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We consider the problem of minimizing the number of edges that are contained in triangles,

among n-vertex graphs with a given number of edges. For sufficiently large n, we prove an

exact formula for this minimum, which partially resolves a conjecture of Füredi and Maleki.
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1. Introduction

Mantel [9] proved that a triangle-free graph on n vertices has at most �n2/4� edges. In

other words, a graph on n vertices with at least �n2/4� + 1 edges contains a triangle. A

natural question arises from this classical result: how many triangles must such a graph

have? And, indeed, Rademacher [11] extended Mantel’s result by showing that any graph

on n vertices with �n2/4� + 1 edges contains at least �n/2� triangles, a bound that can

readily be seen to be best possible (see Figure 1).

Erdős [1] conjectured that a further generalization holds: any graph on n vertices with

at least �n2/4� + l edges contains at least l�n/2� triangles, for every 1 � l < �n/2�. Erdős

[1, 2] proved his conjecture for l � cn for some constant c > 0. It is not hard to see that

the bound on the number of triangles is best possible. Indeed, this bound can be achieved

by adding l edges that do not span a triangle to the larger part of the complete bipartite

graph K�n/2�,�n/2� (see Figure 2). The bound on l can also be easily seen to be best possible.

Erdős’s conjecture was resolved by Lovász and Simonovits [7], who also characterized

[8] the n-vertex graphs with �n2/4� + l edges that minimize the number of triangles, for

every l � cn2 and some fixed c > 0. Razborov [12] asymptotically determined the minimal

possible number of triangles in an n-vertex graph with �n2/4� + l edges where l = Ω(n2).

In this paper we consider a similar problem, concerning the number of edges that

are contained in a triangle (we shall call such edges triangular edges), rather than the
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Figure 1. An n-vertex graph with �n2/4� + 1 edges and �n/2� triangles.

l edges

Figure 2. An n-vertex graph with �n2/4� + l edges and l�n/2� triangles.

number of triangles. The first result in this direction was obtained by Erdős, Faudree

and Rousseau [3], who proved that any n-vertex graph with �n2/4� + 1 edges has at least

2�n/2� + 1 triangular edges. This bound is best possible (see Figure 1).

It is very natural, similarly to the question about the number of triangles, to ask how

many triangular edges an n-vertex graph with e edges must have, where e is an integer

satisfying �n2/4� < e �
(
n
2

)
. After some thought, a natural example comes to mind. Given

integers a, b, c, we let G(a, b, c) denote the graph on n = a + b + c vertices, which consists

of a clique A of size a and two independent sets B and C of sizes b and c respectively,

such that all edges between B and A ∪ C are present, and there are no edges between A

and C (see Figure 3).

Note that the graph G(a, b, c) has
(
a
2

)
+ b(a + c) edges and, as long as a � 2 and b � 1,

precisely bc of them are non-triangular. We remark that the extremal example (depicted in

Figure 1) for the aforementioned result by Erdős, Faudree and Rousseau [3] is isomorphic

to G(2, �n/2�, �n/2� − 2).

Füredi and Maleki [4] conjectured that the minimizers of the number of triangular

edges are graphs of the form G(a, b, c), or subgraphs of such graphs.
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C

B

Figure 3. The graph G(a, b, c) (here a = 5, b = 6, c = 5).

Conjecture 1.1. Let n and e > �n2/4� be integers and let G be an n-vertex graph with e

edges that minimizes the number of triangular edges. Then G is isomorphic to a subgraph

of a graph G(a, b, c) for some a, b, c.

The condition that G is isomorphic to a subgraph of a graph G(a, b, c) (rather than

to G(a, b, c) itself) is due to the fact that we specify the exact number of edges, so the

minimizer may be isomorphic to G(a, b, c) with a few edges removed from A ∪ B.

The conjecture implies, in particular, that every n-vertex graph with e edges has at least

g(n, e) triangular edges, where g(n, e) is defined by

g(n, e) = min

{
e − bc : a + b + c = n,

(
a

2

)
+ b(a + c) � e

}
.

Füredi and Maleki [4] proved an approximate version of the latter statement, which reads

as follows.

Theorem 1.2 (Füredi and Maleki [4]). Every n-vertex graph with e edges has at least

g(n, e) − 3n/2 triangular edges.

It is worth noting that, if e � (1/4 + Ω(1))n2 and e � (1/2 − Ω(1))n2, then g(n, e) = Ω(n2)

and
(
n
2

)
− g(n, e) = Ω(n2). Therefore, Theorem 1.2 is asymptotically sharp in the range

where the edge density is bounded away from 1/2 and 1 by small positive constants.

Our main result is an exact version of Theorem 1.2: we shall prove that an n-vertex

graph with e edges has at least g(n, e) triangular edges, provided that n is large enough.

However, the bound on n does not depend on e, that is, as long as n � n0 for some n0,

our theorem holds for any e such that �n2/4� � e �
(
n
2

)
.

Before we state our result precisely, we make a few remarks. Firstly, it turns out to be

more convenient to consider the clearly equivalent problem of maximizing the number of

non-triangular edges among n-vertex graphs with e edges. Thus, given a graph G, we let

t(G) denote the number of non-triangular edges in G. Secondly, given n and e, instead

of restricting our attention to n-vertex graphs with exactly e edges, we consider n-vertex

graphs with at least e edges. Since the removal of a triangular edge cannot decrease the

number of non-triangular edges, this slight reformulation does not change the problem,
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and yet it allows us to concentrate on graphs G(a, b, c) without having to consider their

subgraphs.

We are now ready to state our main result.

Theorem 1.3. There exists n0 such that, for any graph G on at least n0 vertices, there

exists a graph H = G(a, b, c) (for some integers a, b, c) such that |H | = |G|, e(H) � e(G) and

t(H) � t(G).

We note that Theorem 1.3 comes close to proving Conjecture 1.1 (for sufficiently large

n) as it shows that the minimum number of triangular edges is attained by a graph

G(a, b, c) or a subgraph of G(a, b, c). However, we do not prove that such graphs are the

only minimizers.

1.1. Structure of the paper

The proof of our main result, Theorem 1.3, is divided into three parts, according to the

number of edges in the graph G. We treat separately graphs that are close to being

bipartite, that is, whose number of edges is close to n2/4; graphs that are close to being

complete, that is, whose number of edges is close to
(
n
2

)
; and the middle range, where the

number of edges is bounded away from both n2/4 and
(
n
2

)
by a constant factor of n2.

In Section 2 we state Theorems 2.1, 2.2 and 2.3, which are the theorems corresponding

to the aforementioned three ranges, and give an overview of their proofs. In Section 3 we

introduce some notation and describe the tools that we shall use to prove these theorems.

We prove the theorems in Sections 4, 5 and 6. Theorem 2.1, which deals with graphs with

about n2/4 edges, is proved in Section 4; the proof of Theorem 2.2, for the middle range,

which is the most difficult of the three and is the heart of this paper, is given in Section 5;

Theorem 2.3 is proved in Section 6. We conclude the paper with Section 7, where we

make a few remarks and mention some open problems.

2. Overview

We split the proof of Theorem 1.3 into three parts, according to the number of edges in

the graph. We state the theorems corresponding to these three parts here.

The following theorem deals with e that is close to n2/4, that is, e � (1/4 + δ)n2, where

δ is a sufficiently small constant.

Theorem 2.1. There exist n0 and δ > 0 such that the following holds. Let G be a graph

with n � n0 vertices and e edges, where n2/4 � e � (1/4 + δ)n2. Then there exists a graph

H = G(a, b, c) such that |H | = n, e(H) � e and t(H) � t(G).

The next theorem considers the case where e is bounded away from n2/4 and
(
n
2

)
,

namely, where (1/4 + δ)n2 � e � (1/2 − δ)n2 for a constant δ > 0.
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Theorem 2.2. For every δ > 0 there exists n0 such that the following holds. Let G be a

graph with n � n0 vertices and e edges, where (1/4 + δ)n2 � e � (1/2 − δ)n2. Then there

exists a graph H = G(a, b, c) such that |H | = n, e(H) � e and t(H) � t(G).

Finally, we consider the remaining case, where e is close to
(
n
2

)
, that is, e � (1/2 − δ)n2

for a sufficiently small constant δ > 0.

Theorem 2.3. There exist n0 and δ > 0 such that the following holds. Let G be a graph with

n � n0 vertices and e edges, where e � (1/2 − δ)n2. Then there exists a graph H = G(a, b, c)

such that |H | = n, e(H) � e and t(H) � t(G).

It is clear that Theorems 2.1, 2.2 and 2.3 imply Theorem 1.3: we first take a small δ > 0

that works for Theorems 2.1 and 2.3 and then we choose a sufficiently large n0 that works

for all three theorems.

We now give some insight into our proofs. The rough plan for the proof of each of the

theorems is the same. Assuming that G is an n-vertex graph with at least e edges that

maximizes the number of non-triangular edges, we first obtain rough information about

the structure of the graph. In each of the cases, we partition the vertices of G into parts

A,B, C , which relate to the three parts in a graph G(a, b, c), in a way that will be explained

in the proofs. In the next stage we use lower bounds on the number of non-triangular

edges (coming from examples G(a, b, c)) to estimate the sizes of the sets A,B, C . The final

stage uses the estimates on the sizes and some case-specific arguments to conclude that G

has the required structure, namely, that it is isomorphic to the graph G(|A|, |B|, |C|).
The proofs of the two extremal cases, where e is close to either n2/4 or

(
n
2

)
, are

considerably easier than that of the middle range. The main reason for this is that in

the extremal cases it is fairly easy to show that the graph G should be close to a graph

G(a, b, c), whereas in the middle range, getting any handle on the structure of the graph is

hard, and the initial structural properties that we find are less restrictive than in the two

extremal cases.

We introduce two tools which will be helpful in the proof of the middle range. The first

one is a process of ‘compression’ that allows us to ‘simplify’ a graph without decreasing

the number of edges or non-triangular edges. The second is the ‘Exchange Lemma’, which

allows us to ‘exchange’ edges with non-triangular edges and vice versa. In other words,

it allows us to replace a graph by another graph with (somewhat) fewer edges, but more

non-triangular edges and vice versa. Both of these tools will be presented and explained

in greater detail in Section 3.

3. Tools

In this section we introduce the tools that we will use throughout the paper. We start by

describing some notation and simple definitions in Section 3.1. We introduce the notion

of weighted graphs in Section 3.2 and list some results by Füredi and Maleki [4] that

involve weighted graphs. An important tool in the proof of the middle range is the so-

called Exchange Lemma, Lemma 3.7. We prove Lemma 3.7 and explain its importance in
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Section 3.3. Our last tool is the notion of compressed graphs, which is a class of graphs with

a somewhat restrictive structure. In Section 3.4, we give our definition of a compressed

graph and prove Lemma 3.10, which shows that, in order to prove Theorem 1.3, it suffices

to prove it for compressed graphs.

3.1. Notation

The following notation is standard. Write |G| for the order of a graph G and e(G) for the

number of edges in G. We denote the degree of a vertex u of G by degG(u), or deg(u) if

G is clear from the context. Given a set U of vertices of G, we let G[U] denote the graph

induced by G on U.

We now turn to notation that is more specific to our context. An edge e ∈ E(G) is

called triangular if it is an edge of at least one triangle in G. Similarly, we say that e

is non-triangular if it is not an edge of any triangle. We let t(G) denote the number of

non-triangular edges of G.

Given a vertex u, a vertex v is a triangular neighbour of u if uv is a triangular edge.

Similarly, the triangular neighbourhood of u is the set of triangular neighbours of u, and

the triangular degree of u is the number of triangular edges adjacent to u. The notions

of a non-triangular neighbour, non-triangular neighbourhood and non-triangular degree are

defined similarly. We denote the non-triangular degree of u in G by degnon-Δ(u). A vertex

u is called triangular if degnon-Δ(u) = 0, that is, if all edges adjacent to u are triangular.

We say that a set of vertices U ⊆ V (G) is a set of clones if any two vertices in U have

the same neighbourhood in G. In particular, a set of clones is an independent set. For

example, in G(a, b, c) the sets B and C are sets of clones. We remark that the notion of

clones will play an important role in the definition of a compressed graph (which is given

in Section 3.4).

We now introduce the natural notion of an optimal graph.

Definition 3.1. A graph G on n vertices is called optimal if there does not exist a graph H

on n vertices such that either t(H) > t(G) and e(H) � e(G) or e(H) > e(G) and t(H) � t(G).

In other words, G is optimal if it maximizes t(G) among graphs with n vertices and at

least e(G) edges and, in addition, it maximizes e(G) among graphs with n vertices and at

least t(G) non-triangular edges.

It clearly suffices to prove the main result, Theorem 1.3, for optimal graphs. The

following observation is a simple property of optimal graphs.

Observation 3.2. Let G be an optimal graph and let u, v be vertices of G. Then at least

one of deg(u) � deg(v) − 1 and degnon-Δ(u) � degnon-Δ(v) − 1 holds.

Proof. Suppose that deg(u) � deg(v) − 2 and degnon-Δ(u) � degnon-Δ(v) − 2. Consider the

graph G′ obtained by removing the edges incident with u and adding the edges between

u and the neighbours of v (do not add the loop uu if u, v are adjacent in G). Then

e(G′) � e(G) − deg(u) + deg(v) − 1 > e(G) and, similarly, t(G′) > t(G), contradicting the

assumption that G is optimal.
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We shall use big-O notation extensively throughout this paper, so, for the sake of clarity,

we briefly explain how we interpret the symbols O, o and Ω. First of all, we always assume

that n is large, so, whenever we write down a statement or an inequality, we only suppose it

to hold for sufficiently large n. We write f(n) = O(g(n)) if there exists an absolute constant

C > 0 such that |f(n)| � Cg(n). In particular, the expression f(n) = g(n) + O(h(n)) consists

of the following inequalities: g(n) − Ch(n) � f(n) � g(n) + Ch(n). Similarly, f(n) = o(g(n))

means that limn→∞ |f(n)|/g(n) = 0. Finally, we write f(n) = Ω(g(n)) if f(n) � Cg(n) for

an absolute constant C > 0. To ensure this notation makes sense, we will only write

O(g(n)), o(g(n)),Ω(g(n)) for functions g(n) which are positive for sufficiently large n. We

remark that Ω(g(n)) always denotes a positive quantity, while O(g(n)) and o(g(n)) may

denote positive and negative quantities.

Throughout this paper, we omit integer parts whenever they do not affect the

argument.

3.2. Weighted graphs

Our most basic tool is the concept of a weighted graph, which is a graph whose vertices

have been assigned non-negative real weights. The total weight of a weighted graph G

is the sum of the weights of its vertices and is denoted by |G|. For technical reasons,

throughout this paper we require that the number of vertices of a weighted graph does

not exceed its total weight. Equivalently, we require that the average weight of a vertex

in a weighted graph is at least 1.

For containment purposes, we identify weighted graphs with their underlying graphs.

For instance, given weighted graphs G and H , we say that H is a weighted subgraph of G

if, as graphs, H is an induced subgraph of G. Note that this definition does not impose

any conditions on the weight function of H . In particular, if H is a weighted subgraph of

G then the weight in H of a vertex in H may be larger, or smaller, than its weight in G.

Similarly, an edge of a weighted graph is triangular (non-triangular) if it is a triangular

(non-triangular) edge of the underlying graph. We remark that, unless explicitly stated

otherwise, vertices of zero weight are taken into account when switching to the underlying

graph.

Given a weighted graph G with weight function w : V (G) → R
�0, we define e(G) to be

the sum of w(u)w(v) over all edges uv of G. Similarly, we define t(G) to be the same sum

over the non-triangular edges of G. Note that any graph G can be seen either as a graph

or as a weighted graph whose every vertex has weight 1, and the definitions of |G|, e(G)

and t(G) are independent of the point of view.

The notions of degree and non-triangular degree of a vertex may be similarly generalized

to weighted graphs. For instance, the degree of a vertex u of a weighted graph is the sum

of weights of the neighbours of u. Note that the degree and non-triangular degree of a

vertex do not depend on the weight of that vertex itself. We use the notation deg(u) and

degnon-Δ(u) for the degree and the non-triangular degree of a vertex u in a weighted graph.

We now define good weighted graphs (see Figure 4), which are weighted equivalents of

the graphs G(a, b, c) (see Figure 3).
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u

v

K

Figure 4. A good weighted graph.

Definition 3.3. We call a weighted graph G good if its vertex set can be partitioned into

a set K , which induces a clique, and a pair (u, v) of adjacent vertices such that uv is the

only non-triangular edge in G.

Moreover, if there are no edges between v and K , and if u is adjacent to all vertices

in K , then we say that G is a very good weighted graph. We remark that, according to

this definition, if K consists of a single vertex, then G cannot be very good. On the other

hand, if |K| = 1, then G is good if and only if uv is the only edge in G, in which case we

have e(G) � |G|2/4.

Let G be a good graph with e(G) > |G|2/4 and let {K, {u, v}} be the partition of V (G)

as described above. We know that in this case |K| � 2. Moreover, we may assume that

the weight of v does not exceed the weight of u. Since uv is a non-triangular edge, u and v

do not have common neighbours in K . Therefore, by removing the edges between v and

K and adding all possible edges between u and K , we obtain a very good graph G′ such

that |G′| = |G|, e(G′) � e(G) and t(G′) = t(G).

We observe that, provided that a � 2, a graph G(a, b, c) can be represented by a very

good weighted graph, by replacing the independent parts of sizes b and c by vertices

of weight b and c respectively. This is an example of the correspondence between an

independent set of clones I and a vertex of weight |I | with the same neighbourhood,

which we shall use on multiple occasions. We remark that, in general, good and very good

weighted graphs may have non-integer weights.

Motzkin and Straus [10] used weighted graphs to give an alternative proof of Turán’s

theorem [13]. They pointed out that Turán’s theorem for weighted graphs is very easy:

given a weighted graph G, there exists a weighted graph H that satisfies |H | = |G| and

e(H) � e(G), and, as a graph, is a complete subgraph of G. Therefore, among Kr+1-

free weighted graphs with total weight α � r, e(G) is maximized when G is a complete

graph with r vertices whose every vertex has weight α/r. If α/r is an integer, then

this corresponds to a complete r-partite graph, implying Turán’s theorem. However, if

α/r is not an integer, then this argument gives only an approximate form of Turán’s

theorem, and Motzkin and Straus needed an additional argument to recover the full

theorem.

Füredi and Maleki [4] modified the aforementioned observation of Motzkin and Straus

to also give t(H) � t(G) at the cost of making the structure of H more

complicated.
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Lemma 3.4 (Füredi and Maleki [4]). Let G be a weighted graph with t(G) > 0. Then G

contains a weighted subgraph H which is a good weighted graph and satisfies |H | = |G|,
e(H) � e(G) and t(H) � t(G).

We will use both this result and the key observation that leads to its proof. We state

and prove this observation next, but we do not present the careful analysis that Motzkin

and Straus perform to complete the proof of Lemma 3.4.

Lemma 3.5 (Füredi and Maleki [4]). Let G be a weighted graph and suppose that I is

an independent set of three vertices. Then there exists a weighted graph H , which can be

obtained from G by removing one of the vertices in I and, possibly, changing the weights of

the other two vertices in I , such that |H | = |G|, e(H) � e(G) and t(H) � t(G).

Proof. Denote I = {u1, u2, u3}, di = deg(ui) and ti = degnon-Δ(ui). It is not hard to see that

there exist reals s1, s2, s3, not all 0, such that s1d1 + s2d2 + s3d3 � 0, s1t1 + s2t2 + s3t3 � 0

and s1 + s2 + s3 = 0. For real λ we let Gλ denote the weighted graph obtained by adding

λsi to the weight w(ui) of ui for each i ∈ [3]; this definition is valid for the values of λ for

which w(ui) + λsi � 0 for all i ∈ [3]. Pick λ > 0 such that w(ui) + λsi � 0 for i ∈ [3] with

equality for at least one value, say 1. Then |Gλ| = |G|, e(Gλ) � e(G) and t(Gλ) � e(G), so

the weighted graph H = Gλ \ {u1} satisfies the requirements of the lemma.

Füredi and Maleki deduce their main result from Lemma 3.4. We present their theorem

with minor modifications, which make it more suitable for our application.

Corollary 3.6 (Füredi and Maleki [4]). Let G be a weighted graph G with |G| = n. Then

there exists a graph H = G(a, b, c) satisfying |H | = n, e(H) � e(G) and t(H) � t(G) − 5n.

Proof. We begin by recalling that, according to our definition of a weighted graph, G

has at most n vertices. The parameter e(G) is maximized when the underlying graph of G

is complete, in which case

2e(G) =
∑

u∈V (G)

w(u)(n − w(u)) = n2 −
∑

u∈V (G)

w2(u).

By the arithmetic–quadratic mean inequality, the right-hand side is maximized when

w(u) = 1 for all u. Therefore, e(G) �
(
n
2

)
. As a result, we may assume that t(G) > 5n

because otherwise the complete graph Kn satisfies the requirements. We may also assume

that e(G) > n2/4 because otherwise G(2, �n/2�, �n/2� − 2) works.

Let H be a good weighted graph that satisfies |H | = n, e(H) � e(G) and t(H) � t(G),

whose existence is ensured by Lemma 3.4. There exists a partition {K, {u, v}} of V (H)

such that K induces a clique and uv is the only non-triangular edge in H . Denote the sum

of weights (in H) of the vertices in K by α and the weights of u and v by β and γ; we

may assume that β � γ. Trivially, we have t(H) = βγ. Moreover, since no vertex in K is

adjacent to both u and v, we also have e(H) � α2/2 + αβ + βγ.
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We now show that for some integers a, b, c � 0 the graph G′ = G(a, b, c) has the desired

properties. It is enough to choose a, b, c so that

a + b + c = n, (3.1)(
a

2

)
+ (n − b)b � α2

2
+ (n − β)β, (3.2)

bc � βγ − 5n. (3.3)

Of course, the plan is to set a ≈ α, b ≈ β, c ≈ γ, but there are some tedious details to

check. We set a = �α� + 2 and, depending on whether β � n/2 or β < n/2, either b = �β�
or b = �β�. Finally, we set c = n − a − b. Note that from the assumption that t(G) > 5n,

it follows that β, γ > 5. In particular, since c � γ − 4, c is positive. Now, (3.1) is immediate

from the definition, (3.3) is immediate from the fact that b � β − 1 > 0 and c � γ − 4 > 0,

and the only case when (3.2) is not immediate is when (n − 1)/2 � β � (n + 1)/2. However,

in this case the difference between (n − β)β and (n − b)b is at most 1, and it is compensated

by the difference between
(
a
2

)
and α2/2.

3.3. Exchange Lemma

The following lemma, Lemma 3.7, will be very useful in the proof of our main result in

the middle range. Roughly speaking, it says that there exists a positive number ζ, which

we informally call the ‘exchange rate’, with the following property. For any graph G, not

too dense and not too sparse, and any number x, not too big and not too small, we can

exchange x edges of G for at least ζx non-triangular edges. That is, there exists a graph

H such that |H | = |G|, e(H) � e(G) − x and t(H) � t(G) + ζx. Similarly, we can exchange

x non-triangular edges for at least ζx edges.

This tool is very useful to us, because now we can arrive at a contradiction by finding

a graph G for which one of the parameters e(G) or t(G) is too large, even if the other

parameter is slightly smaller than would normally be needed for a contradiction.

For any positive integer n and real e �
(
n
2

)
, we let t(n, e) denote the maximum number of

non-triangular edges among n-vertex graphs with at least e edges. Note that if e � �n2/4�,
then t(n, e) = �n2/4�. Moreover, for any n, the function t(n, e) is a non-increasing function

of e.

Lemma 3.7. For any δ > 0 there exist ζ, ε, C > 0 and n0 such that the following holds for

any weighted graph G on n � n0 vertices and for any real x satisfying Cn � x � εn2.

(1) If e(G) � e + x for some real e satisfying n2/4 � e � (1/2 − δ)n2, then t(G) � t(n, e) −
ζx.

(2) If t(G) � t(n, e) + x for some real e � (1/4 + δ)n2, then e(G) � e − ζx.

Here is a brief overview of the proof of Lemma 3.7. To prove the first statement, we

note that by Lemma 3.4, we may assume that G is good. We shift the weights of the

vertices in G so as to increase t(G) while decreasing e(G) only slightly. An upper bound

on t(G) then follows from Corollary 3.6. The second statement is proved in a similar way.
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Proof of Lemma 3.7. Let δ ∈ (0, 1/10). To prove the first statement, suppose that n, e, x

satisfy e � (1/2 − δ)n2 and Cn � x � εn2 for constants C and ε that will be determined

later. Let G be a weighted graph such that |G| = n and e(G) � e + x. We note that t(n, e) �
(δ3/2/2)n2. Indeed, the graph G(a, b, c) where c = (δ/2)n, b =

√
δ n and a = n − b − c has

at least (1/2 − δ)n2 edges and (δ3/2/2)n2 non-triangular edges. By taking ε, ζ to satisfy

εζ � δ3/2/4, we may assume that

t(G) � δ3/2

4
n2, (3.4)

because otherwise we get t(G) � t(n, e) − ζx for free. By Lemma 3.4, we may assume

that G is a good weighted graph, so V (G) can be partitioned into a clique K and two

adjacent vertices u and v such that uv is the only non-triangular edge. Let α denote the

sum of weights of vertices in K and let β and γ be the weights of u and v respectively.

By inequality (3.4), we have β, γ � (δ3/2/4)n. Moreover, the removal of the edges spanned

by K would make G bipartite, so we have e(G) � n2/4 + α2/2 � n2/4 + αn/2. Recall that

e(G) � e + x � n2/4 + x, and hence α � 2x/n.

Let G′ be a weighted graph obtained by increasing the weight of u by x/n and decreasing

the weights of the vertices in K so that the new sum of their weights is α − x/n. Trivially,

e(G′) � e(G) − x � e and t(G′) = (β + x/n)γ � t(G) + (δ3/2/4)x. Furthermore, it follows

from Corollary 3.6 that t(G′) � t(n, e) + 5n, and hence

t(G) � t(n, e) + 5n − δ3/2

4
x � t(n, e) −

(
δ3/2

4
− 5

C

)
x.

By taking C large and ζ small with respect to δ, we can ensure that t(G) � t(n, e) − ζx.

To prove the second statement, suppose that n, e, x satisfy e � (1/4 + δ)n2 and 10n <

x � εn2 for a sufficiently small constant ε > 0. Let G be a weighted graph such that |G| = n

and t(G) � t(n, e) + x. Note that by taking ε, ζ to satisfy εζ � δ/2, we may assume that

e(G) �
(

1

4
+

δ

2

)
n2, (3.5)

because otherwise we can conclude immediately that e(G) � e − ζx. Furthermore, by

Lemma 3.4, we may assume that G is a good weighted graph. In fact, since e(G) > n2/4,

we may assume that G is very good. Let {K, {u, v}} be a partition of V (G) into a clique K

and two vertices u, v such that uv is the only non-triangular edge in G, u is adjacent to all

vertices of K and there are no edges between v and K . Moreover, let α be the total weight

of vertices in K and let β and γ be the weights of u and v. As before, it follows from

inequality (3.5) that α �
√
δ n. Moreover, K contains at least two vertices, so in particular

a vertex w ∈ K whose weight does not exceed α/2. Let G′ be the weighted graph obtained

by reducing the weight of v by x/2n (note that βγ = t(G) � x, so γ � x/n) and increasing

the weight of w by the same amount. Then, since x > 10n,

t(G′) = β(γ − x/2n) � t(G) − x/2 � t(n, e) + x/2 > t(n, e) + 5n. (3.6)

Furthermore, since α �
√
δ n,

e(G′) � e(G) +
x

2n
· α
2

� e(G) +

√
δ

4
x.
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By Corollary 3.6 and inequality (3.6), e(G′) < e, because otherwise there exists a graph

H with n vertices, at least e edges and more than t(n, e) non-triangular edges, which

contradicts the definition of t(n, e). Thus, e(G) � e − ζx for any ζ �
√
δ /4.

3.4. Compressed graphs

We now present the notion of compressed graphs. Many proofs of Turán’s theorem,

including the one given by Motzkin and Straus [10], first show that, among Kr+1-free

graphs on a given number of vertices, the greatest number of edges is achieved by a

complete r-partite graph. As a result, it is enough to solve the problem for complete

r-partite graphs. In this paper the class of compressed graphs will play a role similar to

that of complete r-partite graphs in the proof of Motzkin and Straus. Compressed graphs

have fairly simple structure (though not quite as simple as complete r-partite graphs),

and we shall see from Lemma 3.10 that it suffices to prove Theorem 1.3 for compressed

graphs.

In the following definition, as well as the rest of the paper, the logarithm is taken in

base 2.

Definition 3.8. A graph G on n vertices is called compressed if the following assertions

hold.

(1) Any independent set I ⊂ V (G) can be partitioned into at most 3 log n sets of clones.

Moreover, this can be done in such a way that at most four of the sets of clones into

which I is partitioned have size larger than 3n1/3.

(2) The set of triangular vertices in G, which we denote by U, induces a clique in G.

Furthermore, the vertices of U all have the same neighbourhood outside of U.

To demonstrate how compressed graphs may be of use to us, we mention the following

observation.

Observation 3.9. Let G be a compressed graph on n vertices and let I be an independent

set of size at least 45n1/3 log n. Then I contains a set of clones of size at least |I |/5.

Indeed, let m be the size of the largest set of clones in I . Then condition (1) of

Definition 3.8 implies that |I | � 4m + 9n1/3 log n � 4m + |I |/5, so m � |I |/5.

The following lemma shows that, for the purpose of proving Theorem 1.3, we may

assume without loss of generality that the given graph is compressed.

Lemma 3.10. Let G be a graph on n vertices. Then there exists a compressed graph H such

that |H | = n, e(H) � e(G) and t(H) � t(G).

Proof. Given a graph G on n vertices, we let H be a weighted graph with the following

properties.

• |H | = n, e(H) � e(G) and t(H) � t(G).

• All vertices of H have integer weights.
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• The number of vertices of H is minimal under the first two conditions.

• The number of vertices of weight at least 3n1/3 is minimal under the first three

conditions.

We shall show that the graph, obtained by replacing each vertex of H by a set of clones

of size equal to the weight of the vertex, is compressed. To that end, we show that H

has no independent set of size larger than 3 log n, and that the vertices with weight larger

than 3n1/3 do not contain an independent set of size at least five.

We first show that every independent set of H contains at most 3 log n vertices. Suppose

to the contrary that H contains an independent set I of size m � 3 log n. For any set

A ⊆ I we denote

SA =
∑
x∈A

deg(x), TA =
∑
x∈A

degnon-Δ(x).

Trivially, SA � n2 for every A ⊆ I . Since(
m

m/2

)
� 2m√

2m
� n3

√
2n

> n2,

it follows from considering sets of size m/2 that there exist distinct sets A,B ⊆ I such that

|A| = |B| and SA = SB . By replacing A and B by A \ B and B \ A, we may assume that

A ∩ B = ∅. Also, without loss of generality, TA � TB .

Let w be the minimum weight of a vertex in B. Consider the weighted graph H ′,

obtained by increasing the weight of each vertex in A by w and decreasing the weight of

each vertex in B by w (and removing vertices whose weight becomes 0). Then

|H ′| = |H |, e(H ′) = e(H) + w(SA − SB) = e(H), t(H ′) = t(H) + w(TA − TB) � t(H),

and the number of vertices in H ′ is smaller than the number of vertices in H , contradicting

the choice of H . It follows that every independent set of H contains at most 3 log n vertices.

We now show that, given an independent set of five vertices {u1, . . . , u5} in H , at least

one of the vertices ui has weight at most 3n1/3. Indeed, suppose that the weight of each

of the vertices exceeds 3n1/3. For any quintuple of non-negative integers k = (k1, . . . , k5),

we denote

Sk = k1 deg(u1) + · · · + k5 deg(u5), Tk = k1 degnon-Δ(u1) + · · · + k5 degnon-Δ(u5).

Consider only the quintuples, k that satisfy k1 + · · · + k5 = 3n1/3: there are(
3n1/3 + 4

4

)
� 81

24
n4/3

such quintuples, and for each of them we have Sk � 3n4/3. Thus, there exist distinct

quintuples k and l, each of whose coordinates are non-negative integers summing to 3n1/3,

such that Sk = Sl . Without loss of generality, we may assume that Tk � Tl .

Consider the weighted graph H ′, obtained by repeatedly adding ki − li to the weight of

each vertex ui, as long as all weights remain non-negative (note that this process will end

because ki < li for some i ∈ [5]). The resulting weighted graph H ′ has the same number of

vertices as H and satisfies |H ′| = |H |, e(H ′) = e(H) and t(H ′) � t(H). Furthermore, since
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|ki − li| � 3n1/3, for some i ∈ [5] the weight of ui in H ′ is smaller than 3n1/3. In particular,

H ′ has fewer vertices with weight at least 3n1/3 than H . This is, again, a contradiction to

the choice of H . It follows that every independent set in H has at most four vertices with

weight at least 3n1/3.

Recall that H has integer weights, so we may view it as a graph where a vertex of

weight w represents a set of clones of size w. The graph H satisfies condition (1) of

Definition 3.8. Let U denote the set of triangular vertices in H . Adding all edges missing

from H[U] would not form triangles with edges that were previously non-triangular,

so we may assume that U induces a clique in H . Let u ∈ U be a vertex of maximum

degree in H . For every v ∈ U \ {u}, we remove the edges between v and V (H) \ U and

add the edges between v and the neighbourhood of u in V (H) \ U. This process does

not decrease the total number of edges and, moreover, all edges that were previously

non-triangular remain non-triangular. We denote the resulting graph by H ′ and note that

it satisfies condition (2). Furthermore, if I ⊂ V (H) \ U and v ∈ U are such that I ∪ {v} is

an independent set in H ′, then I ∪ {u} is an independent set in H . Therefore, H ′ retains

condition (1), and hence H ′ is compressed.

4. Almost bipartite

In this section we prove Theorem 2.1.

Theorem 2.1. There exist n0 and δ > 0 such that the following holds. Let G be a graph

with n � n0 vertices and e edges, where n2/4 � e � (1/4 + δ)n2. Then there exists a graph

H = G(a, b, c) such that |H | = n, e(H) � e and t(H) � t(G).

Once again, some of the statements and inequalities that we write down only hold for

sufficiently large n. Whenever this happens, we assume that n is, indeed, large enough to

satisfy them.

Throughout this section we assume that G is a graph with n vertices and e = (1/4 + ε)n2

edges, where 0 < ε � δ for a small positive constant δ which we will (implicitly) determine

later. Moreover, we assume that G is optimal (this means that increasing the number

of edges reduces the number of non-triangular edges and vice versa: see Definition 3.1)

and compressed (see Definition 3.8). In fact, for this proof we only need condition (2) of

Definition 3.8, which is much simpler than condition (1).

However, to be able to make the assumptions described above, we have to deal with a

small technicality regarding the condition e(G) � (1/4 + δ)n2. Indeed, it is true that given

G it is always possible to find an optimal and compressed graph G′ satisfying |G′| =

n, e(G′) � e and t(G′) � t(G), but we cannot guarantee that e(G′) � (1/4 + δ)n2 holds. To

deal with this issue, we use the Exchange Lemma (Lemma 3.7). Indeed, if e(G′) � e + Ω(n2),

then Lemma 3.7 implies that t(G) � t(G′) � t(n, e) − Ω(n2). If this happens, then we take a

graph H with n vertices and at least e edges, satisfying t(H) = t(n, e). By Corollary 3.6 there

exists a graph H ′ = G(a, b, c) such that |H ′| = n, e(H ′) � e and t(H ′) � t(n, e) − 5n � t(G),

so we are done in this case. Therefore, we may assume that e(G′) � e + o(n2), and so

e(G′) � (1/4 + δ)n2 holds for a relaxed value of δ.
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To get a rough idea about how large t(G) is, we derive the following lower bound.

Consider the graph G(a, b, c) where a = �
√

2ε n� + 1, b = �n/2� and c = n − a − b =

�n/2� − �
√

2ε n� − 1. Then

e(G(a, b, c)) =

(
a

2

)
+ (n − b)b �

(
1

4
+ ε

)
n2, t(G(a, b, c)) = bc �

(
1

4
−

√
ε

2
− O

(
1

n

))
n2.

Since G is optimal, it follows that

t(G) �
(

1

4
−

√
ε

2
− O

(
1

n

))
n2. (4.1)

Moreover, we have e � �n2/4� + 1, so in fact εn2 � 1/2 and therefore 1/n = O(
√
ε ). It

follows that

t(G) �
(

1

4
− O(

√
ε )

)
n2. (4.2)

We would like to make a brief comment regarding the use of big-O notation in (4.1),

(4.2) and other similar inequalities. According to our definition, O(g(n)) stands for a

positive or negative quantity, so −O(g(n)) is exactly the same as +O(g(n)). We usually

choose the sign before the big-O which looks more natural. However, we do not assume

that −O(g(n)) is necessarily negative or that +O(g(n)) is necessarily positive.

We divide the proof of Theorem 2.1 into four parts, represented by the following four

propositions. In the first of these propositions we prove that G has the following structure

(see Figure 5), which resembles a graph G(a, b, c).

Proposition 4.1. There exists a partition {A,B, C, D} of V (G) satisfying the following

assertions.

(1) All possible edges between B and C are present in G and are non-triangular. Moreover,

|B|, |C| � (1/2 − O(
√
ε ))n. In particular, B and C are independent sets.

(2) There are no edges between A and C or between B and D.

(3) The induced subgraphs G[A] and G[D] do not have isolated vertices.

(4) Every vertex in A ∪ D is incident with at most O(
√
ε n) non-triangular edges of G.

Moreover, the sets A and D do not span non-triangular edges (but there may be non-

triangular edges between A and D).

Here the proof of Theorem 2.1 splits into two cases, ε � κ/n and ε � κ/n, where κ is

a small absolute positive constant that will be (implicitly) determined later. If ε is small,

then we complete the proof directly.

Proposition 4.2. There exists a constant κ > 0 with the property that if ε � κ/n, then

G ∼= G(a, b, c) for some a, b, c.

If ε is large, then we first obtain sharp estimates for the sizes of the sets A,B, C, D.
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A

D

B

C

Figure 5. The partition {A,B, C, D}.

Proposition 4.3. Let G and A,B, C, D satisfy the conclusions of Proposition 4.1, and sup-

pose that |B| � |C| and that ε � κ/n for some constant κ > 0. Then

|A ∪ D| = (
√

2ε + Oκ(ε))n,

|B| =

(
1

2
− Oκ(ε

3/4)

)
n,

|C| =

(
1

2
−

√
2ε + Oκ(ε

3/4)

)
n.

Here f(n) = Oκ(g(n)) means that there exists a constant Cκ > 0, which depends on κ,

such that |f(n)| � Cκg(n).

We can now complete the proof of Theorem 2.1 in the case where ε is large.

Proposition 4.4. Let κ > 0 be a constant. If ε � κ/n, then G ∼= G(a, b, c) for some a, b, c.

Proposition 4.4 is a typical example of a statement that holds for sufficiently large n.

Proof of Theorem 2.1. Theorem 2.1 immediately follows from Propositions 4.2 and 4.4.

The rest of this section is devoted to the proofs of Propositions 4.1, 4.2, 4.3 and 4.4,

which are presented in separate subsections.

4.1. Structure of an optimal graph

In this subsection we prove Proposition 4.1 (see also Figure 5). Recall that G is a fixed

optimal graph with n vertices and e = (1/4 + ε)n2 edges, where 0 < ε � δ for a fixed small

constant δ > 0.

Proposition 4.1. There exists a partition {A,B, C, D} of V (G) satisfying the following as-

sertions.
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(1) All possible edges between B and C are present in G and are non-triangular. Moreover,

|B|, |C| � (1/2 − O(
√
ε ))n. In particular, B and C are independent sets.

(2) There are no edges between A and C or between B and D.

(3) The induced subgraphs G[A] and G[D] do not have isolated vertices.

(4) Every vertex in A ∪ D is incident with at most O(
√
ε n) non-triangular edges of G.

Moreover, the sets A and D do not span non-triangular edges (but there may be non-

triangular edges between A and D).

The first assertion follows fairly easily from the fact that the number of non-triangular

edges is almost n2/4. To complete the proof we use basic properties of optimal graphs.

Proof of Proposition 4.1. Let H be the spanning subgraph of G whose edges are the

non-triangular edges of G. We note that H is a triangle-free graph with close to n2/4

edges, which implies that H is close to being a complete bipartite graph. This enables

us to find independent (with respect to G) sets U and W of size almost n/2 each, such

that H contains almost all of the possible edges between them. This idea is rigorously

implemented in the following claim.

Claim 4.5. There exist disjoint non-empty independent sets U,W ⊆ V (G) such that every

vertex in U has at least (1/2 − O(ε1/4))n non-triangular neighbours in W and vice versa. In

particular, |U|, |W | � (1/2 − O(ε1/4))n.

Proof. Inequality (4.2) states that e(H) = t(G) � (1/4 − c
√
ε )n2 for some absolute con-

stant c > 0. From this we deduce that, writing d =
√
c , there are at most 2dε1/4n vertices

in H of degree smaller than (1/2 − dε1/4)n. Indeed, suppose that we can find a set S

consisting of exactly 2dε1/4n vertices of degree smaller than (1/2 − dε1/4)n in H . Since H

is triangle-free, e(H \ S) � (n − |S |)2/4. Hence,

e(H) <
(n − |S |)2

4
+ |S |

(
1

2
− dε1/4

)
n

=
n2

4
− |S |

(
dε1/4n − |S |

4

)

=

(
1

4
− d2

√
ε

)
n2

=

(
1

4
− c

√
ε

)
n2,

a contradiction.

Let u ∈ V (G) be any vertex with degH (u) � (1/2 − dε1/4)n. Let U denote the set of

vertices in NH (u) that have at least (1/2 − dε1/4)n neighbours in H . Since the edges

of H are non-triangular in G, it follows that U is independent in G. Moreover, |U| �
degH (u) − 2dε1/4n � (1/2 − O(ε1/4))n.

Now let v ∈ U and let W denote the set of vertices in NH (v) whose degree in H is at least

(1/2 − dε1/4)n. As before, W is independent in G and has size at least (1/2 − O(ε1/4))n.

https://doi.org/10.1017/S0963548317000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548317000189


Minimizing the Number of Triangular Edges 597

Finally, every vertex in U has at least (1/2 − dε1/4)n − (n − |U| − |W |) � (1/2 − O(ε1/4))n

non-triangular neighbours in W , and vice versa.

Let U and W be the disjoint independent sets given by Claim 4.5. The following similar

claim allows us to enlarge U and W to obtain sets B and C which will be shown to satisfy

the requirements of Proposition 4.1.

Claim 4.6. There exist disjoint independent sets B,C ⊆ V (G), satisfying U ⊆ B and W ⊆
C and |B ∪ C| � (1 − O(

√
ε ))n, such that every vertex in B has at least 2n/5 non-triangular

neighbours in C and vice versa.

Proof. We first show that there are at most O(
√
ε n) vertices of degree at most 21n/50 in H

(where H , the graph of non-triangular edges of G, was defined in the proof of the previous

claim). To this end we recall inequality (4.2), which states that e(H) = t(G) � (1/4 − c
√
ε )n

for some absolute constant c. Importantly, this constant does not depend on δ, so we

may choose δ to satisfy c
√
δ � 1/200. Recall that δ is an upper bound for ε, so we have

c
√
ε � 1/200.

Suppose that S is a set consisting of exactly 25c
√
ε n vertices of degree at most 21n/50

in H . Then, similarly to the previous claim,

e(H) � (n − |S |)2
4

+ |S |21n

50

=
n2

4
− |S |

(
2n

25
− |S |

4

)

<

(
1

4
− c

√
ε

)
n2,

a contradiction to the choice of c. Therefore, there are at most O(
√
ε n) vertices with

degree at most 21n/50 in H .

Recall that every vertex in U has at least (1/2 − O(ε1/4))n � 2n/5 non-triangular

neighbours in W and vice versa. Here we implicitly assume that δ is small enough

to make this inequality true, and we shall do so throughout this proof.

Let X denote the set of vertices in V (G) \ (U ∪ W ) whose degree in H is at least 21n/50.

We note that no vertex in X has neighbours in both U and W . Indeed, suppose that

v ∈ X is adjacent to u ∈ U and w ∈ W . Since v is not adjacent to any non-triangular

neighbour of either u or w, it has at most O(ε1/4n) neighbours in U and at most O(ε1/4n)

neighbours in W , implying that degH (v) � O(ε1/4n), a contradiction to the assumption

that degH (v) � 21n/50.

Let Y be the set of vertices in X that are adjacent to vertices in U and, similarly, let

Z be the set of vertices in X that have neighbours in W . Then every vertex in Y has at

least 21/50n − O(ε1/4n) � 2n/5 non-triangular neighbours in U and no neighbours in W .

In particular, since |U| � n − |W | < 4n/5, any two vertices in Y share a non-triangular

neighbour in U, and hence Y is an independent set in G. Denote B = Y ∪ W and

C = Z ∪ U. Then B and C are independent sets such that every vertex in B has at least

2n/5 non-triangular neighbours in C , and vice versa. Furthermore, V (G) \ (B ∪ C) is the
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set of vertices with fewer than 21n/50 neighbours in H , so |V (G) \ (B ∪ C)| = O(
√
ε n),

finishing the proof of Claim 4.6.

We can now finish the proof of Proposition 4.1. Let B and C be as in Claim 4.6.

Since every vertex in B ∪ C has at least 2n/5 non-triangular neighbours, it follows from

Observation 3.2 and the assumption that G is optimal that every vertex in G has degree

at least 2n/5 − 1. We conclude (similarly to the proof of Claim 4.6) that no vertex in G

has neighbours in both B and C . Indeed, suppose that some v ∈ V (G) is adjacent to some

u ∈ B and w ∈ C . Since u has at least 2n/5 non-triangular neighbours in C , v is adjacent

to at most |C| − 2n/5 vertices in C and, similarly, to at most |B| − 2n/5 vertices in B. It

follows that v has degree at most n/5, a contradiction.

Since no vertex in G is adjacent to a vertex in B and a vertex in C , we may add all

missing edges between B and C without creating new triangles. However, G is an optimal

graph, so in fact all edges between B and C are present in G. Again, since vertices in B

and C do not have common neighbours, all edges between B and C are non-triangular.

We may assume that |B| � |C|. Then |B| � (1/2 − O(
√
ε ))n and hence every vertex in

C has non-triangular degree at least (1/2 − O(
√
ε ))n. Again, by Observation 3.2, every

vertex in G has degree at least (1/2 − O(
√
ε ))n. Since B is an independent set, it follows

that n − |B| � (1/2 − O(
√
ε ))n. Therefore |C| = |B ∪ C| − |B| � (1/2 − O(

√
ε ))n.

We are now done with the first assertion of Proposition 4.1, and the remaining ones

follow easily. Let A be the set of vertices outside of B ∪ C that are adjacent to a vertex in

B and, similarly, let D be the set of vertices outside of B ∪ C that have a neighbour in C .

Then {A,B, C, D} forms a partition of G, because a vertex without neighbours in B ∪ C

would have too small a degree. This establishes the second assertion.

To prove the third assertion, we may assume that every vertex in A has a neighbour in

A: if some u ∈ A has no neighbours in A, then we may add all edges between u and the

vertices in B without creating new triangles and then reassign u to C . Similarly, we may

assume that every vertex in D has a neighbour in D.

By inspecting the degrees, any two vertices in A have a common neighbour in B.

Therefore, there cannot be any non-triangular edges with both ends in A or, similarly,

with both ends in D. It remains to check that every vertex in A ∪ D is incident with at most

O(
√
ε n) non-triangular edges. Let u ∈ A and let v ∈ A be a neighbour of u. Since u and v

have neighbours only in A ∪ D ∪ B and the degree of v is at least (1/2 − O(
√
ε ))n, it follows

that u has at most |A ∪ D ∪ B| − (1/2 − O(
√
ε ))n = O(

√
ε n) non-triangular neighbours.

The same holds for any vertex in D. This establishes the fourth assertion and completes

the proof of Proposition 4.1.

4.2. Completing the proof if ε is small

We now prove Proposition 4.2, which completes the proof of Theorem 2.1 in the case

where ε is small.

Proposition 4.2. There exists a constant κ > 0 with the property that if ε � κ/n, then G ∼=
G(a, b, c) for some a, b, c.
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Proof of Proposition 4.2. It follows from the assumptions on the sets A,B, C, D that

|A ∪ D| = O(
√
ε n) and that each vertex in A ∪ D is incident with at most O(

√
ε n) non-

triangular edges. Therefore the number of non-triangular edges with an end in A ∪ D is

O(εn2) = O(κn). We show that, in fact, there are no such edges.

Suppose that uv is a non-triangular edge with u ∈ A ∪ D. Without loss of generality, we

may assume that u ∈ A and v ∈ B ∪ D. Observe that the neighbours of u are not adjacent

to v. Let G′ be the graph obtained by adding the edges between v and the neighbours

of u in A, removing the edges between u and A \ {u} and also adding all missing edges

between u and B. Then e(G′) � e(G) and t(G′) � t(G) + |B| − O(κn) > t(G), where the last

inequality holds provided that we choose κ small enough. However, this contradicts the

optimality of G, so there cannot be such an edge uv.

It is now easy to finish the proof. By what we have just proved, all the missing edges

with both ends in A ∪ D may be added without causing a non-triangular edge to become

triangular, and hence, since G is optimal, G[A ∪ D] is a clique. Similarly, all possible edges

between A and B and between D and C are present in G. We may assume that |B| � |C|.
Remove the edges between D and C and add all possible edges between D and B. The

resulting graph G′ is isomorphic to G(|A ∪ D|, |B|, |C|) and satisfies |G′| = n, e(G′) � e(G)

and t(G′) � t(G). However, G is optimal, so we must have e(G′) = e(G) and t(G′) = t(G).

Therefore, it must be the case that D = ∅ or |B| = |C|. If D is empty, then G = G′ and

we are done. Let us suppose that |B| = |C|. Since e(G′) > n2/4, G′ is not bipartite, and

hence |A ∪ D| � 2. Take any vertex w ∈ A ∪ D. If we remove all edges between w and B,

but add all possible edges between w and C , then we obtain a new graph which has the

same number of edges, but more non-triangular edges than G. However, this contradicts

the assumption that G is optimal. Therefore, it must be the case that |B| > |C|, and so we

are done.

4.3. Sizes of A, B, C , D

In this subsection we prepare for the proof of Theorem 2.1 in the case where ε is large.

In particular, we obtain good bounds for the sizes of the sets A ∪ D, B and C .

Proposition 4.3. Let G and A,B, C, D satisfy the conclusions of Proposition 4.1, and suppose

that |B| � |C| and that ε � κ/n for some constant κ > 0. Then

|A ∪ D| = (
√

2ε + Oκ(ε))n,

|B| =

(
1

2
− Oκ(ε

3/4)

)
n,

|C| =

(
1

2
−

√
2ε + Oκ(ε

3/4)

)
n.

The proof is just a technical calculation, in which the main tool is the lower bound on

t(G) given by inequality (4.1).
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Proof of Proposition 4.3. Denote a = |A ∪ D|, b = |B| and c = |C| and write

a = (
√

2ε + α)n,

b =

(
1

2
− β

)
n,

c =

(
1

2
−

√
2ε + β − α

)
n,

where the quantities α and β are defined by these identities. We cannot assume that α

and β are positive, but we have −
√

2ε � α � O(
√
ε ), where the second inequality comes

from Proposition 4.1. Since there are at most O(εn2) non-triangular edges with an end in

A ∪ D, we have

t(G) � bc + O(εn2)

� (n − a)2

4
+ O(εn2)

� n2

4
− an

2
+ O(εn2).

Combining this with inequality (4.1), which states that t(G) � (1/4 −
√
ε/2 − O(1/n))n2,

we get

1

4
−

√
ε

2
− Oκ(ε) � t(G)

n2
� 1

4
− (

√
2ε + α)

2
+ O(ε).

Therefore, α � Oκ(ε). Using the fact that b � c and that any vertex in A ∪ D sends edges

to only one of B and C , we obtain the following upper bound on the number of edges

in G:

e(G) � b(n − b) +
a2

2
.

Combining this with the definition e(G) = (1/4 + ε)n2, we get

1

4
+ ε �

(
1

2
− β

)(
1

2
+ β

)
+

(
√

2ε + α)2

2

=
1

4
− β2 + ε + α

(√
2ε +

α

2

)
.

It follows that β2 � α(
√

2ε + α/2). In particular, α � 0 and β = Oκ(ε
3/4), implying the

assertions of Proposition 4.3.

4.4. Completing the proof if ε is large

We are now able to complete the proof of Theorem 2.1 under the assumption that ε � κ/n

for some constant κ > 0. Here we will use the assumption that G is a compressed graph.

Proposition 4.4. Let κ > 0 be a constant. If ε � κ/n, then G ∼= G(a, b, c) for some a, b, c.

The proof consists of two stages. In the first stage we use the bounds from Proposi-

tion 4.3 to conclude that D is very small and that very few vertices in A are incident with
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non-triangular edges. In the second stage we show that if D is non-empty or if there exists

a vertex in A with a non-triangular neighbour, then G can be manipulated to obtain a

graph with more edges and more non-triangular edges, contradicting the assumption that

G is optimal. It follows that G is isomorphic to a graph G(a, b, c).

Proof of Proposition 4.4. We start by showing that the edges between B ∪ D and A ∪ C

form an almost complete bipartite subgraph. We shall be using the estimates on the size

of the sets A ∪ D, B and C from Proposition 4.3. To be able to use Proposition 4.3, we

assume, without loss of generality, that |B| � |C|. Note that κ is an absolute constant

(implicitly determined in Proposition 4.2). Thus, we may remove the dependence on κ in

the estimates of these sizes.

Claim 4.7. Every vertex in B ∪ D is adjacent to all but O(ε3/4n) vertices in A ∪ C . Fur-

thermore, |D| = O(ε3/4n).

Proof. The non-triangular degree of any vertex in C is at least |B|. Hence, by Obser-

vation 3.2, every vertex in G has degree at least |B| − 1. The vertices in B ∪ D are not

adjacent to any vertex in B. Since |B| � (1/2 − O(ε3/4))n, it follows that every vertex in

B ∪ D is adjacent to all but O(ε3/4n) vertices in V (G) \ B = A ∪ C ∪ D. Since there are no

edges between B and D, |D| = O(ε3/4n).

Let T denote the set of triangular vertices in A (recall that a triangular vertex is incident

only with triangular edges) and let S = A \ T . We show that the vertices in S have few

neighbours in A.

Claim 4.8. Every vertex in S has O(ε3/4n) neighbours in A.

Proof. Let u ∈ S and let v be a non-triangular neighbour of u. Then v ∈ B ∪ D, because

there are no edges between A and C , and there are no non-triangular edges with both

ends in A. Recall that, by Claim 4.7, v is adjacent to all but O(ε3/4n) vertices in A. Since

uv is non-triangular, u and v have no common neighbours, implying that u has O(ε3/4n)

neighbours in A.

We conclude that almost all of the vertices in A are triangular.

Claim 4.9. |T | � (
√

2ε − O(ε3/4))n.

Proof. By removing the edges with both ends in A or both ends in D from G, we

remain with a bipartite graph, so (1/4 + ε)n2 = e(G) � n2/4 + e(G[A]) + e(G[D]). Since

|D| = O(ε3/4n), we have e(G[D]) = O(ε3/2n2), and hence e(G[A]) � (ε − O(ε3/2))n2.

Claim 4.8 implies that

e(G[A]) − e(G[T ]) � O(|S |ε3/4n) � O(|A|ε3/4n) � O(ε5/4n2),
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where the rightmost inequality is a consequence of Proposition 4.3. Therefore, e(G[T ]) �
(ε − O(ε5/4))n2, and so |T | � (

√
2ε − O(ε3/4))n, as required.

Since G is compressed, T induces a clique, and any two vertices in T have the same

neighbourhood outside of T . In particular, if a vertex v ∈ S is adjacent to a vertex in T ,

then v is adjacent to all vertices in T . However, this cannot happen since, by Claim 4.8,

v has at most O(ε3/4n) neighbours in A, while, by Claim 4.9, there are at least Ω(
√
ε n)

vertices in T . Therefore, there are no edges between T and S .

In the following claim we deduce that, in fact, all vertices in A are triangular. The key

observation is that a pair of adjacent vertices in S can be replaced by one vertex in C and

one in T , increasing both the number of edges and the number of non-triangular edges.

Claim 4.10. The set S is empty.

Proof. Suppose that S contains a vertex u. By Proposition 4.1, u has a neighbour

v ∈ A. Since there are no edges between T and S , we conclude that v ∈ S . In particular,

u and v have no neighbours in T . Now let H be the graph obtained from G by

removing the vertices u and v and adding new vertices x and y, where x is joined by

edges to all of B and y is joined to all of B ∪ T . It follows from Claims 4.7, 4.8 and 4.9

that e(H) � e(G) − O(ε3/4n) + (
√

2ε − O(ε3/4))n > e(G). Recall that, by Proposition 4.1,

the non-triangular degree of any vertex in A is at most O(
√
ε n), implying that t(H) �

t(G) − O(
√
ε n) + |B| > t(G). Therefore, H has more edges and more non-triangular edges

than G, contradicting the optimality of G. Thus, S is empty.

Similarly, we prove that D is empty. The trick here is to replace two adjacent vertices

in D by one vertex in C and one in A.

Claim 4.11. The set D is empty.

Proof. Suppose that D is non-empty, so we may pick adjacent vertices u, v ∈ D. Consider

the graph H , obtained by removing the vertices u and v and adding new vertices x and

y with x joined to all of B and y joined to all of A ∪ B. It follows from the bounds

given by Propositions 4.3 and 4.7 that e(H) � e(G) + (
√

2ε − O(ε3/4))n > e(G). Moreover,

since A = T is a clique of triangular vertices, the addition of x and y does not destroy

any non-triangular edges in G \ {u, v}. Since u and v have at most O(
√
ε n) non-triangular

neighbours, we have t(H) � t(G) + (1/2 − O(
√
ε ))n > t(G), contradicting the assumption

that G is optimal.

Now the proof of Proposition 4.4 is complete. Indeed, we know from Claim 4.10 that

A = T . This means that A induces a clique and that every vertex in A is adjacent to every

vertex in B. Therefore, G = G(|A|, |B|, |C|).
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5. Middle range

In this section we prove Theorem 2.2, in which we consider the case where the graph is

neither close to being complete nor close to being complete bipartite. Out of the three

ranges, the middle range turns out to be the hardest to prove. One of the main difficulties

that arises here is that, unlike in the other two ranges, we cannot directly conclude that

the graph G has structure similar to that of G(a, b, c).

Theorem 2.2. For every δ > 0 there exists n0 such that the following holds. Let G be a

graph with n � n0 vertices and e edges, where (1/4 + δ)n2 � e � (1/2 − δ)n2. Then there

exists a graph H = G(a, b, c) such that |H | = n, e(H) � e and t(H) � t(G).

Fix δ > 0. Throughout this section we assume that G is a compressed and optimal

graph with n vertices and e edges, where (1/4 + δ)n2 � e � (1/2 − δ)n2. As in the rest of

the paper, the statements that we write down hold for sufficiently large n. Moreover, since

δ is fixed, the constants implied by big-O notation may depend on δ.

We split the proof of Theorem 2.2 into four stages, as described by the following four

propositions. In the first stage we show that G has many triangular vertices (that is,

vertices that are incident only with triangular edges).

Proposition 5.1. G has Ω(n) triangular vertices.

In the second stage we conclude that G admits the following structure (see Figure 6).

Although Proposition 5.2 gives much less information than Proposition 4.1 from Section 4,

it still shows that G vaguely resembles a graph G(a, b, c).

Proposition 5.2. There exists a partition {A,B, C} of V (G) such that all parts have size

Ω(n) and the following properties are satisfied.

(1) A is the set of triangular vertices in G, it spans a clique and its vertices are adjacent to

all of B and none of C .

(2) B may be partitioned into O(1) sets of clones and a remainder of size O(
√
n log n).

(3) C may be partitioned into O(1) sets of clones, each having Ω(n) non-triangular neigh-

bours in B, and a remainder of size O(n1/3 log n).

In the third stage we show that the number of edges (and non-triangular edges) in G

is close to the number of edges (and non-triangular edges) in G(|A|, |B|, |C|).

Proposition 5.3. Let A,B, C be as in Proposition 5.2 and denote a = |A|, b = |B|, c = |C|.
Then

e(G) =
a2

2
+ ab + bc + O(n7/4

√
log n ), t(G) = bc + O(n7/4

√
log n ).

In the fourth and final stage we complete the proof of Theorem 2.2.
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B

C

A

O(1) sets of clones

O(1) sets of clones

remainder

O(
√

n log n)

remainder

O(
√

n log n)

Figure 6. The partition {A,B, C}.

Proposition 5.4. G ∼= G(a, b, c) for some a, b, c.

Proof of Theorem 2.2. The proof is immediate from Propositions 5.1, 5.2, 5.3 and 5.4.

The only slight technicality is that when we replace a graph with at most (1/2 − δ)n2

edges by an optimal and compressed graph, the number of edges may increase and exceed

this bound. However, Lemma 3.7 implies that this condition is still satisfied for a relaxed

value of δ.

We now turn to the proofs of Propositions 5.1, 5.2, 5.3 and 5.4. We present them in

separate subsections.

5.1. Many triangular vertices

In this subsection we prove Proposition 5.1.

Proposition 5.1. G has Ω(n) triangular vertices.

The main ingredients of this proof are a somewhat unexpected application of Lemma 3.7

and the assumption that G is compressed. First, we conclude from Lemma 3.4 that G has

a large clique. Then, we partition the graph into fairly large independent sets of clones

and a very dense part, using the fact that G is compressed. It is then possible to conclude

that only a few of the vertices of the clique are incident with non-triangular edges.

Proof of Proposition 5.1. Our first aim is to show that G has a clique of size at least

Ω(n). This can be done fairly easily, as shown in the proof of the following claim.
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Claim 5.5. G has a clique of size Ω(n).

Proof. By Lemma 3.4, there exists a good weighted subgraph H of G satisfying |H | =

|G| = n, e(H) � e(G), t(H) � t(G) (see Definition 3.3 for the definition of a good weighted

graph). Let {K, {u, v}} be a partition of V (H) into a clique K and an edge uv, which is

the only non-triangular edge of H .

Let α be the sum of the weights of vertices in K and let m be the number of vertices in

K . Let β and γ be the weights of u and v and suppose that β � γ. Note that α + β + γ = n.

By the Cauchy–Schwarz inequality, the contribution of the edges in K towards e(H) is

maximized if all of these vertices have weight α/m. Therefore this contribution does not

exceed (α/m)2
(
m
2

)
= (1 − 1/m)α2/2. Moreover, since no vertex is adjacent to both u and

v, the contribution of the edges between K and {u, v} towards e(H) is maximized when

every vertex in K is adjacent to u, but not v. Hence,

e(G) � e(H) �
(

1 − 1

m

)
α2

2
+ αβ + βγ. (5.1)

In particular, since βγ � n2/4, we have e(G) � n2/4 + αn. Recall that e(G) � (1/4 + δ)n2.

It follows that α � δn.

Denote b = �β�, c = �γ� and a = n − b − c and consider the graph F = G(a, b, c).

Note that t(G) � t(H) = βγ � bc = t(F). Since G is optimal, it follows that e(G) � e(F).

Therefore,

e(G) � e(F) =

(
a

2

)
+ ab + bc

� (α − 2)(α − 3)

2
+ (α − 2)β + βγ

� α2

2
+ αβ + βγ − 2.5n

=

(
1 − 5n

α2

)
α2

2
+ αβ + βγ.

Comparing this with (5.1), we have m � α2/(5n) � δ2n/5. It follows that G has a clique

of size at least δ2n/5.

Recall that G is compressed. Hence, by Observation 3.9, every independent set of size

5
√
n in G contains a set of clones of size

√
n .

We construct a set U ⊆ V (G) as follows. We start with U = ∅. At each stage, if the

complement Uc = V (G) \ U contains an independent set I of size 5
√
n , then I contains

a set of clones of size at least
√
n . We add this set of clones to U and continue until Uc

has no independent set of size 5
√
n . Observe that the resulting set U is a disjoint union

of sets of clones each of size at least
√
n , while the complement Uc has no independent

set of size 5
√
n (see Figure 7).

In the following claim we deduce from Lemma 3.7 that G[Uc] is very dense.

Claim 5.6. G[Uc] has O(n3/2) non-edges.
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U

W

K ′

sets of clones

of size ≥ √
n

independence

number ≤ 5
√

n

Figure 7. The sets U, W and K ′.

Proof. Since G[Uc] has no independent set of size at least 5
√
n , every vertex in G has

at most 5
√
n non-triangular neighbours in Uc. It follows that there are at most 5n3/2

non-triangular edges with at least one end in Uc.

Let l denote the number of non-edges in G[Uc]. By adding these edges to G we obtain

a graph G′ with n vertices and e(G) + l edges such that t(G′) � t(G) − 5n3/2. It follows

from Lemma 3.7 that l = O(n3/2).

Let K be a largest clique in G, so |K| = Ω(n) by Claim 5.5. Let K ′ = K \ U and denote

W = Uc \ K ′ (see Figure 7). Note that, since U contains no clique of size greater than√
n , we have |K ′| � |K| −

√
n = Ω(n). In the following claim we use the structure of U

and Claim 5.6 to deduce that almost all vertices in K ′ are triangular.

Claim 5.7. All but O(
√
n ) vertices in K ′ are triangular.

Proof. Since K ′ is a clique, any vertex in the complement V (G) \ K ′ sends at most one

non-triangular edge to K ′. In fact, if u ∈ V (G) \ K ′ has a non-triangular neighbour in K ′,

then u has no other neighbours in K ′.

Let m denote the number of vertices in W that have a non-triangular neighbour in

K ′. Then the number of missing edges in G[Uc] is at least m(|K ′| − 1) = Ω(mn). From

Claim 5.6 we conclude that m = O(
√
n ). Therefore, there are O(

√
n ) vertices in K ′ with a

non-triangular neighbour in Uc.

Finally, U is a union of at most
√
n sets of clones, and any one set of clones can send

non-triangular edges to at most one vertex in K ′. Therefore, there are at most
√
n vertices

in K ′ that have a non-triangular neighbour in U.

The proof of Proposition 5.1 is complete. Indeed, K ′ consists of Ω(n) vertices and all

but O(
√
n ) of them are triangular.
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5.2. Structure

In this subsection we build on the fact that G has Ω(n) triangular vertices and prove that,

in terms of structure, G has some similarities to a graph G(a, b, c). In particular, we prove

that the vertices of G can be partitioned into three linearly sized sets A,B, C such that A

is a clique and all edges between A and B are present in G, while all edges between A and

C are missing. We do not yet prove that the sets B,C are independent, but we show that

both of them can be partitioned into a small number of independent sets (see Figure 6).

Our main tool in this subsection is the assumption that G is compressed, and we also use

Lemma 3.7.

Proposition 5.2. There exists a partition {A,B, C} of V (G) such that all parts have size

Ω(n) and the following properties are satisfied.

(1) A is the set of triangular vertices in G, it spans a clique and its vertices are adjacent to

all of B and none of C .

(2) B may be partitioned into O(1) sets of clones and a remainder of size O(
√
n log n).

(3) C may be partitioned into O(1) sets of clones, each having Ω(n) non-triangular neigh-

bours in B, and a remainder of size O(n1/3 log n).

Proof of Proposition 5.2. Let A denote the set of triangular vertices in G. Since G

is compressed, A induces a clique and the vertices of A have the same neighbourhood

outside of A. Denote this neighbourhood by B and let C = V (G) \ (A ∪ B). Property (1)

follows.

Note that the graph G(a, b, c), where c = δn/2, b =
√
δ n and a = n − b − c, has at

least (1/2 − δ)n2 edges and δ3/2n2/2 non-triangular edges. Hence, since G is optimal and

e(G) � (1/2 − δ)n2, it follows that t(G) = Ω(n2).

By Proposition 5.1 we have |A| = Ω(n). Note that there are no non-triangular edges

with both ends in A ∪ B, and so the number of non-triangular edges in G is at most

|C|n. Since t(G) = Ω(n2), it follows that |C| = Ω(n). We will deduce that |B| = Ω(n) from

a stronger statement that almost all vertices in C have Ω(n) non-triangular neighbours

in B.

Claim 5.8. All but O(1) vertices of C have Ω(n) non-triangular neighbours in B.

Proof. Let c > 0 and k ∈ N be constants. Suppose that there is a set Z ⊆ C of size k

whose every vertex has at most cn non-triangular neighbours in B. Our aim is to show

that if c is sufficiently small and k is sufficiently large, then the existence of such a set Z

would lead to a contradiction.

Consider the graph G′, obtained from G by adding the edges between Z and A. Then

e(G′) = e(G) + k|A|, t(G′) � t(G) − ckn −
(
k

2

)
� t(G) − 2ckn.

Provided that k is sufficiently large, Lemma 3.7 implies that t(G′) � t(G) − ζk|A| for some

constant ζ > 0 that does not depend on c or k. Therefore, ζ|A| � 2cn must hold. However,

we may choose c small enough to make this false, thus obtaining a contradiction.
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The previous claim provides us with a set C ′ ⊆ C such that |C \ C ′| = O(1) and every

vertex in C ′ has Ω(n) non-triangular neighbours in B. The following claim implies that C ′

may be partitioned into O(1) independent sets.

Claim 5.9. There exists a set S ⊆ B of size O(1) such that every vertex in C ′ has a non-

triangular neighbour in S .

Proof. We construct S = {u1, . . . , uk} by choosing the elements u1, . . . , uk ∈ B and certain

corresponding subsets I1, . . . , Ik ⊆ B in the following way. Suppose that u1, . . . , uj and

I1, . . . , Ij have been chosen, where j � 0. Let Uj be the set of vertices in C ′ that have a

non-triangular neighbour in {u1, . . . , uj} (so, in particular, U0 = ∅). If Uj = C ′, we stop

the process. Otherwise, pick a vertex v ∈ C ′ \ Uj and consider the set N consisting of

the non-triangular neighbours of v in B. By the definition of C ′, we have |N| = Ω(n).

Moreover, since N is independent and G is compressed, N contains a set of clones of size

at least |N|/5. Denote this set of clones by Ij+1 and pick uj+1 ∈ Ij+1 arbitrarily.

It is clear that when the process terminates, every vertex in C ′ has a non-triangular

neighbour in the resulting set S . It remains to check that the process stops after O(1)

steps. Indeed, suppose that it ran for k steps. The sets I1, . . . , Ik are pairwise disjoint and

have size at least Ω(n) each, whence k = O(1).

The non-triangular neighbourhoods of the vertices in S cover C ′. Therefore, C ′ can be

partitioned into O(1) independent sets. Since G is compressed, each independent set can

be partitioned into O(log n) sets of clones, all but at most four of which have size O(n1/3).

By combining the sets of clones of size O(n1/3) into one set, we get a partition of C ′ into

O(1) sets of clones and a remainder of size O(n1/3 log n). Note that, by definition, every

vertex in C ′ has Ω(n) non-triangular neighbours in B. Now, throw all of the O(1) vertices

of C \ C ′ into the remainder to get a partition of C that satisfies property (3).

It remains to prove property (2). Partition C into sets Z,C ′′ where |Z | = O(n1/3 log n)

and C ′′ is a union of O(1) sets of clones. Let Y be the set of vertices in B that do not

have non-triangular neighbours in C ′′ and denote B′ = B \ Y . First, we will show that B′

can be partitioned into O(1) independent sets. Indeed, B′ is covered by the non-triangular

neighbourhoods of vertices in C ′′, and each of them is an independent set. Moreover, C ′′

is a union of O(1) sets of clones, and so there are O(1) distinct such neighbourhoods.

Second, we will prove that |Y | = O(
√
n log n).

Claim 5.10. |Y | = O(
√
n log n).

Proof. Recall that A is the set of triangular vertices in G. Since Y is disjoint from A,

every vertex in Y has a non-triangular neighbour, and that neighbour must be in Z . That

is, the non-triangular neighbourhoods of vertices in Z cover Y . Since Z is a union of

O(log n) sets of clones, Y can be partitioned into O(log n) independent sets. In particular,

Y contains an independent set I of size Ω(|Y |/ log n).
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Let G′ be the graph obtained from G by adding all possible edges spanned by |I |. Then

e(G′) = e(G) +

(
|I |
2

)
, t(G′) � t(G) − |I ||Z | � t(G) − O(|I |n1/3 log n).

This is a contradiction to Lemma 3.7 unless
(|I |

2

)
= O(n) or

(|I |
2

)
= O(|I |n1/3 log n). In either

case |I | = O(
√
n ), and so |Y | = O(

√
n log n), as required.

The proof of Proposition 5.2 is now complete. We have already proved properties (1)

and (3) and that A,B, C are all of size Ω(n). To prove property (2), recall that B is

partitioned into a set Y of size O(
√
n log n) and a set B′ which is a union of O(1)

independent sets. As argued above, it follows that B′ can be partitioned into O(1) sets

of clones and a remainder of size O(n1/3 log n). Assigning Y to this remainder gives the

desired partition of B.

5.3. Sizes

In the previous subsection we proved that V (G) can be partitioned into sets A,B, C that

correspond to the three parts of the graph G(|A|, |B|, |C|). In this subsection we consider

the sizes of the sets A,B, C . We show that the number of edges (and non-triangular edges)

of G is very close to the number of edges (and non-triangular edges) of G(|A|, |B|, |C|).

Proposition 5.3. Let A,B, C be as in Proposition 5.2 and denote a = |A|, b = |B|, c = |C|.
Then

e(G) =
a2

2
+ ab + bc + O(n7/4

√
log n ), t(G) = bc + O(n7/4

√
log n ).

In the proof of this proposition we revisit Füredi and Maleki’s [4] proof of Theorem 1.2,

which is an approximate version of our main theorem. In their proof, Füredi and Maleki

repeatedly apply Lemma 3.5, which eliminates one vertex at a time from any independent

set of size 3. Here, we will do the same thing, but we will keep tight control on the

independent sets to which we apply this lemma.

Proof of Proposition 5.3. Recall that by Proposition 5.2 both sets B and C can be

partitioned into O(1) sets of clones and a remainder of size O(
√
n log n). Let G′ be the

graph obtained by removing the edges incident with vertices in this remainder. Then

e(G′) � e(G) − O(n3/2 log n) and t(G′) � t(G) − O(n3/2 log n).

The following claim is a variation of Lemma 3.4. It allows us to approximate G′ by a

weighted subgraph whose intersection with C induces a clique.

Claim 5.11. There is a weighted subgraph H of G′ such that |H | = n, e(H) � e(G′) and

t(H) � t(G′), which has the following properties.

• At least two vertices in A are present in H . Moreover, with at most one exception, the

vertices in A that are present in H have weight 1.
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• All vertices in B are present in H and have weight 1.

• The vertices in C that are present in H induce a clique.

Proof. We perform the following process to obtain the weighted graph H . Initially, we

set H to be G′ with every vertex having weight 1. Then we perform multiple steps, during

which we modify the weights of the vertices in A ∪ C (and remove some of these vertices)

so that, at any given time, A has at most one vertex with weight not equal to 1. At each

step we select vertices u ∈ A and v, w ∈ C . We take u to be the unique vertex in A of

weight not equal to 1, and if there is no such vertex, then we take it to be an arbitrary

vertex remaining in A. We take v and w to be any pair of non-adjacent (in G′) vertices in

C . If choosing u, v, w according to these rules is impossible, then we terminate the process.

Suppose that we successfully selected the vertices u, v, w. They form an independent set,

and so by Lemma 3.5 it is possible to remove one or two of these vertices and redistribute

their weight on the remaining ones so that the new weights are positive, the total weight

does not change and e(H), t(H) do not decrease.

It is clear that this process terminates, because each step decreases the number of

vertices remaining in H . Let us consider the resulting weighted graph H . Since the process

terminated, either no vertices of A are present in H , or the remaining vertices of C induce

a clique. We show that, in fact, at least two vertices remain in A, and so the latter condition

must hold.

Suppose that fewer than two vertices in A remain in H . Let m denote the size of

the largest clique that can be formed from vertices remaining in H . Since the vertex set

of G′ can be partitioned into A and O(1) independent sets, we have m = O(1). Apply

Lemma 3.4 to obtain a good weighted subgraph F of H , with xy being its only non-

triangular edge, such that |F | = n, e(F) � e(G′) and t(F) � t(G′). Let β and γ be the

weights of x and y in F and suppose that β � γ. Then α = n − β − γ is the sum of

the weights of the other vertices in F . We have t(F) = βγ and, as in inequality (5.1)

from Claim 5.5, e(F) � (1 − 1/m)α2/2 + αβ + βγ. It follows that t(G) � βγ + O(n3/2 log n)

and e(G) � α2/2 + αβ + βγ − Ω(n2). Consider the graph G′′ = G(n − �β� − �γ�, �β�, �γ�).
It is easy to check that t(G′′) � t(G) − O(n3/2 log n) and e(G′′) � e(G) + Ω(n2). This is a

contradiction to Lemma 3.7, since G is optimal. Therefore, at least two vertices in A are

present in H .

It follows that the set of vertices in C that are present in H induces a clique. Hence,

the weighted graph H satisfies the requirements of Claim 5.11.

Let H be a weighted graph as given by Claim 5.11, so in particular, e(H) � e(G) −
O(n3/2 log n) and t(H) � t(G) − O(n3/2 log n). By Lemma 3.7, since G is optimal,

e(H) = e(G) + O(n3/2 log n), t(H) = t(G) + O(n3/2 log n). (5.2)

We remark that these two equations express both upper and lower bounds for the

quantities e(H) and t(H). In the following claim we prove that, in fact, only one vertex of

C is present in H .
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Claim 5.12. Exactly one vertex of C is present in H . Moreover, all but at most

O(n3/4
√

log n ) vertices in B are non-triangular neighbours of that vertex.

Proof. Let u1, . . . , um denote the vertices in C that are present in H , and let N1, . . . , Nm be

their non-triangular neighbourhoods in B. Since the set {u1, . . . , um} forms a clique, there

are no edges between ui and Nj for i �= j. In particular, the sets N1, . . . , Nm are pairwise

disjoint.

Let Z = B \ (N1 ∪ · · · ∪ Nm). Since the intersection of H with A induces a clique on at

least two vertices and since all edges between B and the intersection of H with A are

present in H , the vertices in Z are not incident with any non-triangular edges in H . We

will show that |Z | = O(n3/4
√

log n ). Indeed, recall that B is the union of O(1) independent

sets and a remainder of size at most O(
√
n log n). Thus, provided that |Z | � C

√
n log n

for a sufficiently large constant C , there exists an independent set I ⊆ Z of size Ω(|Z |).
Consider the weighted graph H ′ obtained from H by adding the edges spanned by I .

Then

e(H ′) = e(H) + Ω(|Z |2) � e(G) − O(n3/2 log n) + Ω(|Z |2),
t(H ′) = t(H) � t(G) − O(n3/2 log n).

It follows from Lemma 3.7 that |Z | = O(n3/4
√

log n ).

Our aim is to prove that m = 1. We assume for contradiction that m � 2. In particular,

since by Proposition 5.2 and the definition of G′, in G′ every vertex in C is either isolated

or has Ω(n) non-triangular neighbours in B, the vertices u1, . . . , um have the latter property.

In other words, |Ni| = Ω(n) for every i.

For each i, let γi denote the weight of ui in H . We will show that γi = Ω(n) for every i.

Indeed, fix any i. Let Hi denote the weighted graph obtained from H by adding all edges

spanned by Ni. Since Ni is an independent set in H , we have

e(Hi) � e(G) + Ω(n2), t(Hi) � t(G) − |Ni|γi − O(n3/2 log n).

By Lemma 3.7, γi = Ω(n).

Write βi = |Ni|. Construct a weighted graph F , starting from H and carrying out the

following steps. Firstly, remove all edges with an end in Z . Secondly, replace each set Ni

by a vertex vi of weight βi. Finally, connect each vertex vi to all of the vertices in A (that

are present in H) as well as to ui and vj for every j �= i (see Figure 8). We have

e(F) � e(H) − |Z |n � e(G) − O(n7/4
√

log n ), t(F) � t(H) � t(G) − O(n3/2 log n).

Pick any real λ such that |λ| � min{β1, β2, γ1, γ2}. Let Fλ be the weighted graph obtained

from F by adding λ to the weights of u1 and v1 and subtracting λ from the weights of u2

and v2. Clearly, |Fλ| = |F | = n and it is easy to check that e(Fλ) = e(F).

If m � 3, then the only non-triangular edges in F are uivi. Hence, in this case,

t(Fλ) = t(F) − (β1γ1 + β2γ2) + (β1 + λ)(γ1 + λ) + (β2 − λ)(γ2 − λ)

= t(F) + (β1 + γ1 − β2 − γ2)λ + 2λ2.
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A

C

B
v1

u1

v2

u2

v3

u3

v4

u4

+λ

+λ

−λ

−λ

Z

O(n3/4
√

log n )

O(√n log n)

Figure 8. The graph F .

If β1 + γ1 � β2 + γ2, then take λ = min{β1, γ1, β2, γ2}. Otherwise, take λ =

− min{β1, γ1, β2, γ2}. In either case, |λ| = Ω(n) and t(Fλ) � t(F) + Ω(n2) � t(G) + Ω(n2),

contradicting Lemma 3.7.

This calculation is slightly different in the case when m = 2, because then we have to

account for the edge u1u2, which is also non-triangular. In this case

t(Fλ) = t(F) − (β1γ1 + β2γ2 + γ1γ2) + (β1 + λ)(γ1 + λ) + (β2 − λ)(γ2 − λ) + (γ1 + λ)(γ2 − λ)

= t(F) + (β1 − β2)λ + λ2.

We may reach a contradiction to Lemma 3.7 by choosing λ of the same sign as β1 − β2

and with |λ| = min{β1, β2, γ1, γ2}. We conclude that m = 1, completing the proof of the

claim.

Recall that, among the vertices in A that are present in H , at most one has weight not

equal to 1. In the following claim we show that this weight cannot be very large.

Claim 5.13. The weight in H of any vertex in A is O(n3/4
√

log n ).

Proof. Let u be a vertex of A of maximal weight in H , and let ω be its weight. Suppose

that ω > 1, in which case all other vertices in A have weight 1 in H .

Replace the vertex u by a clique of size �ω� whose vertices have weight ω/�ω� and

are adjacent to all of (A \ {u}) ∪ B, and denote the resulting weighted graph by H ′. We

have to check the technical condition that the average weight of a vertex in H ′ is at least

1. However, this can be easily verified, since the total weight of H ′ is an integer and H ′

has at most one vertex whose weight is smaller than 1 (namely, the only vertex of C that

remains in H ′).
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By replacing u with a clique, we create new edges inside the clique, and these edges

contribute
(�ω�

2

)
(ω/�ω�)2 = Ω(ω2) towards e(H ′). Therefore, we have

t(H ′) = t(H) � t(G) − O(n3/2 log n), e(H ′) = e(H)+Ω(ω2) � e(G) − O(n3/2 log n)+Ω(ω2).

It follows from Lemma 3.7 that ω = O(n3/4
√

log n ).

Recall that a, b, c are the sizes of the sets A,B, C in the original graph G. Let α, β, γ be

the sums of weights (in H) of the vertices in these sets, summing over vertices present in

H . So, for example, β = b and γ is the weight of the single vertex in C that is present in H .

Clearly, α + γ = a + c, because both sides are equal to n − b. Now, we use the properties

of H that we have proved to get good bounds on e(H) and t(H) in terms of α, β, γ.

Recall that the set A induces a clique in G, so its remainder induces a clique in H .

Combined with Claim 5.13, this implies that the contribution of the edges within A to

e(H) is α2/2 − O(n3/2 log n). By Claim 5.12, the set B contains an independent set of size

at least |B| − O(n3/4
√

log n ). Therefore, the contribution of the edges within B to e(H)

(and in particular to t(H)) is O(n7/4
√

log n ). Moreover, Claim 5.12 implies that the edges

between B and C contribute βγ − O(n7/4
√

log n ) to both e(H) and t(H). Putting this

together, we get

e(H) = α2/2 + αβ + βγ + O(n7/4
√

log n ), t(H) = βγ + O(n7/4
√

log n ). (5.3)

Again, we remark that these are both upper and lower bounds for the quantities e(H)

and t(H). We deduce that α almost equals a and γ almost equals c.

Claim 5.14. α = a + O(n3/4
√

log n ) and γ = c + O(n3/4
√

log n ).

Proof. We can read the inequality α � a + O(n3/4
√

log n ) off Claim 5.13. To get the

corresponding lower bound on α, we consider the quantity e(H) − t(H). On one hand, the

inequalities in (5.3) give

e(H) − t(H) = α2/2 + αβ + O(n7/4
√

log n ).

On the other hand, we can use the inequalities in (5.2) to get

e(H) − t(H) = e(G) − t(G) + O(n3/2 log n)

� a2/2 + ab + O(n3/2 log n),

where the latter inequality comes from the fact that the quantity e(G) − t(G) counts the

triangular edges in G, and all vertices in A are triangular. Recall that b = β. Combining the

two inequalities for e(H) − t(H) we get α � a − O(n3/4
√

log n ), so α = a + O(n3/4
√

log n ).

To complete the proof of the claim, note that a + c = α + γ.

Proposition 5.3 follows from the last claim and the inequalities in (5.2) and (5.3).

5.4. End of the proof

We are now ready to complete the proof of Theorem 2.2.
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Proposition 5.4. G ∼= G(a, b, c) for some a, b, c.

We gradually get closer to proving that G ∼= G(a, b, c). We start by showing that b is

much bigger than c, which leads to the conclusion that C spans no non-triangular edges.

This implies that almost all possible edges between B and C are present in G and are

non-triangular, by Proposition 5.3. In fact, using the fact that G is compressed, we deduce

that there are large subsets of B and of C that span a complete bipartite graph consisting

of non-triangular edges. With some more effort, using the optimality of G, we conclude

that B and C themselves induce a complete bipartite graph, thus completing the proof.

Proof of Proposition 5.4. Let {A,B, C} be the partition of V (G) given by Proposition 5.2.

As in the statement of Proposition 5.3, write a = |A|, b = |B|, c = |C|. We start by showing

that b is significantly larger than c.

Claim 5.15. We have b � c + Ω(n).

Proof. Suppose to the contrary that b � c + o(n). Then we have n = a + b + c � 2b + a −
o(n), and hence b � (n − a + o(n))/2. Since a = Ω(n), we can conclude that b � n/2 − Ω(n).

Consider the graph H = G(a, b, c). Proposition 5.3 implies that

e(H) = e(G) + O(n7/4
√

log n ), t(H) = t(G) + O(n7/4
√

log n ).

Consider also the graph H ′ = G(a, b + d, c − d), where d = n0.999. Note that b + d �
n/2 − Ω(n). Therefore, from the expression e(H) =

(
a
2

)
+ (n − b)b and the corresponding

expression for e(H ′), we can see that e(H ′) � e(H) + Ω(dn) = e(G) + Ω(dn). Similarly,

t(H ′) = (b + d)(c − d) � bc − o(dn), and so t(H ′) � t(H) − o(dn) = t(G) − o(dn). However,

this contradicts Lemma 3.7. Therefore, b � c + Ω(n).

In the following claim we conclude that C spans no non-triangular edges.

Claim 5.16. There are no non-triangular edges with both ends in C .

Proof. By Proposition 5.3 there are bc + o(n2) non-triangular edges in G, and each

one of them is incident with a vertex in C . Therefore, some vertex in C has at least

b − o(n) non-triangular neighbours. Thus, by Observation 3.2, every vertex in C has

degree at least b − o(n), and so the sum of the degrees of any two vertices in C is at least

2b − o(n) > b + c = |B ∪ C|, where the latter inequality comes from the previous claim.

Since the vertices in C have neighbours only in B ∪ C , it follows that any pair of vertices

in C have a common neighbour, and hence they cannot be joined by a non-triangular

edge.

Recall that by Proposition 5.2 both sets B and C can be partitioned into O(1) sets of

clones and a remainder of size O(
√
n log n). In such a partition of B consider the sets of

clones of size at least n9/10 and let B′ be their union. Similarly, let C ′ be the union of the

sets of clones in the partition of C that have size at least n9/10 and denote Z = C \ C ′
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and Y = B \ B′. Then |Y | = O(n9/10) and |Z | = O(n9/10). We show that all possible edges

between B′ and C ′ are present in G and are non-triangular.

Claim 5.17. All possible edges between B′ and C ′ are present in G and are non-triangular.

In particular, B′ and C ′ are independent sets.

Proof. From the previous claim we know that every non-triangular edge in G has one

end in B and one end in C . Suppose that there exists a pair of vertices, one in B′ and one

in C ′, that are not joined by a non-triangular edge. Then there are two sets of clones of

size at least n9/10, one contained in B′ and the other in C ′, between which there are no

non-triangular edges. But then t(G) � bc − n9/5, contradicting Proposition 5.3.

In the following claim we obtain additional information about Y and Z , which brings

us closer to showing that B and C induce a complete bipartite graph.

Claim 5.18. There are no edges between B′ and Y and between C ′ and Z . Moreover, every

vertex in B has at least c − o(n) neighbours in C , and every vertex in C has at least b − o(n)

neighbours in B.

Proof. Any vertex in C ′ has at least |B′| = b − o(n) non-triangular neighbours, so

Observation 3.2 implies that every vertex in G has degree at least b − o(n). Claim 5.15

implies that |C| + |B \ B′|, which does not exceed c + o(n), is smaller than this quantity,

and hence every vertex in C has a neighbour in B′. Therefore, because all possible edges

between B′ and C ′ are present in G and are non-triangular (by Claim 5.17), there are no

edges between C ′ and Z . In particular, every vertex in C has at most o(n) neighbours in

C , so it has at least b − o(n) neighbours in B.

Pick any vertex u ∈ Y . Since u is not in A, u has a non-triangular neighbour v ∈ C .

We have just proved that v has at least b − o(n) neighbours in B′. Therefore, u has at

most o(n) neighbours in B. Now suppose that u is adjacent to a vertex in B′. Then u has

no neighbours in C ′. Hence, u has at most a + o(n) neighbours, of which at most o(n)

are non-triangular. However, any vertex of B′ has at least a + c − o(n) neighbours and at

least c − o(n) of them are non-triangular. This contradicts Observation 3.2. Therefore, u

has no neighbours in B′.

It remains to verify that every vertex in Y has at least c − o(n) neighbours in C . Let us

again consider u ∈ Y and let d denote the number of its neighbours in C . Then the degree

of u is at most a + d + o(n) and its non-triangular degree is at most d. By Observation 3.2,

applied to u and any vertex in B′, we know that a + d � a + c − o(n) or d � c − o(n). In

either case d � c − o(n).

In the following claim we prove that no edges are spanned by Z . We use a trick that

we have used several times before, replacing a pair of adjacent vertices in Z by copies of

vertices in A and B′, increasing the number of both edges and non-triangular edges.

Claim 5.19. The set Z is independent.
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Proof. Suppose to the contrary that Z contains a pair of adjacent vertices u, v. Then the

non-triangular neighbours of u are all in B and they are not adjacent to v. By Claim 5.18,

v has b − o(n) neighbours in B, and hence u has at most o(n) non-triangular neighbours.

Likewise, v has at most o(n) non-triangular neighbours.

Consider the graph G′ obtained from G by removing u, v and adding new vertices x

and y, where x is joined by edges to all vertices in A ∪ B, and y is joined to all vertices

in B′. We have e(G′) � e(G) + a − o(n) and t(G′) � t(G) + b − o(n). This contradicts the

optimality of G, because a = Ω(n) and b = Ω(n).

A similar trick enables us to conclude that Y spans no edges. Here we replace two

adjacent vertices in Y by copies of vertices in A and B′.

Claim 5.20. The set Y is independent.

Proof. Suppose that there exists a pair of adjacent vertices u, v ∈ Y . Let G′ be the graph

obtained from G by removing u, v and adding new vertices x, y with x joined to all of

A ∪ B′ and y joined to all of A ∪ C ′.

Let us compare e(G′) and t(G′) with e(G) and t(G). By Claim 5.18, there are no edges

in G between {u, v} and B′. Therefore, the removal of u, v removes at most 2(a + c + o(n))

edges. On the other hand, the addition of x, y creates 2a + b + c − o(n) new edges.

Therefore, e(G′) � e(G) + b − c − o(n) > e(G). Furthermore, since u, v have at least c − o(n)

neighbours in C each, there are at most o(n) vertices in C that are adjacent to precisely

one of u, v. As a result, u, v are incident with at most o(n) non-triangular edges in G.

Since the addition of x, y creates c − o(n) new non-triangular edges, we have t(G′) �
t(G) + c − o(n) > t(G). This contradicts the optimality of G, because c = Ω(n).

Proposition 5.4 easily follows from Claims 5.17, 5.18, 5.19 and 5.20. Indeed, these claims

together imply that B and C are independent sets in G. Therefore, if there were any

missing edges between B and C , we could add them to G without creating new triangles.

Since G is an optimal graph, all possible edges between B and C are present. It follows

that G ∼= G(|A|, |B|, |C|).

6. Almost complete

In this section we prove Theorem 2.3.

Theorem 2.3. There exist n0 and δ > 0 such that the following holds. Let G be a graph with

n � n0 vertices and e edges, where e � (1/2 − δ)n2. Then there exists a graph H = G(a, b, c)

such that |H | = n, e(H) � e and t(H) � t(G).

The proof in this range is easier than in the other two ranges, though far from immediate.

We start by making the usual assumption that G is an optimal and compressed graph,

even though we do not use the full strength of the latter assumption: we only need

condition (2) from Definition 3.8.
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If very few (namely, 2n − 8 or fewer) edges are missing from G, then we directly

prove that G ∼= G(a, b, c) for some a, b, c. For the remaining range, we partition the

vertices of G, according to their degrees, into sets A,B, C , with the aim of showing that

G ∼= G(|A|, |B|, |C|). We first prove that the sets have the correct orders of magnitude using

a rough lower bound on t(G). We are then able to prove better estimates for the sizes of

the sets, and, finally, we deduce that G has the required structure.

Proof of Theorem 2.3. Fix a sufficiently small constant δ > 0 (whose value can be

determined from the proof) and let G be an optimal and compressed graph with n vertices

and
(
n
2

)
− εn2 edges, where 0 � ε � δ. We first consider the case e(G) �

(
n
2

)
− (2n − 9).

Claim 6.1. If e(G) �
(
n
2

)
− (2n − 9), then G ∼= G(a, b, c) for some a, b, c.

Proof. If G has no non-triangular edges, then it is a clique by optimality, so we are

done. We claim that G does not have two independent non-triangular edges. Indeed, if

uv and xy are such edges, then for any other vertex w one of the two possible edges uw

and vw is missing, as well as one of xw and yw. Therefore, G has at least 2n − 8 missing

edges, contradicting our assumption. Therefore, since the triangle-free edges cannot form

a triangle, they form a star. Let uv1, . . . , uvk be the non-triangular edges. Then the set

A = V (G) \ {u, v1, . . . , vk} is the set of triangular vertices in G, so A induces a clique and

all of the vertices in A have the same neighbourhood in V (G) \ A. Now, there are two

possibilities: either u is adjacent to all of A, or u is not adjacent to any vertex in A. In the

former case, there are no edges between A and {u1, . . . , uk}, and so G ∼= G(|A|, 1, k). In the

latter case, optimality of G implies that all possible edges between A and {u1, . . . , uk} are

present in G, and so G ∼= G(|A|, k, 1).

From this point onwards we assume that e(G) �
(
n
2

)
− (2n − 8). In particular, ε �

(2 − o(1))/n. We wish to prove that G is isomorphic to the graph G(a, b, c) for some

parameters a, b, c. To get some idea on how large these parameters should be, we observe

that a ≈ n, because the number of missing edges is small. Now, the number of missing

edges, ac +
(
b
2

)
+

(
c
2

)
, can be reasonably approximated by cn + b2/2. Subject to b, c being

non-negative reals such that cn + b2/2 � εn, the quantity bc is maximized when b =√
2ε/3 n, c = (2ε/3)n. Therefore, we expect G to be isomorphic to G(a, b, c) with b ≈√
2ε/3 n and c ≈ (2ε/3)n. We can use this conclusion to get a lower bound on t(G).

Claim 6.2. t(G) = Ω(ε3/2n2).

Proof. Let G′ = G(a, b, c), where b = �
√

2ε/3 n�, c = �(2ε/3)n� and a = n − b − c. There

are at most cn + b2/2 � εn edges missing from G′, so e(G′) � e(G). We now find a lower

bound for t(G′) by a simple computation, but we have to be careful with rounding errors.

We have εn2 � 2n − 9, implying that (2ε/3)n > 1, and hence c = �(2ε/3)n� = Ω(εn).

Similarly, b = Ω(
√
ε n). It follows that t(G′) = bc = Ω(ε3/2n2). Since G is optimal, we have

t(G) � t(G′) = Ω(ε3/2n2).
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We now define three sets A,B, C ⊆ V (G) that correspond to the three parts of a graph

G(a, b, c). Let C be the set of vertices of degree at most 3n/4, let B be the set of vertices

in V (G) \ C that have a non-triangular neighbour in C , and let A = V (G) \ (B ∪ C).

Since any two vertices in A ∪ B have at least n/2 common neighbours, there are no

non-triangular edges with both ends in A ∪ B. Therefore, all vertices in A are triangular,

so A induces a clique and its vertices have the same neighbourhood in V (G) \ A.

The next step is to obtain tight bounds for the sizes of A,B, C . First, we determine the

order of magnitude of |B| and |C|.

Claim 6.3. |B| = Θ(
√
ε n) and |C| = Θ(εn). Moreover, every vertex of B is an end of Ω(

√
ε n)

missing edges.

Proof. By definition, every vertex in C is an end of at least n/4 non-edges. Since there

are εn2 non-edges in total, we have |C| = O(εn). We know from the previous claim that

there are at least Ω(ε3/2n2) non-triangular edges. All of these edges have at least one end

in C , and so some vertex in C has at least Ω(
√
ε n) non-triangular neighbours. Therefore,

by Observation 3.2, every vertex in G has at least Ω(
√
ε n) neighbours.

Pick any v ∈ B. By the definition of B, v has a non-triangular neighbour u ∈ C . This

means that v is not adjacent to any neighbours of u, and so v is an end of at least Ω(
√
ε n)

non-edges. Therefore, |B| = O(
√
ε n). Moreover, since every non-triangular edge has both

ends in C , or one in B and one in C , we have |B||C| + |C|2/2 � Ω(ε3/2n2), which implies

that |B| = Ω(
√
ε n) and |C| = Ω(εn).

An immediate consequence of the previous claim is that |A| = (1 − O(
√
ε ))n. Recall

that all vertices in A have the same neighbourhood in V (G) \ A. In particular, each vertex

in B ∪ C is adjacent either to all vertices in A or to none of them. Since the vertices in

B have degree at least 3n/4, they are all adjacent to all of A, and, similarly, there are no

edges between A and C . We can use this fact to give a better upper bound on |C|.

Claim 6.4. There exists a constant ξ > 0 such that |C| � (1 − ξ)εn.

Proof. Every vertex in B is an end of Ω(
√
ε n) missing edges and |B| = Θ(

√
ε n), so there

are Ω(εn2) missing edges with an end in B. Since all edges between A and C are missing,

we have (1 − O(
√
ε ))n|C| + Ω(εn2) � εn2. Therefore, |C| � (1 − Ω(1))εn/(1 − O(

√
ε )), and

the claim follows provided that ε is sufficiently small.

It is now possible to accurately relate the sizes of B and C . Write |C| = γεn, where

Ω(1) = γ � 1 − ξ. Define β =
√

2(1 − γ) and note that β = Θ(1).

Claim 6.5. |B| = β
√
ε n + O(εn). Moreover, there are at least |B||C| − O(ε2n2)

non-triangular edges between B and C .
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Proof. Let G′ be the graph G(a, b, c), where c = |C|, b = �β
√
ε n� and a = n − b − c.

It is easy to see that b2/2 + cn � εn2. In particular, we have e(G′) �
(
n
2

)
− εn2 = e(G).

Therefore, since G is optimal, t(G) � t(G′) = bc.

Let us come back to the graph G. Since every non-triangular edge has an end in C ,

some vertex in C has at least b non-triangular neighbours. It follows from Observation 3.2

that every vertex in G has degree at least b − 1. Moreover, since vertices in C are adjacent

only to vertices in B ∪ C , we have |B| � b − c − 1 = b − O(εn).

Every vertex in B has a non-triangular neighbour, and therefore is an end of at least

b − 1 missing edges. Hence, there are at least |B|(b − 1)/2 missing edges with an end in

B. Since there are no edges between A and C , we have

1

2
|B|(b − 1) + (1 − O(

√
ε ))cn � εn2 � 1

2
b2 + cn + O(

√
ε n),

where the latter inequality follows from the definition of b. It follows that |B|b � b2 +

O(
√
ε cn), and hence |B| � b + O(εn). To finish the proof, observe that t(G) � bc = |B||C| −

O(ε2n2) and recall that the non-triangular edges of G are either spanned by C (there are

O(ε2n2) such edges) or they have one end in B and the other in C .

A standard trick of replacing two vertices by copies of other vertices, which we have

been using throughout the paper, allows us to conclude that C is an independent set.

Claim 6.6. The set C is independent. Moreover, every vertex in C is adjacent to all but at

most O(εn) vertices in B.

Proof. The second conclusion of Claim 6.5 implies that some vertex in C has at least

|B| − O(εn) non-triangular neighbours in B. As a consequence, B contains an independent

set I of size |B| − O(εn). Moreover, Observation 3.2 implies that every vertex in C is

adjacent to all but at most O(εn) vertices in B ∪ C .

Suppose that C contains a pair of adjacent vertices u, v. Let G′ be the graph obtained

from G by removing the vertices u and v and adding new vertices x and y, where x is

adjacent to all of A ∪ B, and y is adjacent to all of I . The removal of u and v decreases the

total number of edges by at most 2(|B| + |C|) = O(
√
ε n), while the addition of x and y

increases this number by at least |A| = (1 − O(
√
ε ))n. Therefore, e(G′) > e(G). Moreover,

since u and v are adjacent, they do not form non-triangular edges with their common

neighbours. Hence, u and v have at most O(εn) non-triangular neighbours in total. On the

other hand, the addition of x and y adds |I | = Ω(
√
ε n) non-triangular edges. Therefore,

t(G′) > t(G), a contradiction to the optimality of G.

Finally, we prove that B is an independent set.

Claim 6.7. The set B is independent.

Proof. Suppose that u, v ∈ B are adjacent. There are at most |C| non-triangular edges

with an end in {u, v}, because every vertex can only be a non-triangular neighbour of
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at most one of u and v. Moreover, by definition, every vertex in B has a non-triangular

neighbour. Let w ∈ C be a non-triangular neighbour of u. Since the edge uw is non-

triangular, it follows that u is not adjacent to any of the neighbours of w. By Claim 6.6,

w is adjacent to all but at most O(εn) vertices in B. Therefore, u has at most O(εn)

neighbours in B and, likewise, so does v.

Let G′ be the graph obtained by replacing u and v with new vertices x and y, where x is

adjacent to all of A ∪ C and y is adjacent to all of (A ∪ B) \ {u, v}. We have t(G′) � t(G) and

e(G′) � e(G) + |B| − 2 − 2|C| − O(εn) > e(G), contradicting the optimality of G. Therefore,

B is independent, as required.

We have proved that B and C are independent, A is complete, and its vertices are

adjacent to all of B and none of C . We may add any missing edges between B and C

without creating new triangles, so by the optimality of G, there are in fact no missing

edges between B and C . Therefore, G is isomorphic to G(|A|, |B|, |C|), completing the

proof of Theorem 2.3.

7. Concluding remarks

We note that we have not fully resolved Conjecture 1.1.

Conjecture 1.1. Let n and e > �n2/4� be integers and let G be an n-vertex graph with e

edges that minimizes the number of triangular edges. Then G is isomorphic to a subgraph

of a graph G(a, b, c) for some a, b, c.

Theorem 1.3 shows that the minimum number of triangular edges among n-vertex

graphs with e is attained by (a subgraph of) a graph G(a, b, c). However, we have not

shown that such graphs are the only minimizers. Nevertheless, we believe that this fact

can be proved (for sufficiently large n) by retracing our proofs. Since our paper is already

quite long, we spare the reader any further details. In any case, our result only holds for

sufficiently large n, and it would be interesting to extend it to work for all n.

We have not specified explicitly how large n should be in order for our proof to work,

mainly because, due to the complexity of the proof, it is quite hard to find such an explicit

bound. Nevertheless, we expect this bound to be ‘reasonably small’: say, much smaller

than a bound that may arise from the use of the regularity lemma, because the inequalities

we need to hold are polynomial in n.

The following question arises from Conjecture 1.1, by considering edges on Kr for r � 4.

To simplify the notation, for any graph H and an edge e of some other graph G, we say

that e is an H-edge if it is contained in a subgraph of G isomorphic to H .

Problem 7.1. What is the smallest number of Kr-edges that a graph with n vertices and e

edges may have? Which graphs with n vertices and e edges minimize this quantity?

It seems reasonable to believe that the extremal examples are analogues of graphs

G(a, b, c), namely, they may be formed by adding a clique to one of the parts of a
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complete (r − 1)-partite graph with n vertices. We believe that the methods used in this

paper may be useful when tackling this more general problem.

There is another natural generalization, where we consider odd cycles instead of cliques.

Problem 7.2. What is the smallest number of C2k+1-edges that a graph with n vertices and

e edges may have? Which graphs minimize this quantity?

It turns out that the case k � 2 is quite different from k = 1 (that is, where the odd

cycle is a triangle). Erdős, Faudree and Rousseau [3] proved that, for any fixed k � 2,

any graph with n vertices and �n2/4� + 1 edges has at least 11n2/144 + O(n) C2k+1-edges.

In contrast, the number of triangular edges can be as small as 2�n/2� + 1, as mentioned

in the Introduction. So, the jump in the number of C2k+1-edges (for k � 2) is very sharp,

while the jump in the number of triangular edges is much smoother.

In the same paper, Erdős, Faudree and Rousseau conjectured a stronger statement:

they conjectured that, for any fixed k � 2, any graph with n vertices and �n2/4� + 1 edges

has at least 2n2/9 + O(n) C2k+1-edges. This bound can be attained by (a subgraph of) the

union of a complete graph on roughly 2n/3 vertices and a balanced complete bipartite

graph on the remaining vertices. However, an example by Füredi and Maleki [4] shows

that the conjecture is false: they constructed n-vertex graphs with �n2/4� + 1 edges and

(0.213 . . . + o(1))n2 C5-edges. The example is somewhat similar to a graph G(a, b, c): here

we have four sets A,B, C, D such that A induces a clique and all possible A − B, B − C

and C − D edges are present. The C − D edges are not C5-edges, but all other edges are.

The aforementioned bound is obtained by optimizing the sizes of A,B, C, D. Füredi and

Maleki also calculated, asymptotically, the minimum possible number of C2k+1-edges (for

k � 2) in n-vertex graphs with e edges, where e = γn2 for any fixed constant 1/4 < γ < 1/2.

Their findings provided supporting evidence that the conjecture of Erdős, Faudree and

Rousseau should be true for k � 3.

Very recently, more progress on Problem 7.2 was made by Grzesik, Hu and Volec [6].

For any fixed k � 2, they obtained asymptotically sharp bounds for the smallest possible

number of C2k+1-edges in a graph with n vertices and at least �n2/4� + 1 edges, using the

method of flag algebras. In particular, they almost confirmed the conjecture of Erdős,

Faudree and Rousseau for k � 3 (with an error term of o(n2) instead of O(n)) and proved

that the construction of Füredi and Maleki is asymptotically best for k = 2.

We believe that the method of Grzesik, Hu and Volec [6] should be sufficient to give the

exact smallest number of C2k+1-edges in a graph with n vertices and e edges, for any fixed

k � 2, provided that n is sufficiently large. Furthermore, their stability result should be

sufficient to establish that, for sufficiently large n, the construction described earlier is the

unique extremal construction. However, Grzesik, Hu and Volec do not claim these results

in their paper, and many technical details would have to be checked to make sure that

these results could indeed be proved. Answering these questions without the assumption

that n is large is an interesting problem, which is still open.

Finally, we mention that all aforementioned problems are special cases of the following

very general problem.
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Problem 7.3. Fix any graph F . What is the smallest possible number of F-edges in a graph

with n vertices and e edges? What are the extremal examples?

Füredi and Maleki [5] calculated this minimum, asymptotically, for 3-chromatic graphs

F and for e = γn2 where γ is fixed and satisfies 1/4 < γ < 1/2. For any other F , this

problem is wide open. Finally, we note that it is possible to go even further and generalize

the problem to the context of hypergraphs.
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