
TLP 10 (4–6): 627–642, 2010. C© Cambridge University Press 2010

doi:10.1017/S1471068410000323

627

A declarative semantics for CLP
with qualification and proximity�

MARIO RODRÍGUEZ-ARTALEJO and CARLOS A. ROMERO-DÍAZ

Departamento de Sistemas Informáticos y Computación, Universidad Complutense

Facultad de Informática, 28040 Madrid, Spain

(e-mail: mario@sip.ucm.es, cromdia@fdi.ucm.es)

submitted 4 February 2010; revised 30 April 2010; accepted 21 May 2010

Abstract

Uncertainty in Logic Programming has been investigated during the last decades, dealing

with various extensions of the classical LP paradigm and different applications. Existing

proposals rely on different approaches, such as clause annotations based on uncertain truth

values, qualification values as a generalization of uncertain truth values, and unification

based on proximity relations. On the other hand, the CLP scheme has established itself as

a powerful extension of LP that supports efficient computation over specialized domains

while keeping a clean declarative semantics. In this paper we propose a new scheme SQCLP

designed as an extension of CLP that supports qualification values and proximity relations.

We show that several previous proposals can be viewed as particular cases of the new scheme,

obtained by partial instantiation. We present a declarative semantics for SQCLP that is based

on observables, providing fixpoint and proof-theoretical characterizations of least program

models as well as an implementation-independent notion of goal solutions.

KEYWORDS: constraint logic programming, qualification domains and values, proximity

relations

1 Introduction

Many extensions of logic programming (shortly LP) to deal with uncertainty have

been proposed in the last decades. A line of research not related to this paper

is based on probabilistic extensions of LP such as Ng and Subrahmanian (1992).

Other proposals in the field replace classical two-valued logic by some kind of

many-valued logic whose truth values can be attached to computed answers and

are usually interpreted as certainty degrees. The next paragraphs summarize some

relevant approaches of this kind.

There are extensions of LP using annotations in program clauses to compute a

certainty degree for the head atom from the certainty degrees previously computed

for the body atoms. This line of research includes the seminal proposal of Quantit-

ative Logic Programming by van Emden (1986) and inspired later works such as the

� This work has been partially supported by the Spanish projects STAMP (TIN2008-06622-C03-01),
PROMETIDOS–CM (S2009TIC-1465) and GPD–UCM (UCM–BSCH–GR58/08-910502).

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

628 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

Generalized Annotated logic Programs (shortly GAP) by Kifer and Subrahmanian

(1992) and the QLP scheme for Qualified LP Rodrı́guez-Artalejo and Romero-Dı́az

(2008). While van Emden (1986) and other early approaches used real numbers

of the interval [0, 1] as certainty degrees, QLP and GAP take elements from a

parametrically given lattice to be used in annotations and attached to computed

answers. In the case of QLP, the lattice is called a qualification domain and its

elements (called qualification values) are not always understood as certainty degrees.

As argued in Rodrı́guez-Artalejo and Romero-Dı́az (2008), GAP is a more general

framework, but QLP’s semantics have some advantages for its intended scope.

There are also extended LP languages based on fuzzy logic which can be classified

into two major lines. The first line includes Fuzzy LP languages such as Vojtáš (2001)

and Guadarrama et al. (2004) and the Multi-Adjoint LP (shortly MALP) framework

by Medina et al. (2001). All these approaches extend classical LP by using clause

annotations and a fuzzy interpretation of the connectives and aggregation operators

occurring in program clauses and goals. There is a relationship between Fuzzy LP

and GAP that has been investigated in Krajči et al. (2004). Intended applications of

Fuzzy LP languages include expert knowledge representation.

The second line includes Similarity-based LP (shortly SLP) in the sense of Sessa

(2002) and related proposals, which keep the classical syntax of LP clauses but use

a similarity relation over a set of symbols S to allow “flexible” unification of syn-

tactically different symbols with a certain approximation degree. Similarity relations

over a given set S have been defined in Zadeh (1971) and Sessa (2002) and related

literature as fuzzy relations represented by mappingsS : S×S → [0, 1] which satisfy

reflexivity, symmetry and transitivity axioms analogous to those required for classical

equivalence relations. A more general notion called proximity relation was introduced

in Dubois and Prade (1980) by omitting the transitivity axiom. As noted by Shenoi

and Melton (1999) and other authors, the transitivity property required for similarity

relations may conflict with user’s intentions in some cases. The Bousi∼Prolog

language (Julián-Iranzo and Rubio-Manzano 2009) has been designed with the aim

of generalizing SLP to work with proximity relations. A different generalization of

SLP is the SQLP scheme (Caballero et al. 2008), designed as an extension of the

QLP scheme. In addition to clause annotations in QLP style, SQLP uses a given

similarity relation S : S × S → D (where D is the carrier set of a parametrically

given qualification domain) in order to support flexible unification. In the sequel

we use the acronym SLP as including proximity-based LP languages also. Intended

applications of SLP include flexible query answering. An analogy of proximity

relations in a different context (namely partial constraint satisfaction) can be found

in Freuder and Wallace (1992), where several metrics are proposed to measure the

proximity between the solution sets of two different constraint satisfaction problems.

Several of the above mentioned LP extensions (including GAP, QLP, the Fuzzy

LP language in Guadarrama et al. (2004) and SQLP) have used constraint solving

as an implementation technique. However, we only know two approaches which

have been conceived as extensions of the classical CLP scheme Jaffar and Lassez

(1987). Firstly, Riezler (1998) extended the formulation of CLP by Höhfeld and

Smolka (1988) with quantitative LP in the sense of van Emden (1986); this work

was motivated by problems from the field of natural language processing. Secondly,

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 629

Bistarelli et al. (2001) proposed a semiring-based approach to CLP, where constraints

are solved in a soft way with levels of consistency represented by values of a semiring.

This approach was motivated by constraint satisfaction problems and implemented

with clp(FD,S) in Georget and Codognet (1998) for a particular class of semirings

which enable to use local consistency algorithms. The relationships between Riezler

(1998) and Bistarelli et al. (2001) and the results of this paper will be further

discussed in Section 4.

Finally, there are a few preliminary attempts to combine some of the above

mentioned approaches with the Functional Logic Programming (shortly FLP)

paradigm found in languages such as Curry (Hanus 2006) and TOY (Arenas

et al. 2007). Similarity-based unification for FLP languages has been investigated by

(Moreno and Pascual 2007), while (Caballero et al. 2009) have proposed a generic

scheme QCFLP designed as a common extension of the two schemes CLP and QLP

with first-order FLP features.

In this paper we propose a new extension of CLP that supports qualification

values and proximity relations. More precisely, we define a generic scheme SQCLP

whose instances SQCLP(S,D,C) are parameterized by a proximity relation S, a

qualification domain D and a constraint domain C. We will show that several

previous proposals can be viewed as particular cases of SQCLP, obtained by partial

instantiation. Moreover, we will present a declarative semantics for SQCLP that is

inspired in the observable CLP semantics by Gabbrielli et al. (1995) and provides

fixpoint and proof-theoretical characterizations of least program models as well as

an implementation-independent notion of goal solution that can be used to specify

the expected behavior of goal solving systems.

The reader is assumed to be familiar with the semantic foundations of LP and

CLP. The rest of the paper is structured as follows: Section 2 introduces constraint

domains, qualification domains and proximity relations. Section 3 presents the

SQCLP scheme and the main results on its declarative semantics. Finally, Section

4 concludes by giving a discussion of related approaches (many of which can be

viewed as particular cases of SQCLP) and pointing to some lines open for future

work. Due to space limits, we have preferred to include examples rather than proofs.

A widely extended version including detailed proofs is available as Technical Report

(Rodrı́guez-Artalejo and Romero-Dı́az 2010).

2 Computational basis

2.1 Constraint domains

As in the CLP Scheme, we will work with constraint domains related to signatures.

We assume a universal programming signature Γ = 〈DC,DP 〉 where DC =
⋃

n∈� DCn

and DP =
⋃

n∈� DPn are countably infinite and mutually disjoint sets of free

function symbols (called data constructors in the sequel) and defined predicate

symbols, respectively, ranked by arities. We will use domain specific signatures

Σ = 〈DC,DP , PP 〉 extending Γ with a disjoint set PP =
⋃

n∈� PPn of primitive

predicate symbols, also ranked by arities. The idea is that primitive predicates

come along with constraint domains, while defined predicates are specified in user

programs. Each PPn may be any countable set of n-ary predicate symbols.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

630 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

Terms have the syntax t ::= X|u|c(tn), where X ∈ Var, u ∈ B and c ∈ DCn,

assuming a countably infinite set of variables Var and a set of basic values B and

using tn as a shorthand for t1, . . . , tn. The set of ground terms is noted Term(Σ, B).

As usual, substitutions are defined as mappings σ assigning terms to variables and

extended to act over other syntactic objects o in the natural way. The result of

applying σ to o is noted as oσ.

Several formal notions of constraint domain are known in the literature. In this

paper, constraint domains of signature Σ are relational structures of the form C =

〈C, {pC | p ∈ PP }〉 consisting of a carrier set C = Term(Σ, B) and an interpretation

pC : Cn → {0, 1} for each p ∈ PPn. For the examples in this paper we will use

the real constraint domain R well known as the basis of the CLP(R) language and

system (Jaffar et al. 1992). In our setting we represent R with set of basic values

B = � and primitive predicates op+, op×, . . . ∈ PP 3 and cp>, cp�, . . . ∈ PP 2 defined

to represent the usual arithmetic and comparison operations over �. Other useful

constraint domains are: the Herbrand domainH, intended to work just with equality

constraints; and FD, intended to work with constraints involving integer values

and finite domain variables.

Given a constraint domain C, we will work with atoms of three kinds: defined

atoms A : r(tn), where r ∈ DPn and ti are terms; primitive atoms κ : p(tn), where

p ∈ PPn and ti are terms; and equations t == s, where t, s are terms and == is

the equality symbol. Primitive atoms and equations are called atomic C-constraints.

More generally, C-constraints π are built from atomic C-constraints using logical

conjunction ∧, existential quantification ∃, and sometimes other logical operations.

Constraints of the form ∃X1 . . . ∃Xn(B1∧ . . .∧Bm) –where Bj (1 � j � m) are atomic–

are called existential.

The set of all C-constraints is noted ConC. Constraints are interpreted by means of

C-valuations η ∈ ValC, which are ground substitutions. The set SolC(Π) of solutions

of Π ⊆ ConC includes all the valuations η such that Πη is true when interpreted

in C. Π ⊆ ConC is called satisfiable if SolC(Π) �= ∅ and unsatisfiable otherwise.

π ∈ ConC is entailed by Π ⊆ ConC (noted Π |=C π) iff SolC(Π) ⊆ SolC(π).

As a simple illustration consider Π = {cp�(A, 3.0), op+(A,A,X), op×(2.0, A, Y)}
⊆ ConR. Clearly, η ∈ SolR(Π) holds iff η(A), η(X) and η(Y) are real numbers

a, x, y ∈ � such that a � 3.0, a+a = x and 2.0×a = y. Then SolR(Π) ⊆ SolR(X ==

Y). Therefore, assuming c ∈ DC1 one has Π |=R c(X) == c(Y).

2.2 Qualification domains

As mentioned in the Introduction, qualification values were introduced as a gener-

alization of certainty values in Rodrı́guez-Artalejo and Romero-Dı́az (2008). They

are elements of special lattices called qualification domains and defined as structures

D = 〈D,�, b, t, ◦〉 verifying the following requirements:

1. 〈D,�, b, t〉 is a lattice with extreme points b (called infimum or bottom element)

and t (called maximum or top element) w.r.t. the partial ordering � (called

qualification ordering). For given elements d, e ∈ D, we write d� e for the greatest

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 631

lower bound (glb) of d and e, and d � e for the least upper bound (lub) of d and

e. We also write d � e as abbreviation for d � e ∧ d �= e.

2. ◦ : D × D → D, called attenuation operation, verifies the following axioms:

(a) ◦ is associative, commutative and monotonic w.r.t. �.

(b) ∀d ∈ D : d ◦ t = d and d ◦ b = b.

(c) ∀d, e ∈ D : d ◦ e � e and even b �= d ◦ e � e if d, e ∈ D \ {b}.
(d) ∀d, e1, e2 ∈ D : d ◦ (e1 � e2) = (d ◦ e1) � (d ◦ e2).

Actually, axioms (2)(b.2) and (2)(c.1) are redundant because they can be derived

from the other axioms1. For any S = {e1, e2, . . . , en} ⊆ D, the glb (also called infimum

of S) exists and can be computed as
�
S = e1 � e2 � · · · � en (which reduces to t in

the case n = 0). The dual claim concerning lubs is also true. As an easy consequence

of the axioms, one gets the identity d ◦
�
S =

�
{d ◦ e | e ∈ S}.

The following basic qualification domains were also introduced in Rodrı́guez-

Artalejo and Romero-Dı́az (2008).

The Domain of Classical Boolean Values is B =def 〈{0, 1},�, 0, 1,∧〉, where 0 and

1 stand for the two classical truth values false and true, � is the usual numerical

ordering over {0, 1}, and ∧ stands for the classical conjunction operation over {0, 1}.
The Domain of Uncertainty Values is U =def 〈U,�, 0, 1,×〉, where U = [0, 1] = {d ∈
� | 0 � d � 1}, � is the usual numerical ordering, and × is the multiplication

operation. The top element t is 1 and for any finite S ⊆ U one has
�
S = min(S),

which is 1 if S = ∅. Elements of U are intended to represent certainty degrees.

The Domain of Weight Values is W =def 〈P,�,∞, 0,+〉, where P = [0,∞] = {d ∈
� ∪ {∞} | d � 0}, � is the reverse of the usual numerical ordering (with ∞ � d

for any d ∈ P), and + is the addition operation (with ∞ + d = d +∞ = ∞ for any

d ∈ P). The top element t is 0 and for any finite S ⊆ P one has
�
S = max(S), which

is 0 if S = ∅. Elements ofW are intended to represent proof costs, measured as the

weighted depth of proof trees.

Given qualification domains D1 and D2, their strict cartesian product D1 ⊗D2 is

D =def 〈D,�, b, t, ◦〉 where D = D1⊗D2 =def ((D1\{b1})× (D2\{b2}))∪ {(b1, b2)}, the

partial ordering � is defined as (d1, d2) � (e1, e2) ⇐⇒def d1 �1 e1 and d2 �2 e2, and

the attenuation operator ◦ is defined as (d1, d2) ◦ (e1, e2) =def (d1 ◦1 e1, d2 ◦2 e2). It can

be proved that D1 ⊗D2 is again a qualification domain2.

In Section 3 we will need the following definition, that refines a similar one given

in (Caballero et al. 2009).

Definition 2.1 (Expressing D in C)

A qualification domain D is expressible in a constraint domain C if there is an

injective embedding mapping ı : D \ {b} → C and moreover:

1. There is a C-constraint qVal(X) such that SolC(qVal(X)) is the set of all η ∈ ValC
verifying η(X) ∈ ran(ı).

1 The authors are thankful to G. Gerla for pointing out this fact.
2 This result refines a similar one for ordinary cartesian products presented in (Rodrı́guez-Artalejo and

Romero-Dı́az 2008).

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

632 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

2. There is a C-constraint qBound(X,Y , Z) encoding “x � y ◦ z” in the following

sense: any η ∈ ValC such that η(X) = ι(x), η(Y) = ι(y) and η(Z) = ι(z) verifies

η ∈ SolC(qBound(X,Y , Z)) iff x � y ◦ z.

In addition, if qVal(X) and qBound(X,Y , Z) can be chosen as existential constraints,

we say that D is existentially expressible in C. �

We can prove that B, U, W and any qualification domain built from these

with the help of ⊗ is existentially expressible in any constraint domain C that

includes the basic values and computational features of R. For instance, U ⊗W
can be expressed in R using a binary data constructor pair ∈ DC2 and taking:

ι(x, y) =def pair(x, y); qVal(X) : ∃X1∃X2(X == pair(X1, X2)∧cp<(0, X1)∧cp�(X1, 1)∧
cp�(0, X2)); and qBound(X,Y , Z) built in a suitable way. The interested reader is

referred to (Rodrı́guez-Artalejo and Romero-Dı́az 2010) for other examples of

qualification domains which can be existentially expressed in FD.

2.3 Proximity relations

Similarity and proximity relations have been introduced in Section 1. In the rest of

this paper we will focus on triples 〈S,D,C〉 fulfilling the following requirements:

Definition 2.2 (Admissible triples)

An admissible triple 〈S,D,C〉 consist of a constraint domain C with signature Σ =

〈DC,

DP , PP 〉 and set of basic values B, a qualification domain D expressible in C
and a mapping S : S × S → D satisfying the following properties:

1. S =Var � B � DC � DP � PP .

2. S is aD-valued proximity relation such thatS(x, x) = t (reflexivity) andS(x, y) =

S(y, x) (symmetry) hold for all x, y ∈ S . In the case thatS satifies alsoS(x, z) �
S(x, y) � S(y, z) (transitivity) for all x, y, z ∈ S , it is called D-valued similarity

relation.

3. S restricted to Var behaves as the identity, i.e. S(X,X) = t for all X ∈ Var
and S(X,Y) = b for all X,Y ∈ Var such that X �= Y .

4. For any x, y ∈ S , S(x, y) �= b can happen only if: (a) x = y are identical; or else

(b) x, y ∈ B are basic values; or else (c) x, y ∈ DC are data constructor symbols

with the same arity; or else (d) x, y ∈ DP are defined predicate symbols with the

same arity. �

D-valued proximity relations generalize the D-valued similarity relations first

introduced in (Caballero et al. 2008). When D is chosen as the qualification domain

U, the previous definition provides proximity and similarity relations in the sense

of Zadeh (1971) and Dubois and Prade (1980). In this case, a proximity degree

S(x, y) = d ∈ [0, 1] can be naturally interpreted as a certainty degree for the

assertion that x and y are interchangeable. On the other hand, if S is W-valued,

then S(x, y) = d ∈ [0,∞] can be interpreted as a cost to be paid for y to play the

role of x.

As mentioned in the Introduction, the transitivity property postulated for similarity

relations may be counterintuitive in some cases. For instance, assume nullary

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 633

constructors colt, cold and gold intended to represent words composed of four

letters. Then, measuring the proximity between such words might reasonably lead to

aU-valued proximity relationS such thatS(colt, cold) = 0.9,S(cold, gold) = 0.9

and S(colt, gold) = 0.4. On the other hand, insisting on S to be transitive would

enforce the unreasonable condition S(colt, gold) � 0.9. Therefore, a similarity

relation would not be appropriate in this case.

The special mapping Sid : S × S → D defined as Sid(x, x) = t for all x ∈ S and

Sid(x, y) = b for all x, y ∈ S , x �= y is trivially a D-valued similarity (and therefore,

also a proximity) relation called the identity.

In the rest of this paper, the notations S, D and C are always understood as

the components of some given admissible triple and the proximity relation S is not

required to be transitive. As noted in Sessa (2002) and related works, S can be

naturally extended to act over terms. The extension, also notedS, works as specified

by the recursive equations displayed below:

• S(t, t) = t for every term t.

• S(X, t) =S(t, X) = b for X ∈ Var and for any term t �= X.

• S(c(tn), c
′(t′n) = b for c ∈ DCn, c′ ∈ DCm with n �= m.

• S(c(tn), c
′(t′n)) =S(c, c′) �S(t1, t

′
1) � . . . �S(tn, t

′
n) for c, c′ ∈ DCn.

Analogously, S can be extended to work over atoms and other syntactic objects.

The following definition combines S with constraint entailment, leading to a kind

of relations over terms which will play a crucial role for the semantics of equations

in SQCLP.

Definition 2.3 (Constraint-based term proximity at level λ)

Assume λ ∈ D \ {b} and Π ⊆ ConC. We will say that two terms t and s are S-

close at level λ w.r.t. Π (in symbols, t ≈λ,Π s) iff there are two terms t̂, ŝ such that

Π |=C t == t̂, Π |=C s == ŝ and S(t̂, ŝ) � λ. �

It can be proved that ≈λ,Π is a reflexive and symmetric relation over the set of

terms, that is even transitive in case that S is a similarity relation. As a simple

example, assume D = U, C = R and S such that S(c′, c) = S(c, c′′) = 0.8

and S(c′, c′′) = 0.6 for some c, c′, c′′ ∈ DC2. Let Π = {op+(A,A,X), op×(2.0, A, Y),

Z == c(X,Y)} ⊆ ConR. Note that this choice of Π ensures Π |=R X == Y . Then

c′(Y ,X) ≈0.7,Π Z holds, because Π |=R c′(Y ,X) == c′(X,X), Π |=R Z == c(X,X)

and S(c′(X,X), c(X,X)) = 0.8 � 0.7.

3 The SQCLP scheme

3.1 Programs, interpretations and models

The scheme SQCLP has instances SQCLP(S,D,C) where 〈S,D,C〉 is an admissible

triple. A SQCLP(S,D,C)-program is a set P of qualified program rules (also called

qualified clauses) C : A
α←− B1	w1, . . . , Bm	wm, where A is a defined atom, α ∈ D \ {b}

is called the attenuation factor of the clause and each Bj	wj (1 � j � m) is an atom

Bj annotated with a so-called threshold value wj ∈ (D \ {b}) � {?}. The intended

meaning of C is as follows: if for all 1 � j � m one has Bj	ej (meaning that Bj holds

with qualification value ej) for some ej �? wj , then A	d (meaning that A holds with

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

634 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

qualification value d) can be inferred for any d ∈ D \ {b} such that d � α ◦
�m

j=1 ej .

By convention, ej �? wj means ej � wj if wj �= ? and is identically true otherwise. In

practice threshold values equal to ‘?’ and attenuation values equal to t can be omitted.

As motivating example, consider a SQCLP(S,U⊗W,R)-program P including

the clauses and equations for S displayed in Figure 1. From Subsection 2.2

recall that qualification values in U⊗W are pairs (d, e) (where d represents a

certainty degree and e represents a proof cost), as well as the behavior of �
and ◦ in U⊗W. Consider the problem of proving goodWork(king liar)	(d, e)

from P. This can be achieved for d = 0.75 × min{d1, d2}, e = 3 + max{e1, e2}
by using R1 instantiated by {X �→ king liar, Y �→ shakespeare}, and going on

to prove famousAuthor(shakespeare)	(d1, e1) for some d1 � 0.5, e1 � 100 and

wrote(shakespeare,king liar)	(d2, e2) for some d2, e2. Thanks to R2, R3 and

S, these proofs succeed with (d1, e1) = (0.9, 1) and (d2, e2) = (0.8, 2). Therefore, the

desired proof succeeds with certainty degree d = 0.75 × min{0.9, 0.8} = 0.6, and

proof cost e = 3 + max{1, 2} = 5.

R1 : goodWork(X) <-(0.75,3)- famousAuthor(Y)#(0.5,100), wrote(Y,X)#?

R2 : famousAuthor(shakespeare) <-(0.9,1)-

R3 : wrote(shakespeare,king_lear) <-(1,1)-

S(king_lear,king_liar) = (0.8,2)

Fig. 1. SQCLP(S, U⊗W,R) Program Fragment

The more technical SQCLP(S,U,R)-program P presented below will serve as a

running example in the rest of the paper.

Example 3.1 (Running example)

Assume c, c′ ∈ DC1, p, p′, q ∈ DP 2, r ∈ DP 3 and S such that S(c, c′) = 0.9 and

S(p, p′) = 0.8. Let P consist of the following program rules:

R1 : q(X, c(X))
1.0←− R3 : r(c(X), Y , Z)

0.9←− q(X,Y)	0.8, cp�(X, 0.0)	?

R2 : p(c(X), Y)
0.9←− q(X,Y)	0.8 �

The declarative semantics for SQCLP presented in the rest of this section is

inspired by the S2 semantics for CLP given in Gabbrielli et al. (1995). We use

qualified constrained atoms (or simply qc-atoms) of the form A	d ⇐ Π, intended to

assert that the validity of atom A with qualification degree d ∈ D is entailed by

the constraint set Π ⊆ ConC. A qc-atom is called defined, primitive or equational

according to the syntactic form of A; and it is called observable iff d ∈ D \ {b}
and Π is satisfiable. In the sequel we restrict our attention to observable qc-atoms,

viewing them as observations of computed answers for atomic goals. We use an

entailment relation �D,C to capture some implications between qc-atoms whose

validity depends neither on the proximity relation S nor on program clauses3.

Formally, given ϕ : A	d ⇐ Π and ϕ′ : A′	d′ ⇐ Π′, we say that ϕ (D,C)-entails ϕ′

3 In Caballero et al. (2008) we used a different entailment relation that depends on S and does not
work properly if S is not transitive.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 635

(in symbols, ϕ �D,C ϕ′) iff there is some substitution θ such that A′ = Aθ, d′ � d

and Π′ |=C Πθ. The example below illustrates these notions:

Example 3.2 (Observable qc-atoms and (D,C)-entailment)

Building upon Example 3.1, let Π = {cp>(X, 1.0), op+(A,A,X), op×(2.0, A, Y)} and

Π′ = {cp�(A, 3.0), op×(2.0, A, X), op+(A,A, Y)}. Then, the following are observable

qc-atoms:

ϕ1 : q(X, c′(Y))	0.9⇐ Π ϕ3 : r(c′(Y), c(X), Z)	0.8⇐ Π

ϕ2 : p′(c′(Y), c(X))	0.8⇐ Π ϕ′3 : r(c′(Y), c(X), c(Z ′))	0.7⇐ Π′

and ϕ3 �U,R ϕ′3 holds, since θ = {Z �→ c(Z ′)} verifies r(c′(Y), c(X), c(Z ′)) =

r(c′(Y), c(X), Z)θ, 0.7 � 0.8 and Π′ |=R Πθ. �

The intended meaning of �D,C motivates the first sentence in the next definition.

Definition 3.1 (Interpretations)

A qualified constrained interpretation (or qc-interpretation) is a set I of defined

observable qc-atoms closed under (D,C)-entailment, i.e. ϕ ∈ I and ϕ �D,C ϕ′

implies ϕ′ ∈ I. An observable qc-atom ϕ is called valid in the qc-interpretation I
(in symbols, I ��S,D,C ϕ) iff some of the following cases holds: (a) ϕ is a defined

qc-atom and ϕ ∈ I; or (b) ϕ is an equational qc-atom (t == s)	d⇐ Π and t ≈d,Π s;

or (c) ϕ is a primitive qc-atom κ	d⇐ Π and Π |=C κ. �

Note that a given interpretation I can include several observables A	di ⇐ Π

for the same (possibly open) atom A, but is not required to include one “optimal”

observable A	d ⇐ Π with d computed as the lub of all di. By contrast, the

other related works discussed in the Introduction view program interpretations as

mappings I from the ground Herbrand base into some set of lattice elements (the

real interval [0, 1] in many cases). In such interpretations, each ground atom A has

attached one single lattice element d = I(A) intended as “the optimal qualification”

for A. Our view of interpretations is closer to the expected operational behavior

of goal solving systems and can be used to characterize the validity of solutions

computed by such systems, as we will see in Subsection 3.4.

It can be proved that I ��S,D,C ϕ implies I ��S,D,C ϕ′ for any ϕ′ such that

ϕ �D,C ϕ′ (so-called entailment property for interpretations). The notions of model

and semantic consequence are defined below.

Definition 3.2 (Models and semantic consequence)

Let a SQCLP(S,D,C)-program P and an observable qc-atom ϕ : p′(t′n)	d⇐ Π be

given. ϕ is an immediate consequence of a qc-interpretation I via a program rule

(Rl : p(tn)
α←− B1	w1, . . . , Bm	wm) ∈ P iff there exist a C-substitution θ and a choice

of qualification values d0, d1, . . . , dn, e1, . . . , em ∈ D \ {b} such that:

(a) S(p′, p) = d0,

(b) I ��S,D,C (t′i == tiθ)	di ⇐ Π (i.e. t′i ≈di,Π tiθ) for i = 1 . . . n,

(c) I ��S,D,C Bjθ	ej ⇐ Π with ej �? wj for j = 1 . . . m,

(d) d � �n
i=0 di � α ◦

�m
j=1 ej .

Note that the qualification value d attached to ϕ is limited by two kinds of upper

bounds: di (0 � i � n), i.e. the S-proximity between p′(t′n) and the head of Rlθ;

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

636 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

and α ◦ ej (1 � j � m), i.e. the qualification values of the atoms in the body of Rlθ

attenuated w.r.t. Rl ’s attenuation factor α. Now we can define:

1. I is a model of Rl ∈ P (in symbols, I |=S,D,C Rl) iff every defined observable

qc-atom ϕ that is an immediate consequence of I via Rl verifies ϕ ∈ I. And I
is a model of P (in symbols, I |=S,D,C P) iff I is a model of each Rl ∈ P.

2. ϕ is a semantic consequence of P (in symbols, P |=S,D,C ϕ) iff I ��S,D,C ϕ for

every qc-interpretation I such that I |=S,D,C P. �

The next example may serve as a concrete illustration:

Example 3.3 (Models and semantic consequence)

Recall the SQCLP(S,U,R)-program P from Example 3.1 and the qc-atoms ϕ1 and

ϕ2 from Example 3.2. Assume an arbitrary model I |=S,U,R P. Then:

— (1) Note that the atom underlying ϕ1 is q(X, c′(Y)), and the head atom of R1

is q(X, c(X)). Since S(c, c′) = 0.9 and Π |=C X == Y , ϕ1 can be obtained as an

immediate consequence of I via R1 using θ = ε. Therefore, ϕ1 ∈ I and P |=S,U,R ϕ1.

— (2) Consider θ = {Y �→ c′(Y)}. Note that p′(c′(Y), c(X)) is the atom underlying

ϕ2, and the head atom of R2θ is p(c(X), c′(Y)). Moreover, ϕ1 ∈ I due to the previous

item and the atom q(X, c′(Y)) underlying ϕ1 is the same as the atom in the body

of R2θ. These facts together with S(p, p′) = 0.8, S(c, c′) = 0.9 and Π |=C X == Y

allow to obtain ϕ2 as an immediate consequence of I via R2. Therefore, ϕ2 ∈ I
and P |=S,U,R ϕ2. �

3.2 A fixpoint semantics

As for other declarative languages, one can use immediate consequence operators to

characterize the models and least models of a given SQCLP(S,D,C)-program P.

We start by considering the complete lattice IntD,C of all qc-interpretations partially

ordered by set inclusion, with bottom element ⊥⊥ = ∅ and top element �� = {ϕ | ϕ
is a defined observable qc-atom}. For any subset I ⊆ IntD,C one gets the greatest

lower bound
�
I =

⋂
I∈I I and the least upper bound

⊔
I =

⋃
I∈I I. Next we

define an interpretation transformer TP : IntD,C → IntD,C, intended to compute the

immediate consequences obtained from a given qc-interpretation via the program

rules belonging to P, and defined as

TP(I) =def {ϕ | ϕ is an immediate consequence of I via some Rl ∈ P}

where immediate consequences are computed as explained in Definition 3.2. The

following example illustrates the workings of TP.

Example 3.4 (Interpretation transformer in action)

Recall again the SQCLP(S,U,R)-program P from Example 3.1 and the defined

observable qc-atoms ϕ1 and ϕ2 from Example 3.2. Then: (1) The arguments given

in Example 3.3(1) can be easily reused to show that ϕ1 is an immediate consequence

of ⊥⊥ via R1. Therefore, ϕ1 ∈ TP(⊥⊥). (2) The arguments given in Example 3.3(2) can

be easily reused to show that ϕ2 is an immediate consequence of I via R2, provided

that ϕ1 ∈ I. Therefore, ϕ2 ∈ TP(TP(⊥⊥)). �

The next proposition states the main properties of interpretation transformers.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 637

Proposition 3.1 (Properties of interpretation transformers)

For any SQCLP(S,D,C)-program P, TP is a well defined mapping, i.e. for all

I ∈ IntD,C one has TP(I) ∈ IntD,C. Moreover, TP is monotonic and continuous and

its pre-fixpoints are the models of P, i.e. for all I ∈ IntD,C one has I |=S,D,C P ⇐⇒
TP(I) ⊆ I. �

As an immediate consequence one can prove the theorem below, that is the main

result in this subsection.

Theorem 3.1 (Fixpoint characterization of least program models)

Every SQCLP(S,D,C)-program P has a least model MP, smaller than any other

model of P w.r.t. the set inclusion ordering of the interpretation lattice IntD,C.

Moreover, MP can be characterized as least fixpoint of TP as follows:

MP = lfp(TP) =
⋃

k∈�

TP↑k(⊥⊥) . �

3.3 An equivalent proof-theoretic semantics

In order to give a logical view of program semantics and an alternative characteriz-

ation of least program models, we define the Proximity-based Qualified Constrained

Horn Logic SQCHL(S,D,C) as a formal inference system consisting of the three

inference rules displayed in Figure 2.

SQDA
((t′i == tiθ)	di ⇐ Π)i=1...n (Bjθ	ej ⇐ Π)j=1...m

p′(t′n)	d⇐ Π

if (p(tn)
α←− B1	w1, . . . , Bm	wm) ∈ P, θ subst., S(p′, p) = d0 �= b,

ej �? wj (1 � j � m) and d � �n
i=0 di � α ◦

�m
j=1 ej .

SQEA
(t == s)	d⇐ Π

if t ≈d,Π s. SQPA
κ	d⇐ Π

if Π |=C κ.

Fig. 2. Proximity-based Qualified Constrained Horn Logic

Rule SQDA formalizes an extension of the classical Modus Ponens inference

allowing to infer a defined qc-atom p′(t′n)	d ⇐ Π by means of an instantiated

clause with head p(tn)θ and body atoms Bjθ	wj . The n premises (t′i == tiθ)	di ⇐ Π

combined with the side condition S(p′, p) = d0 �= b ensure the “equality” between

p′(t′n) and p(tn)θ modulo S; the m premises Bjθ	ej ⇐ Π require to prove the

body atoms; and the side conditions ej �? wj and d � �n
i=0 di � α ◦

�m
j=1 ej check the

threshold conditions of the body atoms and impose the proper relationships between

the qualification value d attached to the conclusion and the qualification values di
and ej attached to the premises. Rule SQEA is designed to work with constraint-

based term proximity in the sense of Definition 2.3, inferring (t == s)	d ⇐ Π just

in the case that t ≈d,Π s holds. Rule SQPA infers primitive qc-atoms κ	d ⇐ Π for

an arbitrary d ∈ D \ {b}, provided that Π |=C κ holds.

We will write P �S,D,C ϕ to indicate that ϕ can be deduced from P in SQCHL(S,

D,C), and P �kS,D,C ϕ in the case that the deduction can be performed with exactly

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

638 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

k SQDA inference steps. As usual in formal inference systems, SQCHL(S,D,C)

proofs can be represented as proof trees whose nodes correspond to qc-atoms, each

node being inferred from its children by means of some SQCHL(S,D,C) inference

step. The next example shows a simple SQCHL(S,U,R) proof tree.

Example 3.5 (SQCHL(S,D,C) proof tree)

Recall the proximity relation S and the program P from our running example

3.1 and the observable qc-statement ϕ1 = q(X, c′(Y))	0.9⇐ Π already known from

Example 3.2. A SQCHL(S,U,R) proof tree witnessing P �1S,U,R ϕ1 can be displayed

as follows:

(X == X)	1.0⇐ Π
SQEA(2)

(c′(Y) == c(X))	0.9⇐ Π
SQEA(3)

q(X, c′(Y))	0.9⇐ Π
SQDA(1)

Where: step (1) uses R1 = q(X, c(X))
1.0←− instantiated by the empty substitution

(note that 0.9 � min{1.0, 0.9}); step (2) uses X ≈1.0,Π X, trivially true; and step (3)

uses c′(Y) ≈0.9,Π c(X), true due to S(c,c’) = 0.9 and Π |=R X == Y . �

It can be proved that P �S,D,C ϕ implies P �S,D,C ϕ′ for any ϕ′ such that ϕ �D,C ϕ′

(so-called entailment property for programs). Moreover, if ϕ is either equational or

primitive, then P �0S,D,C ϕ⇐⇒ P �S,D,C ϕ⇐⇒ I ��S,D,C ϕ for any program P and

any qc-interpretation I. The following theorem is the main result in this subsection.

Theorem 3.2 (Logical characterization of least program models)

For any SQCLP(S,D,C)-program P, its least model can be characterized as:

MP = {ϕ | ϕ is an observable defined qc-atom and P �S,D,C ϕ}. �

As an easy consequence of the previous theorem we can prove:

Corollary 3.1 (SQCHL(S,D,C) is sound and complete)

For any SQCLP(S,D,C)-program P and any observable qc-atom ϕ one has:

1. P �S,D,C ϕ⇐⇒ P |=S,D,C ϕ⇐⇒MP ��S,D,C ϕ.

2. P �S,D,C ϕ =⇒ P |=S,D,C ϕ (soundness).

3. P |=S,D,C ϕ =⇒ P �S,D,C ϕ (completeness). �

3.4 Goals and solutions

In order to build goals for SQCLP(S,D,C)-programs, we assume a countably

infinite setWar of so-called qualification variables W. Goals for a given program P
have the form:

G : A1	W1, . . . , Am	Wm � W1 �?β1, . . . , Wm �?βm

abbreviated as (Ai	Wi,Wi �? βi)i=1...m with annotated atoms Ai	Wi (where the

qualification variables Wi ∈ War are pairwise different) and threshold conditions

Wi �? βi with βi ∈ (D \ {b}) � {?}. The notations ? and �? have been explained in

Subsection 3.1.

The proof-theoretical semantics developed in Subsection 3.3 allows to characterize

goal solutions in a natural and declarative way by means of the following definition:

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 639

the set of solutions of a goal G w.r.t. program P is noted SolP(G) and consists

of all triples 〈σ, μ,Π〉 such that σ is a C-substitution (not required to be ground),

μ : {W1, . . . ,Wm} → D \ {b}, Π is a satisfiable and finite set of atomic C-constraints

and the following two conditions hold for all i = 1 . . . m: Wiμ = di �? βi and

P �S,D,C Aiσ	Wiμ⇐ Π. Although operational semantics is not investigated in this

paper, computed answers obtained by means of a correct goal solving system for

SQCLP(S,D,C) are expected to be valid solutions in this sense.

For instance, G : goodWork(X)	W � W � (0.55,30) is a goal for the program

fragment P shown in Figure 1, and the arguments given near the beginning

of Subsection 3.1 can be formalized to prove that 〈{X �→ king liar}, {W �→
(0.6,5)}, ∅〉 ∈ SolP(G).

As an additional example involving constraints, recall the SQCLP(S,U,R)

program P presented in Example 3.1 and consider the goal G : q(X,Z)	W �W � 0.8

for P. Then 〈σ, μ,Π〉 ∈ SolP(G), where σ = {Z �→ c′(Y)}, μ = {W �→ 0.9} and

Π = {cp>(X, 1.0), op+(A,A,X), op×(2.0, A, Y)}. Note that Wμ = 0.9 � 0.8 and

P �S,U,R q(X,Z)σ	0.9⇐ Π is known from Example 3.5.

4 Conclusions

We have extended the classical CLP scheme to a new scheme SQCLP whose instances

SQCLP(S,D,C) are parameterized by a proximity relation S, a qualification

domain D and a constraint domain C. In addition to the known features of

CLP programming, the new scheme offers extra facilities for dealing with expert

knowledge representation and flexible query answering. Inspired by the observable

CLP semantics in Gabbrielli et al. (1995), we have presented a declarative semantics

for SQCLP that provides fixpoint and proof-theoretical characterizations of least

program models as well as an implementation-independent notion of goal solutions.

SQCLP is a quite general scheme. Different partial instantiations of its three

parameters lead to more particular schemes, most of which can be placed in close

correspondence to previous proposals. The items below present seven particulariz-

ations, along with some comments which make use of the following terminology:

a SCQLP program is called threshold-free in case that all its clauses use only ‘?’ as

threshold value; attenuation-free in case that all its clauses use only t as attenuation

value; and constraint-free in case that no constraints occur in clause bodies.

1. By definition, QCLP has instances QCLP(D,C) =def SQCLP(Sid,D,C) where

Sid is the identity proximity relation. The quantitative CLP scheme proposed in

Riezler (1998) can be understood as a further particularization of QCLP that

works with threshold-free QCLP(U,C) programs, where U is the qualification

domain of uncertainty values (see Subsection 2.2).

2. By definition, SQLP has instances SQLP(S,D) =def SQCLP(S,D,R) where R is

the real constraint domain (see Subsection 2.1). The scheme with the same name

originally proposed in Caballero et al. (2008) can be understood as a restricted

form of the present formulation; it worked with threshold-free and constraint-

free SQLP(S,D) programs and it restricted the choice of the S parameter to

transitive proximity (i.e. similarity) relations.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

640 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

3. By definition, SCLP4 has instances SCLP(S,C) =def SQCLP(S,B,C) where B
is the qualification domain of classical boolean values (see Subsection 2.2). Due

to the fixed parameter choice D = B, both attenuation values and threshold

values become useless, and each choice of S must necessarily represent a crisp

reflexive and symmetric relation. Therefore, this new scheme is not so interesting

from the viewpoint of uncertain and qualified reasoning.

4. By definition, QLP has instances QLP(D) =def SQCLP(Sid,D,R). The original

scheme with the same name proposed in Rodrı́guez-Artalejo and Romero-Dı́az

(2008) can be understood as a restricted form of the present formulation; it

worked with threshold-free and constraint-free QLP(D) programs.

5. By definition, SLP has instances SLP(S) =def SQCLP(S,U,R). The pure

fragment of Bousi∼Prolog (Julián-Iranzo and Rubio-Manzano 2009) can be

understood as a restricted form of SLP in the present formulation; it works with

threshold-free, attenuation-free and constraint-free SLP(S) programs. Moreover,

restricting the choice of S to similarity relations leads to SLP in the sense of

Sessa (2002) and related papers.

6. The CLP scheme can be defined by instances CLP(C) =def SQCLP(Sid,B,C).

Both attenuation values and threshold values are useless in CLP programs, due

to the fixed parameter choice D = B.

7. Finally, the pure LP paradigm can be defined as LP =def SQCLP(Sid,B,H)

where H is the Herbrand constraint domain. Again, attenuation values and

threshold values are useless in LP due to the fixed parameter choice D = B.

In all the previous items, the schemes obtained by partial instantiation inherit the

declarative semantics from SQCLP, using sets of observables of the form A	d⇐ Π

as interpretations. Similar semantic approaches were used in our previous papers

(Rodrı́guez-Artalejo and Romero-Dı́az 2008; Caballero et al. 2008), except that Π

and equations were absent due to the lack of CLP features. The other related works

discussed in the Introduction view program interpretations as mappings I from the

ground Herbrand base into some set of lattice elements (the real interval [0, 1] in

many cases), as already discussed in the explanations following Definition 3.1.

As seen in Subsection 3.4, SQCLP’s semantics enables a declarative characteriza-

tion of valid goal solutions. This fact is relevant for modeling the expected behavior

of goal solving devices and reasoning about their correctness. Moreover, the relations

≈λ,Π introduced for the first time in the present paper (see Definition 2.3) allow to

specify the semantic role of S in a constraint-based framework, with less technical

overhead than in previous related approaches.

A related work not mentioned in items above is semiring-based CLP (Bistarelli

et al. 2001), a scheme with instances SCLP(S) parameterized by a semiring S =

〈A,+,×, 0, 1〉 whose elements are used to represent consistency levels in soft con-

straint solving. The semirings used in this approach can be equipped with a lattice

structure whose lub operation is always +, but whose glb operation may be different

from ×. On the other hand, our qualification domains are defined as lattices with

an additional attenuation operation ◦. It turns out that the kind of semirings used

in SCLP(S) correspond to qualification domains only in some cases. Moreover, × is

4 Not to be confused with SCLP in the sense of (Bistarelli et al. 2001), discussed below.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

A declarative semantics for CLP with qualification and proximity 641

used in SCLP(S) to interpret logical conjunction in clause bodies and goals, while

the glb operation is used in instances SQCLP(S,D,C) for the same purpose. For this

reason, even if D is “equivalent” to S, SQCLP(S,D,C) cannot be naturally used to

express SCLP(S) in the case that × is not the glb. Assuming that D is “equivalent”

to S and that × behaves as the glb in S, program clauses in SCLP(S) can be

viewed as a particular case of program clauses in SQCLP(S,D,C) which use an

attenuation factor different from t only for facts. Other relevant differences between

SQCLP(S,D,C) and SCLP(S) can be explained by comparing the parameters. As

said before D may be “equivalent” to S in some cases, but S is absent and C is not

made explicit in SCLP(S). Seemingly, the intended use of SCLP(S) is related to finite

domain constraints and no parametrically given constraint domain is provided.

In the future we plan to implement some SQCLP instances by extending the

semantically correct program transformation techniques from Caballero et al. (2008),

and to investigate applications which can profit from flexible query answering in the

line of Campi et al. (2009) and other related papers. Other interesting lines of future

work include: a) extension of the qualified SLD resolution presented in Rodrı́guez-

Artalejo and Romero-Dı́az (2008) to a SQCLP goal solving procedure able to work

with constraints and proximity relations; and b) extension of the QCFLP scheme in

Caballero et al. (2009) to work with proximity relations and higher-order functions.

Acknowledgements

The authors are thankful to the anonymous referees for constructive remarks and

suggestions which helped to improve the presentation. They are also thankful to

Rafael Caballero for useful discussions on the paper’s topics and to Jesús Almendros

for pointing to bibliographic references in the area of flexible query answering.

References

Arenas, P., Fernández, A. J., Gil, A., López-Fraguas, F. J., Rodrı́guez-Artalejo, M.,

and Sáenz-Pérez, F. 2007. TOY, a multiparadigm declarative language. version 2.3.1. R.

Caballero and J. Sánchez (Eds.), Available at http://toy.sourceforge.net.

Bistarelli, S., Montanari, U., and Rossi, F. 2001. Semiring-based constraint logic

programming: Syntax and semantics. ACM Transactions on Programming Languages and

Systems 3, 1 (January), 1–29.

Caballero, R., Rodrı́guez-Artalejo, M., and Romero-Dı́az, C. A. 2008. Similarity-based

reasoning in qualified logic programming. In PPDP ’08: Proceedings of the 10th international

ACM SIGPLAN conference on Principles and Practice of Declarative Programming. ACM,

Valencia, Spain, 185–194.

Caballero, R., Rodrı́guez-Artalejo, M., and Romero-Dı́az, C. A. 2009. Qualified

computations in functional logic programming. In Logic Programming (ICLP’09), P. Hill

and D. Warren, Eds. LNCS, vol. 5649. Springer, Berlin, 449–463.

Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., and Spoletini, P. 2009. A fuzzy

extension of the XPath query language. Journal of Intelligent Information Systems 33, 3

(December), 285–305.

Dubois, D. and Prade, H. 1980. Fuzzy Sets and Systems: Theory and Applications. Academic

Press, New York.

Freuder, E. C. and Wallace, R. J. 1992. Partial constraint satisfaction. Artificial

Intelligence 58, 1–3, 21–70.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

642 M. Rodŕıguez-Artalejo and C. A. Romero-D́ıaz

Gabbrielli, M., Dore, G. M., and Levi, G. 1995. Observable semantics for constraint logic

programs. Journal of Logic and Computation 5, 2, 133–171.

Georget, Y. and Codognet, P. 1998. Compiling semiring-based constraints with CLP(FD,S).

In Proceedings of the 4th International Conference on Principles and Practice of Constraint

Programming. LNCS, vol. 1520. Springer, 205–219.

Guadarrama, S., Muñoz, S., and Vaucheret, C. 2004. Fuzzy prolog: A new approach using

soft constraint propagation. Fuzzy Sets and Systems 144, 1, 127–150.

Hanus, M. 2006. Curry: An integrated functional logic language, version 0.8.2. M. Hanus

(Ed.), Available at http://www.informatik.uni-kiel.de/~curry/report.html.

Höhfeld, M. and Smolka, G. 1988. Definite Relations over Constraint Languages. Technical

Report LILOG Report 53, IBM Deutschland.

Jaffar, J. and Lassez, J. L. 1987. Constraint logic programming. In Proceedings of the 14th

ACM SIGACT-SIGPLAN symposium on Principles of Programming Languages (POPL’87).

ACM New York, 111–119.

Jaffar, J., Michaylov, S., Stuckey, P. J., and Yap, R. H. C. 1992. The CLP(R) language and

system. ACM Transactions on Programming Languages and Systems 14(3), 339–395.

Julián-Iranzo, P. and Rubio-Manzano, C. 2009. A declarative semantics for Bousi∼Prolog.

In PPDP’09: Proceedings of the 11th ACM SIGPLAN conference on Principles and Practice

of Declarative Programming. ACM, Valencia, Spain, 149–160.

Kifer, M. and Subrahmanian, V. S. 1992. Theory of generalized annotated logic programs

and their applications. Journal of Logic Programming 12, 3–4, 335–367.

Krajči, S., Lencses, R., and Vojtáš, P. 2004. A comparison of fuzzy and annonated logic

programming. Fuzzy Sets and Systems 144, 173–192.

Medina, J., Ojeda-Aciego, M., and Vojtáš, P. 2001. Multi-adjoint logic programming with

continuous semantics. In Logic Programming and Non-Monotonic Reasoning (LPNMR’01),

T. Eiter, W. Faber, and M. Truszczyinski, Eds. LNAI, vol. 2173. Springer, 351–364.

Moreno, G. and Pascual, V. 2007. Formal properties of needed narrowing with similarity

relations. Electronic Notes in Theoretical Computer Science 188, 21–35.

Ng, R. T. and Subrahmanian, V. S. 1992. Probabilistic logic programming. Information and

Computation 101, 2, 150–201.

Riezler, S. 1998. Probabilistic Constraint Logic Programming. PhD thesis, Neuphilologischen

Fakultät del Universität Tübingen.

Rodrı́guez-Artalejo, M. and Romero-Dı́az, C. A. 2008. Quantitative logic programming

revisited. In Functional and Logic Programming (FLOPS’08), J. Garrigue and

M. Hermenegildo, Eds. LNCS, vol. 4989. Springer, 272–288.

Rodrı́guez-Artalejo, M. and Romero-Dı́az, C. A. 2010. Fixpoint and proof-Theoretic Se-

mantics for CLP with Qualification and Proximity. Technical Report SIC-1-10, Universidad

Complutense, Departamento de Sistemas Informáticos y Computación, Madrid, Spain.

url: federwin.sip.ucm.es/sic/investigacion/publicaciones/informes-tecnicos.

Sessa, M. I. 2002. Approximate reasoning by similarity-based SLD resolution. Theoretical

Computer Science 275, 1–2, 389–426.

Shenoi, S. and Melton, A. 1999. Proximity relations in the fuzzy relational database model.

Fuzzy Sets and Systems 100, supl., 51–62.

van Emden, M. H. 1986. Quantitative deduction and its fixpoint theory. Journal of Logic

Programming 3, 1, 37–53.

Vojtáš, P. 2001. Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370.

Zadeh, L. A. 1971. Similarity relations and fuzzy orderings. Information Sciences 3, 2, 177–200.

https://doi.org/10.1017/S1471068410000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000323

