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Abstract

A three-dimensional Richtmyer–Meshkov instability (RMI) was generated on metal target by the laser pulse of Gaussian-
like power profile in the semiconfined configuration (SCC). The SCC enables the extended lifetime of a hot vapor/plasma
plume above the target surface as well as the fast multiple reshocks. The oscillatory pressure field of the reshocks causes
strong bubble shape oscillations giving rise to the complex wave-vortex phenomena. The irregularity of the pressure field
causes distortion of the shock wave front observed as deformed waves. In a random flow field the waves solidified around
the bubbles form the broken “egg-karton” structure – or the large-scale chaotic web. In the coherent flow field the shape
oscillations and collapse of the large bubbles generate nonlinear waves as the line- and the horseshoe-solitons. The line
solitons are organized into a polygonal web, while the horseshoe solitons make either the rosette-like web or appear as
the individual parabolic-like solitons. The configurations of the line solitons are juxtapositioned with solitons simulated
by the Kadomtsev–Petviashvili (KP) equation. For the horseshoe solitons it was mentioned that it can be obtained by
the simulation based on the cylindrical KP equation. The line and the horseshoe solitons represent the wave-vortex
phenomena in which the fluid accelerated by the shock and exposed to a subsequent series of fast reshocks follows
more complex scenario than in the open configuration. The RMI environment in the SCC generates complex fluid
dynamics and the new paradigm of wave vortex phenomena in turbulent mixing.

Keywords: Horseshoe solitons; Jet-spike breakup; Kadomtsev–Petviashvili equation; Laser ablation; Line solitons;
Richtmyer–Meshkov instability; Turbulent mixing; Wave-vortex phenomena

1. INTRODUCTION

The objective of this work is to shed more light on the evo-
lution of the three-dimensional (3D) Richtmyer–Meshkov in-
stability (RMI) on metal surface induced by the laser pulse in
the case when the hot vapor/plasma plume exists above the
target surface with extended lifetime and the fast multiple re-
shocks strike the target surface. Such RMI environment is
generated in the semiconfined configuration (SCC) of exper-
iment (Lugomer et al., 2009). The hypothesis was that such
environment generates more complex fluid dynamics with
the new paradigm of wave-vortex phenomena in RMI turbu-
lent mixing.
The passage of a shock passes through an interface be-

tween two fluids causes the growth of spikes and bubbles
and subsequent turbulent mixing. The RMI occurs for the

impulsive acceleration either of the light fluid into the
heavy one, or vice versa (Richtmyer, 1960; Meshkov,
1969; Wouchuk & Nishihara, 1996; Zabusky, 1999). The
RMI with density stratification leads to nonequilibrium,
nonlocal and nonuniform turbulent mixing important in
small-scale and the large-scale physical systems such as as-
trophysical supernova explosion (Peng et al., 2003; Zhang
& Zabusky, 2003; Zhang et al., 2003; Zabusky et al., 2005),
supersonic combustion (Yang et al., 1990), inertial confine-
ment fusion (Alon et al., 1996; Nishihara et al., 1998; Shvarts
et al., 2001; Matsuoka et al., 2003), planetary sciences (Mat-
suoka et al., 2003), material physics and high-power laser
modification of surface properties (Lugomer, 2007).

When the shock wave strikes the density interface, the
light fluid (ρL) is accelerated impulsively into the heavy
one (ρH) causing baroclinic vorticity deposition. In the pres-
ence of the reshock, additional vorticity is deposited during
its interaction with the interface (Yang et al., 1990; Probyn
& Thornber, 2013). For the multimode perturbation of the
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interface the bubble amplitude scales in a different way than the
spike amplitude. The latter depends on the fluid density ratio ex-
pressedby theAtwoodnumber,A= (ρH− ρL)/(ρH+ ρL) (Alon
et al., 1996). The instability exponentially grows in time with
the growth rate, which depends on the Atwood number A, on
the perturbation amplitude A0 and the spatial period of the
perturbation mode. The density interface transforms into a
composition of the large-scale self-organized structures of
regular “egg-karton”morphology and the small-scale irregular
structures (Abarzhi, 1998, 2008; Cohen et al., 2002; Abarzhi
& Hermann, 2003; Miles et al., 2005; Lugomer, 2016).
When 3D RMI is driven by the nanosecond laser pulse

with Gaussian-like power distribution the plasma detonation
causes the blast wave that impulsively accelerates the vapor
plume (light fluid) into the molten metal layer (heavy
fluid). The lateral vapor/plasma expansion in the back-
ground gas (air) causes variation of the A number distribution
being higher in the central region (CR) below the Gaussian
maximum than in the near CR (NCR) below the Gaussian
wing [A(CR)> A(NCR)]. The momentum M transferred to
the fluid parcel depends on the local laser energy density
and is also higher in the CR of the spot, than in the NCR
[M(CR)>M(NCR)]. In the mixing flow, the dynamics of
a fluid parcel is governed by a balance per unit mass of the
rate of momentum gain M and the rate of momentum loss
M’ (Abarzhi, 2010; Lugomer, 2016). When the RMI struc-
tures are generated by laser on metal surface they are solidi-
fied fast after pulse termination making possible a posteriori
analysis, which offers a direct view into their size, and the or-
ganizational complexity.
In this paper we consider 3D RMI driven by the laser pulse

with circular Gaussian-like power distribution by using the
SCC, in which the solid target is irradiated through the trans-
parent quartz plate. Thus the microchannel is formed, which
prevents a free expansion of the vapor/plasma plume and as-
sures its long lifetime above the target. The high-frequency
reshocks, which evolve in this configuration, affect the
bubble dynamics and also development of the nonlinear
waves in turbulent mixing, which are different in the CR,
NCR, near peripheral region (NPR) and peripheral region
(PR) of Gaussian spot. Because of the complexity of the phe-
nomena, in this paper only the CR is considered.
We show that in the SCC the shock wave and fast multiple

reshocks cause RMI turbulent mixing with the new features
of the wave vortex phenomena. The jet-spikes generated at A
∼1 and very high Re number by the strong shock wave are
broken up leaving only remnants on the surface and well de-
veloped bubbles in agreement with Laser that a strong inter-
face disturbance tends to breakup into a system of bubbles
and spikes (Lazer, 1955). The nonlinear single-mode bubble-
front evolution described by a drag buoyancy type equation
gives the asymptotic velocity, u= Sqr(gλ/3π), where λ is
the perturbation wavelength and g is the acceleration of grav-
ity (Lazer, 1955). Later on, Alon et al., found the growth of
large bubbles by the merger process, the asymptotic single-
mode velocity u= (3π)−1λ/t (Alon et al., 1996). The

bubble velocity decays at late times depending on the A
number (Shvarts et al., 2001).
However, in the SCC the coupling of fast reshocks with

bubble oscillation determines the wave-vortex characteristics
in the mixing phase. Depending on the bubble diameter the
reshocks cause oscillations, shape pulsations, splitting and
collapse of bubbles generating the pressure waves in the sur-
rounding fluid. The irregularity of the pressure field causes
deformed waves, which are solidified around the bubbles
and form the large-scale chaotic web – broken “egg-karton” –
morphology in the random flow field.
The coherent flow field (inside local domains of a random

flow filed) comprises only the large bubbles whose shape os-
cillations and collapse generate 2D nonlinear waves. Evolv-
ing as the line solitons they are organized into a polygonal
web, similar to that on the silicon target formed by the fs
laser pulses (Lugomer et al., 2013). The others evolving as
the horseshoe solitons are organized into the rosette-like
web but also appear as individual parabolic-like solitons.
The configurations of the line solitons are juxtapositioned

with the solitons simulated by the Kadomtsev–Petviashvili
(KP) equation. For the horseshoe and the elliptic solitons it
was mentioned to be simulated by the cylindrical KP
(cKP), and the elliptic-cKP (ecKP) equation, respectively,
as shown by various mathematical groups.
The primary goal of this study is the evolution of the RMI

under condition of the prolonged lifetime of the vapor/
plasma plume (above the target) and of the fast oscillatory re-
shocks, which initiate the specific evolution scenario after the
jet-spike breakup. The goal was to elucidate whether in the
RMI turbulent mixing, the bubbles follow the forward
energy cascade or not that could give a new look on the
bubble growth by merging in turbulent mixing. This study
is important for understanding of how the bubble dynamics
(volume oscillation, shape oscillation, splitting, and chaotic
oscillation) driven by the fast reshocks, influences the RMI
morphology. The study is also important because it presents
the new results – missing in the literature – about the evolu-
tion of the nonlinear solitary waves and the wave-vortex par-
adigm in the RMI. The morphology with configurations of
the line solitons and of the horseshoe solitons represents
the wave vortex turbulent mixing, which overwhelms the
usual RMI pressure pulsations owing the vortex character
of mixing and the pressure field, which is irregular in vorti-
ces. The study is important because it demonstrates that the
RMI dynamics of a shock accelerated fluid in the SCC fol-
lows more complex scenario than in the open configuration.
This paper is organized as follows: In Section 2 the Exper-

imental details are given such as laser characteristics, target
characteristic, and detail description of the SCC. Also, the
important parameters like the shock-wave pressure, shock ve-
locity, fluid velocity, Re number, reshock velocity, horizontal
fluid velocity, and frequency of the reshocks are presented
and summarized in Table 1. In Section 3 (Results and discus-
sion), we study (from the scanning electron microscope
(SEM) micrographs of the RMI morphology) the 2D
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bubble organization, bubble distribution, bubble dynamics
under fast reshocks, and the effects on turbulent mixing in:
the incoherent flow field, and the coherent flow field. In
Subsection 3A (Incoherent Flow field), we study the incoher-
ent flow field and 2D bubble organization in a random web;
the RMI jet-spike breakup; growth rate of spikes and bub-
bles; bubble number density distribution; the effect of fast re-
shocks on the bubble distribution; bubble dynamics and
turbulent mixing; the effects of reshocks on bubble merging
and turbulent mixing. In Subsection 3B (Coherent Flow
field), we study the coherent flow field and 2D bubble organi-
zation in the polygonal web; bubble density distribution;
bubble shape oscillations; bubble collapse; generation of the
polygonal walls around bubbles as 2D solitary waves; line sol-
itons, multisolitons; line soliton configurations in turbulent
mixing zone (TMZ); configurations of line solitons; complex
configurations of line solitons; formation of 2D bubble orga-
nization in the rosette-like web; horseshoe-walls around bub-
bles and 2D horseshoe solitary waves. Finally Section 4 is
Conclusion.

2. EXPERIMENTAL DETAILS

In the SCC the target is irradiated through transparent quartz
plate positioned at Δ∼120 μm above the target surface, thus
forming a microchannel. In Figure 1a laser beam was focused
to the target surface by the silica lens of the focal length f=
35 cm, in the presence of air as a background gas at the normal
pressure P0= 1atm. The spot diameter was 2R≃1.3 mm, and
the irradiated area was S ≃0.013 cm2. The experiments were
performed by a Gaussian-like single pulse of a Q-switched
ruby laser E ∼160 mJ (Es ∼12 J/cm2; Ps ∼0.48 × 109 W/
cm2 (≳0.5 GW/cm2); τ= 25 ns, λ= 628–693 nm). Indium
plates of 1 × 1 × 0.1 cm3, as a soft material with the melting
point TM= 429 K and boiling point TB= 2345 K, were
used as target. The target surface was roughly polished in
order to introduce corrugations, which serve as the origin of
the initial perturbation of density interface. A group of
small- and the large-scale random corrugations (scratches)
with the scratch-scratch distance, dlarge scratch ∼10–60 μm
and the amplitude A0 ∼10–20 μm, was introduced. Thus, the
multimodal perturbation of the density interface consisted of
a random combination of incommensurate short- and long-
wavelength modes. During the laser action, multi-photon ion-
ization results in the creation of ions and electrons in a dense
vapor/plasma plume (Supplement A).

The subsequent plasma ignition and detonation, genera-
tion of the shock wave and its vertical expansion are
shown in Figure 1a–1d. The reflection of the shock wave
as the reshock from the cover plate and from the target sur-
face, the multiple reshocks as well as the horizontal plume
expansion in the ambient gas are shown in Figure 1e–1h
(Supplement B).

The upward moving shock velocity can be estimated to
Vinitial shock≳ 3000 m/s in the center of the microchannel
at Δ/2= 60 μm. The velocity decreases with the blast
wave expansion in the background gas (air) to V−

⊥ shock

∼1800–1900 m/s, when the (downward moving) shock
wave strikes the density interface. This shock velocity is sim-
ilar to the shock velocity of graphite plasma in air (Vshock=
1400 ms) of Ionin et al. (2010), with the shock velocity in air
(1760 m/s) and the shock velocity in argon (1940 m/s) of
Shimamura et al. (2011).

The sound velocity in indium vapor/plasma estimated
from the diagram in Figure 4 of Ionin et al. (2010) is,
Csound ∼410–430 m/s, what gives the Mach number of the
detonation shock velocity of indium plasma in the ambient
gas Ma−⊥ shock= (V−

⊥ shock/Csound) ∼4.37–4.68, or Ma≲ 5.
This value is in agreement with the shock-wave velocity
Ma= 5.23 in air and with Ma= 6.22 in argon (Shimamura
et al., 2011), with Ma≲ 5 (Prestridge et al., 2013), with
Ma= 6 in the silicon plasma plume (Lee et al., 1996), as
well as with the interval of Ma numbers Ma∼2–8 in various
gasses found by Nevmerzhitsky (2013). The estimated
shock-wave parameters, reshock parameters, fluid velocity,
and the Re number relating to the dynamics of indium-
vapor-plasma-plume and of liquid indium are summarized
in Table 1. Details are given in the Supplements C and D.

The growth of jet-spikes and bubbles forms the morphol-
ogy, which stays frozen by the fast solidification after pulse
termination (Fig. 1h). The surface morphology was studied
by the scanning electron microscope (SEM) JEOL.

3. RESULTS AND DISCUSSION

The SEM micrograph of a Gaussian-like spot shows four re-
gions of the RMI morphology: the CR, NCR, NPR and PR
(Fig. 2). Different structures in these regions are the conse-
quence of radially decreasing momentum transfer M, and
of the Atwood number from the CR (A ∼1), to the NCR
(A ∼0.85–0.6), and to the NPR (A< 0.60), characteristic
for the Gaussian-like pulses. Due to the complexity of the

Table 1. Estimation of the shock wave and of the fluid dynamics parameters

Shock-wave
pressure

Shock-wave
velocity

Vertical fluid
velocity

Vertical
Reynolds
number

Reshock
velocity

Horizontal fluid
velocity

Horizontal
Reynolds number

Frequency of
multiple reshocks

P(GPa) Mach (M) v⊥(m/s) Re⊥ Vres (m/s) V (m/s) Re∣∣ n (MHz)

1–1.2 ≲5 1800–1900 104–105 900–950 ≳103 2.4 × 103 7–8
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wave-vortex phenomena in these regions, the analysis of the
CR is presented in this paper while the other regions will be
presented separately in the future papers.

3.1. Incoherent Flow Field

3.1.1. 2D bubble organization in a random web

The RMI morphology in Figure 3a resembles the crum-
pled “egg-karton” structure in which cavities – formed by
one or more bubbles – are surrounded by the irregular
“walls”. The “walls” are the crests of a heavy fluid around
the bubbles, or around the bubble cluster, or the “curtains be-
tween the bubbles” developed during nonlinear growth when
the instability amplitude becomes of the order of λ (Reck-
inger, 2006). The “walls” are connected and make the chaotic
web comprising deformed cells (cavities) with the “wave-
length”, λ≲ 40 μm to ∼60 μm Figure 3a. It may be attribut-
ed to the long-wavelength perturbation on the surface
corrugation, dscratch ∼40–60 μm. The other characteristic of

this morphology is – the absence of the spikes – and presence
of their remnants slightly higher than the rest of the surface.
The exception are few small spikes with a droplet at the tip
[Fig. 3b(i)] similar to that obtained by numerical simulation
for A= 0.9 and Re≲ 104 (Abarzhi & Hermann, 2003). The
origin of such morphology are the unstable turbulent RMI
jet-spikes broken up into nanodroplets [Figure 3b(ii)].
Interface morphology as isosurface
The morphology RMI in Figure 3a can be compared with

the RMI isosurface generated by 3D direct numerical simula-
tions performed for the passage of the shock wave through
the air/SF6 interface (Statsenko et al., 2006; Sin’kova
et al., 2007). The resulting isosurface of TMZ for the SF6
volume fraction over level of 0.999 in two different times
for the high Mach number, Ma= 10.6, is shown in
Figure 4a(left), while the isosurface of pressure correspond-
ing to the shock-wave location is shown in Figure 4a(right).
Magnified details of the turbulent jet-spike breakup in
Figure 4b(i), and of the smooth bubble (cavity) surface
with the “walls” (curtains) in Figure 4b(ii) are similar to

Fig. 1. Laser interaction with indium target in the semi-confined configuration (SCC). (Schematically). (a) Ruby laser irradiation of
Indium plate through the quartz cover plate at the distance of Δ= 120 μm above the target. (b) Phase explosion of superheated target sur-
face with ejection of indium vapor and generation of a vapor plume. Ionization of vapor and formation of a vapor/plasma plume in the
microchannel. Formation of the interface of a low-density ρL, and the high-density fluid ρH. (c) Absorption of the laser energy by
the plasma plume leads to instability and detonation with formation of a blast wave. d) Vertical expansion of a blast and shock wave:
the upper part moves toward the cover plate. The lower part moves toward the indium liquid layer and causes perturbation of the ρL/
ρH interface from the low- to high-density fluid with deposition of baroclinic vorticity. (e) Formation of vertical reshocks: The reshock
from the cover plate is moving downward, while the reshock from the target surface is moving upward. Their fast reverberation between
the cover plate and target surface makes the fast reshock oscillatory field. (f) Evolution of reshocks and expansion of the blast wave along
the microchannel. Strong influence on the central region (CR) of the spot. (g) The plasma plume and hot background air fill up the micro-
channel; growth of Richtmyer–Meshkov instability (RMI). (h) Advanced growth of RMI with evolution of jet-spikes and bubbles. The
onset of turbulent mixing.
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Figure 3a. This indicates the analogous dynamics, which ex-
tends over a wide range of parameters because the Mach
number Ma= 7.8–10.6 and the pressure of P= 20 GPa (sim-
ulation) results in the morphology similar for Ma ∼5 and
P ∼1.2 GPa (laser experiment).
During the development of turbulent mixing behind the

front of the shock wave, the front of the shock wave can
merge with the TMZ (Statsenko et al., 2006; Sin’kova
et al., 2007). This has the consequence on the shock-wave in-
stability; the shape of the interface and the shock-wave front
correlate with each other. The correlation between the ejected
spikes of TMZ and the pressure pulsations at the front of the
shock wave is clearly visible. The starting plane-pressure
front becomes significantly deformed with time during

spreading of the shock wave and generation of the large-scale
vortices in TMZ of RMI (Statsenko et al., 2006; Sin’kova
et al., 2007).

3.1.1.1. Jet-spike breakup. The breakup of RMI jet-spike
can be described by the buoyant jet breakup based on 3D
numerical simulations and the k-ε model (turbulent energy
generation – dissipation rate of turbulent energy) (Statsenko
et al., 2006). The source of buoyant jet is described by the
z-component of velocity uz, with the velocity at the origin,
uzo and the stochastic velocity perturbations of ∼10% of
uz0 (Statsenko et al., 2006). The growth of stochastic
perturbations leads to turbulence, which strongly depends
on the z/d ratio (z is the jet height –amplitude – and d is
the diameter of the circular jet source). The pulsations of
density leading to breakup are observed in the interval
from z= 8d to 16d. The most representative description of
the jet breakup is the profiles of averaged quantities at the
jet-spike cross sections, z/d (Statsenko et al., 2006). The
profiles of the mean square averaged pulsations of
temperature, pressure, and of density are correlated with the
mean square averaged pulsations of velocity. Assuming
that buoyant jet flow is statistically stationary, the Fourier
transform in time gives the insight into the spectrum of
pulsations in a turbulent jet. The spectral density
proportional to ∼ω−2, indicates the Kolmogorov spectrum
of the velocity pulsations leading to jet-spike breakup
(Statsenko et al., 2006).

Growth rate of jet-spikes and bubbles
The fact that jet-spike breakup occurs at the specific value of

the z/d ratio and of the Reynolds number, Re, we shall use for
the estimation of the growth rate of jet-spikes and bubbles.
The experiments have shown the jet breakup for the Re= 105

at z/d= 6; however, for Re= 104 the z/d= 7, but the values
of z/d≥ 10 and even larger have been reported (Wu et al.,
1994, and references cited there). The numerical simulations
have shownbreakupof turbulent jet at z/d= 8, 12, and16 (Stat-
senko et al., 2006; Sin’kova et al., 2007; Statsenko et al., 2014).
Based on the z/d values common to the experiments and the
simulations, we assume the jet-spike breakup at z/d ∼7–10.
The measured diameter of d ∼4–6 μm gives the possibility to
find the height (amplitude) of the jet-spike in the moment of
breakup; z≣ hS ∼28–60 μm, of which we take the average
value,<hS>∼45 μm.

The measured amplitude of bubbles is <hB> ∼(−)
8–10 μm in depth indicating ∼4.5–5.6 times higher growth
rates of spikes than of bubbles. Assuming the error of
∼10–15%, the growth rate of spikes is ∼4 times higher
than of bubbles in agreement with Alon et al. (1996). They
found that multimode RMI spike and bubble amplitude in
the nonlinear phase scale in different ways; the bubble ampli-
tude hB scales as hB= αB·t·ΘB, where ΘB= 0.4 at all A,
while the spike amplitude hS scales as hS= αS·t·ΘS, where
ΘS depends on A, which does not appear in these relations
(Alon et al., 1996). The αB and αS depend on the initial per-
turbation, and consequently the penetration of heavy fluid

Fig. 2. SEM micrograph of the spot on indium surface after irradiation by a
circular Gaussian-like pulse of a ruby laser in the SCC. Notice the formation
of four circular regions: The central region (CR), near central region (NCR),
near periphery region (NPR) and the periphery region (PR). The Richt-
myer–Meshkov instability (RMI) morphology of the CR is better seen in
the magnified segment.
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into the light fluid depends on the initial conditions at all
times with A= 1. The spikes penetrate (at a constant velocity)
as, hS= αS·t, (ΘS= 1), as compared with ΘB= 0.4 for the
bubbles (Alon et al., 1996). Based on these relations one can
explain why the growth of spikes in Figure 4a–4c is 3 times
faster than of the bubbles (also in the region of a high density
ratio, A ∼1).
In the RTI case, the model of bubble growth in time by the

merging process gives hB= αBgt
2, with ΘB= 0.05A,

indicating dependence on the Atwood number only, and in-
dependence on the initial conditions (Alon et al., 1996).
Bubble number density distribution
The cavities in Figure 5a are the “beds” of the bubbles,

some of the single and others of two or more bubbles and,
in principle can give an insight into their distribution in the
SEM micrograph. Namely, at magnification the cavities
reveal the contours of the bubbles. An example is the
upper right cavity-segment of Figure 5a, which shows the

Fig. 3. Richtmyer–Meshkov instability (RMI) morphology corresponding to turbulent mixing. (a) Scanning electron microscope (SEM)
micrograph showing details of underlying processes. Notice the absence of the RMI mushroom spikes and presence of the bubbles (cav-
ities) only. The irregular “walls” around the bubbles are connected into a web. (b) Illustration of the jet-spike breakup responsible for the
RMI morphology. The small spike with droplet at the top which survived (i). The breakup of turbulent jet-spike leaving only small rem-
nants on the surface (ii). (c) The breakup of the greatest number of RMI spikes and formation of turbulent mixing morphology.
(Schematic).
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contours two elongated bubbles. Setting the bubbles of ap-
propriate size and shape into the contours in the cavities
reveal that the small bubbles (mostly spherical) and the
large ones (elongated and nonspherical) are present in this
surface morphology (Figure 5a).
The size of the nonspherical bubbles represented by the

mean diameter <D>= 2Sqr(A/4π)= Sqr(A/π), where
A= bubble surface area (Smalyuk et al., 2006), ranges
from the very small bubbles <D>min ≲10 μm to the large
ones, <D>max ∼50 (60) μm. The Gaussian-like bubble-
number-density distribution, ρN versus <D>, in Figure 6
is in agreement with the normal bubble distribution of the
RMI/RTI obtained by numerical simulation (Kartoon
et al., 2001; Smalyuk et al., 2006). However, the presence
of the small bubbles in the “late time phase” in Figure 6
(blue curve), is an anomaly because they should be merged
or destroyed. It is caused by the long life-time of the hot
vapor/plasma layer, which extends to the microsecond
time scale keeping the target surface at the boiling

temperature. Because the oscillations of small bubbles are
compatible with the incoherent oscillations of a random
flow field they survive to the late turbulent mixing phase.
However, these bubbles do not have the origin in the incom-
mensurate perturbation of the density interface and do not
belong to the RMI. Removing them from the diagram in
Figure 6 leaves the distribution (red curve) similar to that
of Smalyuk et al. (2006).

Effect of fast reshocks on bubble distribution
The peculiar feature of bubble distribution in Figure 5a is

the separation of the small bubbles from the large ones,
which is caused by the oscillating reshocks. Namely, the
high-frequency field (n ∼7–8 MHz) of reshocks generates
the pressure gradient, which couples with the bubble oscilla-
tions (volume pulsations) – analogous to the primary
Bjerknes force in the ultrasonic field (Leighton et al., 1990):

(i) It causes the bubble orientation toward the nodal
points of the oscillatory field as observed in the
upper right corner in Figure 5a. However the other de-
formed bubbles are randomly oriented indicating the
force fluctuation in space-time due to fluctuation of
the reshocks. The fluctuation of reshocks is caused
by their successive reflections from the irregular
target surface.

(ii) The pressure gradient of the field produces a transla-
tional force on the bubbles (Leighton et al., 1990).
The movement of the large bubbles (D>DRes) – of
diameter larger than the resonance radius; is toward
the nodal points of the oscillatory field. The small
bubbles (D<DRes) – of diameter smaller than the
resonant radius – are repelled by the same force and
travel toward the antinodal points of the field (Leigh-
ton et al., 1990). The analysis of bubble separation on
the micrographs indicates the resonance diameter
<D>Res ∼28–35 μm. For the irregular cells and the
“egg-karton” morphology the lower value of
<D>Res ∼28 is the most appropriate. It means that
the bubbles with <D>≥ 28 μm are pushed to the
nodal points, while those smaller than <D>
<28 μm are pushed to the antinodal points. The bub-
bles with diameter equal or larger than <D>Res con-
tinue to grow and merge into larger ones reaching
∼50–60 μm in size. The separation of small bubbles
at the one side, from the large ones at the other side
of the cavity is better seen in the segment in
Figure 5b(i), and on the illustration of this effect in
Figure 5b(ii–iv).

3.1.1.2. Bubble dynamics and turbulent mixing. Effects of
reshocks on bubble dynamics and turbulent mixing

The presence of fast oscillatory reshocks makes the bubble
dynamics and turbulent mixing more complex. The cavita-
tion bubbles oscillate under the continuous ultrasonic excita-
tions, thereby generating a pressure gradient between the
bubble surface and the surrounding fluid. The bubbles of

Fig. 4. Richtmyer–Meshkov instability (RMI) isosurfaces of turbulent
mixing obtained by direct numerical simulation for the shock tube experi-
ments on SF6/air gaseous system at the Mach number M= 10.6. (a) The
isosurface of the SF6 volume fraction over the level 0.09 for t1= 0.7 and
t2= 0.75(left). The isosurface of pressure over the level 20 GPa, correspond-
ing to the shock-wave location in t1 and t2 (right). (b) Magnified view of the
jet-spike breakup as obtained by simulation (i); magnified view of the surface
morphology after jet-spike breakup (ii). (Courtesy of Prof. Y. Yanilkin, Rus-
sian Federation Nuclear Center- VNIIEF, Russia).
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different size react on such excitations in a different way as it
can be seen from the “regime map” (Kim & Kim, 2014). It
shows the effect of continuous ultrasonic field on the
bubble behavior as function of the nondimensional diameter
D=<D>/<D>Res and for the pressure P= P/PRes. The
behavior is classified into four types in the “regime map”;
namely, volume oscillation, shape oscillation, splitting, and
chaotic oscillation. Since the wide maximum in the diagram
(Fig. 6) ranges from <D> ≲18 μm to ∼40 μm, with
<D>Res ∼28 μm, one finds the range of D, 0.70 ≳D
∼1.40. According to the “regime map”, the behavior of bub-
bles in this range of diameters is marked on the diagram in
Figure 6. (For details see the Supplement E).

A series of fast re-shocks causes the pressure pulsations
and vorticity generation. When the re-shock strikes the den-
sity interface as rarefaction wave, the molten indium is sub-
jected to tension, which causes it to cavitate (Suponitsky
et al., 2013). Pressure pulsations appear in the shock-wave
front that correspond to pressure pulsations at the leading
edge of the mixing zone at high Ma number. Pressure pulsa-
tions take place in the TMZ owing the vortex character of
mixing and the pressure field, which is irregular in vortices
(Suponitsky et al., 2013, 2014). This irregularity of the pres-
sure field causes distortion of the shock-wave front and char-
acteristic RMI surface morphology. The forcing of the
oscillating pressure field on the system of bubbles of different

Fig. 5. Bubble shape, size and organization in a random flow field. (a) Taking the scanning electron microscope (SEM) micrograph and
setting the bubbles of adequate size and shape into the cavities shows that both, the small bubbles (mostly spherical) and the large ones
(nonspherical) are present in this surface morphology. The upper right segment shows a cavity, which comprises two elongated bubbles,
while the other cavities comprise nonspherical bubbles. (b) Separation of small and large bubbles due to high-frequency multiple reshocks.
The high-frequency oscillating force of the reshocks couples with bubble pulsations and causes their separation – equivalent to the action
of the ultrasonic filed on bubbles (Bjerknes force). (i–iii) Optical micrographs of the bubble separation by size on Indium surface under fast
oscillatory reshocks.

Stjepan Lugomer694

https://doi.org/10.1017/S0263034616000598 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034616000598


size causes bubble dynamics, which generates the waves with
irregular front in the surrounding fluid (Vogel et al., 1996).
The waves solidified in the fast cooling process make the ir-
regular “walls” of variable shape and size (around the bub-
bles). Connected into the chaotic web of (crumpled) broken
“egg-karton” morphology, they are characteristic for the
random flow field.
Regarding the bubble length (L) to the diameter (D) ratio,

the measurements show that for the small bubbles L/D ∼1,
up to the size of D≲ 15 μm, while for those with 20 μm ≲D
≲ 40 μm, the ratio increases in the series L/D ∼1.10, 1.31,
1.64, 1.86, 1,86, 186. The L/D ratio scales proportional to
the perturbation wavelength until it reaches the scale invari-
ant regime for the largest bubbles (D>40 μm), similar to the
observation of other authors (Alon et al., 1996; Shvarts et al.,
2001). Such bubble size scaling appears in the region with A
number estimated to, 1 ∼A ∼0.85, in agreement with other
RMI studies performed for A= 1 (Alon et al., 1996; Shvarts
et al., 2001). The study of the RMI bubble growth for A< 1,
have shown that for A= 0.7, the perturbation growth (spikes
and bubbles) at a blast wave–driven interface is always
RT-like (Miles et al., 2005).

The bubbles, which in a flow field appear random regard-
less of whether or not there is forward energy cascade via
vortex stretching down an inertial range – represent the turbu-
lent mixing (Miles et al., 2005). Development of a mixing
layer with 3D turbulence at few spatial scales represents
the statistically unsteady turbulent flow and stochastic
(random) process, which causes pressure pulsations and gen-
erates the self-similar structures. Namely, the growing diam-
eter of the set of bubbles, <D>= 5.95; 11.88; 16.74, 23.77,
29.8, 35.70, 41,1 54.0 μm, divided by the largest bubble di-
ameter <D>max ∼54 μm, gives <D>/<D>max= 0.11;
0.22; 0.31; 0.44; 0.55; 0.66; 0.77; 1.0, and represents the
final Cantor set:

C = 2/18; 4/18; 6/18; 8/18; 10/18; 12/18; 14/18; . . . 18/18

Taking into account the bubbles of even smaller diameter (in
the tail of the distribution diagram in Figure 6 and assuming
that they are formed on the incommensurate initial perturba-
tions), the number of bubbles, n, becomes large. The set C
may be assumed as the Cantor fractal set what indicates the
selfsimilarity in turbulent mixing at few spatial scales. The
above set can be expressed as C= 2m(1/18) where m= 1,
2, 3…7, 9, is the number of merging steps what indicates
the bubble growth and the scale coarsening by the cascade
merging process. However, the 3D turbulence with coarsen-
ing bubble cascade also means the growing energy cascade,
what is only possible if the coarsening structures take energy
from the oscillatory forcing field of the reshocks. The process
continues until the largest bubble size possible in this system
is reached. Looking at the set of bubble diameters <D>, it
ranges from ∼5.95 μm up to the largest one of ∼54 μm,
which is comparable with the wavelength of the surface cor-
rugation,≲10 – (50) 60 μm. It seems that final bubble size of
<D> ∼54 μm, which coincides with the largest corrugation
wavelength is the largest final size possible, because the
larger bubbles have not been observed in these experiments.
It seems that the final bubbles size depends on the A number
(1∼A≲ 0.85), because for the lover A number such process
of bubble growth was not observed. It also depends on the fre-
quency of the oscillatory field of the reshocks (∼7–8 MHz),
because it does not appear for the lower frequency (when the
distance between the target surface and the cover plate is
increased).

3.2. Coherent Flow Field

3.2.1. 2D bubble organization in the polygonal web

The onset of the coherent flow (in some domains inside a
random flow field), causes a quite different morphology as-
sociated with 2D organization of large polygonal bubbles,
<D> 30–50 μm Figure 7a. The fast oscillatory reshocks
cause the separation of the large bubbles from the small
ones, as in the case above. The analysis of the polygonal bub-
bles indicates the resonant diameter <D>Res ∼35 μm, larger

Fig. 6. Diagram showing bubble number density distribution versus mean
bubble diameter, ρN versus <D>. The presence of a great number of
small bubbles is an anomaly (blue curve) in the late phase of turbulent
mixing. However, these bubbles are not formed by the nucleation at the per-
turbed density interface and do not belong to the RMI. They are formed by
the nucleation at the indium surface, which is kept in the boiling state by the
long leaving hot vapor/plasma in the semiconfined configuration (SCC)
channel. When these bubbles are removed from the counting process, the
bubble distribution is Gaussian-like (red curve).
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than of the irregular cells. The bubbles smaller than <D>
∼30 μm are pushed to the antinodal points while those
with <D> ≥35 μm are pushed to the nodal points. The cor-
related oscillations of the coherent flow field promote the
growth and merging of the large bubbles into larger ones.
However, these oscillations are incompatible with a random
(incoherent) oscillations of small bubbles and destroy them.
Bubble density distribution: The bubbles in Figure 7b,

(ρ ∼1 × 105/cm2), have the Gaussian-like number density
distribution, ρN versus <D> with maximum at <D>max

∼35–48 μm. This diagram is similar to the bubble number
density distribution in the late phase of turbulent mixing ob-
tained by numerical simulation (Smalyuk et al., 2006).
Bubble shape oscillations: The oscillatory filed of the re-

shocks couples the bubble volume oscillations (Leighton,
1994; Lauterborn & Kurz, 2010) with increasing pressure,
the large bubbles of D≥ 1, that is, those of diameter equal
or larger than the resonant one enter the violent shape oscil-
lations generating waves in the surrounding fluid. The waves
establish polygonal cells “cages” according to the polygonal
shape of bubbles. Since <D>max ∼35–48 μm, the corre-
sponding reduced bubble diameter D ranges from ∼1.0 to
1.37 what (according to the above scheme) indicates bubble-
shape oscillations. An argument in favor is the pentagonal
“cage” in Figure 7a, which is quite similar to the pentagonal
bubble shape oscillation forD= 1.07 and P= 45, in Figure 5
of Kim and Kim (2014) (not shown).
Every “wall” of the regular rhombic, trapezoidal or pen-

tagonal cell in Figure 7a is orthogonal to the line, which con-
nects two neighbor bubbles so that the polygonal cells make
the Voronoi web. The short-range correlations in the coherent
flow field are the reason that the cells are regular and sym-
metric, but the lack of the long-range correlation is the
reason that the network is the Voronoi web but not the 2D
lattice.
Bubble collapse:When the growing and oscillating bubble

approaches to the liquid/solid interface (solid target surface)
the deformation of the spherical shape starts as the first phase
of collapse [Figure 8a(i)]. The concave top surface evolves
and continues up to the moment when the solid target is
reached.[ Figure 8a(ii)]. Dynamics of a collapsing bubble
near the solid surface is accompanied by a strong shock
and rarefaction waves running into the bubble and surround-
ing fluid (Andreae et al., 2003). Strictly speaking, the initial
conditions of the bubble collapse correspond to a Riemann
problem where three types of waves occur: an inward run-
ning compression shock, an outward running rarefaction
wave, and a contact discontinuity (Andreae et al., 2003).
The bubble collapse is quite a complex process (Brujan
et al., 2002), and we shall only briefly mention it for the
spherical bubble. The collapse of nonspherical bubbles be-
sides similarity with the spherical ones has some differences
(Johnsen & Colonius, 2009; Lim et al., 2010), which are out-
side of the scope of this paper.
The shrinking of the bubble leads to compression of the

vapor/plasma in the bubble. The increase of pressure

Fig. 7. Bubble organization in the coherent flow field. (a) Scanning electron
microscope (SEM) micrograph showing the large bubbles “caged” by the
“walls” that make regular polygonal cells. Polygonal cells are connected
into Voronoi web. The cells are regular due to short-range coherent filed,
but the lack of long-range coherence makes their structure the Voroni web
and not the 2D regular lattice. (b) Bubble number density distribution ρN
versus mean diameter <D>. Notice the Gaussian like distribution in the
late phase of turbulent mixing and the absence of the small bubbles.
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bulges the bubble, and the strong oscillation is initiated,
which leads to the collapse. Then, the implosion accelerates
the fluid leaving only a thin layer the thickness of which
(roughly speaking) approaches to zero (Fig. 8b). The hot re-
entry jet with the high velocity of vj ∼100 m/s (Kim & Kim,
2014) and the pressure of a “water hammer” of Ph ∼1.2 GPa,
is generated. This pressure is comparable with the pressure of
the plasma detonation and in agreement with the result of
other authors. (Supplement F). The hot and strong re-entry
jet strikes the “cold” solid target making a hole (Zhang &
Duncan, 1994) observed at the bottom of large bubbles
(Figs. 7a and 7b and 8b).

3.2.1.1. Polygonal “walls” around bubbles: 2D solitary
waves. Consider the polygonal “walls” of the Voronoi web
formed by the strong bubble shape-oscillations and
collapse. The SEM profiling reveals the bell-shape profile
(Fig. 8b) indicating 2D nonlinear waves, actually of the line
solitons. The whole web is composed from the segments
with local configuration similar to that generated on the
silicon target by the femtosecond laser pulses (Lugomer
et al., 2013). The dominant morphology – in the coherent
flow field – are the configurations of 2D solitary waves,
which have overwhelmed usual vortex configurations of
pairing, merging and reconnection.

Line solitons
The formation of solitary waves on a thin molten indium

layer suggests the “shallow fluid layer” approach for the sim-
ulation of nonlinear fluid dynamics. This approach neglects
dissipative effects (viscosity) in the formation of the long
wavelength structures in laser-induced surface melts of semi-
conductors and metals.

For the shallow fluid layer of depth h, and of the surface
elevation d+ η∗ induced by laser, the equation describing
the wave propagating in one direction can be written
(Oikawa & Tsuji, 2006; Berger &Milewski, 2000; Lugomer,
et al., 2013).

∂/∂x∗[∂η∗/∂t∗ + c0(1+ 3η∗/2 h)∂η∗/∂x∗ + c0h
2 /

6 (1− 3S/rgh2)∂3η∗/∂x∗3] + c0/2 ∂2η∗/∂y∗2 = 0
(1)

where, t∗, η∗, and x∗ are the dimensional time and space
variables.

The substitution

u = ±3η∗/2 h, x = ±b/h(x∗ − c0t
∗), (2)

t = bc0t
∗/6 h, b = [±(1− 3S/rgh2]−12

where ρ= fluid density, S= surface tension g= acceleration
of gravity, while t, u, and x are nondimensional time and
space variables, transforms the Eq(1) into the well-known
form (Oikawa & Tsuji, 2006)

∂/∂x(∂u/∂t + ∂3u/∂x3 + 6u∂u/∂x) + 3s2∂2u/∂y2 = 0. (3)

Fig. 8. Collapse of large bubble in the coherent flow field. (a) The growing
spherical bubble deforms while approaching the solid indium target. (i).
When the top surface starts to deform into the concave shape – the collapse
is triggered. The depression continues from the top of the bubble to the
bottom. Reaching the bottom the bubble collapse forms a strong reentry
jet, which strikes the surface with the velocity of∼100 m/s, and the pressure
of ∼1.2 GPa, making a hole in the solid surface. (b) Magnified view of pen-
tagonal cell “cage” around the large bubble. Notice the asymmetric hole at
the bubble-cavity surface formed by the strong, hot reentry jet during
bubble collapse. The fluid layer (interface) between the bubble and the
solid target is very thin – a “zero-thickness” layer. The bell-like profile of
the “walls” of pentagonal cell indicates the nonlinear waves, actually the
line solitons.
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The last term, ∂2u/∂y2 added to the above 1D equation gives
the KP equation for the waves on a shallow fluid layer
(Osborne, 1994; Oikawa & Tsuji, 2006). Depending on the
signature of dispersion, σ2, the solutions of this equation
can be:

(i) Stable nonlinear waves for the negative dispersion
(σ2=−1), described by the KP-II equation, which de-
scribes the dynamics when gravity effects dominate
over surface tension and gives stable wave solutions.

(ii) Unstable nonlinear waves for the positive dispersion
(σ2= +1), described by the KP-I equation, which de-
scribes dynamics when surface tension dominates
over gravity effects causing the instability and decay
of waves. (Notice that some authors use just opposite
notation for KP-I and KP-II.)

Which of the above equations is relevant for description of
the waves on the indium layer, is determined by the criterion
(Osborne, 1994; Ablowitz & Clarkson, 1992; Oikawa &
Tsuji, 2006; Berger & Milewski, 2000)

S/ Δρgh2
( )

><1/3. (4)

The parameter S is the surface tension at the interface of the
liquid layer and the plasma layer, h is the thickness of the
liquid layer, g is the acceleration of gravity, and Δρ is the dif-
ference in density of the two phases (the liquid molten layer,
and the vapor/plasma layer).
In the first case, the expression (4) is<1/3, and the gravity

effects dominate over surface tension so that stable cnoidal and
line-solitary wave solutions exist (Oikawa & Tsuji, 2006;
Berger & Milewski, 2000). In the second case, the expression
(4) is>1/3, and the surface tension dominates over gravity ef-
fects so that line solitons become unstable. In the intermediate
case (=1/3), the onset of complex higher order hydrodynamic
instability is possible (Berger & Milewski, 2000).
Multisolitons
The above concept may be extended to the larger number

of solitons thus establishing the multisoliton concept ade-
quate for more complex configurations. Such configurations
comprise the asymptotic “infinite” waves ( y→±∞). In the
case when the number of outgoing asymptotic solitons is
equal to the number of ingoing ones that is, N−= N+= N,
the number of phase parameters M= 2N (Biondini, 2007;
Chakravarty & Kodama, 2008; Lugomer et al., 2013). Gen-
erally, each soliton solution is a configuration ofN interacting
asymptotic line-solitons of which the ingoing solitons are
identified by the pairs in square brackets [ni

−, nj
−], while

the outgoing ones are labeled [ni
+, nj

+]. The N soliton solu-
tions can be classified by the complementary pair of ordered
sets of N numbers n+= (n1

+
….nN

+) and n−= (n1
−
….nN

−),
relating to the dominant exponential terms of the τ-function.
Consequently, each soliton can be expressed by (n+, n−) pair
of numbers (Chakravarty & Kodama, 2008; Biondini, 2007;
Lugomer et al., 2013). (Supplement G).

Line soliton configurations in TMZ
We apply the above criterion (4) on a thin layer of liquid-

indium/dense-plasma interface with the surface tension, S
∼2 × 10−7 N/m, the thickness of the liquid indium layer, h
∼10 μm, g ∼10 m/s2, and with the difference of the
indium and the plasma layer density, Δρ ∼2 × 103 kg/m3.
The ratio in the inequality (Lugomer et al., 2013)

S/ (Δrgh2)<1/3, (5)

is ∼0.1, that is, lower than 1/3, and the gravity effects dom-
inate over surface tension so that the configurations of line
solitons can be described by the KP-II equation (σ2=−1).
Since the “walls” of the polygonal cells in the Voronoi
web are the line solitons, the whole web may be assumed
as the multisoliton configuration of N solitons, where N is
large. Such configuration is too complex for the simulation,
so that simplification is needed. The SEM analysis reveals
that the web is formed from various simple multisoliton seg-
ments (where N is small); the segments have grown indepen-
dently and have later joined into a web structure. This
justifies decomposition of a web into more simple local sol-
iton configurations such as those in Figure 9(i), (iii), and (v).
(Lugomer et al., 2013). The configuration in Figure 9(i) is the
“Y-type”, or “resonant”; in (Fig. 9(iii) is “partially resonant”,
and in Fig. 9(v) is the “X-type” or the “nonresonant” config-
uration (Kodama, 2004; Ong et al., 2005; Chakravarty &
Kodama, 2008). These configurations can be obtained from
the multisoliton solutions of KP-II equation taking N= 2,
(the two-soliton solutions). (Supplement G).
Resonant configuration [(Fig. 9(i)] or the soliton triplet of

the Y-type is formed by merging of two into one solitary
wave. The number of solitons ingoing to the interaction
point is denoted by N−, and by N+ the number of outgoing
ones, while the number of the phase parameters isM= N−+
N+ (Biondini, 2007; Chakravarty & Kodama, 2008; Lugom-
er et al., 2013). Thus, the Y-type configuration can be repre-
sented as the (N−, N+)= (2,1) system, with M= 3. The
interacting waves with the wavenumbers κj and frequencies
ωj ( j= 1, 2, 3) satisfy the Miles three-wave resonance con-
dition at the vertex of the “Y” junction (Ablowitz & Clark-
son, 1992; Berger & Milewski, 2000; Biondini & Kodama,
2003; Oikawa & Tsuji, 2006)

k1 + k2 = k3,ω1 + ω2 = ω3. (6)

The interaction constant A12= 0 while the length of the sol-
iton S12 tends to infinity. This configuration comprises only
the “infinite” waves and can be reproduced by the resonant
soliton solution characterized by the coefficient matrix Ares

Oikawa & Tsuji, 2006; Biondini, 2007; Chakravarty &
Kodama, 2008; Chakravarty et al., 2009, 2010). (Details
are given in the Supplement G). The asymptotic line solitons
in this contour diagram are labeled by the index pairs [1,3]
and [2,4]. Juxtaposition of the Y-type configuration in
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Figure 9(i) and the simulated contour diagram in Figure 9(ii),
shows a very good agreement.
Partially resonant configuration (Fig. 9(iii), has two “infi-

nite” and one intermediate soliton and represents a quadru-
plet. The interaction constant, which determines the length
of the intermediate soliton S12 is close to zero A12 ∼0.

The simulated contour diagram is characterized by the coef-
ficient matrix AP, which generates two “Y-type contours
Figure 9(iv). This picture was generated by using the same
parameters k1…k4 as in the ref. Biondini (2007): (k1, k2,
k3, k4)= [−1/2(1-e), 1/2(1-e), 1/2, 3/2]. The infinite, as-
ymptotic solitons are [1,4] and [2,3]. (Supplement G).”

Nonresonant configuration Figure 9(v), has only two “in-
finite” line solitons, which form the “X-type” configuration.
It is obtained if the interaction constant A12≠ 0 so that the
intermediate soliton vanishes, S12= 0. This configuration
can be reproduced by the ordinary soliton solution character-
ized by the coefficient matrix AO (Kodama, 2004; Chakravarty
& Kodama, 2008) Figure 9(vi). The asymptotic line solitons in
this contour diagram are obtained from τ2−solitons(x, y, t) as
y →±∞, and labeled by the index pairs [1,2] and [3,4].
(SupplementG).Similar “X” typecontourmaybealsoobtained
as the asymmetric soliton solution is expressed via the coeffi-
cient matrix AP. In that case, the index pairs [1,4] and [2,3]
label the infinite line solitons (Kodama, 2004; Biondini,
2007; Chakravarty & Kodama, 2008).

Complex configurations of line solitons
Complex configuration inFigure 10a(i) canbe obtained as the

multisoliton solution of the KP-II equation for the interaction of
a line soliton with the soliton triplet (Ong et al., 2005). The sol-
utionof such interaction is representedby the contour diagram in
Figure 10a(ii-iv). For themathematical details of this interaction
the reader is directed to the work of Ong et al. (2005) and Ong
andTiong (2005). The solitonsS1, S2 andS3 interact giving rise
to the soliton contour in the (x, y) plane that changes in time in
the time steps t= 0 s (ii); t= 0.25s (iii), and t= 1s (iv). Notice,
that the “late time” configuration (iv) can be favorably juxtapo-
sitioned to the experimental one in Figure 10a(i).

Figure 10b(i) shows another complex configuration with a
polygonal hole (“cage”) in the center, which results from the
interaction of a line soliton with soliton quadruplet (Ong
et al., 2005). The solution in Figure 10b(ii-iv) shows the evo-
lution of the contour diagram for t= 0s (ii); t=−0.25s (iii)
and t=−1s(iv). Mathematical details of a soliton interaction
are given by Ong et al. (2005). The result is the contour di-
agram in Figure 10b(iv) with the time running in the (−) di-
rection. It is the consequence of the fact that the KP equation
gives the solutions, which are reversible in space-time
(Kodama, 2004; Chakravarty & Kodama, 2008). The con-
tour diagram in Figure 10b(iv) can be favorably juxtaposi-
tioned to the SEM micrograph in Figure 10b(i).

3.2.2. 2D bubble organization in the rosette–like web

In the coherent flow field, there are also domains with the
large nonspherical bubbles of <D> ∼25–60 μm and curved
triangular-like “walls” Figure 11a. These bubbles do not tend
to receive the spherical shape but stay nonspherical up to the
moment of collapse. The reason is the forced bubble oscilla-
tion due to the coupling with ultrasonic oscillatory field of
the reshocks (in the SCC microchannel), which excites the
higher oscillation modes and prevents the return to the equi-
librium spherical shape. Based on the size of the largest

Fig. 9. Decomposition of line soliton network into simple local configura-
tions; (i) resonant “Y”-type triplet configuration of line solitons; (ii) simulat-
ed “Y” type contour corresponding to Figure 9(i) obtained for the line soliton
interaction with parameters (k1, k2, k3)= (−1, 0, 1/2). The infinite, asymp-
totic solitons are [1,3] and [2,3]. (Courtesy of Prof. Y. Kodama, from
S. Chakrawarty and Y. Kodama. J. Phys. A: Math. Theor 41, 275209
(2008). ©IOP Publishing. Reproduced with permission. All rights reserved.
(Copyright IOP 2008). (iii) Partially resonant quadruplet configuration of
line solitons; (iv) Simulated contour corresponding to Figure 9(iii) obtained
for the line soliton interaction and generated with the same parameters used
in ref. Biondini (2007). Line soliton interactions of the Kadomtsev–Petviash-
vili equation. Phys. Rev. Lett 99, 064103(1–4): (k1, k2, k3, k4)= [−1/
2(1-e), 1/2(1-e), 1/2, 3/2]. The infinite, asymptotic solitons are [1,4] and
[2,3]. (v) Nonresonant “X”- type quadruplet configuration of line solitons;
(vi) simulated “X” type contour of line soliton interaction in Figure 9(v).
Two line solitons have index pairs [1,2] and [3,4] and the parameters (k1,
k2, k3, k4)= (−2, −1/2, 0, 1) (Courtesy of Prof. Y. Kodama, from
S. Chakrawarty and Y. Kodama. J. Phys. A: Math. Theor 41, 275209
(2008). ©IOP Publishing. Reproduced with permission. All rights reserved.
Copyright IOP 2008).
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bubble diameter<D>∼50–60 μm, which is just equal to the
largest surface corrugation wavelength, one can say that there
is a memory of the largest corrugation wavelength, while the
memory of the shorter perturbation wavelengths is lost. This
may be called a “selective memory” of the initial conditions.
This observation is somewhat different from the results of
Allon et al., that the largest bubbles attain the spherical
shape after deformation. In the RMI the growth of bubbles
depends on the initial conditions set on the surface from
the initial perturbation at all times (Alon et al., 1996).
Also, for A= 1, Alon et al., found that the bubble shapes
are almost symmetric. In our view it is the consequence
that there is no coupling of bubbles with the oscillatory
force field and bubbles can return to the spherical shape as
the equilibrium shape at the end of the process.

Fig. 10. Decomposition of line soliton network into complex configura-
tions. (a) Configuration established by the interaction of a soliton-triplet
and the line soliton. The SEM micrograph showing interaction of soliton
triplet with the soliton configuration; (i) Simulated contour of the triplet-line
soliton configuration in t= 0 s (ii); t= 0.25 s (iii); t= 1s (iv). (b) Configu-
ration established by the interaction of a soliton–quadruplet and the line sol-
iton; (i) SEM micrograph showing interaction of soliton–quatruplet with the
line soliton; Simulated contour of a quadruplet-line soliton configuration in
t= 0 s (ii); t=−0.25 s (iii); t=−1 s (iv). Simulations are performed for the
KP equation with positive dispersion corresponding to stable soliton solu-
tions. (Courtesy of Prof. C.T. Ong, from C.T. Ong, W.K. Tiong, N.M.
Mohd, A. A. Zainal, I Kamis, “Kadomtsev–Petviashvili Nonlinear Waves
Identification”, Final Report RMCResearch vot 75023, 2005. Faculty of Sci-
ence, University Teknologi Malesia, 8130 UTM Skudai, Johor Bahru
Malaysia).

Fig. 11. The rosette-like web of horseshoe solitons with seven petals
(bubble-cavities). (a) Scanning electron microscope (SEM) micrograph
showing the rosette-like configuration of large bubbles. (b) SEMmicrograph
showing large bubbles “caged” by the horseshoe “walls” organized into the
structure composed of two rosettes: one with three parabolic-like petals, and
another with four petals.
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The coherent flow field tends to establish the angular cor-
relation of bubbles and organize them into 2D rosette–like
web. The asymmetric rosette as a local structure in Figure 11a
has a single center and seven petals, which are rather sharp
near the center indicating triangular-like bubbles. The other
domains comprise large ellipsoidal bubbles surrounded by
the horseshoe “walls” organized into asymmetric rosette in
the field of the short-range correlations (Fig. 11b). This
structure has two slightly shifted centers, one with three
and other with four petals, indicating the competition of
the organization of two rosettes at the one and the same
place. The lack of the long-range coherent flow field is the
reason that 2D trigonal lattice is not established. Instead,
the perturbation of correlation of bubble organization dis-
turbs the translational and rotational symmetry indicating
partially coherent flow field.

3.2.2.1. Horseshoe “walls” around bubbles: 2D horseshoe
solitary waves. The horseshoe “walls” (Fig 11b) are the
solidified waves, which preserve the parabolic-like contour
known as the horseshoe solitons (as called by the
mathematicians).Their characteristics are better seen in the
domains comprising more simple cases like a single
horseshoe soliton, two intersecting solitons, or the elliptic
solitons. The profilometry of such structures in some cases
reveals the vortex filaments formed by the rollup of the
waves. These parabolic-like and the elliptic solitons can be
simulated by using the cKP, or the ecKP equation, as
shown by various mathematical groups (Klein et al., 2007;
Li et al., 2007; Khusnutdinova et al., 2013).

The SEMmicrograph in Figure 12(i) shows a single horse-
shoe soliton, which can be reproduced by the one soliton sol-
ution of the cKP equation (Klein et al., 2007; Khusnutdinova
et al., 2013).

The two horseshoe waves, which may interact by intersect-
ing, merging, or splitting give rise to various configurations
Figure 12(ii-iv). These configurations can be reproduced by
the two soliton solution of cKP-I equation (where the gravity
effects dominate), as seen in Figure 4 of Klein et al. (2007).

Elliptic soliton configurations
Among the configurations of 2D nonlinear waves of the

RMI turbulent mixing are the elliptic solitons, which are
formed at the rim of elongated bubble-cavity. They appear
either as one symmetric soliton (Fig. 13a), or the series of

Fig. 12. Configurations of the horseshoe solitons. Scanning electron micro-
scope (SEM) micrograph of the single parabolic-like soliton (i); SEMmicro-
graphs of two parabolic-like soliton crossings (i–iii).

Fig. 13. Formation of elliptic solitary waves. (a) Scanning electron micro-
scope (SEM) micrograph showing single elliptic solitary wave. (b) SEM mi-
crograph showing three elliptic solitary waves.
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symmetric multisolitons (Fig. 13b). In the last case, two
nearly-elliptic waves with the wavelength λ ∼6–8 μm are
of the lower intensity. Such elliptic symmetric solitons can
be obtained by simulation based on ecKP-II equation
(where the gravity effects dominate), as seen in Figure 17
of Khusnutdinova et al. (2013).

4. CONCLUSION

The experiments have confirmed the hypothesis that the SCC
causes formation of the new wave-vortex paradigm of 3D
RMI turbulent mixing. The long lifetime of the hot vapor/
plasma and fast reshocks at the megahertz scale establish
the environment with more complex fluid dynamics of the
wave-vortex phenomena.
The RMI morphology without spikes is generated by the

high-pressure shock wave in the center of a Gaussian spot.
Under condition (A∼1, P∼1.2 GPa, Re∼104–105), fast tur-
bulent jet-spikes are broken up leaving only small remnants
and the surface morphology with bubble-cavities.
The RMI environment is associated with the high-

frequency reshocks, which couple with oscillation (pulsa-
tions) of bubbles in a random flow field and cause the sepa-
ration of large nonspherical bubbles from the small spherical
ones.
The strong influence of the oscillatory reshocks – depend-

ing on the parameters D and P – causes that bubble splitting,
shape oscillations, merging, chaotic oscillations, and shape
oscillations determine the bubble dynamics in turbulent
mixing. Such bubble behavior generates the irregular wave
front, which solidified makes the “walls” of variable shape
and size (around the bubbles). The irregular cells connected
into irregular – chaotic – web of (crumpled) broken “egg-
karton” morphology, are characteristic for the random flow
field. The bubbles, which in a flow field appear random re-
gardless of whether or not there is forward energy cascade
via vortex stretching down an inertial range – represent turbu-
lent mixing. Development of a mixing layer with 3D turbu-
lence at few spatial scales represents the statistically
unsteady turbulent flow and stochastic process, which
causes pressure pulsations and generates the self-similar
structures. One can roughly assume that selfsimilarity at
few spatial scales indicate turbulent mixing.
The RMI environment also has a strong influence on dy-

namics of bubbles in coherent flow field (which as a
domain appears inside the random flow field). It comprises
only the large bubbles showing narrow Gaussian-like
number density distribution. The strong bubble-shape oscil-
lation and collapse cause the formation of “wall” structures,
around the bubbles actually the regular cells:

(i) The regular polygonal cells of the rhomb, square, and
the pentagonal shape around the bubbles are the line
solitary waves organized into the Voronoi web. The
solitons as the nonlinear waves are caused by the
strong bubble shape oscillations due to coupling

with the oscillating force of the reshocks, and by the
bubble collapse. The complex web of line solitons
may be decomposed into local simple configurations
like the resonant Y-type, nonresonant X-type, and
triple-soliton junctions as well as quadruple-soliton
junctions. These soliton configurations can be repro-
duced by the solutions of KP-II equation.

(ii) The regular horseshoe cells of the parabolic-like and
the ellispoidal shape around the bubbles are the horse-
shoe solitons organized into the rosette-like web on
trigonal lattice, but also into simple two-soliton cross-
ings. These parabolic-like solitons can be reproduced
by the solution of cKP- and the ecKP-equation.

The dominant morphology of the RMI in the SCC are the
configurations of 2D solitary waves surrounding bubbles in
the TMZ, which have overwhelmed the usual configurations
of vortex pairing, merging, reconnection, splitting, and so on.
The configurations of the line solitons and of the parabolic-
like solitons – represent the new paradigm of the RMI turbu-
lent mixing. The formation of solitary waves is a direct con-
sequence of the strong nonlinear bubble shape oscillations
forced by the high frequency filed of the reshocks in the
semiconfined configuration.

SUPPLEMENTARY MATERIAL
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