
J. Fluid Mech. (2017), vol. 830, pp. 35–62. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.577

35

The impact of static and dynamic roughness
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The use of static or dynamic roughness elements has been shown in the past to delay
the separation of a laminar boundary layer from a solid surface. Here, we examine
analytically the effect of such elements on the local and breakaway separation points,
corresponding respectively to the position of zero skin friction and presence of a
singularity in the roughness region, for flow over a hump embedded within the
boundary layer. Two types of roughness elements are studied: the first is small and
placed near the point of vanishing skin friction; the second is larger and extends
downstream. The forced flow solution is found as a sum of Fourier modes, reflecting
the fixed frequency forcing of the dynamic roughness. Solutions for both the static and
dynamic roughness show that the presence of the roughness element is able to move
the separation points downstream, given an appropriate choice of roughness frequency,
height, position and width. This choice is found to be qualitatively similar to that
observed for leading-edge separation. Furthermore, for a negative static roughness a
small region of separated flow forms at high roughness depth, although there is a
critical depth above which boundary-layer breakaway moves suddenly upstream.

Key words: boundary layer control, boundary layer separation, flow–structure interactions

1. Introduction
Flow separation is the focus of this work, especially the possible use of oscillating

roughness elements to affect the separation position on an otherwise fixed solid
surface. It is motivated by applications to laminar flow control and to increased
understanding of bird flight, among other interests.

The search for effective laminar flow techniques to prevent separation, while
avoiding turbulence and the higher skin friction drag associated with it, remains of
great importance, with applications including drones, propellers, wind turbines and
helicopters with chord Reynolds numbers between 104 and 106 (Lissaman 1983;
Gad-el-Hak 2000). Relatively well-established techniques include streamlining, which
can reduce the adverse pressure gradient encountered or move back the position
of minimum pressure, and suction (Atik et al. 2005) to remove slower, near-wall
particles and entrain faster ones; while the use of wall heat transfer (Chang 1970)
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and rotating cylinders (Modi 1997) has also been studied. Tripping the boundary
layer to go turbulent through the use of roughness elements (whether active (Tani
1969) or passive (Pruessner & Smith 2015)) also remains popular when avoiding
separation. Other ideas, for example from nature (Bushnell & Moore 1991; Fish &
Lauder 2006), may also inspire new and unusual techniques.

The use of any flow control device must be offset by the costs, both financial
and in terms of introduced drag, involved in incorporating the associated equipment.
Hence potential devices should be lightweight, easy to implement and require the
minimal amount of energy to operate. The pioneering studies of Huebsch (2006),
Rothmayer & Huebsch (2011, 2012), Grager et al. (2012) and Huebsch et al. (2012)
on dynamic roughness elements – small bumps embedded within a boundary layer
and made to oscillate at a given frequency – is therefore promising. These dynamic
roughness elements can be created through the use of a pressure plenum within the
airfoil (as in Grager et al. (2012)) or possibly by electro-active polymers (Dearing,
Lambert & Morrison 2007; DeMauro et al. 2015) or microelectromechanical systems
and have been shown, both experimentally and numerically, to increase the angle of
attack at which separation occurs.

Equally inspiring is the study by Braun & Kluwick (2004) (henceforth referred to as
BK), which is particularly relevant to the study of such dynamic roughness elements
and concerns marginal separation. The local separation of a steady two-dimensional
flow from the surface of a body is generally taken to occur where the skin friction
becomes zero after a length of attached flow (positive skin friction) immediately
upstream. At this point, the original surface streamline leaves the surface and
carries with it the original boundary layer in a sense, possibly leading to a larger
breakaway separation process with a region of relatively slow recirculating fluid
existing beneath the dividing streamline. The point of vanishing skin friction also
heralds the breakdown of classical boundary-layer theory (Prandtl 1904), with the
appearance either of Goldstein’s square-root singularity (Goldstein 1948) or the
weaker singularity that accompanies marginal separation (Ruban 1981; Stewartson,
Smith & Kaups 1982). In the latter case, and within limits, the skin friction goes
through zero but then immediately recovers: this phenomenon has been shown to
occur in flows over slender airfoils at low angles of attack (Ruban 1982) or smooth
backward-facing steps (Schlichting & Gersten 2000); channel flows with suction
(Hsiao & Pauley 1994); or a viscous wall jet that is made to deflect (Zametaev 1986).
For all of these, marginal separation occurs only if the value of some parameter
governing the flow is below a critical threshold.

In aerodynamics, this parameter is linked to the angle of attack of the airfoil
and thereby to the adverse pressure gradient encountered on the suction side. As
the flow proceeds from the stagnation point at the front of the airfoil, the pressure
first reaches a minimum near the leading edge, before recovering. This increase in
pressure results in near-wall particles slowing down and eventually being moved to
some finite distance from the surface by the reversed flow that exists once the skin
friction has become negative. For thin airfoils, where the Reynolds number (based on
the radius of curvature of the leading edge) is comparatively low, the flow tends to
remain laminar and thus is more likely to separate: as the angle of attack increases,
marginally separated flow is initially encountered, with the accompanying creation of
a short bubble typically no more than 1 % of the length of the airfoil chord. This
situation exists up to some critical value Γc of the increment Γ of the angle of
attack, beyond which no feasible solutions to the marginal separation equations exist,
indicating the ‘bursting’ of the bubble into either a longer one or a fully developed
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The impact of static and dynamic roughness elements on flow separation 37

region of separated flow. This results in a severe loss of lift and dramatic increase in
drag on the airfoil; with similar detrimental effects occurring also for internal flows
(Sychev et al. 1998).

In detail, BK considered an airfoil on which an unsteady, three-dimensional object
was mounted, in order to explore what happened in marginally separated flow at
or near the critical value of the angle of attack increment, which they represent by
Γc. To maintain consistency between this paper and those of BK (Braun & Kluwick
2002, 2004), we will keep the same notation. A bifurcation takes place for subcritical
values of Γ , with two flow regimes possible (Braun & Kluwick 2002); while for
supercritical values, as mentioned, no steady solution is possible. The object represents
a steady roughness shape (hs) with small time-dependent variations (hu) of this shape.
Of interest for flow control applications is that hs allows one to increase the critical
value Γc, suggesting that a greater angle of attack can be achieved before the flow
forms either a large separation bubble or fully separates and stalls. The higher order
unsteady contributions are used to analyse the bubble-bursting phenomenon.

The main question in the current work is whether such positive effects can occur
in other significant configurations and specifically in the near-wall motion over a
small hump within a boundary layer or channel flow at high Reynolds number. The
latter ‘condensed flow’ is described by Smith & Daniels (1981) (SD) in the context
of the removal of the Goldstein singularity at separation. Although not strictly in the
realm of marginal separation (there is no critical parameter here), we focus on the
local and breakaway separation positions and ask whether a tiny roughness element,
either static or dynamic, is able to shift them downstream and, if so, how position,
length, height and oscillation frequency affect the shift. Loosely equating the increase
in Γc with a downstream shift in the separation position, we find that the dependence
of both on the aforementioned parameters is qualitatively similar. In contrast to
the work of BK, for our dynamic roughness we take the oscillation amplitude of
the roughness element to be of the same order as the roughness height, thereby
considering a positive roughness to drop flush to the surface before increasing to its
maximum extension within one cycle of oscillation. We will also answer the question
of whether the dynamic roughness can move the separation point further downstream
as compared to the steady roughness, once the average over a period of oscillation
is taken.

Section 2 below describes the model with the various regions of SD, deriving the
governing equations in the region of vanishing skin friction where the roughness
element is active, i.e. the ‘roughness region’. In §§ 3 and 4 we present the results for
a static and dynamic roughness impacting on the local separation point; in § 5, we
consider the effect of larger roughness elements on breakaway separation, with the
form of the pressure–displacement equation derived in § 2.2 suggesting the possibility
of introducing favourable pressure perturbations to the flow; and conclusions and
scope for future research close in § 6.

2. The model

Our planar flow is incompressible and the boundary layer, lying on the wall y∗= 0
with classical thickness O(Re−1/2), is laminar. The Reynolds number (Re), taken to
be large, is the ratio of inertial to viscous forces: Re = U∞L/ν, where U∞ is the
speed of the oncoming flow, L is a characteristic length scale and ν is the kinematic
viscosity. Asterisked variables are non-dimensional, with dimensional equivalents given
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by L(x∗, y∗), U∞(u∗, v∗), Lt∗/U∞ and ρU2
∞

p∗, where ρ is the fluid density. As in SD,
the flow encounters a hump, given by

y∗ = Re−1/2δ[hF(x∗)+ f̂ (h, x∗, t∗)], (2.1)

completely embedded within the classical boundary layer, with Re−1/2δ the
characteristic hump height (which, with δ � 1, is much smaller than the boundary-
layer thickness) and h the non-dimensional height factor of the bump. Here, F is
the hump shape, which achieves a maximum at x∗ = x∗max, after which the pressure
gradient becomes adverse and drives the flow towards separation. The additional
contribution f̂ corresponds to the roughness element, which is introduced in the
region where the skin friction vanishes (see § 2.2) but is identically zero everywhere
else. Its crucial height scale, which is some power of h, will be determined later.
Finally, the streamwise coordinate x∗ and time t∗ are based on the non-dimensional
length scale of the bump, which in turn is based on the Reynolds number as shown
in (2.2).

As mentioned in the introduction, the local separation point coincides with the
position of zero skin friction and the appearance of the Goldstein singularity but, as
demonstrated by SD, this singularity is moved downstream and eventually removed
completely. This is through physical interactions in different flow regions (see below),
and is seen most readily when the characteristic length (`) and height scales of the
hump satisfy Re−3/4

� `� Re−3/8 and Re−1/4
� δ� Re−1/8 (Smith et al. 1981). Then

the coordinates and variables scale as

x∗ = `x, y∗ = Re−1/2`1/3(y+ hF+ f̂ ), t∗ = `2/3t, (2.2a−c)

p∗ = `2/3p, u∗ = `1/3u, v∗ = Re−1/2`−1/3

[
v +

∂ f̂
∂t
+ u

∂

∂x
(hF+ f̂ )

]
, (2.2d−f )

with all unasterisked quantities of O(1), where a Prandtl transposition has been
applied to simplify the no-slip condition of (2.4). Substituting into the Navier–Stokes
equations, we obtain, written in terms of the streamfunction ψ , the unsteady
condensed-flow equations

u=
∂ψ

∂y
, v =−

∂ψ

∂x
,

∂2ψ

∂y∂t
+
∂ψ

∂y
∂2ψ

∂x∂y
−
∂ψ

∂x
∂2ψ

∂y2
=−

∂p
∂x
(x, t)+

∂3ψ

∂y3
. (2.3a−c)

These are subject to the boundary conditions

ψ =
∂ψ

∂y
= 0 on y= 0, (2.4a)

ψ→ 1
2 y2, p→ 0 as x→−∞, (2.4b,c)

u∼ y+ hF(x)+ f̂ (h, x, t) as y→∞, (2.4d)

corresponding to no slip, matching with the boundary layer far upstream and the
requirement that there be no displacement of the original boundary layer and outer
inviscid flow due to the presence of the (relatively) small hump. We note that this
system is valid for all values of the non-dimensional hump height (h) strictly between
zero and infinity, provided that h� δ−1Re−1/8 (for example, for bumps with a length
scale equal to the boundary-layer height, `∼Re−1/2, one obtains a bump height scale
δ ∼ `1/3

∼ Re−1/6; and hence h � Re1/24), and we will focus here on cases where
h� 1, as per the work of Smith & Daniels (1981): small h, albeit without dynamic
roughness, was studied by Smith (1976b), while situations where h=O(1) appear in
Smith (1976a).
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FIGURE 1. The development of the flow in the (x, y)-plane as it reaches the Goldstein
singularity at the end of region A and proceeds downstream. A summary of each flow
region is given in the text; the dynamic roughness (grey) is placed in region C, which
has a length scale of O(h−3/2). Not to scale.

2.1. The flow development
The development of the flow can be divided into the following regions: the flow
upstream of the hump and over its front face is attached and can be dealt with
using classical boundary-layer theory (region A in figure 1); this classical approach
breaks down as the Goldstein singularity is approached at the rear of the hump,
and the singularity can be shifted downstream by considering a smaller length scale
around the singular point (region B), with the boundary layer split vertically into
two sublayers; the singularity can then be removed completely by considering a still
smaller length scale, allowing the skin friction to pass smoothly through zero (region
C); complete nonlinear breakaway of the near-wall layer, associated with the presence
of a (removable) singularity in region C, occurs in a fourth region (D), upstream
of the separated flow (E) reattaching further downstream. Our interest is mainly
in the positions of zero skin friction (§§ 3 and 4) and the removable singularity
appearing downstream of it (§ 5), both of which occur in region C, which is where
the roughness element will be placed. In this section, we summarise the solutions to
the streamfunctions and pressures in regions A and B, before focusing on region C
in the next section. The effect of the roughness is expected to be mostly local and
thus for the flow in regions D and E, we refer the reader to the SD paper.

The steady flow upstream of the Goldstein singularity consists of a viscous
near-wall region of vertical scale O(h−1/2) and a large inviscid outer zone where
y = O(h). The boundary condition at infinity sets the form of the streamfunction in
the outer layer; imposing the condition of no normal flow at y= 0 in the outer layer
solution gives the leading-order pressure term, which drives the leading-order flow in
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the viscous sublayer. Matching determines the next term in the pressure expansion,
and so on. The outer layer streamfunction is then

ψ = 1
2 [y+ hF(x)]2 + p (2.5)

and the viscous layer streamfunction responds as

ψ ∼ h1/2F(x)[Y − β0(x)] + h−1
[

1
2 Y2
+ p2(x)

]
+ · · · (2.6)

as Y→∞, with a pressure expansion of

p=− 1
2 h2F2(x)− h1/2β0(x)F(x)+ · · · . (2.7)

Here, Y is the scaled normal coordinate in the inner layer, given by y= h−1/2Y , and
β0(x) is obtained from the numerical solution to the classical boundary-layer equations
obtained in that layer.

Denoting by xs the position at which the scaled skin friction (τwall ≡ ∂2ψ/∂y2

evaluated at y= 0) vanishes, Goldstein (1948) showed that the above procedure first
outlined by Prandtl gives rise to a square-root singularity as x approaches xs. If
we look at the limit as x→ x−s , the viscous layer splits into two decks: an outer
Goldstein layer, where Y remains of O(1); and an inner Goldstein layer, where the
vertical coordinate is scaled as η= Y(xs − x)−1/4

∼ 1. The streamfunction in the inner
Goldstein layer then behaves as

ψ i
= h1/2

[
1
6µ(xs − x)3/4η3

+ α0(xs − x)η2
+ (xs − x)5/4

(
α1η

2
−

1
60α

2
0η

5
)]
+ · · · , (2.8)

from which one can identify the square-root singularity in τwall. Here µ=−FsF′s > 0,
where Fs = F(xs); and α0 and α1 ∝ α

2
0 are unknown, non-zero positive constants. The

outer Goldstein layer streamfunction can be represented as

ψo
= h1/2

[
ψ0s(Y)+

2α0

µ
(xs − x)1/2ψ ′0s(Y)+

2α1

µ
(xs − x)3/4ψ ′0s(Y)

]
+ · · · , (2.9)

where
ψ0s(Y)∼ 1

6µY3
−

1
60α

2
0Y5
+ · · · as Y→ 0,

ψ0s(Y)∼ Fs(Y − βs)+ o(1) as Y→∞,

}
(2.10)

with βs = β(xs) being constant.
Removal of the Goldstein singularity begins over the length scale x− xs∼ h−3/2 ln h

of region B. The outer Goldstein layer retains the height scale Y ∼ 1, while the inner
Goldstein layer has Y=h−3/8(ln h)1/4z̄ and we introduce the new streamwise coordinate
x− xs = h−3/2 ln(h)X̄; X̄, z̄∼ 1. The relevant streamfunctions (SD) are then

ψ̄o
= h1/2ψ0s(Y)+ψ ′0s(Y)

[
h−1/4(ln h)1/2ᾱ1(X̄)

+ h−1/4(ln h)−1/2 ln(ln h)ᾱ1L(X̄)+ h−1/4(ln h)−1/2ᾱ2(X̄)
]
+ · · · , (2.11a)

ψ̄ i
= h−5/8(ln h)3/4

(
1
6µz̄3

)
+
(

1
2µz̄2

) [
h−1(ln h)ᾱ1(X̄)+ h−1 ln(ln h)ᾱ1L(X̄)

+ h−1ᾱ2(X̄)
]
+ h−11/8(ln h)5/4

(
1
2µz̄2ᾱ3(X̄)− 1

60α
2
0 z̄5
)
+ · · · (2.11b)

for the outer and inner Goldstein layers respectively, and

p = h2
(
−

1
2 F2

s

)
+ h1/2 ln h(µX̄)+ h1/2(−βsFs)+ Fs

[
h−1/4(ln h)1/2ᾱ1(X̄)

+ h−1/4(ln h)−1/2 ln(ln h)ᾱ1L(X̄)+ h−1/4(ln h)−1/2ᾱ2(X̄)
]
+ · · · (2.12)
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for the pressure; also

ᾱ1(X̄)= 2µ−1α0

(
−X̄ +

3A0L

2α0

)1/2

, (2.13a)

ᾱ1L(X̄)=−µ−1A0L

(
−X̄ +

3A0L

2α0

)−1/2

, (2.13b)

ᾱ2(X̄) = −µ−1A0L

(
−X̄ +

3A0L

2α0

)−1/2

ln
(
−X̄ +

3A0L

2α0

)
+µ−1A0

(
−X̄ +

3A0L

2α0

)−1/2

, (2.13c)

A0L =
Fs
(
−

1
4

)
!

25/2µ1/2
(

1
4

)
!
, (2.13d)

and ᾱ3, A0 are associated functions and constants.
The above expansions result in a scaled skin friction of

τwall = 2α0h3/4(ln h)1/2
(
−X̄ +

3A0L

2α0

)1/2

+ · · · , (2.14)

indicating that the Goldstein singularity has merely been shifted to the position X̄ =
3A0L/2α0. Its complete removal, as well as the introduction of the dynamic roughness,
is considered in the following section.

2.2. The roughness region

As X̄ approaches 3A0L/2α0, the streamfunction expansion in the inner Goldstein layer
(2.11b) breaks down. In particular, this occurs when(

−X̄ +
3A0L

2α0

)
∼ (ln h)−1. (2.15)

We therefore define coordinates (X, z) in the inner and (X, Y) in the outer Goldstein
layers, all of O(1), as

x− xs = h−3/2 ln(h)
3A0L

2α0
+ h−3/2X, y= h−7/8z, and y= h−1/2Y. (2.16a−c)

It is in this region that we introduce the roughness element in order to investigate the
impact it has both on the position of zero skin friction and downstream singularity.
For the purposes of the following derivation, we will take the roughness element to
be time dependent, although static elements will also be studied in §§ 3 and 5. At
the former position, τwall will pass regularly through zero, while the latter is also
removable in a physically sensible fashion in region D and corresponds to the full
nonlinear breakaway of the boundary layer (SD). The height scale of the roughness
element is O(h−5/4) and the oscillation frequency is of order h11/8, indicating the
scaled time

T = h11/8t : (2.17)

these scalings affect the governing equations at the appropriate order, but other
possible choices will be referred to at the end of this section.
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The boundary condition at infinity, (2.4d), can be integrated with respect to y to
obtain the streamfunction behaviour

ψ ∼ 1
2 [y+ hF(x)+ h−5/4f (x, T)]2 + q(x, T) as y→∞, (2.18)

where f̂ = h−5/4f . The function q is determined by taking the limit of the condensed-
flow equation (2.3c) as y→∞ and gives

q(x, T)= p(x, T)+ h1/8
∫ x

−∞

∂f
∂T
(s, T) ds. (2.19)

Thus the streamfunction behaves as

ψ ∼
1
2
[y+ hF(x)+ h−5/4f (x, T)]2 + p(x, T)+ h1/8

∫ x

−∞

∂f
∂T
(s, T) ds (2.20)

when y→∞. Note that the above is valid throughout the streamwise extent of the
hump, x∼ 1, under the understanding that f is identically zero everywhere outside the
small roughness region defined above. Thus there is no contradiction with the previous
equation (2.5).

The form of the pressure in this region is derived from the upstream pressure (2.12),
which is rewritten using the new streamwise coordinate X to suggest the expansion

p(X, T)=−h2

(
1
2

F2
s

)
+ h1/2(ln h)

3A0L

2α0
µ+ h1/2(µX̄ − βsFs)+ h−1/4P1 + · · · . (2.21)

The streamfunction in the outer Goldstein layer must match with that of (2.20) as
Y→∞; and thus expanding the latter about xs and rewriting it in terms of the normal
coordinate Y , provides the expansion

Ψ o(X, Y, T)= h1/2Ψ o
1 (X, Y, T)+ h−1/4Ψ o

2 (X, Y, T)+ · · · , (2.22)

with the functions Ψ o
i satisfying the matching conditions

Ψ o
1 → Fs(Y − βs) as Y→∞, (2.23a)
Ψ o

1 →ψ0s(Y) as X→−∞, (2.23b)
Ψ o

2 → P1(X, T)+ Fs f (X, T) as Y→∞, (2.23c)
Ψ o

2 → 2µ−1α0ψ
′

0s(Y)|X|
1/2
+ · · · as X→−∞; (2.23d)

the upstream conditions here arise from (2.11a).
Substitution of the expansions (2.21) and (2.22) into the condensed flow equation

(2.3) gives the governing equations for the components Ψ o
i , solved subject to the

matching conditions (2.23) above. Thus the equation

∂Ψ o
1

∂Y
∂2Ψ o

1

∂X∂Y
−
∂Ψ o

1

∂X
∂2Ψ o

1

∂Y2
= 0 (2.24)

for Ψ o
1 is solved to obtain

Ψ o
1 =ψ0s(Y); (2.25)
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and

ψ ′0s
∂2Ψ o

2

∂X∂Y
−ψ ′′0s

∂Ψ o
2

∂X
= 0, (2.26)

for
Ψ o

2 =ψ
′

0s(Y)[A(X, T)+ f (X, T)], (2.27)

using the properties of ψ0s given in (2.10). Hence

Ψ o
= h1/2ψ0s(Y)+ h−1/4ψ ′0s(Y)[A(X, T)+ f (X, T)] + · · · (2.28)

is the streamfunction to the first two orders in the outer Goldstein layer. Terms at
orders h−1 and h−11/8 also affect the inner layer expansion of (2.30) below.

The displacement function A is related to the pressure through the pressure–
displacement relation

P1 = FsA, (2.29)

on applying the condition (2.23c). This displacement function must be found by
considering the flow in the inner Goldstein layer and thus the outer layer causes
interaction between the viscous flow in the layer very near the wall and the bulk
of the flow in the main boundary layer. The displacement A also appears in the
expression for the wall skin friction and thus its determination is the main focus of
the remainder of this section.

Turning therefore to the inner Goldstein layer, the streamfunction expansion is once
again found by rewriting the oncoming streamfunction (2.11b) in terms of the (X, z)
coordinate system of our region of interest. This gives

Ψ i(X, z, T)= h−5/8Ψ i
1(X, z, T)+ h−1Ψ i

2(X, z, T)+ h−11/8Ψ i
3(X, z, T)+ · · · , (2.30)

an expansion that is confirmed by rewriting (2.28) as Y → 0 using Y = h−3/8z. The
condensed-flow equation (2.3) in the inner Goldstein layer of the roughness region is

h9/4 ∂
2Ψ i

∂T∂z
+ h13/4 ∂Ψ

i

∂z
∂2Ψ i

∂X∂z
− h13/4 ∂Ψ

i

∂X
∂2Ψ i

∂z2
=−h3/2 ∂p

∂X
+ h21/8 ∂

3Ψ i

∂z3
, (2.31)

into which we substitute the expansions (2.30) and (2.21). Each order is then equated
to form a governing equation for the terms in the expansion, to which we apply the
no-slip boundary condition, matching with the upstream streamfunction and the outer
Goldstein layer. The first two terms are

Ψ i
1(X, z, T)= 1

6µz3, (2.32a)

Ψ i
2(X, z, T)= 1

2µz2
[A(X, T)+ f (X, T)], (2.32b)

with the second-order system also yielding the upstream condition on the displacement
function A,

A(X, T)→ 2µ−1α0|X|1/2 −µ−1A0L|X|−1/2 ln |X| +µ−1A0|X|−1/2 (2.33)

as X→−∞.
Comparing these with the results of SD, we see that the solution at leading order

is the same, with the solution to Ψ i
2 (their ψ̄1) being modified by the addition of f .

The wall skin friction is then

τwall(X, T)= h3/4µ(A+ f )+ · · · (2.34)
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to leading order and thus we are interested in the streamwise position where

A(X, T)+ f (X, T)= 0. (2.35)

The displacement function A is found through the governing equation for Ψ i
3, which

is

∂3Ψ i
3

∂z3
+µz

∂Ψ i
3

∂X
−

1
2
µz2 ∂

2Ψ i
3

∂X∂z
=
∂P1

∂X
+

1
2
µz2(A+ f )

∂

∂X
(A+ f )+µz

∂

∂T
(A+ f ), (2.36)

to be solved subject to the condition of no slip, upstream matching and the condition
as z→∞ that

Ψ i
3→−

1
60
α2

0z5
+

1
2

A2z2
+

1
2
µ(A+ f )2z+

∫ X

−∞

∂

∂T
(A+ f ) dX, (2.37)

where the function A2 is unknown. A similar approach to that carried out by SD,
Stewartson (1970), Ruban (1981, 1982), Smith (1982), Stewartson et al. (1982), BK
and Braun & Scheichl (2014) yields the governing equation for the displacement A:

(A+ f )
∂

∂X
(A+ f )+ σ1

∫ X

−∞

(X − s)−1/4 ∂2

∂T∂s
(A+ f ) ds+ 2µ−2α2

0

=−σ2Fs

∫ X

−∞

(X − s)−1/2 ∂
2A
∂s2

ds, (2.38)

subject to the starting condition (2.33). In the above, we have already made use of
the pressure–displacement relation (2.29) to obtain the integral term on the right-hand
side and σ1, σ2 are constants given by

σ1 = 25/4π−1µ−3/4
(
−

1
4

)
! and σ2 =π−1µ−3/2

[(
−

1
4

)
!
]2
, (2.39a,b)

both positive.
The affine transformation

A= (2α0σ2µ
−1Fs)

1/2Â, f = (2α0σ2µ
−1Fs)

1/2 f̂ , T = 1
2µα

−1
0 σ1

(
1
2µα

−1
0 σ2Fs

)1/4
T̂

(2.40a−c)
X = 1

2µα
−1
0 σ2Fs

{
X̂ − 2(µσ2Fs)

−1
[
α0 − A0L ln

(
1
2µα

−1
0 σ2Fs

)]}
, (2.41)

takes the above equation for A to (removing the overhat)

(A+ f )
∂

∂X
(A+ f )+

∫ X

−∞

(X − s)−1/4 ∂2

∂T∂s
(A+ f ) ds+

1
2
=−

∫ X

−∞

(X − s)−1/2 ∂
2A
∂s2

ds,

(2.42)
to be solved subject to

A→|X|1/2 − 1
2 |X|

−1/2 ln |X| as X→−∞. (2.43)

This can be compared with similar equations obtained by SD and BK. The former
can be recovered from (2.42) by setting f = 0 and taking the displacement function,
in the absence of any time-dependent forcing, to be independent of time, thereby
removing the first of the two integrals. As already mentioned, the solution to the
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resultant equation passes smoothly through the point A(X) = 0 and encounters a
singularity at some finite distance further downstream. In the graphs to come, this
‘no-roughness’ solution will be represented by a dotted line. The same behaviour
is seen in the solution of (2.42) and of interest to us here is, firstly, whether the
position of zero skin friction (A+ f = 0), once the mean over a period of oscillation
is taken, is moved upstream or downstream for various roughness positions, widths,
heights and oscillation frequencies; and, secondly, whether the singular point can also
be moved downstream given an appropriate choice of roughness parameters. Equation
(2.9) of BK, their equivalent to our (2.42), shows some fundamental differences, as
expected given the different scenarios being considered. We first note the absence
of the parameter Γ – representing, for example, the increment in angle of attack
of a flow over an airfoil – which is not applicable here, and the change of sign
of the hump shape, in part due to a different pressure–displacement relation. We
have a nonlinear term in f (which will allow us to write the solution to A as a
sum of Fourier modes in § 4) and integration of (2.42) with respect to X yields a
linear rather than a quadratic term in X. Notwithstanding these differences, can our
roughness produce similar beneficial effects on the wall skin friction as it produced
on the value of Γc for BK? Most especially, are there any similarities in the required
choice of values of the parameters listed above?

The roughness height and time scalings of order h−5/4 and h−11/8 respectively arise
from the requirement that the roughness shape f and the time derivative appear in
equation (2.42). Larger heights, of O(h−7/8) (i.e. of the same order of magnitude as
the inner Goldstein layer), would lead to some form of breakdown in the structure
of the flow layers considered above. The expansion of the outer Goldstein layer
streamfunction, (2.22), would contain a term at O(h1/8) given by

Ψ o
new =ψ

′

0s(Y)f (X, T), (2.44)

which would modify the matching condition at infinity of Ψ i
1 to

Ψ i
1→

1
6µz3
−

1
2µz2f . (2.45)

A solution to the governing equation for Ψ i
1 with the above boundary condition could

not be found. Smaller roughness heights, of O(h−5/4) are a subset of (2.42) where f
is set to zero and the equation of SD recovered. Thus the wall skin friction remains
the same as theirs to leading order and the dynamic roughness serves only to slightly
modify its position at higher order.

The choice of time scaling comes from a consideration of the condensed flow
equation in the inner Goldstein layer and a requirement that the time derivative of
Ψ i

i appears in the governing equation for Ψ i
i+1. Increasing the oscillation frequency

by taking time to be O(h−7/4) would leave the solution to Ψ i
1 unchanged, but ensure

that the time derivative is included in the governing equation for Ψ i
2:

∂3Ψ i
2

∂z3
=
∂2Ψ i

2

∂T∂z
+

1
2
µz2 ∂

2Ψ i
2

∂X∂z
−µz

∂Ψ i
2

∂X
, (2.46)

with matching condition

Ψ i
2→

1
2
µz2(A+ f )+

∫ X

−∞

∂

∂T
(A+ f ) ds (2.47)
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as z→∞ and the no-slip condition at the surface. In particular, there is no forcing
from the pressure perturbation P1. Taking t= h−1T would force the time derivative of
Ψ i

i to appear in the equation for Ψ i
i+2. In particular, since Ψ i

1 remains independent of
time, there would be no time derivative in the equation for Ψ i

3, turning equation (2.42)
into

(A+ f )
∂

∂X
(A+ f )+

1
2
=−

∫ X

−∞

(X − s)−1/2 ∂
2A
∂s2

ds. (2.48)

This is precisely the equation for a static roughness element analysed in the next
section, § 3. The oscillations of f would then not be able to modify the wall skin
friction to leading order. This would recreate, in a different way, the structure of BK,
who considered a steady hump with small vibrations to it: this steady hump allowed
them to increase the value of Γc (as it will allow us to shift the position of zero skin
friction downstream) with adjustments to the wall shear appearing at higher order.

3. Static roughness
One of the conclusions of BK is that a static roughness, appropriately placed,

can increase Γc. Here, we consider whether a static roughness, appropriately placed,
can shift the position of zero skin friction downstream for flow over a hump. The
governing system for the displacement function is (2.48) subject to the upstream
condition (2.43). The static roughness shape is given by

f (X)= a(X − XL)
4(X − XR)

4, X ∈ [XL, XR], (3.1a,b)

ensuring that it is sufficiently smooth at the left- and right-hand edges, XL and
XR respectively. The constant a is the O(1) scaled height of the roughness and is
renormalised by 256(XL − XR)

−8 to ensure that a choice of a = 1 gives a maximum
height of 1 at the roughness midpoint, XM.

To compute the displacement function A, an integration by parts was carried out
on the integrals to remove the singularity in the integrand at the upper limit of the
integration range, with the resultant integral treated by a trapezoidal approximation.
Calling β = ∂A/∂X and γ = ∂β/∂X, a second-order accurate centred difference was
used on the derivative in the integral and the resulting discretised equation solved
for γn, from which one computed βn and An, where the subscript n denotes the nth
mesh point. The nonlinearity was dealt with by using An−1 in the calculation of γn
(and hence An). Mesh checks were carried out, which showed good agreement for
mesh steps between 0.01 and 0.0005; a step of 0.001 was used in the production of
the graphs that appear in §§ 3 and 4. The semi-infinite integral was truncated at a
finite X1 and the leading-order term in the upstream matching condition (2.43) used
to analytically compute the integral between −∞ and X1. The solutions for X1 equal
to −4.9, −9.9, −14.9 and −19.9 were calculated and compared: there was little
difference between each one and thus we set X1 = −4.9 or −9.9, depending on the
position of the roughness element.

The solution for a positive roughness element placed between −5 and −1, with
height 1 (dashed line) is shown in figure 2(a), compared with the solution in the
absence of a roughness (dotted line). Both the displacement function (dot–dash line)
and wall skin friction (solid line) are given. We first note that in this case the
position of zero skin friction has advanced slightly compared to the no-roughness
case and that the singular position, linked to the appearance of a still shorter length
scale over which the full nonlinear breakaway of the shear layer occurs, has also
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–2–4–6 0 2

X
–2–4–6 0 2

X

Displacement function, A Roughness shape, f No-roughness solution

FIGURE 2. Solution for a static roughness, either positive (a) or negative (b), placed
between XL=−5 and XR=−1 and of height 1 (dashed line), with the skin friction shown
by the solid line and the displacement by the dot–dashed line. These are compared with
the solution to the no-roughness case (dotted line), which is the same as that of SD, where
the skin friction and displacement are the same.

moved forwards. Focusing on the solution over the roughness element, which has
been placed well upstream of the original zero skin friction point, we note that the
displacement first decreases over the front face of the roughness, before recovering
slightly over the rear. Referring back to the pressure–displacement relation (2.29),
which equates displacement with pressure (ignoring the positive constant Fs), this
makes physical sense: where the roughness is increasing in height, we encounter
a favourable pressure gradient, and so pressure (and, here, displacement) decreases
and the flow speeds up, resulting in an increase in the skin friction. The reverse
occurs where the roughness decreases in height: the pressure gradient is adverse, the
displacement increases, the flow is retarded and the skin friction decreases. The same
behaviour, but in the opposite order, occurs for negative roughness heights, as shown
in figure 2(b).

The equation for the skin friction (2.34) suggests the possibility of small separation
bubbles existing within the flow when the roughness is negative ( f < 0), for
sufficiently large roughness depth. This is shown in figure 3(a), with the skin friction
going negative but then recovering. A small increase in the depth, however, causes
a bursting of the bubble and the sudden dramatic advancement of the singular
point (figure 3b). Interestingly, this very large upstream movement of the singular
point has not been seen for positive roughness elements. Physically speaking, at
lower roughness depths, local separation over the front, backwards-facing half of
the roughness occurs, and the flow reattaches itself onto the rear, forwards-facing
half, with a small separation bubble existing in the region of negative skin friction.
As the depth increases, however, the local separation position moves upstream and
eventually, at sufficiently large depth, the separated streamline is no longer able to
reattach and full breakaway separation, indicated by the singularity, instead occurs.
Narrower roughness elements admit larger depths.

The addition of the roughness function f to the displacement A to obtain the
skin friction indicates that in order to shift the position of vanishing skin friction
downstream, a positive roughness must lie over the original zero skin friction position,
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Roughness shape, f
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FIGURE 3. Effect of the gradual increase in depth on the solution for where a negative
static roughness centred at XM = −3 of width 4 is present. In (a), the skin friction is
plotted for depths of a= 2 (solid line), a= 3 (dashed) and a= 3.5 (dot–dashed); in (b),
the depth is a = 4 and plotted are the displacement function (solid line) and roughness
shape (dashed line). In both, the dotted line is the no-roughness solution.
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FIGURE 4. Influence of position and width of a positive roughness element on the position
of zero skin friction, compared to when no roughness is present. A downstream shift is
represented by positive numbers (red), while an upstream shift gives negative numbers
(blue). The roughness height was taken to be 1.

while a negative roughness should not. Figures 4 and 5 plot the shift in the local
separation point for varying roughness positions (represented by their midpoint)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

57
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.577


The impact of static and dynamic roughness elements on flow separation 49

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0 0.5 1.0–1.0 –0.5–1.5–2.0–2.5–3.0–3.5–4.0

0

–0.2

–0.4

0.2

–0.6

–0.8

–1.0

–1.2

–1.6

–1.4

W
id

th

FIGURE 5. As in figure 4, but for a negative roughness element.

and widths (the height throughout was set equal to one), compared to where no
roughness is present. A positive number (represented by a shade of red) corresponds
to a downstream movement; while a negative number (shade of blue) is an upstream
movement. The first image clearly shows the desirability of placing the roughness
such that its midpoint occurs just downstream of the original point of zero skin
friction, with significant downstream shifts observed, both in the zero skin friction
position and the singular point, especially for increasing roughness width. A clear
demarcation between a downstream and upstream shift in the position of zero skin
friction is seen in figure 5 for a negative roughness. This is due to the small separation
bubble referred to previously ‘bursting’, i.e. the skin friction initially goes negative,
reaches a local minimum, recovers, but not sufficiently to become positive again.

This dependence on roughness parameters – positive roughness near the point of
zero skin friction with a preference for wider roughness elements; negative roughness
upstream of the point of zero skin friction – agrees with that found by BK for
the increase in Γc, although it is not possible to separate the individual impact of
position and width from the results reported in their paper. Figure 6 indicates why a
wider bump is beneficial. With the slope of the roughness diminishing, the gradient
of the pressure (or, equivalently, displacement) over the front face changes only
slightly compared to the no-roughness case; once the roughness peak is passed, one
would expect the pressure gradient to become adverse, but the encroaching negative
singularity prevents this occurring, allowing it only to become less favourable. An
inflection point in A therefore occurs, resulting in the singularity being shifted
downstream, possibly delaying the occurrence of full, nonlinear, breakaway separation.
Here we encounter the counter-intuitive nature of the present pressure–displacement
relation, to which we will return in our closing comments in § 6.
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X

FIGURE 6. A positive static roughness of height 1 and width 6, centred at XM= 1 (dashed
line), with the associated skin friction (solid line) and displacement function (dot–dashed).
The no-roughness solution is given by the dotted line for comparison.

Increasing the height of a positive roughness element is beneficial to the
downstream movement of the position of zero skin friction, provided that the position
and width of the roughness are such that it does move to the right (see figure 7). For
the roughness midpoints plotted, a saturation point is reached as the singular point
cannot move downstream indefinitely and will eventually force the skin friction to
become negative. Moving the midpoint further downstream, as presented in § 5, will,
however, result in a significant downstream shift of the singular point.

4. Dynamic roughness
Equation (2.42) for the displacement function A can be rewritten as a system for

A+ f , which is effectively the wall skin friction (cf. (2.34)), giving

τ
∂τ

∂X
+

∫ X

−∞

(X − s)−1/4 ∂
2τ

∂T∂s
ds+

∫ X

−∞

(X − s)−1/2 ∂
2τ

∂s2
ds=

∫ X

−∞

(X − s)−1/2 ∂
2f
∂s2

ds−
1
2
,

(4.1)
with the same upstream behaviour as (2.43) since the roughness element is absent
there. For ease of notation, we drop the subscript ‘wall’ when referring to the
scaled skin friction throughout this section, on the understanding that by τ we mean
∂2Ψ i/∂y2 evaluated at y= 0 (z= 0).

The time dependence in the work of BK appeared at higher order in their expansion
of the wall shear, since their dynamic roughness element took the form of low
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FIGURE 7. Impact of positive roughness height on the local separation position, for
various positions of the roughness midpoint (the width was set equal to 4): XM = 1 (solid
line), XM = 0.5 (dashed), XM = 0 (dot–dashed) and XM =−0.5 (dotted).

amplitude vibrations around a steady hump shape. This correction to the leading-order
wall shear was obtained in part as the solution to the forced Fisher equation – forced
by the form of the obstacle vibrations and the leading-order solution – and their
main interest in it was as an analysis of the bursting of the small separation bubble
as a result of the finite time blow up of the governing equation. Indeed, it is well
known that equation (4.1) is ill posed and that a numerical solution through time
marching will lead to a singularity at some finite time T0, when the magnitude of
the displacement function A becomes arbitrarily large at some streamwise position
(Smith 1982; Braun & Kluwick 2004).

Given this, we tackle (4.1) by writing the skin friction τ as the sum of Fourier
modes, with the solution to each mode being forced by the fixed frequency oscillations
of the dynamic roughness function and the nonlinearity present. Our interest remains
in keeping the time dependence at leading order and thereby seeing whether a
roughness whose oscillation amplitude is the same as its maximal extension can
shift the local and breakaway separation points downstream and, if so, whether it
is more or less effective than a static roughness. This fundamental difference from
the work of BK perhaps makes comparison between our results and theirs difficult.
In addition, the present model explores the alternative indicated by the experiments
described in the introduction, namely of fixed-frequency forced behaviour rather than
time marching, thus offering a different route to transition further downstream.

We write, therefore, the dynamic roughness function as

f (X, T)= g(X)(e2iωT
+ e−2iωT

+ 2) (4.2)
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in order to keep the roughness either positive or negative, depending on the sign of g,
throughout a cycle of oscillation (roughness elements with no restriction on sign were
also analysed). The function g is the basic shape of the roughness, defined precisely
later. The skin friction is then written as

τ(X, T)=
M∑

k=−M

τk(X)ekiωT, (4.3)

where the sum of Fourier modes has been terminated at some finite M, with all higher
modes being negligibly small. Our main interest lies in the zeroth Fourier mode, τ0,
as this is time independent and hence the only non-zero term remaining once the
mean in time has been taken over a period of oscillation (denoted by angled brackets
throughout): it gives, therefore, the average position of the point of zero skin friction.
Hence M will be chosen by the numerical scheme as the value at which

max
16n6Ns

{τ
(M+2)
0 (Xn)− τ

(M)
0 (Xn)}< tolerance, (4.4)

where the superscript denotes the number of Fourier modes used and Ns is the number
of streamwise mesh points up to the position where τ0 is first less than some value
τs, with τs representing the eventual singular behaviour of the skin friction. In this
section, τs =−3. Note that all odd Fourier modes will be zero.

The governing equation for each mode m then becomes

M∑
k=−M

τk
∂τm−k

∂X
+miω

∫ X

−∞

(X − s)−1/4 ∂τm

∂s
ds+

∫ X

−∞

(X − s)−1/2 ∂
2τm

∂s2
ds

= δ0m

(
−

1
2
+ 2

∫ X

−∞

(X − s)−1/2 ∂
2g
∂s2

ds
)
+ δ2m

∫ X

−∞

(X − s)−1/2 ∂
2g
∂s2

ds, (4.5)

subject to the upstream condition

τm→

{
|X|1/2 − 1

2 |X|
−1/2 ln |X|, if m= 0;

0, if m 6= 0
as X→−∞. (4.6)

Here, δij equals 1 if i = j and 0 otherwise. The system is again treated as spatially
parabolic. To solve at the mesh point Xn, an integration by parts is carried out on the
integrals, and the terms involving τm are removed from the summation in the left-hand
side, with the remaining terms moved over to the right-hand side and evaluated at the
(n−1)th mesh point, with a backwards difference used on the derivatives. The method
is then similar to that described for the static roughness, since equation (4.5) is turned
into an equation for ∂2τm/∂X2. A centred difference is used on the derivative in the
second integral and all Fourier modes have to be determined at each mesh point before
proceeding on to the next one. The semi-infinite integral is dealt with in the same
way as described in § 3 and, once again, checks for mesh sizes of ∆ = 0.01, 0.001
and 0.0005 showed good agreement.

The shape function g again has to be chosen such that it is sufficiently smooth at
the endpoints: in order to guarantee this, the function

g(X)= a(X − XL)
6(X − XR)

6, X ∈ [XL, XR] (4.7)

was used. The amplitude a was normalised by (XM − XL)
−6(XM − XR)

−6. The solution
for small a can be compared with a linearised theory for the governing equation (2.42):
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FIGURE 8. Comparison between the numerical solution to equation (4.1) for small
roughness amplitude, a= 0.1 (crosses), and the linearised approach (solid line). In both,
the roughness was placed between −3 and 1 and had frequency ω= 1. The solutions to
the steady mode and the real and imaginary parts of the second mode are shown in (a),
(b) and (c) respectively.

a sample comparison is shown in figure 8 and agrees well until the singular position
is approached, when the linearised expansion in powers of the small amplitude a is
no longer valid.

The solution for the zeroth Fourier mode, which equates to the time-averaged
solution, is given in figure 9 for a dynamic roughness with midpoint at XM = −3,
width 4, amplitude 1 and oscillation frequency 1. We concentrate in the remainder
of this article on positive roughness only. The behaviour over the dynamic roughness
is qualitatively similar to that observed for a static roughness and again agrees with
what one would expect physically from the form of the pressure–displacement relation
(2.29). Compared to the no-roughness case, the displacement function decreases over
the front face of the roughness (skin friction increases) and increases slightly over
the rear (skin friction decreases). The most obvious difference between the static
and dynamic case is the marked advance of the singular position, which always
appears towards the trailing edge of the roughness and occurs rather suddenly. As
one increases the frequency ω, this effect becomes more pronounced.

The equation for the time-averaged skin friction,

〈τ 〉 = 〈A(X, T)〉 + 2g(X)= A0(X)+ 2g(X), (4.8)

once more suggests that the dynamic roughness should be placed over the original
position of vanishing skin friction in order to move it downstream. This is quite
clearly shown in figure 10. The most favourable effect is felt with the front half
of the dynamic roughness over the original zero skin friction point, although there
must be an optimal position for the roughness (dependent also on its width, height
and frequency), since once positioned completely downstream, the apparent parabolic
nature of the governing equation means that the roughness will have no impact on the
local separation point. As for a static roughness, an increase in width also increases
the delay in the position of zero skin friction (figure 11).

The effect of height and frequency of the roughness element seems heavily
interlinked: at low amplitudes, there is little difference in the position of zero skin
friction at different frequencies, with changes only becoming clear as a is increased.
Similarly, for low ω, there can be little change in the zero skin friction position
for a wide range of amplitudes. Overall, figure 12 (produced for XM = 0 and width
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No-roughness solution

Roughness shape

X

FIGURE 9. Solution for a positive dynamic roughness, placed between −5 and −1
(dashed line), in terms of the skin friction (solid) and displacement function (dot–dashed),
compared with the solution for no roughness present (dotted), when the skin friction and
displacement are the same.

equal to 4) shows that above a certain amplitude, there is an inverse relationship
between ω and a: to maintain a given shift in the position of vanishing skin friction,
an increase in amplitude has to be compensated by a decrease in frequency and an
increase in frequency has to be matched by a decrease in amplitude. We note also
that a downstream shift is always seen and that high oscillation frequencies have less
of a beneficial impact.

This of course prompts the question as to whether a static or dynamic roughness is
better with regard to shifting the zero skin friction position in the mean. The answer
is dependent on the choice of roughness parameters: for the selection XL=−1, XR= 3,
a= 1, ω= 1 (figure 13), the dynamic roughness is superior, although we note that the
singular point is advanced. Comparing the graphs of the time-averaged displacement
function, the dynamic roughness introduces a greater favourable pressure gradient into
the flow over its front face; the increased shift in the point where τwall = 0 is due to
the addition of two times the roughness shape function to A, rather than just one.

5. Breakaway separation
The downstream singularity that follows the position of zero skin friction throughout

is linked to the occurrence of the full nonlinear separation of the boundary layer
from the hump surface. In SD, this singularity is removed and the flow development
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FIGURE 10. Impact of the dynamic roughness position on the displacement function (a)
and skin friction (b), with ω = 1 and the roughness width fixed at 4. The roughness
position is represented by its midpoint XM = −3 (solid line), −1 (dashed) and 1
(dot–dashed). The no-roughness solution is given by the dotted line.

Without roughness element
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FIGURE 11. Impact of the dynamic roughness width on the displacement function (a)
and skin friction (b), with ω= 1 and the roughness midpoint fixed at XM = 0. The widths
2 (solid), 4 (dashed) and 6 (dot–dashed) were looked at, with the no-roughness solution
given by the dotted line.

described by considering a region of order h−2 length about the singular point
(region D of figure 1). Here, we are interested in the possibility of static or
dynamic roughness elements moving the singularity downstream, thereby delaying
the separation of the boundary layer from the hump surface. Physically, we aim to
introduce a large favourable pressure gradient to the flow, expecting that this would
serve to prolong the streamwise extent for which the flow is attached. Mathematically
speaking, we equate this to a downstream shift of the singular point, X = Xs, which
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FIGURE 12. Impact of the frequency (ω) and amplitude (a) of a single, positive dynamic
roughness placed between −2 and 2 on the position of vanishing skin friction, compared
to when the roughness is not present. The amplitude was varied from a = 0 to a = 2.5
and the frequency from ω = 0.1 to ω = 3.1, both in steps of 0.1. The positive numbers
seen throughout indicate a downstream shift of the local separation point.
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FIGURE 13. Comparison in the displacement function (a) and skin friction (b) for a
dynamic (solid line) and static (dashed line) roughness, placed between −1 and 3 and of
height 1. For the dynamic roughness, the frequency of oscillation was ω= 1. The solution
in the absence of a roughness element is given by the dotted line.

can be defined numerically as occurring at the mesh point n where |An+1 − An| is
greater than some moderately large number, taken to be 5.

To this end, we place a roughness element, whose shape is again given by
the polynomial form of equation (4.7), with midpoint after the position of the
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FIGURE 14. Impact of the roughness height on the displacement function (a) and skin
friction (b) for a static roughness with left endpoint at XL = 0 and maximum height at
XM = 6. The roughness shape was as given in (4.7). The dotted line represents the no-
roughness solution.

no-roughness singularity, but with left endpoint upstream of it. In the graphs that
follow, XM = 6 and XL = 0. The maximum roughness height is chosen to be larger
than those considered previously (a = 5, 10, 15), but we recall that the roughness is
still small (of O(h−5/4)) compared to the amplitude of the hump (O(h)) and the inner
Goldstein layer in the roughness region (O(h−7/8)). We hope then that the considerable
favourable pressure gradient introduced over the front face of the roughness delays
the breakaway separation of the boundary layer.

We see that for a static roughness element this is indeed the case (figure 14), with
the singular position delayed for all roughness heights shown. We note, however, that
for a = 5 (solid line), the singularity still occurs on the front side of the roughness
element, with it being shifted to the rear side of the roughness element (Xs > 6)
only once the roughness height (and hence gradient) is sufficiently large. Comparing
the graphs for a = 10 and a = 15, and recalling the pressure–displacement relation
P1 = FsA (2.29), we see firstly that the larger height gives rise to a more favourable
pressure gradient over the front half of the roughness, as would be expected; and,
secondly, that there is a slight pressure recovery over the rear face of the roughness
(a = 10) before the singularity is encountered, again as would be expected. The
eventual singular point is similar for both a = 10 and a = 15 and we suggest that
this may be due to the adverse pressure gradient encountered on the lee side of the
roughness being greater for increasing height: the effect of an increased acceleration
of the flow over the first half of the roughness element being attenuated somewhat
by the larger adverse pressure gradient encountered over the second half. In fact,
at greater roughness amplitudes, the singular point on the lee side of the roughness
element starts moving upstream. For the roughness configuration shown here, we
note also the existence of a small region of negative skin friction for the amplitudes
a= 10 and a= 15.

For dynamic roughness elements, the same numerical method as that described in
§ 4 was used to obtain the solution for the skin friction, although many more Fourier
modes (M) needed to be incorporated into the sum (4.3) to ensure the correct position
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FIGURE 15. As in figure 14, but for a dynamic roughness oscillated with frequency
ω= 0.5.
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FIGURE 16. As in figure 14, but for a dynamic roughness oscillated with frequency ω=1.

of the singularity. In condition (4.4), τs=−5, with the skin friction decreasing rapidly
after this; and the tolerance was typically less than O(10−10). The increased value
of M required meant that the step size was increased to ∆= 0.005 to speed up the
computation.

Figures 15–17 show that dynamic roughness elements placed with midpoint
downstream of the no-roughness singular point but with left endpoint upstream
of it are also able to shift the position of the singularity to the right and thus delay
the breakaway of the boundary layer from the surface, although not to the same
extent as static elements. In particular, the singular point remains on the front face
of the roughness element at all heights and oscillation frequencies studied. As per
static elements, a greater downstream movement is seen for increasing height; and
higher frequencies also have a more beneficial effect. This is to be compared with
the conclusions of § 4, where an increase in frequency resulted in a diminished
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FIGURE 17. As in figure 14, but for a dynamic roughness oscillated with frequency
ω= 1.5.

downstream shift of the local separation point. For these larger dynamic roughness
elements, centred downstream of the no-roughness singular point, we obtain qualitative
agreement with the findings of Huebsch et al. (2012), who concluded that an increase
in frequency allowed one to decrease the roughness height while still maintaining
effective flow control. We note that as ω→ 0, we do not approach the static solution
and instead the singularity moves towards its original, no-roughness position. This is
due to the influence of the higher Fourier modes, not present in the static solution
and we believe that, physically, this is due to the roughness element dropping flush
with the hump surface before returning to its maximum extension over one cycle of
oscillation.

6. Conclusions

Motivated by the use of dynamic roughness elements as a potential means of
laminar flow control, we have looked at their impact on the position of vanishing
skin friction and breakaway separation found by Smith & Daniels (1981) for flow
over a smooth hump embedded within the classical Prandtl boundary layer. In such
a scenario, the Goldstein singularity that accompanied the local separation point
could be removed and the development of the entire flow as it went over the hump
described by a sequence of matched asymptotic expansions in various regions of the
flow. The presence of a roughness element, whether dynamic or static, in the region
in which the Goldstein singularity was finally removed, allows one to shift both the
point at which the time-averaged skin friction equals zero (the local separation point)
and the later roughness region singularity (the breakaway separation point) further
downstream.

The downstream (or upstream) movement of the local separation point has been
seen to depend on the placement, width, height and, in the dynamic case, oscillation
frequency of the roughness element. Despite the differences in configurations studied,
the choice of parameters for the most downstream shift in the position of local
separation is qualitatively similar to the required choice for the greatest increase
in the critical parameter Γc, linked to the angle of attack, for Braun & Kluwick
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(2004), above which no marginally separated flow solutions exist. The same is true
for the most upstream shift of local separation point or decrease in Γc. We conclude,
therefore, that a static roughness not only can have a beneficial impact in flow
regimes other than that of Braun and Kluwick, but that the parameter choices of
the roughness are roughly the same. The use of larger roughness elements, centred
downstream of the no-roughness singular point but with left endpoint upstream of it,
is also able to move the breakaway separation point downstream and, in the case
of a static roughness, significantly so. An extra forcing term upstream additional to
the roughness shape itself could arise from the downstream behaviour at increased
amplitude. It is interesting to note that static roughness elements, arranged in a
spanwise-periodic manner at an appropriate chord location on an airfoil, may also be
able to delay laminar–turbulent transition caused by cross-flow instabilities (Saric et al.
2015). The study of negative static roughness elements indicates the formation firstly
of separation bubbles as the depth is increased, followed by the sudden upstream
advance of flow separation once the depth is above some critical value.

For the dynamic case, we found a similar impact of roughness height and oscillation
frequency on the downstream shift of the singular point as that found by Huebsch
et al. (2012) for effective flow control. Namely, that there is an inverse relationship
between the two: higher frequencies allow one to use lower roughness heights to
maintain the same streamwise delay in breakaway separation.

The governing equation for the displacement function (2.42) remains ill posed
in terms of standard time marching, but if the time dependence is dealt with by
expanding A in Fourier modes, then the finite-time singularity can be avoided and a
solution to the displacement obtained, for which the zeroth, steady Fourier mode is
equal to the time-averaged solution. We believe such an approach to be valid due to
the fixed frequency forcing in our problem. Note that Braun and Kluwick took their
time dependence to be at an order higher than that of the steady obstacle shape and
found that the resulting disturbance to the shear stress could be written as the multiple
of two functions, b and u, where b depended only on the streamwise coordinate X
and u was independent of it. Then b was shown to be completely determined by
the undisturbed flow over the obstacle, from which Braun and Kluwick concluded
that the response of the boundary layer in the streamwise direction was the same
for all possible unsteady disturbances. This is not the case here, where the time
dependence is kept at leading order, and the oscillation of the roughness affects the
flow behaviour as it develops along the roughness region.

It is worth also mentioning the impact of the roughness on the pressure. The
overall pressure gradient in the roughness region is unfavourable, being equal to
h2µ> 0, and P1 acts as an O(h5/4) correction to it. Thus a decreasing P1 results in a
favourable correction to the overall adverse pressure gradient and we have seen that
both static and dynamic roughness are able to introduce a more favourable pressure
gradient as the flow passes over the front of the roughness compared to where
no roughness is present. Such a finding is consistent with previous experimental
and direct computational findings concerning dynamic roughness: see, for example,
figure 4 of Huebsch et al. (2012).

As an extension of the above comparison, an attempt to also tie in closely with both
the previous analytical, experimental and numerical studies on dynamic roughness
and the scenario of Braun and Kluwick motivates our future work. The differences
between their work and that presented in this paper include the simple linear form
of the pressure–displacement relation obtained here. In the absence of roughness
elements, in which case the scaled skin friction equals the scaled displacement
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function, it states that a decrease in pressure results in a corresponding decrease in
skin friction; this is contrary to what would be expected for flow over an airfoil,
where favourable pressure gradients would increase the velocity of the airstream and
thereby increase the skin friction.

It is of interest, therefore, to study the effect of the dynamic roughness examined
here on marginally separated flow over an airfoil, where the time dependence remains
at leading order in the governing equations. Particularly, issues of importance concern
first the ability of dynamic roughness elements to further increase the critical
value of Γc, as Braun and Kluwick found was possible for a steady roughness;
second, the impact of the height and frequency compared to the pattern proposed
by Huebsch et al.; third, how the skin friction and pressure behave; and fourth, how
the streamfunctions respond. In addition, while three-dimensional effects that may
be significant in realistic configurations are absent in this investigation, it is felt
that the two-dimensional flow study sheds valuable light on the unexpected delicate
phenomena present, including separating flow control, as described above.
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