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SUMMARY
A method of workspace modelling for spherical parallel ma-
nipulators (SPMs) of symmetrical architecture is developed
by virtue of Euler parameters in the paper. The adoption
of Euler parameters in the expression of spatial rotations of
SPMs helps not only to eliminate the possible singularity
in the rotation matrix, but also to formulate all equations in
polynomials, which are more easily manipulated. Moreover,
a homogeneous workspace can be obtained with Euler
parameters for the SPMs, which facilitates the evaluation of
dexterity. In this work, the problem of workspace modelling
and analysis is formulated in terms of Euler parameters.
An equation dealing with boundary surfaces is derived and
branches of boundary surface are identified. Evaluation of
dexterity is explored to quantitatively describe the capability
of a manipulator to attain orientations. The singularity
identification is also addressed. Examples are included to
demonstrate the application of the proposed method.

KEYWORDS: Spherical parallel manipulator; Workspace;
Singularity; Dexterity

1. Introduction
Spherical parallel manipulators (SPMs) provide three
degrees of freedom of pure rotations which are required for
applications such as camera orienting and medical instrument
alignment.1,2,3,4 When dealing with the kinematic design,
a key issue is the workspace modelling, which concerns
the orientational capability, overall kinematic performance
indicated by dexterity as well as the singularities. Up to date,
modelling and analysis works on SPMs by adopting different
approaches have been reported in technical literature. In
the modelling of workspace, Gosselin and Angeles made
use of the linear invariants (LI) to explore the workspace
of a single leg and then extended the study to the overall
manipulator;5 an orientational representation called “Tilt-
and-Torsion angles” was used in the workspace modelling
of ref. [6]. A notable numerical approach was adopted in
ref. [7], where a solid sphere representing all orientations
is partitioned equivolumetrically for a high calculation
accuracy. The forward and inverse kinematics were reported
in refs. [8, 9, 10], wherein a specific spherical manipulator
architecture that leads itself to close-form solutions was
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considered. The dexterity of a spherical manipulator, which
indicates the kinematic accuracy and its controllability, was
addressed in refs. [11, 12]. In general, the workspace of an
SPM is rather small due to the characteristic of its closed
kinematic chain. Design optimizations for a large workspace
were reported in refs. [5, 13, 14, 15, 16]. Moreover, SPMs are
prone to singularity, which is critical to their controllability.
Analyses of singularity can be found in refs. [17, 18]. SPMs
with actuator redundancy to eliminate the singularity were
presented in refs. [12, 19]. Of the manipulators mentioned,
most of them are made of revolute joints, in particular,
3-RRR type manipulators. The research work on other types
of SPMs can be found in refs. [20, 21].

Workspace, in the context of this paper, refers to a volume
representing all valid rotations of the mobile platform of
an SPM. It is regarded as the set of all possible rotations
an SPM can attain. The complexity of workspace analysis
is related to the presence of multi-loop closed kinematic
chains: workspace analysis often yields high-order nonlinear
kinematic equations, which are not only functions of the
orientation of the end-effector, but also functions of the input
angles, i.e., the joint variables. With such kind of equations
in which joint variables and link parameters are coupled,
it is almost impossible to produce a whole image of the
workspace of an SPM. Furthermore, the use of such kinds of
equations means that the dexterity evaluation yields only a
local performance index, and global measures being further
needed.

In this paper, a method of workspace analysis for SPMs
is proposed. By decoupling joint variables and architecture
parameters, an equation that deals with the global singularity
surface is formulated. The equation, independent of joint
variables, links the orientational capability of an SPM
directly to its architecture parameters. Hence, we term
the equation as “equation of mobility”, or EOM in short.
The EOM is used to identify and visualize the attainable
workspace, within which an orientation can be approached
by the end-effector from any other orientation. The EOM
is also used for the evaluation of dexterity to quantitatively
describe overall kinematic performance. Some examples of
workspace analysis such as the visualization of boundary
surface, singularity identification, and dexterity evaluation
by the proposed methods are included.

In exploring SPMs’ workspace, we use the Euler para-
meters to describe the rotation of an SPM, even though
most researchers adopt the convention of Euler angles or
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Fig. 1. An SPM based wrist: (a) Conceptual design with (1) end-
effector, (2) circular guide, (3) actuating unit and (4) curved link;
(b) an embodiment.

the linear invariants. In the kinematic analysis of spherical
manipulators, the importance of rotation representation is
often overlooked. As a matter of fact, there exists in
manipulators a kind of singularity related to the rotation
representation, called formulation singularity,22 which leads
to a singular Jacobian for a certain angle of rotation. The
singular Jacobian will consequently affect the identification
of structural singularities and the evaluation of dexterity.
Of the possible representations of rotation, only the Euler
parameters, a unit quaternion describing space orientation, is
free of singularity.22,23 For this reason, the Euler parameters
are selected in this work to formulate the workspace problem.
Moreover, the Euler parameters bring in one additional bene-
fit that a homogenous workspace can be obtained, which has
a numeric advantage when volume integration is involved.
Furthermore, the use of Euler parameters allows us to formu-
late rotation equations in polynomial format, which are easier
to manipulate than the rotation equations with Euler angles.

The modelling work is carried out for a special class of
spherical parallel manipulators, which have a symmetrical
architecture with identical legs. The motivation of our
research pertains to the design of a novel robotic wrist
based on the spherical parallel manipulator,24 which is to

be applied in a humanoid robot being developed at Aalborg
University, Denmark. As demonstrated in Fig. 1(a), the SPM
consists of three curved links connected to a mobile platform
as an end-effector. The three links are driven by three
actuators moving independently on a circular guide. This
design is kinematically equivalent to an SPM with coaxial
input shafts as shown in Fig. 2(b), which was first reported
in ref. [13]. Such an architecture enables the end-effector to
have an unlimited rolling, in addition to limited pitch and
yaw rotations. Compared with Fig. 2(b), the embodiment
of Fig. 1(a) improves the design in several aspects. First,
the use of circular guide eliminates the three curved links
connected to input shafts and keeps only the three links
supporting the mobile platform. By introducing the circular
guide, the SPM can be designed using a modular approach—
all three legs are identical. Moreover, the stiffness of each
leg is improved due to the presence of the circular guide.
Furthermore, the upper curved links and the mobile platform
are connected by spherical joints, rather than revolute ones,
which prevent the occurrence of overconstraint of physical
revolute joints. From a mechanism viewpoint, this SPM has
the same kinematic features as a ball joint and is referred as
an active ball joint. An embodiment of the active ball joint is
shown in Fig. 1(b). In the design, sliders move together with
motors via pinion and gear-ring transmissions. Two sets of
circular guides from THK Bearings, Japan, are used to enable
sliders’ high-precision circular motion with small clearance.

2. Modelling of SPM
In general, a spherical parallel manipulator consists of two
pyramid-shape platforms, the base platform and the mobile
platform connected by three equally spaced legs that each
has two links. The axes of all joints, denoted by unit vectors
ui , vi , and wi as shown in Fig. 2(a), intersect at a common
center, which is called the center of rotation. The proximal
links that are connected to the base platform are assumed
to be identical with the common dimension α1. The distal
links that connect to the mobile platform are also assumed to
be identical with the common dimension α2. Moreover, the
angles β and γ define the geometry of two regular pyramids

Fig. 2. Kinematic model of a spherical parallel manipulator: (a) general model; (b) a special case with γ = 0.
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of the base and mobile platforms. The active ball joint is a
special case of SPMs for which γ = 0.

A coordinate system is selected for the SPM, with the
origin located at the rotation center. The z axis is normal to
the bottom surface of the base pyramid and points upwards,
while the y axis is located in the plane made by the z axis
and u1.

By simply applying the geometric rotation, the unit vectors
ui are derived as:

ui = [−sin ηi sin γ, cos ηi sin γ, −cos γ ]T (1)

where ηi = 2(i − 1)π/3.
Unit vectors wi , i = 1, 2, 3 of the axes of the intermediate

revolute joints are obtained in terms of the input joint angles
θi, i = 1, 2, 3 as:

wi = Ri(θi)zy (2)

where zy = [0, 1, 0]T . The rotation matrix Ri(θi) can be
readily derived from forward kinematics, which is not
presented here for clarity. Expanding the right side of Eq. (2)
yields

wi =
⎡
⎣−sηisγ cα1 + (cηisθi − sηicγ cθi) sα1

cηisγ cα1 + (sηisθi + cηicγ cθi) sα1

−cγ cα1 + sγ cθisα1

⎤
⎦ (3)

where s stands for sine, and c for cosine.
The unit vectors vi , that are parallel to the axes of the top

revolute joints of the legs, are functions of the orientation of
the mobile platform. Let this orientation be described by the
rotation matrix Q, then

vi = Qv∗
i (4)

where v∗
i are unit vectors of the axes of the top revolute

joints when the mobile platform is in its reference orientation,
which are given as:

v∗
i = [−sin ηi sin β, cos ηi sin β, cos β]T (5)

The inverse kinematics of SPMs has been well documented
in ref. [5]. We briefly review here for completeness.

For the closed chain of the spherical parallel manipulator,
the following equations hold:

wi · vi = cos α2, i = 1, 2, 3 (6)

Substituting Eqs. (3) and (4) into Eq. (6) and further
substituting the tan-half identities into the new equation
yields

Ait
2
i + 2Biti + Ci = 0, i = 1, 2, 3 (7)

where ti = tan(θi/2). Ai, Bi and Ci are functions of the
kinematic parameters and of the orientation of the mobile
platform. In these quadratic equations, the three input angles
have been decoupled, yielding an inverse kinematic solution
to the values of the input angles that correspond to a given
orientation.

The forward kinematics, on the other hand, in general,
does not yield a close-form solution. To find the orientation
corresponding to a set of input angles θi , a system of
equations needs to be established first. Let vi = [xi, yi, zi]T .
We have the following equations

vi · vj = cos α3, i, j = 1, . . . , 3, i �= j (8a)

‖ vi ‖ = 1 (8b)

where α3 is the angle between two lateral edges of the
top pyramid. Combining Eqs. (8a) and (8b) together with
(6) generates a system of three linear and three quadratic
equations, from which possible values of vi can be found.
The equations can be solved numerically using Newton–
Raphson method with selected initial values in order to yield
solutions for a certain configuration. The system admits at
most eight solutions; a method to find all eight solutions can
be found in ref. [10].

The Jacobian matrix of SPMs can be obtained through
differentiating Eq. (6), which gives

ẇi · vi + wi · v̇i = 0 (9a)

Note that

v̇i = ω × vi (9b)

ẇi = ui × wi θ̇i (9c)

where ω is the vector of angular velocity of the end-effector.
Equations (9a)–(9c) lead to

Aω = Bθ̇ (10)

where θ̇ = [θ̇1, θ̇2, θ̇3]T . Moreover, A = [a1, a2, a3]T with
ai = wi × vi and B = diag(b1, b2, b3)

with bi = (ui × wi) · vi , i = 1..3. The Jacobian is finally
obtained as J = A−1B.

3. Workspace Analysis
Assuming the discriminant of Eq. (7) equal to zero leads to

�i = B2
i − AiCi = 0, i = 1, 2, 3 (11)

It is pointed out in ref. [5] that Eq. (11) represents a system
of equations, each defining a so called singularity surface,
which separates the leg’s mobility region from the immobility
region. The global singularity surface, i.e., the singularity
surface of the system, can be obtained by intersecting the
workspace of the three legs. We show in this work that, when
the workspace of a leg is expressed by the surface of the unit
sphere in Cartesian space, the mobility region is bounded by
two parallel planes, the intersecting lines being the singularity
curves.

3.1. Workspace of single leg
We consider first the workspace of a single leg. For simplicity,
we analyze the workspace of leg 1, for which ηi = η1 = 0.
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Fig. 3. Workspace of single leg bounded by two planes.

Let vi = [xi, yi, zi]T . The coefficient functions A, B and
C of Eq. (11) become

Ai = yi(sin γ cos α1 − cos γ sin α1) − cos α2

− zi(cos γ cos α1 + sin γ sin α1) (12a)

Bi =xi sin α1 (12b)

Ci = yi(sin γ cos α1 + cos γ sin α1) − cos α2

− zi(cos γ cos α1 − sin γ sin α1) (12c)

where i = 1. By substituting Eq. (12a)–(12c) into Eq. (11)
and simplifying, we have

�i =
[
x2

i + (yi cos γ + zi sin γ )2] sin2 α1

− [(yi sin γ − zi cos γ ) cos α1 − cos α2]2 (13)

A tedious manipulation on the above equation, not displayed
for clarity, finally yields

�i =−(yi sin γ − zi cos γ − cos α1 cos α2)2 + cos2 α1 cos2 α2

+ sin2 α1 − cos2 α2 = 0 (14)

which stands for two parallel planes specified by

−yi sin γ + zi cos γ + D = 0, i = 1 (15)

where

D ≡ −cos α1 cos α2 ±
√

cos2 α1 cos2 α2 + sin2 α1 cos2 α2

= −cos(α1 ± α2).

Equation (15) describes in the simplest possible form of the
bounds to the attainable orientations, all being in the region
between the two planes. Shown in Fig. 3 is the workspace of a
single leg with α1 = 60◦, α2 = 90◦ and γ = 60◦, displayed
with the unit sphere. The two parallel planes specified by
Eq. (15) separate the unit sphere into three regions: the region
between the two planes is the attainable workspace and the
other two are the immobility regions. The two intersections
of planes and the sphere are singularity curves, which are

the two dashed circles in the figure. The conic surface
generated by Eq. (13) is also included in the figure, their
intersections with the unit sphere revealing the coincidence
of two equations.

Equation (15) of leg 1 can be generalized for the other two
legs. The workspace of the other two legs have the same shape
as the first leg, but are different in their orientations. Thus the
singularity equations of the other two legs can be obtained
by rotating an angle ηi around the z-axis, which yields

xi sin ηi sin γ−yi cos ηi sin γ + zi cos γ+D= 0, i = 1, 2, 3

(16)

or

nT
i vi + D = 0, i = 1, 2, 3 (17)

where

ni = [sin ηi sin γ, −cos ηi sin γ, cos γ ]T .

Equation (17) is independent of joint variables and relates
the orientation to link dimensions only. In other words, it
describes the capability of rotation in terms of the architecture
parameters of a leg. For this reason, we named this equation
as the equation of mobility, in short, EOM, of a leg.

The distance from the origin to the boundary plane is
found as d = |D|. Apparently, we have the three cases of
the mobility regions of a single leg as listed below:

1. α1 �= α2. In this case, d has two distinct values, neither
equal to the unit radius. The two planes thus intersect
with the unit sphere, yielding three regions. The attainable
workspace is the region bounded between two planes,
while the immobility regions are outside the two planes.
There are two singularity curves that are the intersections
of the planes and the sphere.

2. α1 = α2 �= π/2. In this case, d has two distinct values,
one being equal to the unit radius. There is only one plane
that intersects the sphere, since the other is tangential
to the unit sphere. The spherical surface is divided into
two regions by the intersecting plane: one region is the
attainable workspace, and the other is the immobility
region. Only one singularity curve exists in this case, in
addition to a singularity point at the tangential position.

3. α1 = α2 = π/2. In this case, d takes two identical values
equal to the unit radius, which implies two planes are
tangential to the unit sphere. The attainable workspace
consists of the whole sphere, except the two tangential
points. There is no singularity curve, but only two
singularity points.

From this analysis, three cases of singularity curves
corresponding to the three kinds of mobility regions are
identified, which is important to the workspace modelling
of SPMs. It will be shown later that the singularity surface
of the SPM system has three branches, corresponding to the
above three cases.

3.2. Equation of mobility with Euler parameters
Vector vi of Eq. (17) is a function of the orientation of the
end-effector. In describing the spatial orientation, we resort
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to Euler parameters in that a rotation matrix expressed by the
Euler parameters is free of singularity, in contrast to the Euler
angles and the linear invariants, as explained in Introduction.
The Euler parameters, expressed as a unit quaternion, are
defined as in ref. [23]

p = [e0, e1, e2, e3]T = [e0, eT ]T , |ei | ≤ 1, i = 0, . . . , 3

(18a)

with e0 = cos φ

2 ; e = q sin φ

2 where q is the unit vector of
the axis of a rotation and φ is the rotation angle. The unit
quaternion implies

e2
0+ ‖ e ‖2 = 1 (18b)

which stands for that all sets of possible rotations in
terms of Euler parameters are located on the surface of
a unit hyper-sphere in R

4 given by [e0, e1, e2, e3]. When
expressed in R

3 formed by [e1, e2, e3], the hyper-sphere is
transformed to a solid sphere which represents all the possible
rotations: for each point within the sphere, i.e., ||e|| ≤ 1,
the Euler parameters of rotation is [±r, e1, e2, e3], where
r = √

1 − eT e. Hence the solid unit sphere can be used to
represent the workspace of an SPM. The sign of r reflects the
range of rotations. We take the positive sign which implies
cos(φ/2) ≥ 0 or φ ∈ [−π, π].

The rotation matrix in terms of Euler parameters is in a
form of

Q = 2

⎡
⎢⎢⎢⎣

e2
0 + e2

1 − 1

2
e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e2
0 + e2

2 − 1

2
e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e2
0 + e2

3 − 1

2

⎤
⎥⎥⎥⎦ (18c)

Substituting Eq. (18c) into Eq. (17) yields polynomial
equations of ei, i = 0, . . . , 3, which are rewritten as:

Lie
2
0 + Mie0 + Ni = 0, i = 1, 2, 3 (19)

where Li is independent to e. Mi and Ni are functions of e
of degrees 1 and 2, respectively, as shown in Appendix.

Obviously, it is inconvenient to carry out any analysis with
the four orientational variables of Eq. (19). It is thus desired
to eliminate one variable from the equations. In doing so,
we first substitute Eq. (18b) into Eq. (19) to eliminate the e2

0
item, which yields

Mie0 + Ui = 0, i = 1, 2, 3 (20)

where

Ui = Ni + Li(1 − ||e||2) (21)

We rewrite Eq. (20) as

Mie0 = −Ui, i = 1, 2, 3 (22)

Squaring both sides of Eq. (22) and substituting Eq. (18b)
into the newly obtained equation yields an equation of e

fi(e) = M2
i (1 − ||e||2) − U 2

i = 0 (23)

Equation (23) is the EOM of a single leg in terms of the
Euler parameters. Since the equation involves the constant D

which takes two values, the singularity surface consequently
has two branches in general. The two branches may become
one, or vanish, depending on the value of D determined by
link dimensions, similar to the cases of the singularity curves
that are classified in Section 3.1.

Due to the fact that the three legs of an SPM are physically
constrained by the top pyramid, the workspace of an SPM is
the intersection of the workspace of all three legs. Knowing
that the workspace of an SPM is confined by the unit sphere,
we can determine the workspace, which is bounded by the
sphere surface and the singularity surface, if we can find the
singularity surface. With the EOM of Eq. (23), the singularity
surfaces of an SPM is obtained by combining that of the
individual legs, which is mathematically described by

F (e) =
3∏

i=1

fi(e) = 0 (24)

which is a function of e of degree 12. Corresponding to the
singularity surface of a single leg, the singularity surface of
an SPM has also two branches in general, which may become
one, or vanish, depending on the value of D.

3.3. Singularities
A close-loop kinematic chain like the spherical parallel
manipulator has two types of singularities, namely, the Type I
and Type II singularities∗ , according to the classification of
Gosselin and Angeles.25 The singularity surface established
with Eq. (24) is exactly the set of singular points of Type I.
This can be explained geometrically. The zero discriminant
of Eq. (11) means that two solutions to joint variable θi

are identical. From the point of view of spherical linkages,
the two configurations corresponding to the two solutions
become one. This leads to a situation of coplanar ui , wi

and vi . In other words, (ui × wi) · vi = 0, i = 1, 2, 3, a
condition corresponding to det(B) = 0, i.e., the Type I
singularity.25

The Type II singularity, on the other hand, occurs when
det(A) = 0. This kind of singularity implies an end-effector
moves regardless of the status of the input links and the
manipulator is uncontrollable. It is known that Type II
singularity is configuration dependent, i.e.,

det(A) = f (p; θ(p)) = 0 (25)

To identify the Type II singularity, one must take into
account all possible configurations with respect to a certain
orientation. But this will end up with a complicated
expression for Type II singularity. To avoid the problem with

∗There is a third type of singularities in ref. [25], which is actually
the combination of the first two types.
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the multiple configurations, we treat the identification of Type
II singularity as an optimality problem. In doing so, we need
only to find Euler parameters and one set of associated joint
angles that satisfy Eq. (25) regardless of the configuration.
The implementation of this approach is outlined in Section 5
in connection with examples.

4. Evaluation of Dexterity
Dexterity is defined as the capacity of an SPM to provide
a large range of orientation to its end-effector. Several
measures of dexterity have been proposed, which include
the volume of the omnidirectional point-workspace,26 the
volume of attitudinally dexterous point-workspace,27 and
the volume of the controllably dexterous point-workspace,26

all being defined with respect to serial manipulators. When
dealing with spherical parallel manipulators, Gosselin and
Angeles used the condition number of the Jacobian matrix
as a measure of dexterity.5 Since the condition number is a
function of input angles and cannot reveal the global property
of an SPM, Gosselin and Angeles defined further an index
called global conditional index (GCI) through the integration
of the condition number over the whole workspace.11

Now that the EOM of Eq. (24) builds the singularity surface
in the Cartesian space, the attainable workspace and dexterity
are readily determined.

4.1. Attainable workspace
The volume of an attainable workspace can be calculated
through an integral:

W =
∫




dw (26)

where � denotes a region bounded by the singular surface
of Eq. (24) and the surface of the unit sphere. Within the
region, the sign of F (e) remains unchanged, a change of
sign otherwise implying the reach of the singularity surface.
Hence by making use of the equation of motion, W can be
precisely calculated by means of definite integral. In practice,
taking into account the complexity of the singularity surface,
the workspace is evaluated by numerical discretization of the
solid unit sphere in order to avoid trivial determination of
intervals for the sub-integrals.

The attainable workspace can be normalized with respect
to the solid unit sphere. Specifically, the normalized
attainable workspace is defined as the ratio of the volume of
attainable workspace to the volume of the solid unit sphere,
i.e.,

ξ = 3

4π

∫



dw (27)

The normalized attainable workspace ranges from 0 to 1,
a high value implying a large volume of an attainable
workspace, and consequently a high mobility.

4.2. Dexterity
The dexterity of a spherical manipulator, following the
definition of ref. [11], is

GCI =
∫



1/κ(J) dw∫



dw
= 1

W

∫



1/κ(J) dw (28)

with the condition number κ(J) is defined as

κ(J) = ‖J−1‖‖J‖ (29)

where the Euclidean norm ‖ · ‖ of a matrix A is

‖A‖ =
√

tr(AT WA) (30)

with W = 1
3 I for the purpose of normalization. Here I is the

3 × 3 identity matrix. In practice, the dexterity of Eq. (28) is
calculated by a discrete approach

GCI = 1

W

∑
wi∈


1

κi(J)
dwi (31)

where κi(J) is the condition number at a discrete point wi .
Care has to be given to the differential element of the

workspace volume dwi . For a better approximation of the
integration, the workspace should be evenly partitioned in all
directions, as discussed in refs. [7, 12, 19], which implies the
workspace has to be homogeneous. Euler angles do obviously
not lead to a homogeneous workspace. To make the element
homogeneous, Kurtz and Hayward made use of quaternion
coordinates,19 while Yang and Chen mapped Cartesian
workspace into a solid sphere of radius π using exponential
coordinates.7 In this work, a homogeneous workspace is
obtained by the introduction of Euler parameters, in a manner
similar to that of Kurtz and Hayward, and the workspace is
evenly discretized.

5. Examples
We include a few examples of workspace modelling based
on the developed method. All simulations were carried out
by virtue of Maple 10.

5.1. Visualization of workspace
The equation of motion (EOM) of (24) can be used to
visualize the boundary of workspace. Shown in Fig. 4(a)
is an example of the singularity surface of an SPM. The
dimensions are taken from ref. [1] as α1 = 120◦, α2 = 90◦
and γ = β = 49.9◦. A cross section e3 = 0.6 of the
manipulator’s singularity surface is displayed in Fig. 4(b) for
a better view, where shadowed areas are immobility regions.
In the figure, the outer circle is the section of the unit sphere,
which gives the outer boundary. An interconnected region
in which the SPM is capable of attending the corresponding
orientation can be observed.

As pointed in Section 3.2, there are two branches of
singularity surfaces corresponding to the two bounding
planes of a single legs. The two branches are displayed in
Figs. 4(c) and (d), which are orthogonal.
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Fig. 4. Singularity surface of an SPM with α1 = 120◦, α2 = 90◦ and γ = β = 49.9◦: (a) the general view; (b) the cross section at e3 = 0.6;
(c) & (d) two branches of leg 1.

Shown in Fig. 5(a) is the singularity surface of an SPM
with identical dimension of α1 and α2. Recall the discussion
in Section 3 that the boundary surface with two branches
degenerates to a surface with one branch only. This is exactly
the case shown in Fig. 5(a). A more clear view of the
singularity surface of a single leg is depicted in Fig. 5(b).

5.2. Type II singularities
The Type II singularities are identified numerically for the
spherical parallel manipulator with coaxial input shafts.
In particular, a solver of nonlinear programs, NLPSolve
with Maple 10, is utilized for this purpose. The objective

function is defined as obj = 1
2 [det(A)]2. The problem of

identification of Type II singularities is thus converted to
a problem of finding multiple local minima. The constraints
applied to the optimization are the three equations shown in
Fig. 6. We identify the singularities on layers with different
e3. Each layer is discretized evenly to provide starting
points for the solver. The solver will find the nearest local
minimum, a singular point. For a coaxial spherical parallel
manipulator with dimensions of α1 = α2 = 90◦ and β = 85◦,
the distributions of Type II singularity with e3 = 0, 0.2, 0.5
are shown in Fig. 6, where the circle corresponds to the cross
section of the unit sphere. It is seen from figure that the

Fig. 5. Singularity surface of an SPM with α1 = α2 = 75◦ and γ = β = 49.9◦: (a) the general view; (b) the singularity surface of leg 1.
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Fig. 6. Type II singularity of an SPM with coaxial input shafts: (a) e3 = 0; (b) e3 = 0.2; (c) e3 = 0.5.

Fig. 7. Type II singularity of the Agile Eye: (a) e3 = 0; (b) e3 = 0.2; (c) e3 = 0.5.

.

method is able to identify both singular points and singular
loci. By comparing the distributions over layers, we notice
that the layer with e3 = 0 is more prone to singularity than
other layers. This is also observed with the case of the Agile
Eye. As shown in Fig. 7, the Agile Eye has only six singular
points on layers with non-zero e3.

It is noted that the identified singular points or loci
show the possibility of singularity occurred with a certain
configuration. Such a configuration, in practice, may not be
reached for a manipulator due to mechanical constraints.
Shown in Fig. 8 is a configuration of Type II singularity. It
shows that some links interference with each other at their
joints, which implies the configuration is unlikely reached;
the singularity will not occur in this case. In view of this, a
real system has to check all possible singularities with respect

Fig. 8. A configuration of Type II singularity.

to mechanical constraints in order to remove those singular
points that has no practical effect on the controllability of an
SPM.

5.3. Evaluation of dexterity
We demonstrate the evaluation of dexterity with our proposed
active ball joint. With γ = 0 fixed for the active ball joint,
the design parameters are α1, α2, and β. Given a specified
value of β, we can obtain from Eq. (27) the corresponding
distributions of attainable workspace ξ against link
dimensions α1 and α2. We select β = 45◦, 60◦, 75◦, and 90◦,
each value yielding a 3D distribution of the dimensionless
volume of workspace. Shown in Fig. 9 are distributions
of maximum attainable workspace with β = 90◦, 75◦, and
60◦. In all three cases, the dexterity reaches the maximum
with the dimensions of both links being equal to 90◦, a
coincidence with the results reported in ref. [5].

Using the same procedure as that for the calculation of
attainable workspace, the dexterity of SPMs can also be ob-
tained by Eq. (31). Figure 10 shows the distribution of dexter-
ity with β = 90◦. Through comparing Fig. 10 with Fig. 9(a),
a noticeable difference between the dexterity distribution and
the attainable workspace is observed. The difference suggests
that an architecture with maximum workspace cannot guar-
antee an optimal kinematic performance. While it is desirable
to obtain both a high dexterity and a large workspace, a multi-
goal optimization is required.19 Moreover, other factors such
as mechanical constraints, static characteristic, etc., have
also to be considered. For example, the curved links must
avoid collision with each other; a smaller dimension is thus
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Fig. 9. Attainable workspace distributions with (a) β = 90◦, (b) β = 75◦, and (c) β = 60◦.

Fig. 10. Dexterity distribution with β = 90◦.

preferred. Furthermore, the static characteristic indicates the
capability of load carrying;13 link dimensions must enable
the end-effector to overcome the specified payload. For the
case of the active ball joint, the initial dimensions are taken as
α1 = α2 = 90◦ and β = 85◦, which are in favor of attainable
workspace. The dimensions are under review and subject to
change with the above considerations.

6. Conclusions
A novel approach of workspace modelling with Euler
parameters is proposed for a special class of spherical parallel
manipulators with symmetrical structure. An equation of
mobility which describes the boundary surface of an
SPM is derived. Based on the workspace model with
Euler parameters, dexterity evaluation and singularity
identification are explored.

The proposed method, to some extent, can be regarded
as an extension of the analysis method reported in ref. [5].
We advance that work by the adoption of Euler parameters
with the aim to eliminate the formulation singularity with
the rotation representation. We reformulated the problem of
workspace modelling in terms of Euler parameters, which
provides a solid foundation for the kinematic analysis of

SPMs. Furthermore, with Euler parameters, the workspace
is established within the solid unit sphere, which is
homogeneous for all orientational workspace. Moreover, the
branches of singularity surfaces, for both single leg and
SPMs, are classified and visualized.

The proposed method offers a unified approach to model
and visualize workspace, to identify singularity and to
evaluate dexterity. We demonstrate the workspace modelling
in connection with the Agile Eye, a well-known spherical
manipulator, and the active ball joint. While the method
is proposed with respect to a special class of parallel
manipulators with symmetrical architecture, it can also be
applied to general spherical manipulators and other kinds
of parallel manipulators. The extension of the developed
modelling method with Euler parameters to other types of
parallel manipulators is under consideration.
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Appendix
Coefficients of Eq. 19

Li =−2 sγ sβ + 2 cγ cβ (32a)

Mi = 2 cηisγ cβe1 + 2 sηicγ sβe2

+ 2 sηisγ cβe2 + 2 cηicγ sβe1 (32b)

Ni = 4 sηicηisγ sβe1 e2 − 2 c2ηisγ sβe2
2 − 2 cηisγ cβe2 e3

− 2 sηicγ sβe1 e3 + 2 sηisγ cβe1 e3

+ 2 cηicγ sβe2 e3 − 2 s2ηisγ sβe1
2

+ 2 cγ cβe3
2 + sγ sβ − cγ cβ − D (32c)
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