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Abstract

Background. Decreased white matter (WM) integrity in patients with psychotic disorder has
been a consistent finding in diffusion tensor imaging (DTI) studies. However, the contribution
of environmental risk factors to these WM alterations is rarely investigated. The current study
examines whether individuals with (increased risk for) psychotic disorder will show increased
WM integrity change over time with increasing levels of childhood trauma and cannabis
exposure.
Methods. DTI scans were obtained from 85 patients with a psychotic disorder, 93 non-psych-
otic siblings and 80 healthy controls, of which 60% were rescanned 3 years later. In a whole-
brain voxel-based analysis, associations between change in fractional anisotropy (ΔFA) and
environmental exposures as well as interactions between group and environmental exposure
in the model of FA and ΔFA were investigated. Analyses were adjusted for a priori hypothe-
sized confounding variables: age, sex, and level of education.
Results. At baseline, no significant associations were found between FA and both environmen-
tal risk factors. At follow-up as well as over a 3-year interval, significant interactions between
group and, respectively, cannabis exposure and childhood trauma exposure in the model of
FA and ΔFAwere found. Patients showed more FA decrease over time compared with both con-
trols and siblings when exposed to higher levels of cannabis or childhood trauma.
Conclusions. Higher levels of cannabis or childhood trauma may compromise connectivity
over the course of the illness in patients, but not in individuals at low or higher than average
genetic risk for psychotic disorder, suggesting interactions between the environment and
illness-related factors.

Introduction

Reduced fractional anisotropy (FA), widely reported in patients with psychotic disorder
(Ellison-Wright and Bullmore, 2009), but not in individuals at higher than average genetic
risk (siblings of patients) may reflect disease-related dysconnectivity or disease-related differ-
ential sensitivity to the environment (Boos et al., 2013; Domen et al., 2013). The risk for
psychosis, a condition with adolescent onset, has been related to environmental exposures
such as pre- or postnatal birth complications, cannabis use, childhood trauma (Varese
et al., 2012; Misiak et al., 2017), and growing up in an urban environment (van Os and
Kapur, 2009). These environmental stressors may be the trigger (Cornblatt et al., 2003) or
the ‘second hit’ (Maynard et al., 2001), contributing to the emergence of a psychotic illness.
However, the potential impact of these environmental risks on white matter (WM) connect-
ivity (Andreasen et al., 1998; Friston, 1998) has not been the subject of detailed investigation in
patients with a psychotic disorder. Cross-sectional studies did explore genetic factors, showing
a moderate-to-high heritability of WM FA, ranging from 0.4 to 0.7 (Voineskos, 2015). Also,
several candidate genes for WM heritability have been proposed, such as neuregulin1-tyrosine
kinase receptor ErbB4, involved in oligodendrocyte, myelin, and axonal development and
maintenance (Wang et al., 2009). Various hypotheses have been postulated, associating envir-
onmental risk factors with WM alterations. Cannabis use may induce apoptosis of oligo-
dendrocyte progenitors, affecting WM development (Molina-Holgado et al., 2002). In the
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literature to date, there is evidence to suggest a negative associ-
ation between cannabis use and WM volume in patients with
schizophrenia (Cahn et al., 2004; Szeszko et al., 2007). Results
from diffusion tensor imaging (DTI) studies are less clear and
have shown increased as well as decreased FA in cannabis-using
v. non-using patients with schizophrenia (Peters et al., 2010;
James et al., 2011). The same ambiguity is seen in samples of non-
psychotic substance users compared with non-users, which, on
the one hand, showed microstructural WM alterations in specific
pathways (corpus callosum and superior longitudinal fascicules)
(Baker et al., 2013) and the hippocampus (fimbriae), corpus cal-
losum (splenium), commissural fibers (Zalesky et al., 2012), as
well as, on the other hand, absence of FA differences (Arnone
et al., 2008).

Studies on early-life stress in otherwise healthy children have
shown associations between cortisol reactivity and possible altera-
tions in hippocampal and amygdala volumes (Pagliaccio et al.,
2014). Corticosteroids may suppress the final mitosis of glial
cells necessary for myelination, influencing WM microstructure
(Teicher et al., 2002). This model is supported by studies showing
reduced corpus callosum volume in paediatric inpatients with a
history of abuse and neglect (Teicher et al., 2004) and reduced
FA in the left inferior longitudinal fasciculus (ILF) in young adults
witnessing domestic violence in childhood (Choi et al., 2012). To
date, longitudinal diffusion weighted imaging studies of patients
with schizophrenia are scarce (Canu et al., 2015) and apart from
studies investigating the effect of medication on WM diffusion
measures (Ozcelik-Eroglu et al., 2014; Reis Marques et al., 2014),
no study has examined whether traumatic experience has a
differential effect on FA over time in individuals with or without
(liability for) psychotic disorder (Bendall et al., 2008).

In a cross-sectional analysis of the baseline DTI scans of the
current sample, patient-specific microstructural WM alterations
were found (Domen et al., 2013). These alterations remained rela-
tively stable over a 3-year time course in contrast to a decline in
mean FA in the non-affected siblings compared with healthy con-
trols (Domen et al., 2017). Consequently, both patients and sib-
lings had decreased FA with respect to controls at follow-up.
The aim of the current investigation was to study whether micro-
structural alterations over time were conditional on the exposure
on two of the most examined environmental risk factors for
schizophrenia; cannabis use and childhood trauma, for which
biological plausibility exists. More specifically, we hypothesized
that individuals at increased genetic risk (patients and siblings)
with higher levels of exposure to these environmental risk factors
would show reduced WM FA over time.

Methods

Participants

Subjects were recruited in the context of a multicenter longitu-
dinal study (Genetic Risk and Outcome of Psychosis,
G.R.O.U.P.) in the Netherlands (Korver et al., 2012). At baseline,
300 participants were included of which 258 underwent a DTI
scan. At follow-up, approximately 3 years later (mean: 3.3
years), DTI scans were acquired from a sample of 180 partici-
pants, of which 159 provided a valid pair of DTI scans for the lon-
gitudinal analysis (see Domen et al. (2013, 2017) and the
Supplementary Method section for further information on inclu-
sion and exclusion criteria, family composition and diagnostic
assessments (Domen et al., 2013, 2017).

The standing ethics committee approved the study protocol,
and all participants gave written informed consent in accordance
with the committee’s guidelines.

Measures

Level of psychotic symptomatology at the time of scanning was
assessed with the Positive and Negative Symptom Scale
(PANSS) (Kay et al., 1987).

Educational level was defined as highest accomplished level of
education. Handedness was assessed using the Annett
Handedness Scale (Annett, 1970).

Antipsychotic medication

The determination of (lifetime) antipsychotic (AP) medication use
at baseline and cumulative AP exposure during the 3-year
follow-up period has been described in the online Supplementary
Method section based on Domen et al. (2013, 2017).

Substance use

Substance use was measured at both time points with the
Composite International Diagnostic Interview (CIDI) sections
B-J-L (WHO, 1990). As data of drug use over the last 3 years
were not available, cannabis and other drug exposure was assessed
as reported frequency of use during the last 12 months and life-
time use (mean number of times until baseline measurement).
CIDI frequency data on alcohol (weekly consumptions), lifetime
cannabis, and other drug use was available at follow-up for,
respectively, 158 participants (1% missing data), 155 participants
(3% missing data), and 157 participants (1% missing data).
Despite the fact that the association between alcohol or other
drugs and psychosis risk has been studied less than cannabis
and provided a less clear picture, these substances may well con-
tribute to some of the WM variation (Nesvåg et al., 2007; Willi
et al., 2017), and were therefore considered potential confounders
(see Statistical analyses).

Childhood trauma: Childhood trauma was assessed at baseline
with the Dutch version of the Childhood Trauma Questionnaire
Short Form (CTQ) (Thombs et al., 2009). The short CTQ consists
of 25 items rated on a five-point Likert scale (1 = never true to 5 =
very often true) inquiring about traumatic experiences in child-
hood. Five types of childhood maltreatment were assessed: emo-
tional, physical and sexual abuse, and emotional and physical
neglect, with five questions covering each type of trauma
(Bernstein et al., 1997). The mean of these 25 items (range 5.0–
25.0) created a general measure of childhood trauma. The CTQ
data were missing for one patient.

Image acquisition

Magnetic resonance imaging scans were obtained at Maastricht
University, the Netherlands, using an Allegra Magnetom MR
(Siemens, Erlangen, Germany) operating at 3.0 Tesla. At both
measurement points, microstructural anatomy was examined
using DTI with an echo-planar-imaging sequence (field of view
230 mm × 230 mm, TR 10800 ms, TE 84 ms, voxel size
1.8 mm × 1.8 mm × 1.8 mm, b-value 1000 s/mm2, 85 slices, no
overlap). As a result of an update of the scanner software during
baseline acquisition, two DTI sequences were used: one with 76
directions [of which four T2-weighted (B0) and 72 diffusion-
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weighted (B1000)] and one with 81 directions (8 × B0 and 73 ×
B1000). Gradient directions were identical in both sequences. A
potential association between the proportion of baseline scans
and group was investigated using a Pearson χ2 test.

At follow-up, the DTI sequence comprised 81 directions (8 × B0
and 73 × B1000). Total acquisition time of the DTI sequence was
15 min.

DTI analysis

Processing of DTI data was performed using tract-based spatial
statistics (TBSS) v1.2 in FSL 4.1.6 (FMRIB Analysis Group,
Oxford, UK, http://www.fmrib.ox.ac.uk/analysis/research/tbss).
The consecutive processing steps are described in the online
Supplementary Method section (based on Domen et al., 2013,
2017). For the current study, three mean FA skeletons were cre-
ated; for the cross-sectional analysis at baseline (n = 258: controls,
siblings, patients) and at follow-up (n = 180), and for the longitu-
dinal analysis (n = 159), one based on six groups (3 groups × 2
time points).

Statistical analyses

In order to use a multilevel (mixed-effects) model and to be able
to calculate a mean FA ‘change’ (mean FA at baseline minus
mean FA at follow-up) for the longitudinal model, which was
not compatible with the standard protocol in TBSS, data were
analyzed in R (version 3.2.0), a free software environment for stat-
istical computing and graphics (Team, 2015). From the 38 labeled
WM tracts, skeleton mean FA values per participant per time
point were extracted and exported to R. Since the mean FA values
per subject were based on varying number of voxels, depending
on the region, we used a model in which the error variance for
a particular observation was inversely weighted by the number
of voxels within the corresponding region.

Cross-sectional analysis at baseline and follow-up

As of the three-level grouping structure of the data, compromising
statistical independence of the observations, a multilevel
(mixed-effects) model was fitted. FA was the dependent variable,
group (dummy variables with the controls as the reference cat-
egory, controls = 0, siblings = 1, patients = 2), and the environ-
mental exposures (lifetime and last year cannabis exposure,
childhood trauma exposure) were the independent variables and
random effects (intercepts) were added for both subject and
family.

The statistical basic model was: FA = β0 + β1 (group) + β2
(environmental exposure) + β3 (group × environmental exposure).
This model included the a priori hypothesized confounding vari-
ables age, sex, and level of education as fixed effects. In case of
significant findings, additional covariates [i.e. alcohol consump-
tion, lifetime other drug use, and body mass index (BMI)] were
separately added to the model.

Main effects of the environmental exposures (controlled for
group), as well as group × environmental exposures interactions
in the model of FA were examined. The environmental exposures
were entered both as linear and as factored variables (i.e. repre-
senting the distribution of scores divided by its tertiles: lifetime
cannabis use: no, moderate, or heavy cannabis use; childhood
trauma exposure: low, moderate, or high trauma exposure), allow-
ing visualization of dose–response. In case of significant

interaction effects, stratified analyses were conducted in order to
quantify whether the association between environmental exposure
and FA differed between the three groups.

To examine whether childhood trauma and lifetime cannabis
use contributed independent effects, planned sensitivity analyses
were performed with both environmental exposures in the model.

To examine whether the scanner software update at baseline
affected the results, the interaction analyses at baseline were
repeated in subgroups stratified by the number of scan directions:
76 (n = 191) v. 81 (n = 67) directions.

Longitudinal analysis

A mean FA ‘change’ (delta, Δ) per participant per region (n = 159)
was calculated by subtracting mean FA at baseline from mean FA
at follow-up. The same analyses were carried out as described in
the cross-sectional part, now using ΔFA as the dependent variable
and group and the environmental exposures (lifetime and last
year cannabis exposure, childhood trauma exposure) as the inde-
pendent variables.

In addition, to control for a potential effect of depression on
ΔFA, the main longitudinal analysis was repeated with exclusion
of the subgroup of participants in the control (n = 11) and sibling
group (n = 15) with a history of a depressive disorder.

Since our previous study showed a small effect of last 3-year
and lifetime AP use on ΔFA (Domen et al., 2017), planned sensi-
tivity analyses were performed to rule out potential AP effects,
using patient subgroups [with low, moderate, and high AP expos-
ure (for the number of participants per subgroup see online
Supplementary Table)]. Thus, the group × environmental expos-
ure interactions in the model of ΔFA were examined in three
AP subgroups to ascertain whether a potential effect remained
significant in the respective subgroups.

Results

Demographics

The patients represented a relatively stable population (not in
need of inpatient care or intensive treatment), as reflected by
the low PANSS scores and the number of patients that fulfilled
the remission criteria (Table 1). The gender distribution in the
samples was skewed, showing more male patients and male sib-
lings as heavy cannabis users and more male patients and female
controls exposed to high levels of childhood trauma at follow-up
(Table 2). The mean current dosage of AP medication in terms
of standard haloperidol equivalents was 5.5 milligrams (mg)
(S.D. = 4.6) at baseline and 4.7 mg (S.D. = 5.1) at follow-up (over
the last 3 years). The proportion of baseline scans with 76 direc-
tions did not differ between the groups (84% in controls, 82% in
siblings, and 71% in patients: χ2 = 3.02, df = 2, p = 0.22).

Cross-sectional analysis of FA and environmental risk factors
at baseline

There were no significant associations between cannabis exposure
and FA (lifetime: B = 0.002, p = 0.24, last year: B = 1.0 × 10−5, p =
0.43) or between childhood trauma exposure and FA (B =−0.001,
p = 0.60). In addition, no significant interactions were found
between cannabis exposure and group in the model of FA (life-
time: χ2 = 1.3, df = 2, p = 0.52, last year: χ2 = 0.1, df = 2, p = 0.93)
and between childhood trauma and group in the model of FA
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(χ2 = 2.9, df = 2, p = 0.24) (all analyses with linear environmental
variables). The results did not change after stratification by num-
ber of scan directions (76 directions: cannabis exposure; lifetime:
χ2 = 1.4, df = 2, p = 0.49, last year: χ2 = 0.2, df = 2, p = 0.89, child-
hood trauma exposure: χ2 = 2.3, df = 2, p = 0.31; and 81 directions:
cannabis exposure; lifetime: χ2 = 1.2, df = 2, p = 0.56, last year: χ2

= 1.5, df = 2, p = 0.48, childhood trauma exposure: χ2 = 0.2, df = 2,
p = 0.93).

Cross-sectional analysis of FA and environmental risk factors
at follow-up

No significant associations between cannabis exposure (linear
variable) and FA (lifetime: B = 1.0 × 10−4, p = 0.95, last year:
B = −3.0 × 10−6, p = 0.88) or between childhood trauma exposure
(linear variable) and FA (B =−0.001, p = 0.67) were found at
follow-up.

Table 1. Demographic characteristics of the participants [baseline (n = 258) and longitudinal analysis (n = 159)]

Time point

Controls Siblings Patients

Baseline Follow-up Baseline Follow-up Baseline Follow-up

Number 80 49 93 55 85 55

Scan interval (days) 1222 ± 198 1177 ± 101 1196 ± 121

Age at scan (years) 30.8 ± 10.8 34.4 ± 10.9 29.4 ± 8.8 34.1 ± 8.5 28.3 ± 7.0 32.0 ± 6.2

Sex male (%) 29 (36%) 19 (39%) 49 (53%) 29 (53%) 58 (68%) 40 (73%)

Handednessa 76.3 83.2 73.9 78.0 72.8 72.2

Level of educationb 5.4 ± 1.8 5.4 ± 2.0 5.1 ± 2.1 5.4 ± 2.1 4.1 ± 2.0 4.5 ± 1.9

Body mass index 23.3 ± 3.2 24.3 ± 3.7 23.3 ± 3.3 24.2 ± 3.9 24.5 ± 4.2 25.9 ± 4.8

Age of onset (years) – – 22.8 ± 6.4 21.8 ± 6.3

Illness duration (years) – – 5.4 ± 3.6 10.3 ± 4.0

Antipsychotics – – 6693 ± 6254c 5335 ± 5715d

Diagnosis

Schizophrenia – – 59 33

Schizoaffective dis. – – 9 16

Schizophreniform dis. – – 4 –

Psychotic dis. NOS – – 11 6

Brief psychotic episode – – 2 –

Major depressive disordere 12 11 18 15 –

Substance use

Cannabis 7.8 ± 21.9f 4.8 ± 32.0g 19.3 ± 37.2f 7.1 ± 49.1g 44.0 ± 47.0f 36.5 ± 105g

Other drugs 0.90 ± 4.7f 0.0 6.2 ± 31.4f 0.0 42.4 ± 90.8f 15.2 ± 57.0g

Alcohol 5.0 ± 7.0h 6.3 ± 10.8i 9.8 ± 17.3h 6.0 ± 5.4i 5.0 ± 9.1h 4.9 ± 7.6i

Trauma score 6.7 ± 1.8 6.6 ± 1.5 6.8 ± 1.5 6.6 ± 1.2 8.0 ± 2.5 7.5 ± 2.0

PANSS

Positive symptoms 7.3 ± 1.1 7.4 ± 0.8 7.3 ± 0.9 7.4 ± 0.7 10.4 ± 5.0 11.6 ± 5.7

Negative symptoms 8.2 ± 1.0 8.0 ± 0.2 8.4 ± 2.0 8.0 ± 0.3 12.0 ± 5.9 11.1 ± 4.2

Disorganization 10.2 ± 1.2 10.1 ± 0.3 10.3 ± 0.7 10.1 ± 0.4 12.5 ± 4.1 11.8 ± 2.5

Excitement 8.3 ± 1.1 8.3 ± 0.5 8.6 ± 1.4 8.3 ± 0.6 9.7 ± 2.7 9.7 ± 2.5

Emotional distress 9.2 ± 2.1 9.4 ± 1.7 9.9 ± 2.6 9.7 ± 2.2 13.2 ± 5.2 14.1 ± 5.0

Remission (%) – – – – 57% 62%

PANSS, Positive and Negative Syndrome Scale; dis, disorder; NOS, not otherwise specified.
Means ± S.D., range are reported.
aRange: from −100 (entirely left-handed) to +100 (entirely right-handed).
bRange: 0 = no education to 8 = university degree.
cCumulative exposure, lifetime until baseline in haloperidol equivalents.
dCumulative exposure, last 3 years in haloperidol equivalents.
eHistory of major depressive disorder, no current episodes at baseline or in last 3 years.
fMean number of times; lifetime.
gMean number of times; last 12 months.
hWeekly consumptions; lifetime.
iWeekly consumptions; last 12 month.
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Cannabis

No significant interaction was found between last year cannabis
use and group in the model of FA (χ2 = 0.8, df = 2, p = 0.66). A
significant interaction was found between, respectively, (lifetime)
cannabis exposure (χ2 = 9.3, df = 2, p = 0.01) and group in the
model of FA. This interaction remained significant after control-
ling for childhood trauma (χ2 = 9.6, df = 2, p = 0.008), BMI (χ2 =
9.7, df = 2, p = 0.008), alcohol use (χ2 = 9.8, df = 2, p = 0.008),
and other drug use (χ2 = 7.6, df = 2, p = 0.02) (all linear
variables).

Stratified analyses showed a mean FA decrease in the heavy
cannabis using patients, which was significantly different from
the controls and the siblings. An association in opposite direction
was found in cannabis-using siblings, but only for the moderate
cannabis exposure level and not for the highest exposure level
(see Table 3).

Childhood trauma

A significant interaction between childhood trauma exposure
and group in the model of FA (χ2 = 6.1, df = 2, p = 0.05) was
found. The interaction remained significant after controlling
for alcohol use (χ2 = 8.8, df = 2, p = 0.01), inconclusive for life-
time cannabis use (χ2 = 4.9, df = 2, p = 0.09) and BMI (χ2 =
5.5, df = 2, p = 0.06), however not significant anymore with
addition of other drug use (χ2 = 4.4, df = 2, p = 0.11) (all linear
variables).

Stratified analyses showed a mean FA decrease in patients
exposed to a high childhood trauma level, which was significantly
different from the siblings and inconclusive from the controls (see
Table 3).

Longitudinal analysis of ΔFA and environmental risk factors

In the whole group, there was no significant association between,
respectively, lifetime cannabis exposure (B =−3.0 × 10−5, p = 0.16),
last year cannabis exposure (B =−1.0 × 10−5, p = 0.45), or childhood
trauma exposure (all linear variables) and ΔFA (B =−7.0 × 10−4,
p = 0.13).

Cannabis

There was a significant interaction between (lifetime) cannabis
exposure and group in the model of ΔFA (χ2 = 6.2, df = 2, p =
0.04). This interaction remained significant after controlling for
childhood trauma (χ2 = 5.9, df = 2, p = 0.05), BMI (χ2 = 5.8, df =
2, p = 0.05), alcohol use (χ2 = 5.9, df = 2, p = 0.05), other drug
use (χ2 = 7.4, df = 2, p = 0.02), and scan type (χ2 = 6.5, df = 2,
p = 0.04). After exclusion of the 26 participants with a history of
depression (16% reduction in sample size), the interaction became
inconclusive (χ2 = 5.4, df = 2, p = 0.07) (all linear variables).

Stratified analyses showed a significant effect in patients, indi-
cating a decrease in FA over time with increasing cannabis expos-
ure in patients, resulting in a significant group difference between
patients and controls and between patients and siblings.
Compared with patients with no cannabis use, patients with
heavy cannabis consumption had significantly more FA decrease
over time. This was not the case for the moderate v. no cannabis
use comparison (Table 4, Fig. 1).

Childhood trauma

A significant interaction between trauma exposure and group in
the model of ΔFA (χ2 = 11.3, df = 2, p = 0.003) was found. The
interaction remained significant after controlling for lifetime cannabis

Table 2. Within-group distribution of the environmental exposures

Controls m/f ratio Siblings m/f ratio Patients m/f ratio χ2 p

Cannabis use (baseline)

No 58 (73%) 34/66 59 (64%) 47/53 31 (39%) 48/52 29.8 0.00

Moderate 8 (10%) 38/62 11 (12%) 36/64 6 (8%) 33/67

Heavy 13 (17%) 46/54 22 (24%) 73/27 43 (53%) 84/16

Cannabis use (follow-up)

No 37 (76%) 38/62 35 (64%) 49/51 20 (39%) 60/40 17.6 0.001

Moderate 5 (10%) 40/60 6 (11%) 33/67 5 (10%) 20/80

Heavy 7 (14%) 43/57 14 (25%) 71/29 26 (51%) 88/12

Childhood trauma (baseline)

Low 38 (48%) 47/53 36 (39%) 50/50 21 (25%) 48/52 20.1 0.00

Moderate 26 (32%) 27/73 34 (36%) 50/50 22 (26%) 82/18

Heavy 16 (20%) 25/75 23 (25%) 61/39 41 (49%) 71/29

Childhood trauma (follow-up)

Low 21 (43%) 52/48 23 (42%) 52/48 17 (31%) 53/47 6.5 0.17

Moderate 18 (37%) 28/72 18 (33%) 59/41 15 (27%) 80/20

Heavy 10 (20%) 30/70 14 (25%) 43/57 23 (42%) 83/17

The number of subjects per group (and proportion of total group) for the baseline (n = 258) and longitudinal analysis (follow-up, n = 159) per environmental stress factor. The difference
between groups in proportion of high, medium, and low cannabis use was analyzed with the Pearson’s (χ2).
m/f ratio, male/female ratio.
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use (χ2 = 12.3, df = 2, p= 0.002), BMI (χ2 = 10.5, df = 2, p = 0.005),
alcohol use (χ2 = 12.0, df = 2, p = 0.003), other drug use (χ2 = 14.6,
df = 2, p = 0.0007), and scan type (χ2 = 11.5, df = 2, p = 0.003).
The interaction was inconclusive after exclusion of the 26 partici-
pants with a history of depression (χ2 = 5.6, df = 2, p = 0.06) (all
linear variables).

Stratified analysis revealed a significant negative association
between childhood trauma and ΔFA in patients, resulting in a sig-
nificant patient–control and patient–sibling difference. Compared
with low trauma exposure, patients exposed to high trauma levels
had significantly more FA decrease over time. This was not the
case for moderate compared with low trauma exposure
(Table 4, Fig. 1).

Sensitivity analyses in AP medication subgroups

In the AP medication subgroup analyses (with smaller N), inter-
actions between both environmental risk factors and group in the
model of ΔFA remained largely significant, most prominent in
patients with the lowest AP exposure levels (lifetime and 3-year
interval). Wald tests showed that the significant negative

associations between the environmental factor and ΔFA in the
low AP subgroups were significantly different for the patient–
control and the patient–sibling comparison (see online
Supplementary Table S1).

Discussion

Despite the absence of cross-sectional associations between envir-
onmental risk factors and WM FA at baseline, there were signifi-
cant interactions between group and cannabis and childhood
trauma exposure in models of FA at follow-up and FA change
over a 3-year time period. Patients exposed to the highest levels
of cannabis or childhood trauma had a greater FA decrease over
time compared with controls and siblings.

Cannabis exposure and WM alterations

Higher levels of (lifetime) cannabis exposure in patients with
psychotic disorder were not associated with FA alterations at
baseline, but with significant FA reduction over a 3-year period
compared with siblings and healthy controls. This is the first

Table 3. Mean FA as a function of group status and environmental exposure at follow-up

Environmental
exposure

Patients Siblings Controls Group differences

N B p N B p N B p χ2 p

Lifetime cannabis

Cannabis (linear) −0.005 0.02* 0.004 0.07 0.003 0.31 P v. C 4.6 0.03*

P v. S 8.2 0.004*

S v. C 0.09 0.76

No cannabis usea 21 39 45

Moderate cannabis
use

5 −0.01 0.29 7 0.01 0.04* 4 0.002 0.84 P v. C 0.77 0.38

P v. S 4.4 0.04*

S v. C 1.2 0.27

Heavy cannabis use 31 −0.01 0.02* 14 0.007 0.14 8 0.007 0.30 P v. C 4.8 0.03*

P v. S 7.2 0.007*

S v. C 0.007 0.94

Childhood trauma

Trauma (linear) −0.006 0.03* 0.002 0.52 0.003 0.33 P v. C 4.8 0.03*

P v. S 4.1 0.04*

S v. C 0.09 0.77

Low traumaa 18 28 30

Medium trauma 24 −0.009 0.09 23 −0.005 0.31 19 0.005 0.26 P v. C 4.0 0.05*

P v. S 0.4 0.53

S v. C 2.3 0.13

High trauma 18 −0.01 0.03* 10 0.007 0.24 9 0.004 0.53 P v. C 3.5 0.06

P v. S 5.7 0.02*

S v. C 0.1 0.77

N, number of participants; P v. C, patients v. controls; P v. S, patients v. siblings; S v. C, siblings v. controls.
Results from the interaction: environmental exposure × group in the model of FA. The B’s represent the stratified group effect sizes. Group differences are displayed with χ2, and the p value
(<0.05*).
aReference level.
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Table 4. Mean ΔFA as a function of group status and environmental exposure

Environmental exposure

Patients Siblings Controls Group differences

N
ΔFA

mean ± S.D. B p N
ΔFA

mean ± S.D. B p N
ΔFA

mean ± S.D. B p χ2 p

Lifetime cannabis

Cannabis (linear) −0.003 0.02* 0.001 0.41 0.001 0.39 P v. C 4.1 0.04*

P v. S 4.7 0.03*

S v. C 0.03 0.87

No cannabis usea 20 0.0014 ± 0.03 35 −0.0040 ± 0.03 37 −0.0005 ± 0.03

Moderate cannabis use 5 0.0038 ± 0.03 0.002 0.60 6 0.0003 ± 0.03 0.004 0.25 5 0.0040 ± 0.03 0.003 0.47 P v. C 0.02 0.90

P v. S 0.1 0.71

S v. C 0.1 0.80

Heavy cannabis use 26 −0.0041 ± 0.03 −0.006 0.02* 14 −0.0022 ± 0.03 0.002 0.51 7 0.0040 ± 0.03 0.002 0.47 P v. C 3.7 0.05*

P v. S 4.3 0.04*

S v. C 0.03 0.86

Childhood trauma

Trauma (linear) −0.004 0.0005* 0.0002 0.90 0.002 0.26 P v. C 9.7 0.002*

P v. S 6.4 0.01*

S v. C 0.6 0.45

Low traumaa 17 0.0034 ± 0.03 23 −0.0018 ± 0.03 21 −0.00003 ± 0.03

Medium trauma 15 0.0016 ± 0.03 −0.002 0.42 18 −0.0068 ± 0.03 −0.003 0.17 18 −0.00002 ± 0.03 0.0008 0.75 P v. C 0.7 0.42

P v. S 0.1 0.76

S v. C 1.4 0.24

High trauma 23 −0.0060 ± 0.03 −0.009 0.0005* 14 −0.0004 ± 0.03 0.001 0.71 10 0.0031 ± 0.03 0.004 0.23 P v. C 10.0 0.002*

P v. S 7.2 0.007*

S v. C 0.4 0.50

N, number of participants; P v. C, patients v. controls; P v. S, patients v. siblings; S v. C, siblings v. controls.
Results from the interaction: environmental exposure × group in the model of ΔFA. The B’s represent the stratified group effect sizes. Group differences are displayed with χ2, and the p value (<0.05*).
aReference level.
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longitudinal study examining the effect of cannabis on WM FA in
relation to (familial risk for) psychotic disorder, suggesting that
the extent of WM alterations is conditional on the level of canna-
bis exposure in patients with the disorder. Especially, cannabis use
before or at disease onset may cause an additional reduction in
WM FA, given the absence of an interaction between group and
last year cannabis use in the model of ΔFA. This finding complies
with other structural imaging findings of more severe WM deficits
in young adults exposed to cannabis prior to the age of 16
(Cookey et al., 2014). It strengthens the evidence, from both pre-
clinical human and animal models, for a neurotoxic effect of can-
nabis in adolescence (Rubino and Parolaro, 2014); a sensitive age
period for the neuronal maturation of the endocannabinoid sys-
tem, possibly resulting in disrupted network connectivity of vari-
ous brain areas.

To date, three longitudinal DTI studies examined substance
abuse in non-psychotic populations. A lower rate of change in

FA was found in adolescent cannabis users (n = 23) in five clusters
of fronto-parietal association fibers over a 2-year interval (Becker
et al., 2015). Moreover, a significant FA decrease over time in the
left ILF in adolescents with cannabis use disorder (n = 19), asso-
ciated with more cannabis exposure, compared with healthy con-
trols (Epstein and Kumra, 2015). A third study showed poorer
WM integrity after an 18-month follow-up, although mainly pre-
dicted by alcohol, not marijuana, in seven fronto-parietal tracts in
adolescent substance users (n = 41) (Bava et al., 2013).

In previous cross-sectional studies, positive as well as negative
associations between FA and cannabis use in patients with schizo-
phrenia have been reported. James et al. (2011) revealed associa-
tions between early cannabis use and decreased FA in, e.g. the
internal capsule, corona radiata, superior and ILF, in patients
with adolescent-onset schizophrenia (James et al., 2011). In con-
trast, Peters et al. (2009) found FA increases in the bilateral uncin-
ate fasciculus, anterior internal capsule, and frontal WM in

Fig. 1. The association between, respectively, cannabis
(a) and childhood trauma (b) (dummy variables) and ΔFA,
stratified per group. The effect of high cannabis exposure
v. no cannabis exposure and high trauma exposure v. low
trauma exposure on mean whole-brain ΔFA was significantly
different for patients compared with controls (cannabis; χ2

= 3.7, p = 0.05, trauma; χ2 = 10.0, p = 0.002) and for patients
compared with siblings (cannabis; χ2 = 4.3, p = 0.04, trauma;
χ2 = 7.2, p = 0.007) (*p < 0.05).
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patients with recent-onset schizophrenia who had started using
cannabis before the age of 17 years, compared with a similar
group with no history of cannabis use (Peters et al., 2009).
Reduced FA has also been found in the splenium of the corpus
callosum in non-cannabis using patients with schizophrenia com-
pared with patients with schizophrenia and early-onset cannabis
use (before age 15 years) (Dekker et al., 2010). It has been
shown that cannabis use may have different effects at various neu-
rodevelopmental stages of life (Jakabek et al., 2016). In the present
study, absence of a significant cross-sectional association between
FA and lifetime cannabis exposure at baseline in contrast to sig-
nificant associations at follow-up between, respectively, high
and moderate cannabis exposure and FA in patients and siblings
compared with controls may imply an age-related effect. The
effect of cannabis on brain WM may only be visible after many
years, depending on the WM developmental curvature of the spe-
cific subject and the timing of the measurement.

The opposite direction of effect, i.e. the FA increases in rela-
tives with increasing lifetime cannabis exposure may suggest a
delayed maturation, an imaging artifact or even a protective effect
of a small amount of cannabis. A cannabinoid neuroprotective
effect on brain matter with improvement in WM efficiency
(Westlye et al., 2010) has been proposed by recent in vitro studies
(Sarne and Mechoulam, 2005).

The negative association between especially the heavy cannabis
using patients with psychotic disorder and FA may fit with the
hypothesis that heavy cannabis use at a young age may have
altered the normal trajectory of WM brain maturation.
Interference on the extensive pruning and myelination processes
in an already vulnerable adolescent brain (Lubman et al., 2015)
may have caused additional reduction in WM FA later on in
life. Whether this has clinical implications or influences on long-
term prognosis needs further investigation.

Childhood trauma exposure and WM alterations

The present study examined the association between childhood
trauma and FA in individuals with (risk for) psychotic disorder.
At baseline, neither a significant interaction between childhood
trauma exposure and group in the model of FA was found, nor
a main effect of childhood trauma in any of the groups.
However, at follow-up, a significant (dose–response) negative
association between childhood trauma exposure and group in
the model of FA was found in patients with psychotic disorder.
In other words, higher exposure to childhood trauma is associated
with lower whole-brain mean FA later in life. As with cannabis,
differences in baseline and follow-up results may be explained
by the timing of genetic and environmental influences (and
their interactions) impacting cerebral plasticity during the life
span.

The follow-up findings are in line with several studies that
show reduced FA in non-psychotic traumatized subjects (Choi
et al., 2012; Daniels et al., 2013) in stress-processing-related
areas, such as the corpus callosum (Jackowski et al., 2008; Paul
et al., 2008) and the cingulum bundle (Wang et al., 2010;
Zhang et al., 2011). Thus, cross-sectional studies indicate that
the FA reductions in traumatized populations may show overlap
with the WM abnormalities in schizophrenia (Kubicki et al.,
2007; Ellison-Wright and Bullmore, 2009), suggesting that (part
of) the WM tract alterations may be non-specific, contributing
to different phenotypes.

The current study did also find a greater FA decline over a
3-year period in the patients with the highest level of childhood
trauma exposure with respect to siblings and healthy controls.
This significant FA decline over time associated with higher levels
of childhood trauma may fit with the literature describing the
neurotoxic impact of childhood trauma on WM development at
a sensitive age period (Heim and Binder, 2012).

The patient-specific finding with regard to childhood trauma
may refer to a complicated interplay between trauma-related
factors and psychosis-related factors to account for the more
pronounced WM alterations, predominantly in the group with
the highest trauma exposure. Although a causal relationship
between childhood trauma and WM decreases cannot be deter-
mined from these data, experiencing severe childhood trauma
may cause an additive effect on already disrupted WM dev-
elopment. Alternatively, illness-related factors such as disadvanta-
geous life style and health issues (e.g. reduced physical activity,
social deprivation, smoking) (von Hausswolff-Juhlin et al.,
2009) may have contributed to increased cerebral vulnerability
in patients, either or not in interaction with the environmental
exposures under investigation.

Methodological considerations

Apart from the strength of this study – a relatively large longitu-
dinal imaging design with a gene–environment approach – some
limitations need to be addressed.

The sample size of some longitudinal subgroup analyses was
only modest or small, resulting in loss of power (and thus weak
statistical effects) and increased likelihood of false-negative
results. Taken together with a rather skewed gender distribution
in our sample, gender-specific sub-analyses were not considered
feasible although it is known that several WM tracts show gender-
specific FA differences (Menzler et al., 2011; Kanaan et al., 2014).

A full understanding of the biological and clinical relevance of
the reported small changes in FA is hampered. Nevertheless, one
can imagine that disproportionally higher changes may arise due
to stronger regional effects, either or not in combination with
higher mean trauma levels. Future studies with larger sample
sizes may provide more precise estimates of regional FA effect
sizes associated with these environmental exposures.

Conform the various results across studies on the association
between AP use and WM alterations (Szeszko et al., 2008;
Ozcelik-Eroglu et al., 2014; Reis Marques et al., 2014), and the
small effect of last 3-year and lifetime AP use on ΔFA found in
our previous analyses (Domen et al., 2017), the current results
suggest a minor confounding effect of AP use as not all the
G × E interactions remained significant in different AP subgroups.
However, the results of these sensitivity analyses must be viewed
with caution given the sizable lack of power (patient–AP sub-
groups comprised one-third of the sample).

It is unlikely that the two DTI sequences used at baseline
would have contributed to a systematic bias, as the proportions
of the two sequences were almost equal between the groups. In
addition, stratified analyses (by number of scan directions) and
adjustment for scanning sequence did not change the results, fit-
ting the suggestion that the variation in tensor estimation is neg-
ligible with more than 30 diffusion directions (Jones, 2004).
Extracting mean FA values from the TBSS skeleton has the disad-
vantage of only examining the central portion of the WM tract,
but will procure that WM was indeed examined. This is in line
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with more recent cannabis – diffusion studies that took a distance
from a voxel-based comparison approach (Jakabek et al., 2016).

Lastly, FA is a rather non-specific diffusion measure, contain-
ing information on myelination, fiber organization, and number
of axons, and therefore not completely synonymous to ‘WM
integrity’, so that the current findings must be interpreted with
caution (O’Donnell and Pasternak, 2015). Nonetheless, a whole-
brain, hypothesis-generating approach was chosen, as studies
investigating the influence of environmental risk factors on WM
alterations in patients with psychotic disorder are scarce and
ambiguous.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718001320
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