and subsequently
break down through the various mechanisms of secondary instabilities. For L3,
the sinuous-mode instability dominates the breakdown process, whereas for L6 the
varicose-mode instability is most dangerous. For L9, sinuous- and varicose-mode
instabilities appear to be of equal importance, with the former controlling the
near-wall region and the latter appearing on the top of the mushroom structures. Both
fundamental and subharmonic instabilities were calculated systematically. The results
indicate that the peak growth rates of the subharmonic instability are comparable with
those of the fundamental instability for L9, but are notably lower than those of the
fundamental instability for the other two cases. However, when taking the primary
instabilities into account, we found that subharmonic instabilities are non-negligible
in all cases. The DNS results are in good agreement with those from LST.

In analysing the breakdown of Görtler vortices, the (modified) primary instabilities
(first and second modes) in the upstream region, which were overlooked in previous
studies, should be considered. Stability results that consider only the secondary
instability may be misleading. For example, in case L3, the sinuous mode is predicted
to be highly unstable at x = 289 mm, whereas the r.m.s. results from DNS exhibit
a varicose-mode-type distribution. This is because the secondary-instability modes
arising from the primary instabilities are likely to attain amplitudes comparable to
or even larger than those of the locally most unstable secondary-instability modes
with no origin in the primary instabilities. It has been shown that the second Mack
mode can become a varicose mode whereas the first Mack mode can develop into
either a sinuous mode or a varicose mode, depending on its frequency and spanwise
wavelength. Compared to the case where Görtler vortices are absent, the Görtler
vortices for L3 stabilize the second Mack-mode instability, whereas the second
Mack-mode instability for L6 and L9 is initially stabilized but eventually destabilized
into a secondary instability. In contrast, the first Mack-mode instability appears to be
destabilized by Görtler vortices in all three cases.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

24
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.24


Hypersonic transition 37

Production terms in the kinetic energy transfer equation were calculated in order
to further understand the destabilizing or stabilizing mechanisms for the primary
instabilities. The results show that the wall-normal production based on the velocity
wall-normal gradient decreases relative to the laminar value, while the spanwise
production based on the velocity spanwise gradient increases from zero. The former
plays a stabilizing role and the latter exhibits a destabilizing effect. These changes
in the production terms are caused by the bending of the base flow induced by the
Görtler vortices, resulting in the velocity gradient changing from the wall-normal
direction to the spanwise direction. For the second Mack mode, the dominant
two-dimensional component does not contribute to the spanwise production; hence,
the stabilizing effect is more prominent. In contrast, the spanwise production benefits
from the dominant three-dimensional components of the first Mack mode, offsetting
the decrease in the wall-normal production. As the streaks or Görtler vortices increase
in amplitude, the wall-normal production may increase once again for the varicose
mode. Nevertheless, the spanwise production still has a significant amplitude (even
larger than the wall-normal counterpart) for L6 and L9, contrary to our expectation.

Several previous studies have discussed the effects of Görtler vortices/streaks on the
primary instabilities. Ren, Fu & Hanifi (2016) and Paredes, Choudhari & Li (2017b)
demonstrated that the second mode can be stabilized by Görtler vortices/streaks.
Paredes et al. (2017a,b) also showed that the nonlinear optimal disturbances can
destabilize the first Mack-mode disturbances, of which, in particular, subharmonic
first Mack-mode disturbances could become the subharmonic, sinuous mode of streak
instability. Their results are consistent with ours.

Finally, the role played by the secondary streaks in the transition of Görtler
vortices was addressed. By filtering the harmonics downstream of the blowing–suction
region for L6 and L9, we successfully eliminated the secondary streaks. DNS and
stability calculations demonstrate that the filtered flow fields, FL6 and FL9, are
significantly more stable than the unfiltered ones. In other words, secondary streaks
can significantly destabilize the Görtler vortices. The destabilizing mechanism is likely
to be caused by the secondary streaks reducing the width of the primary streaks, thus
enhancing the velocity gradients. Furthermore, secondary streaks can also induce a
new type of varicose mode concentrated around the shoulder, rather than the top,
of the mushroom structure, and this can become the locally most unstable varicose
mode for L9.
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