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A theoretical model of water wave overwash of a thin floating plate is proposed. The
nonlinear shallow-water equations are used to model the overwash, and the linear
potential-flow/thin-plate model to force it. Model predictions are compared with
overwash depths measured during a series of laboratory wave basin experiments. The
model is shown to be accurate for incident waves of low steepness or short length.
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1. Introduction

Thin floating plates are conventionally used to model sea ice floes in theoretical
models of ocean surface wave propagation through the ice-covered ocean (see
the review of Squire 2007). The models are now being integrated into large-scale
numerical ice/ocean models to predict wave penetration distances into the ice-covered
ocean (e.g. Doble & Bidlot 2013) and concomitant wave-induced breakup of the ice
cover (e.g. Dumont, Kohout & Bertino 2011).

A theoretical model of a water wave interacting with a solitary plate is the kernel
of wave–ice models. The incident wave and plate lengths are comparable, i.e. the
wave and plate motions are strongly coupled. Potential-flow theory models the water
motions, and, typically, Kirchhoff–Love theory models the plate motions. The model
incorporates the elastic response of the plate via its Young’s modulus. Thus, it extends
classic models of wave–body interactions, for example, models of ship hydrodynamics.

Moreover, it is customarily assumed that the wave amplitudes are sufficiently small
to employ linear theory. Meylan & Squire (1994) developed the first solution method
for the full-linear problem in two spatial dimensions. Bennetts & Williams (2010),
among others, developed a solution method for the extended three-dimensional
problem.
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Laboratory experimental validation of the solitary-plate model is a relatively recent
development. Montiel et al. (2013a,b) used a series of wave tank experiments on
polyvinyl chloride (PVC) plastic disks with regular incident waves of low steepness to
validate the linear model. However, they installed vertical barriers around the edges of
the disk to prevent the waves from overwashing them, and hence maintain consistency
with the theoretical model.

Overwash refers to water running over the top of the plate, forced by the
surrounding wave motion. It occurs for moderate incident amplitudes, due to the
small freeboard of the thin plate. It is a highly nonlinear phenomenon, and is not
included in the handful of existing nonlinear theoretical models (e.g. Papathanasiou
et al. 2015).

Overwash is related to green water, i.e. water loads on ship decks and other offshore
structures, forced by large storm waves. Mizoguchi (1989) first proposed a theoretical
model of green water, based on the shallow-water dam-break model. Buchner &
Cozijn (1997) and Greco (2001), among others, have since significantly developed
and validated green water models. However, overwash distinguishes itself from
green water by (i) occurring for moderate incident wave amplitudes and (ii) being
semi-continuously forced, as opposed to the ‘first-event’ nature of green water.

In an investigation closely related to the present one, Meylan et al. (2015) validated
the linear model predictions of plate motions using experiments on solitary plates
without edge barriers. They used square plates made of PVC and a denser and more
rigid polypropylene (PP) plastic. They showed that the linear model is accurate for a
range of incident wavelengths and steepnesses, even in cases where strong overwash
occurs. Bennetts et al. (2015) analysed the wave fields transmitted by the plates
during the experiments. They showed that as the incident wave steepness increases
the transmitted wave becomes irregular and the proportion of wave energy transmitted
decreases. They noted that the steeper incident waves concomitantly produced strong
overwash.

Bennetts & Williams (2015) validated two theoretical models of wave transmission
by multiple thin plates, using wave basin experiments on 40–80 wooden disks. They
noted a correlation between strong overwash and a reduction in the proportion of wave
energy transmitted by the disks, and hence, a loss of model accuracy.

The works cited above used the experimental measurements to assess model
accuracy at basin scale. A Froude scaling, with a specified geometric scaling factor,
is typically used to interpret the measurements at field scale. In particular, density
does not change from basin to field scales. The PP plastic used by Meylan et al.
(2015) has a density that closely matches measured values for sea ice, and its
freeboard is therefore representative of the freeboard of natural ice floes. Polyvinyl
chloride has a lower density than sea ice and, thus, its freeboard is greater than that
of ice floes. The elastic modulus must be multiplied by the geometric scaling factor
to obtain the equivalent field value. Plastic plates are generally more rigid than ice
floes at field scale, although the more compliant PVC is representative of ice floes
up to geometrical scaling factors of approximately 20.

Here, a theoretical model of overwash is proposed. Following green water models,
the nonlinear shallow-water equations model the overwash. The surrounding water
and plate motions predicted by the linear model force the overwash, with no back
coupling from the overwash to the surrounding water or plate motions. This model
assumption is motivated by the findings of Meylan et al. (2015). A dataset from the
same experimental campaign as used by Meylan et al. (2015) is used to validate
the overwash model. The dataset derives from tests using the same plates and range
of incident wavelengths and steepnesses. However, overwash depths, rather than the
motions of the plates, were measured.
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Overwash of a thin floating plate
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FIGURE 1. Plan view of the experimental set-up (not to scale).

2. Wave basin experiments

Experiments were conducted in the wave basin facility of the Coastal Ocean and
Sediment Transport (COAST) Laboratory, Plymouth University, UK. The basin is
10 m wide, 15.5 m long and filled with fresh water of density ρ ≈ 1000 kg m−3

and H = 0.5 m depth. Figure 1 shows a schematic plan view of the basin. At
the right-hand end of the basin a piston-controlled wavemaker is used to generate
incident waves and absorb a proportion of the waves reflected back to it. A beach at
the left-hand end of the basin absorbs the majority of the wave energy that reaches it.
A reflection analysis was conducted at the centre of the basin prior to the full tests. It
showed that the combination of the beach and absorption by the wavemaker resulted
in reflected wave energy contributing less than 1 % to the overall wave energy.

For each test, a solitary thin floating plastic plate was deployed in the basin. All
plates used were square with side lengths 2L = 1 m. They were loosely tethered at
their corners to the basin floor. The tether had a natural period greater than 20 s,
which is over an order of magnitude greater than the period of the incident waves
used. It allowed the plates to surge back and forth at the period of the incident waves
but restricted drift down the basin.

Both PP and PVC plastics were used. The PP had a manufacturer-specified density
ρp = 905 kg m−3 and elastic modulus E = 1600 MPa. The PVC had manufacturer
specified density ρp = 500 kg m−3 and elastic modulus E = 750 MPa. Following
Montiel et al. (2013a,b) and Meylan et al. (2015), a reduced value of E= 500 MPa
is used to model the PVC plates in this investigation. Three thicknesses were tested
for each plastic: h= 5 mm, 10 mm, 19 mm (PVC only) and 20 mm (PP only).

Regular incident waves with periods T = 0.6, 0.8 and 1.0 s were used. The
corresponding wavelengths are λ= 0.56 m, 1.00 m and 1.51 m, respectively. Incident
wave amplitudes A were chosen to provide steepnesses kA = 0.04, 0.08, 0.1 and
0.15. The wavenumber k = 2π/λ is the positive real root of the dispersion relation
k tanh (kH)= ω2/g, where ω= 2π/T is the angular frequency and g≈ 9.81 m s−2 is
the constant of gravitational acceleration.

A small wave probe and a high-definition video camera recorded the overwash.
The camera provided a qualitative assessment of the overwash. The probe was
positioned at the geometric centre of each plate’s upper surface. It recorded time
series of overwash depth at 120 Hz frequency for 300 s following activation of the
wavemaker, which ran for over 300 s. The series were analysed for the second 150 s,
as a conservative measure to cut off initial transients.
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FIGURE 2. Schematic of the overwash model (not to scale), where η denotes the free
surface elevation and q denotes the overwash depth.

The probe detected overwash in 58 of the 72 tests conducted. The mean overwash
depth was 1.77 mm over the 58 tests where overwash occurred. The maximum
depth recorded was 9.95 mm. Bores were a prominent feature in the overwash.
The largest bores were generated at the plates’ leading edges. The bores became
turbulent and sometimes broke in deep overwash. The electronic supplementary
material (ESM) shows two movies of overwash during tests in which the mean depth
was 0.81 mm and 2.75 mm, respectively (see the supplementary movies available at
http://dx.doi.org/10.1017/jfm.2015.378).

3. Theoretical model

Let the Cartesian coordinate system (x, y, z) define locations in the basin. The
coordinate (x, y) defines horizontal locations and its origin is the equilibrium plate
centre. The incident waves travel in the positive x-direction. The coordinate z defines
vertical locations and its origin is at the equilibrium water surface in the absence of
plate cover.

The model is two-dimensional, (i) for simplicity and (ii) as Meylan et al. (2015)
found that the motions of the plates are approximately uniform in the transverse
dimension. It considers the geometry in the plane y = 0, and assumes that motions
in this plane are independent of the y-coordinate. Further, waves reflected by the
basin boundaries are assumed to be negligible and, hence, the x-coordinate extends
to infinity in its positive and negative directions.

Nonlinear shallow-water theory models the overwash. Linear potential-flow theory
models the surrounding water. Kirchoff–Love thin-plate theory models the plate. The
plate and surrounding water motions are coupled. The wave elevation above the
leading and trailing ends of the plate and its velocity there force the overwash. The
overwash does not affect the surrounding water or the plate motions (as motivated
by Meylan et al. 2015). Figure 2 shows a schematic of the model.

3.1. Coupled potential-flow and floating thin-plate model
Following potential-flow theory, the water velocity field is defined as the gradient of a
scalar potential function, Φ(x, z, t). The water motion is assumed to be time-harmonic
at the frequency of the incident wave, and thus Φ(x, z, t)=Re{φ(x, z)e−iωt}, where the
(reduced) velocity potential φ is a complex-valued function.

Thin-plate theory allows the vertical motion of the plate to be defined in
terms of the displacement of its lower surface, z = ηp(x, t). The motion is also
assumed to be time-harmonic, and the displacement function is thus expressed as
ηp(x, t) = Re{w(x)e−iωt}. The model does not include lateral motions of the plate.
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Overwash of a thin floating plate

The (reduced) displacement function, w, is decomposed into the orthonormal natural
modes of vertical vibration of an in vacuo plate, wn(x) for n= 0, 1, . . . , with, as yet
unknown, weights ξn. Thus,

w(x)=
∞∑

n=0

ξnwn(x), where w0 = 1√
2L

and w1 =
√

3
2L3

x, (3.1)

are the rigid-body modes, corresponding to heave and pitch, respectively, and

w2n = 1√
2L

(
cos(µ2nx)
cos(µ2nL)

+ cosh(µ2nx)
cosh(µ2nL)

)
and

w2n+1 = 1√
2L

(
sin(µ2n+1x)
sin(µ2n+1L)

+ sinh(µ2n+1x)
sinh(µ2n+1L)

) (3.2a,b)

for n = 1, 2, . . . are the even and odd flexural modes, respectively, with real
eigenvalues 0<µn <µn+1 defined by

tan(µ2nL)+ tanh(µ2nL)= 0 and tan(µ2n+1L)− tanh(µ2n+1L)= 0 (3.3a,b)

for n= 2, 3, . . . ;µ0 =µ1 = 0 are defined for convenience.
Linear theory is employed. Thus, the problem is posed on the equilibrium domain.

The velocity potential satisfies Laplace’s equation in the equilibrium water domain, i.e.

∇
2φ = 0 for −H < z< 0,where ∇= (∂x, ∂z). (3.4a)

It also satisfies the impermeable-bed and linearised free-surface conditions, respectively,

∂zφ =
0 on z=−H and
ω2

g
φ on z= 0 for x /∈ (−L, L).

(3.4b)

In the far field the velocity potential satisfies the radiation conditions

φ ∼ g
iω
(Aeikx + Re−ikx)

coshk(z+ h)
cosh(kh)

as x→−∞ (3.4c)

and

φ ∼ gTeikx coshk(z+ h)
iω cosh(kh)

as x→∞, (3.4d)

where R and T are, as yet unknown, complex-valued reflection and transmission
amplitudes, respectively.

The velocity potential and displacement function are coupled at their equilibrium
interface via kinematic and dynamic conditions. The kinematic condition equates the
vertical velocity of the water particles at the water surface to the vertical velocity
of the corresponding points of the plate. The dynamic condition uses Kirchoff–Love
thin-plate theory, and considers the vertical motions of the plate to be forced by the
pressure differential between its upper and lower surfaces. The conditions assume that
the lower surface of the plate remains in contact with the water at all points and at
all times during its motion. They are, respectively,

∂zφ =−iω
∞∑

n=0

ξnwn and iωφ =
∞∑

n=0

{1+ βµ4
n −ω2γ }ξnwn (3.4e,f )

777 R3-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

37
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.378


D. M. Skene, L. G. Bennetts, M. H. Meylan and A. Toffoli

on z= 0 for x∈ (−L,L). Here, β=Eh3/{12(1− ν2)ρg} and γ =ρph/ρg are the scaled
flexural rigidity and mass of the plate, respectively, where ν = 0.4 and ν = 0.3 are
representative values of Poisson’s ratio for PP and PVC, respectively. The coupling
conditions (3.4e,f ) use the zero-draught approximation (e.g. Meylan & Squire 1994).
The Archimedean draught is used in § 3.3 to couple the surrounding water to the
overwash.

The potential is expressed as the sum of scattering and radiation components, i.e.

φ = φS − iω
∞∑

n=0

ξnφ
R
n . (3.5)

The scattering potential φS satisfies the problem in which the plate is held in place,
i.e. (3.4a) and (3.4b) and (3.4e) with ξn = 0 set for all n. The radiation potential φR

j
satisfies the problem in which the plate is forced to oscillate with unit amplitude in
mode j in the absence of incident forcing, i.e. (3.4a) and (3.4b) and (3.4e) with ξn= δnj
and A= 0 set.

The component potentials are calculated using the free-surface Green’s function,
G(x− x0, z). It is the solution of the governing equations, forced at the point x= x0
on the free surface in the absence of plate cover and incident wave forcing, i.e.

∇
2G= 0 for −H < z< 0, ∂zG= 0 on z=−H, (3.6a,b)

∂zG−ω2G/g= δ(x− x0) on z= 0, (3.6c)

and the radiation condition that G represents outgoing waves in the far field. Meylan &
Squire (1994), for example, provide an explicit expression for a more general version
of the Green’s function. Green’s theorem generates the integral equations

φS(x, 0)= gAeikx

iω
− ω

2

g

∫ L

−L
G(x− x0, 0)φS(x0, 0) dx0 (3.7a)

and

φR
n (x, 0)=−

∫ L

−L
G(x− x0, 0)

(
ω2

g
φR

n (x0)−wn(x0)

)
dx0 for n= 0, 1, . . . (3.7b)

for x∈ (−L,L). The potentials are calculated numerically on the wetted surface of the
plate, as the solutions of (3.7a) and (3.7b). The radiation potentials, φR

n , are calculated
for n= 0, . . . ,N, where N is finite and sufficiently large that the truncated version of
(3.5) accurately approximates the full-linear solution.

Applying (3.4f ) to the truncated potential and taking inner products with respect to
wj for j= 0, . . . ,N results in the system

(K + C −ω2M −ω2A(ω)− iωB(ω))ξ = f (ω). (3.8)

Here, K , C and M are diagonal stiffness, hydrostatic-restoring and mass matrices,
respectively, A and B are added mass and damping matrices, respectively, f is the
forcing vector and ξ is a vector containing the modal weights. Their entries are
defined as

K jj = βµ4
j−1, Cjj = 1 and M jj = γ for j= 1, . . . ,N + 1, (3.9a)
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Overwash of a thin floating plate

ω2Aij + iωBij = ω
2

g

∫ L

−L
φR

j−1(x, 0)wi−1(x) dx for i, j= 1, . . . ,N + 1, (3.9b)

f j =
iω
g

∫ L

−L
φS(x, 0)wj−1(x) dx and ξj = ξj−1 for j= 1, . . . ,N + 1. (3.9c,d)

System (3.5) is solved for the vector of modal weights, ξ . The reflection and
transmission amplitudes are subsequently calculated as R = AI+ and T = A(1 + I−),
where

I± = −i cosh2(kH)
cosh(kH)sinh(kH)+ kH

∫ L

−L
e±ikx

(
ω2

g
φ(x, 0)− ∂zφ(x, 0)

)
dx. (3.10)

3.2. Nonlinear shallow-water equations
It is assumed that (i) the vertical length scale of the overwash is much smaller than
its horizontal length scale, (ii) the water particles’ vertical accelerations are much
smaller than gravitational acceleration and, thus, the water pressure is approximately
hydrostatic and (iii) the plate pitches at a small angle only. These assumptions are
consistent with experimental observations. Assumption (ii) implies that the force of
the plate’s motion on the overwash is negligible in comparison to gravitational force.
Assumption (iii) implies that the gravitational force acts approximately perpendicularly
to the plate’s upper surface. Further, turbulence and wave breaking are neglected as
a simplifying assumption. Therefore, the nonlinear shallow-water equations model the
overwash, i.e. the hyperbolic partial differential system

∂tq+ ∂xf (q)= 0 for x ∈ (−L, L), (3.11a)

where q= [q, qu]T and f (q)= [qu, qu2 + 1
2 gq2

]T
. (3.11b,c)

Here, u(x, t) is its depth averaged horizontal velocity and q(x, t) is the overwash depth,
which is defined as the height of the surface elevation above the plate’s upper surface.

The numerical scheme outlined by Kurganov & Tadmor (2000) is used to
approximate spatial derivatives in system (3.11). It is a second-order-accurate
finite-volume method. It is able to capture bores, which manifest as discontinuities
in the solution. In this numerical scheme, horizontal space is discretised into M + 1
uniformly spaced cells centred at the points {x0 = −L, x1 = −L + 1x, . . . , xM = L},
and the notation qj(t) ≡ q(xj, t) is employed. The spatial derivative in (3.11) is
approximated as

∂xf (qj(t))≈−L (qj(t))=
Bj+1/2(t)−Bj−1/2(t)

1x
, (3.12)

where Bj±1/2 are fluxes on the jth cell’s left (−) and right (+) boundaries, defined via

Bj+1/2(t)=
a+j+1/2 f (q−j+1/2)− a−j+1/2 f (q+j+1/2)+ a+j+1/2a−j+1/2(q

+
j+1/2 − q+j+1/2)

a+j+1/2 − a−j+1/2
, (3.13)
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where

a±j+1/2 =±max{±κ±(q−j+1/2),±κ±(q+j+1/2), 0} and κ±(q)= u±√gq, (3.14a,b)

i.e. κ±(q) are the largest (+) and smallest (−) eigenvalues of the Jacobian of f (q).
The minmod limiter presented in Kurganov & Tadmor (2000) is used to prevent

unnatural oscillations from occurring either side of a shock. It is defined as

minmod{•1, •2, . . .} =
{

minj{•j} if •j > 0 for all j,
maxj{•j} if •j < 0 for all j,

(3.15)

and zero otherwise. It determines

qx,j+1/2 =minmod
{
θ

qj+1 − qj

1x
,

qj+1 − qj−1

21x
, θ

qj − qj−1

1x

}
, (3.16)

where θ = 1.5, which, in turn, determines the half-space values

q+j+1/2 = qj+1 − 1
2 qx,j+1/2 and q−j+1/2 = qj + 1

2 qx,j+1/2 (3.17a,b)

used in (3.13) and (3.14).
The total variation diminishing Runge–Kutta 2 scheme is used to time step. It

suppresses unnatural extrema as the solution evolves. The scheme is expressed as

2qj(t+1t)= 2qj(t)+1tL (qj(t))+1tL (qj(t)+1tL (qj(t))), (3.18)

where 1t> 0 is a time step satisfying the Courant–Friedrichs–Lewy (CFL) condition
(Gottlieb & Shu 1998).

3.3. Forcing the shallow-water equations
The coupled potential-flow/thin-plate model provides steady forcing for the shallow-
water equations. It defines two conditions at each end of the interval occupied by
the shallow water. This is a sufficient number of boundary conditions for the shallow-
water equations. It allows for bores to be generated at the ends of the plate and also
permits water to enter and exit the interval.

The overwash depth at the interface with the surrounding water is equated to the
height of the free-surface elevation, η(x, t)= ρ∂tΦ(x, 0, t)/g, above the upper surface
of the plate. It is set to zero if the height is negative. Thus,

q(±L, t)=max{η(±L, t)− ηp(±L, t)+C, 0}, where C= h(1− ρp / ρ) (3.19)

is the plate’s equilibrium freeboard, which is calculated via Archimedes’ principle.
Numerical tests showed evanescent wave motions have minor impact on the results
presented in § 4. Thus, the free-surface elevations are approximated as

η(−L, t)≈Re{(Ae−ikL + ReikL)e−iωt} and η(L, t)≈Re{TeikL−iωt}. (3.20a,b)

Similarly, the horizontal velocity of the overwash at the interface with the
surrounding water is equated to the horizontal velocity of the free-surface water
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FIGURE 3. (a,c) The variation from the mean of the overwash depth signal measured
during experiments (dashed red curves) and predicted by the theoretical model (solid
blue curves) from an arbitrary initial time. (b,d) A comparison of snapshots of model
simulations with photos of corresponding experiments. The red arrows highlight the
locations of corresponding bores. It should be noted that, in the simulation snapshots, the
vertical and horizontal lengths are on different scales. (a,b) Results for a 10 mm-thick
PVC plate forced by waves of steepness kA=0.10 and length λ=1.00 m. (c,d) Results for
a 20 mm-thick PP plate forced by waves of steepness kA= 0.08 and length λ= 0.56 m.

particles adjacent to the plate edges, U(x, t)= ∂xΦ(x, 0, t). It is set to zero if the free
surface is not above the plate’s ends. Thus,

u(±L, t)=
{

U(±L, t) if η(±L, t)>−ηp(±L, t)+C,
0 otherwise.

(3.21)

Initially, the shallow water is set to a uniform depth of q = 1 µm and to be
stationary, i.e. u = 0. For a prescribed incident wave and plate, the shallow-water
equations are run to a quasisteady state, i.e. until the overwash depth profile is
approximately time-harmonic. For the results shown in § 4, this occurred after
approximately 40 wave periods.

4. Results

The model accurately predicts the presence of overwash at the centre of the plate
for the 58 test conditions where the probe detected it in the experiments. It predicts
overwash for four of the 14 test conditions in which overwash was not detected in
the experiments.

Figure 3 shows example qualitative comparisons of overwash predicted by the
model and recorded during the experiments. The example tests are for a 10 mm-thick
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FIGURE 4. Overwash mean depth and standard deviation at the centre of each PVC
plate’s upper surface. The blue circles denote the theoretical model predictions and the
red squares denote values extracted from the experimental data.

PVC plate forced by waves of steepness kA = 0.10 and length λ = 1.00 m (a,b),
and a 20 mm-thick PP plate forced by waves of steepness kA = 0.08 and length
λ= 0.56 m (c,d).

Figure 3(a,c) shows the variation of overwash depth about its mean depth at the
plate’s centre. Bores are evident in the signals. The model predicts the shape and
amplitude of the bores accurately, although it is unable to capture the rounded peaks
in the experimental signal. Small bores generated at the sides of the PVC plate cause
the shoulders in its experimental signal.

Figure 3(b,d) shows snapshots of the overwash profile predicted by the model and
photos from the corresponding tests. Note that the direction of the incident wave has
been reversed in the model to match the experiments, and that, in the simulation
snapshots, the horizontal and vertical lengths are on different scales. The red arrows
indicate the locations of the corresponding bores in the model and experiments. They
show that the model predicts the distance between successive bores accurately. The
ESM provides movie comparisons for the two tests. They emphasise that the model
predicts the bore velocities accurately.

Overwash is quantified in terms of the mean and standard deviation of the depth
signal at the centre of the plate. Figure 4 compares the model predictions of these
quantities with the values extracted from the experimental measurements. The data
are separated into different incident wavelengths and presented as functions of the
incident steepness. Results are shown for the PVC plate tests only, as the behaviours
are indicative of those for the PP plate tests, which are contained in the ESM.

The mean depth and standard deviation increase as the incident steepness increases.
Further, for the two thicker plates, h= 10 and 19 mm, the depth and deviation tend to
increase as the incident wavelength increases. Model predictions (not shown) indicate
that the overwash dies out as the incident wavelength increases beyond the values
tested here.

The model predicts the depth and deviation accurately for the smallest incident
wavelength, λ = 0.56 m, except for the test using the thinnest plate and steepest
incident wave, h = 5 mm and kA = 0.15. Neglecting this isolated case, the mean
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FIGURE 5. As in figure 3 for a 19 mm-thick PVC plate forced by waves of steepness
kA= 0.15 and length λ= 1.56 m.

error is 0.16 mm for the depth and 0.04 mm for the deviation. Further, the model
is accurate for the intermediate wavelength, λ = 1.00 m, and the two thicker plates,
with the exception of the steepest incident wave for the 10 mm-thick plate. For the
thinnest plate, the model is accurate only for the least steep incident wave.

The model increasingly overpredicts the depth and deviation as the incident wave
becomes steeper and longer, i.e. the overwash becomes deeper and more variable. The
overprediction is significant in some of the tests using the longest incident wavelength,
λ= 1.56 m. For example, for the longest wavelength, the mean error is 2.44 mm for
the depth and 0.19 mm for the deviation.

Figure 5 shows a qualitative model–experiment comparison, which is typical of the
regime where the model overpredicts the depth and deviation. The ESM contains the
corresponding movies. The photo shows large and turbulent bores in the experiments,
which are generated at the trailing end of the plate as well as at the leading end. The
photo shows an instant when the bores collided, which caused them to break. The
model snapshot shows it predicts that bores are generated at both plate ends. However,
it shows that the shallow-water equations permit the bores to pass through one another
(the mound approximately one-third of the plate length in from the left-hand end).
Turbulence and breaking lead to the significant differences in the depth variations
shown in (a). Further, the variation conceals the 6.64 mm difference in the mean
depths for this test.

5. Conclusions

A theoretical model of overwash of a thin floating plate, forced by regular incident
waves, has been presented. It extends the linear potential-flow/thin-plate model of
coupled wave and plate motions, which neglects overwash, using the nonlinear
shallow-water equations to model the overwash. It was validated via laboratory
experimental measurements of the overwash depth on thin floating plastic plates.

The model was shown to predict qualitative and quantitative overwash properties
accurately for shallow overwash, which generally occurs for incident waves with
relatively short lengths or low steepnesses. This implies that, in this regime, the
linear potential-flow/thin-plate model accurately predicts overwash forcing and the
shallow-water equations accurately model the overwash. Further, the model was
shown to overpredict the overwash depth and deviation increasingly, as the overwash
becomes deeper, i.e. the incident wave becomes longer or steeper. This was shown to
coincide with the experimental regime in which large turbulent bores are generated
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at both the leading and trailing ends of the plates and break when they collide. This
implies that a turbulent version of the shallow-water equations will improve model
accuracy for long steep incident waves.

The model, or an extended version of it, has the potential to act as the basis of
a model of the impact of overwash on wave transmission, as observed in laboratory
experiments by Bennetts & Williams (2015) and Bennetts et al. (2015). This model,
in turn, has the potential to predict the amplitude dependence of the attenuation rate
of ocean waves in the ice-covered ocean with respect to distance travelled, which
was shown by Meylan, Bennetts & Kohout (2015) using in situ measurements of
wave activity. However, as noted in § 1, the laboratory experiments only validate the
model for plates that have rigidities representative of sea ice floes at field scale up to
limited geometric length scales. Moreover, the turbulence observed in the overwash
during the experiments implies that the Reynolds number is an important quantity to
evaluate the overwash properties at field scale. As the Reynolds number scales with
the characteristic length to the power three-halves, the onset of turbulence is expected
for relatively shallower overwash.
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