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Abstract. The aim of the paper is to argue that all—or almost all—logical rules have
exceptions. In particular, it is argued that this is a moral that we should draw from the semantic
paradoxes. The idea that we should respond to the paradoxes by revising logic in some way is
familiar. But previous proposals advocate the replacement of classical logicwith some alternative
logic. That is, some alternative system of rules, where it is taken for granted that these hold
without exception. The present proposal is quite different. According to this, there is no such
alternative logic. Rather, classical logic retains the status of the ‘one true logic’, but this status
must be reconceived so as to be compatible with (almost) all of its rules admitting of exceptions.
This would seem to have significant repercussions for a range of widely held views about logic:
e.g., that it is a priori, or that it is necessary. Indeed, if the arguments of the paper succeed, then
such views must be given up.

The aim of this paper is to argue that all—or almost all—logical rules have exceptions.
In particular, I argue that this is a moral that we should draw from the semantic
paradoxes.
Of course, responding to the paradoxes by revising classical logic in some way is

familiar: see, e.g., Kripke (1975), Priest (1987), Soames (1999), Maudlin (2004), Field
(2008) and Beall (2009). But such proposals tend to advocate replacing classical logic
with some alternative logic. That is, some alternative system of rules—where, of course,
it is taken for granted that these alternatives hold without exception.
The present proposal is quite different. According to this, there is no such alternative

logic. Classical logic retains the status of the ‘one true logic’, but this status must be
reconceived so as to be compatible with (almost) all of its rules admitting of exceptions.
This would seem to have significant repercussions for a range of general, widely held

views about logic. For example, it is widely held that logic is a priori in the sense that
if an argument is logically valid, then we can know a priori that it is truth preserving.
However the arguments of the paper challenge this view. It is similarly widely held that
logic is necessary, i.e., logically valid arguments are not just truth truth preserving but
necessarily so. Indeed, it is common to be presented with a picture on which necessity
can naturally be seen as coming in various strengths or ‘grades’, where it is held that
logical necessity is the highest strength or grade. However, if the arguments below
succeed, then it would seem that logic is not necessary at all—let alone at the highest
grade.
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86 BRUNO WHITTLE

The account of logic defended below is in certain respects similar to that ofHofweber
(2008, 2010). According to the latter, logic is merely ‘generic’: its rules hold under
‘normal’ conditions, but they can fail under ‘abnormal’ ones. Although I do not put
things in quite these terms, this component of Hofweber’s account can certainly be
regarded as shared by the present proposal. However, Hofweber’s account is also
‘quietist’: he argues that we cannot say anything more precise about exactly where the
exceptions to logic occur. At this point we part company. For the present proposal
includes both a philosophical account of where these exceptions lie, and a formal
theory that precisely delimits them. Further, the arguments for logical ‘exceptionalism’
given below are quite different from those of Hofweber.
The structure of the paper is as follows. In §1 I introduce a phenomenon that arises

from the semantic paradoxes. I call this the Chrysippus phenomenon, after one of
the participants in the example that I use to illustrate it. This is a phenomenon that
has been observed before. However, when it is discussed in the literature, it is used to
motivate a type of approach very different from that of the present paper. In particular,
it is used to motivate ‘contextualist’ approaches to truth, according to which different
tokens of the same type are used to make different statements; for example, as a
result of ‘true’ taking different semantic values in the distinct tokens. This account
of the phenomenon is certainly not logically revisionary. However, I argue that the
best explanation of the phenomenon is not a contextualist one—rather, it is one that
yields logical ‘exceptionalism’. Thus, having given this explanation, in §2 I argue from
it to logical exceptionalism. In §3 I draw out the wider implications of the proposed
account of logic, specifically for the view that logic is a priori, and for the view that
it is necessary. In §4 I sketch the bigger picture that this account of the Chrysippus
phenomenon extends to, outlining, too, how one can give a formal theory of truth that
vindicates this account. (Such a theory is given in §6.) §5 contains further discussion,
including of the possibility of trying to make the proposal less radical by combining
it with the view that classical logic holds strictly, i.e., without exception, at the level of
propositions. I argue, however, that no such account can succeed, in virtue of the fact
that there are purely propositional instances of the phenomenon that leads to logical
exceptionalism. In §6 I give a formal theory that vindicates the claims of the paper.
Finally, in §7, I consider alternative approaches.
There are some additional remarks that I should make by way of introduction. The

first of these concern the paper’s conclusion. This, as I have said, is that almost all logical
rules have exceptions. This conclusion is argued for by way of a lemma to the effect that
almost every rule has an instance that does not preserve truth (i.e., an instance with true
premises but an untrue conclusion). I argue that the most natural characterization of
this situation is that the logically correct, or valid, rules are precisely those of classical
logic; it is simply that these valid rules have exceptions. These uses of ‘almost’, however,
might already prompt a worry: am I not simply proposing a very weak alternative to
classical logic, namely that consisting just of the exceptionless rules? In fact, though,
what would be left if all of the rules with exceptions were removed is too impoverished
to count as a genuine alternative logic. For (restricting attention for simplicity to the
propositional case) the only exceptionless rules are those where this claim is in some
sense vacuous: either the premises are inconsistent (so there are no instances where
the premises are all true), or the rule is circular (the conclusion is one of the premises,
so the truth of the premises trivially guarantees that of the conclusion). But a ‘logic’
consisting only of such rules would never enable us to extend our knowledge—for it
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EXCEPTIONAL LOGIC 87

would never allow us to go from some truths to a new one.Wewould bemuch better off,
surely, making our peace with the idea that logical rules admit of exceptions; especially
if, as I argue, there is a natural way of developing this idea.
There is another rival characterization that is perhaps less easily dismissed, but that

is also compatible with the main claims of the paper. According to this, the answer to
the question ‘which logic is correct?’ is: classical logic minus the exceptions. That is,
the valid arguments are those that, as a matter of fact, preserve truth. As I explain,
my reason for preferring the answer ‘classical logic’ is that it retains the idea that the
validity of an argument is a matter of its ‘form’; on the rival, in contrast, we must
look at the particular nonlogical terms an argument contains to determine whether
it is valid. Nevertheless, this rival is compatible with much of what I say here: for
example, the challenges to the widely held views about the a priority and necessity of
logic mentioned above.
There is something in the above that warrants emphasis. I use ‘valid’ and ‘logically

correct’ as synonyms. These pick out a property that it is, essentially, the main aim
of this paper to give an account of. Thus, in particular, I do not use ‘valid’ to mean:
preserves truth under every interpretation. For I argue that the rules of classical logic
are valid, despite sometimes failing to preserve truth.
A final remark is as follows. This is a paper about the semantic paradoxes. The aim

is not, however, to ‘solve’ these, in the sense of showing at exactly which point the
arguments of the paradoxes go wrong. I of course have a view about this—and it is
essentially implicit in the arguments below. However, the emphasis of the paper is not
on this question. The aim of the paper is, rather, to consider a phenomenon that the
paradoxes give rise to, and to argue that the best explanation of this seems to lead to
the striking result that (almost) all logical rules have exceptions.

§1. The Chrysippus phenomenon. Suppose that at some time t Zeno utters: What
Zeno says at t is untrue. (Call this utterance Z.) It seems that Z is in some way
‘pathological’, and so neither true nor false. However, suppose that Chrysippus
overhears Zeno and—in sympathy with the conclusion just reached—utters: What
Zeno says at t is untrue. (Call this C.) It is very natural to think that C—unlike Z—is
simply true. I call the apparent fact that these two tokens of the same type differ in
their truth status in this way the Chrysippus phenomenon.1, 2

How is this possible? How is it possible, that is, for these two utterances to have
different truth statuses, despite the fact that they contain exactly the same words?
The phenomenon has certainly been noticed before. In particular, it has been used to
motivate ‘contextualist’ approaches, according to which different tokens of the same
type can make different statements; for example, as a result of ‘true’ taking different
semantic values. Indeed, it seems generally to have been taken for granted that the only
way to accommodate the phenomenon is via contextualism.3

1 Gupta (2001) uses ‘Chrysippus intuition’. I prefer ‘phenomenon’ just to keep the focus on
the utterances rather than a mental state about them.

2 I use ‘truth status’ rather than ‘value’ simply to remain neutral on the question of whether
things like Z that are neither true nor false have a nonstandard true value, or instead lack
one altogether. (I revert to ‘value’ in discussing formal constructions, but that is purely for
reasons of familiarity.)

3 For claims to this effect see, e.g., Burge (1979), pp. 176–77 and Gupta (2001), p. 113.
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88 BRUNO WHITTLE

Of course, if ‘true’ does take different semantic values in different occurrences, then
it is easy enough to see—in principle at least—how the Chrysippus phenomenon is
possible. For example, the simplest way of ensuring this result would be by letting ‘true’
have partial semantic values, 〈Z+,Z–〉 inZ and 〈C+,C –〉 inC,4 such thatZ /∈Z+∪Z–,
but Z ∈ C –.5

In fact, however, the best explanation of the phenomenon does not seem to be a
contextualist one. It seems rather to be as follows.

Structural Explanation. The reason that Z is neither true nor false—
the sense in which it is pathological—is that it is a loop: if one tries to
determine whether it is true, one is sent back to that very question. In
contrast, C is not a loop: if one tries to determine whether it is true,
one is sent to consider whether Z is; one is not sent back to C.

That is, if one asks whether Z is true, one is sent to consider whether the utterance
that Z ascribes untruth to is indeed untrue, i.e., one is sent to consider whether this
utterance is true. But this utterance is simply Z, and so one is back to the question of
whetherZ is true—the question we started with. The situation withC is quite different:
ask whether this is true, and one is sent to consider whether Z is; one is not sent back
to consider whether C is. As one might put it, Z is in the paradox, while C is merely
about it.

C

Z

Once articulated, this explanation is apt to seem very plausible. But it does not
support contextualism: it does not appeal to multiple semantic values, or multiple

4 If 〈S+,S–〉 is a partial interpretation, then S+ is the extension, i.e., the things the predicate
is true of, while S– is the anti-extension, the things that the predicate is false of.

5 Although this is the simplest contextualist means of accommodating the phenomenon, a
range of alternatives have been proposed. For example, on the approach of Gaifman (1992,

2000),Z andC have different ‘meanings’, or involve different ‘readings’ or ‘interpretations’ of
the same sentence, but these different meanings are not supposed to result from ‘true’ (or any
other word) taking different values in the two cases. On the approaches of Parsons (1974),
Burge (1979), Simmons (1993) and Glanzberg (2001) ‘true’ does take different semantic
values in different occurrences. However, the Chrysippus phenomenon is accommodated
not by it taking different values in Z and C, but rather by Z being ‘neither true nor false’
in one sense of ‘true’ (and ‘false’), and C being ‘true’ in another. The approach of Barwise
& Etchemendy (1987) yields something close to the phenomenon—namely, Z being false
while C is true—by allowing that the utterances are about different situations (i.e., portions
of the world). Only the situation that C is about includes the fact that what Zeno says is
untrue, and it is this that explains the difference in truth status. Although I sometimes focus
on the example of the simple form of contextualism described in the text, everything that I
say would also seem to apply to these different varieties.
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statements.6 Rather it explains the phenomenon simply by reference to the structure
formed by the utterances and the relation of aboutness.7

It is not hard to see why the phenomenonmight be thought to require contextualism:
since the it entails contextualismwhen combinedwith an apparently plausible principle;
namely, the following version of the principle of compositionality.8

Compositionality. The truth status of an utterance is determined by
the semantic values of the words of the utterance, together with the
way that these words are combined in the utterance.

But then, since Z and C of course contain the same words, combined in just the same
way, it follows from the fact that the utterances have different truth statuses that at
least one of these words must take different semantic values in the two utterances. That
is, contexualism must hold.
The key point, however, is that Structural Explanation provides us with a

noncompositional account of the way in which the truth status of Z is determined.
Thus, to fix ideas, consider a standard compositional explanation of the truth status of
an utterance u of the form¬Fa: this will explain how the truth status of u is determined
by combining the semantic values of the nonlogical symbols that u contains. Thus,
suppose that the semantic value of F (as it occurs in u) is the set X, while the semantic
value of a (in u) is the object o. A standard compositional account of the way in which
the truth status of u is determined is either: o ∈ X and so u is false; or: o /∈ X and so u
is true.
The account Structural Explanation provides of the determination of the truth status

ofZ is quite different. According to this,Z has its truth status—neither true nor false—
not because the semantic values of its words can be combined to yield this in any such
way. Rather, Z has this status because it is a loop. Thus, although Compositionality
might have seemed inevitable, we in fact have a positive reason to reject it in the case
of Z.
Further, the principal reason for wanting to give a compositional account of

language, i.e., an account that vindicates Compositionality, is that we want to give one
that is systematic. We will see, however, that the proposed account of the Chrysippus
phenomenon can be developed into a (completely systematic) formal theory of truth
(see §6). Thus, this reason for wanting to maintain Compositionality is also disarmed.

1.1. Tokens and types. On a contextualist account, for example, one according
to which ‘true’ takes different semantic values in different utterances, one cannot in
general ascribe truth to sentences, i.e., types: since if these contain ‘true’, then one
must know which semantic value this is to be understood as taking, before one can

6 Similarly, it does not fall back on the idea that the sense in which C is true is different from
the sense in which Z fails to be.

7 Or more strictly: the relation of being about an utterance’s truth status. For it is certainly not
part of the present proposal that self-referential utterances are always loops, and subsequently
neither true nor false (in the way that Z is). On the contrary, many such sentences are true:
e.g., tokens of ‘this utterance is short’ or ‘this utterance doesn’t use ‘true”. These are not
loops in themanner ofZ: if one asks whether they are true, one does not find oneself returned
to that very question. I say more about the notion of a loop in §2.1 below.

8 For discussion of such principles, see e.g., Szabó (2017).
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say whether or not the sentence is true. Rather, we must ascribe truth to tokens (or,
equivalently, to pairs of sentences and contexts).
If, however, we explain the Chrysippus phenomenon in a noncontextualist way, then

there is no obstacle to ascribing truth directly to types. Of course, the example ofZ and
C shows that (even in the absence of indexicals) we cannot in general reduce truth for
tokens to truth for types. However, there would seem to be no objection to ascribing
truth directly to types as well as to tokens.
And once we do this we see that there are instances of the Chrysippus phenomenon

purely at that level. Thus, using T for truth, let ë be the sentence ¬Tcë, where cë is an
individual constant denoting ë itself.9, 10 ë is then a loop in just the way that Z is: if
one asks whether this sentence is true, one is simply sent back to that very question.
That is, ë is pathological in just the way that Z is. It is thus plausible that ë is neither
true nor false—just like Z.
However, suppose that bë is a distinct constant denoting ë.

11 And let ç be ¬Tbë.
Then ç—just likeC—is not a loop: if one asks whether it is true, one is sent to consider
whether ë is; one is not sent back to consider ç. It would seem, then, that ç—just like
C—is straightforwardly true.
It might seem surprising that ë and ç could differ in their truth status in this way.

Isn’t ç a mere notational variant of ë? Yes. But the point is that notational variants can
differ with respect to the property of being a loop (just as they can differ with respect
to the property of being self-referential).
On a contextualist approach, the Chrysippus phenomenon—i.e., the fact thatZ and

C have different truth statuses—requires no sort of revision of logic: any more than
the fact that ‘I am hungry’ has different statuses in different contexts requires such.
However, the generalization of the Chrysippus phenomenon just mentioned certainly
does give an exception to classical logic, as follows.
By â1, ...,ân � ã I mean that the truth of â1, ..., ân guarantees that of ã, i.e., ã is true

in every interpretation in which each of â1, ..., ân are.
12 We thus have:

¬Tbë,bë = cë 2 ¬Tcë.

For the sentences to the left of the turnstile are true ( bë = cë is a simple identity, and so
is of course true), while that to the right is not. So this instance of the indiscernibility
of identicals, i.e.,

9 Throughout I use subscripts to indicate denotation in this way.
10 I assume that our language contains a relatively rich supply of constants along the lines of
cë, i.e., denoting sentences that contain the constant, or denoting sentences that themselves
contain further constants that denote sentences that contain the constant, etc. This is merely
for simplicity, however. One could of course instead make all of the points that follow using
general syntactic resources sufficient to generate such patterns of reference, or arithmetical
resources and Gödel numbering—or, indeed, even more mundane resources such as ‘the
sentence written on the board in room 101’.

11 That is, if we were being strict about use and mention: bë = cë but ‘ bë’ 6= ‘cë’. (Just as
Hesperus = Phosphorus but ‘Hesperus’ 6= ‘Phosphorus’.) However, I continue with the
standard practice of using object language expressions to refer to themselves.

12 As I said in the introduction, I ultimately distinguish validity from truth preservation in
this sense (see §2.3). Nevertheless, it is convenient to follow the standard practice of using
the double turnstile for truth preservation, since the main aim of the paper is to argue that
almost all classical rules sometimes fail to preserve truth, and this notation gives a concise
statement of such exceptions.
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α,ô = õ

α(ô/õ)
,

which is of course classically valid, is not truth preserving.13

The advantage of doing things in terms of types is that logic is almost always
presented in terms of these, and so by formulating our claims in this way we make
their relation to standard logical claims completely straightforward. However, similar
points can also be made about tokens.

§2. Logical exceptionalism. The above exception to classical logic is just the tip of
the iceberg. But before giving further examples I say a bit more about the notion of a
loop. (This is officially defined in 3 of §6.)

2.1. Loops. This notion is intended to capture, and generalize, what is going in the
case of ë (and Z). The relevant feature of ë is that if one tries to determine whether it
is true, then one is sent back to ë, and only to ë. That is, ë is about its own truth status,
and not about that of any other sentence. Thus, if α is Tcâ (for some sentence â), for
example, then it is about the truth status of â . Similarly if α is ¬Tcâ ; or Ws ∧Tcâ
(usingW for white and s for snow); or indeed ¬Ws ∨Tcâ or ∃x(x = câ ∧Tx). Further,
if â is itself about the truth status of a sentence ã, then in a natural sense α is also
about the truth status of ã: if you say that what Sarah says is true, and I say that what
you say is true, then, as one might put it, I have directly said something about your
utterance, and by doing so indirectly said something about Sarah’s. Thus, if â is Tcã ,
then if α is any of the previous examples, it will be about the truth status not only of
â but also of ã; and so on.
In general, sentences are not of course about their own truth statuses (they are

typically not about themselves at all). A loop, however, is a sentence that is about
its own truth status, and that is not about that of any other sentence. Or, more
generally, a loop is a set of sentences, each member of which is about the truth
statuses of exactly the members of the set. For example, {α,â}, where α is Tcâ and
â is ¬Tcα .

14

Of course, not all semantic paradoxes involve loops in this sense (e.g., Yablo’s
paradox does not). I discuss such paradoxes without circularity in §5.1. But, as I
explain there, my reason for focusing on paradoxes with circularity is that it is only
these that give rise to theChrysippus phenomenon, and hence towidespread exceptions
to logical rules—because, essentially, those without circularity do not support the

13 This sort of exception to classical logic has already been countenanced: by Skyrms (1984).
On that approach, the Chrysippus phenomenon is bracketed with more familiar instances
of intensionality, e.g., arising from propositional attitudes or modality. It does not yield the
wide range of exceptions to classical rules that the present approach does. I discuss Skyrms’s
approach in §7.4.1.
Another approach that involves this sort of exception to classical logic is that of Hansen

(2014). This has a wider range of exceptions than that of Skyrms, but these exceptions are
quite different from those of the present approach (e.g., Hansen’s approach is classically
inconsistent). Hansen’s approach is discussed in §7.4.2.

14 The official definition of §6 restricts the notion to sets. But I continue to describe single
sentences (such as ë) as loops, where this can can be seen as shorthand for the claim that the
sentence’s singleton is a loop.
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distinction between sentences that are in the paradox, versus those that are merely
about it.15

2.2. Exceptions. To illustrate the further exceptions to logical rules that the pro-
posed explanation of the Chrysippus phenomenon gives rise to, consider conjunction
introduction and elimination.
Start with the latter, i.e.,α∧â / α.We get an exception to this by considering ë∧Ws .

Just like C and ç, this conjunction is not a loop (and nor does it belong to one): while
it is about the truth status of ë, it is not about its own truth status. It would appear,
then, that just like C and ç, it is simply true. For what the conjunction says (i.e., that ë
is untrue and snow is white) is the case; and since it is not a loop this seems sufficient
for it to be true (just as with C and ç). Thus

ë∧Ws 2 ë

which is of course an exception to conjunction elimination.16

The fact that this rule can fail to preserve truth—i.e., the fact that there are true
conjunctions with untrue conjuncts—is perhaps surprising. Indeed, it might even be
held that such a thing is incoherent. In response, though, we should observe that the
connection between the truth of a conjunction, and that of its conjuncts, is less intimate
than one might have been tempted to think.
Thus, consider for example Ws ∧Gg (using Gg for grass is green). One might

initially think that what this sentence says—its truth condition—is:Ws is true and Gg
is true. This is a thought that is encouraged by standard definitions of truth, inspired
by the work of Tarski. For these define truth for conjunctions in terms of that for
conjuncts.
On reflection, however, it should be clear that the connection between what

conjunctions say, and the truth of their conjuncts, is nothing like this tight. For what
Ws ∧Gg says is: snow is white and grass is green. It is certainly not about Ws and
Gg, i.e., these linguistic items. To drive this point home, we can observe that this
conjunction surely says the same thing as its translation into English: snow is white
and grass is green. But it would be quite wrong to think that this English sentence is
about these formal sentences, introduced for the purposes of this paper. Once this is

15 I should flag the main respect in which the sketch of this subsection simplifies the official
definition of loops: the latter is relative to a given partial interpretation of the truth predicate,
where this represents a stage in the construction of the interpretation that we ultimately
propose.Our official definition restricts attention to sentences that are in neither the extension
nor the anti-extension of the relevant partial interpretation, i.e., sentences that are yet to be
assigned a truth status. A loop is then a set of such sentences, each member of which is
about the truth statuses of exactly the such sentences that belong to the set. This restriction
is needed if we are to treat, e.g., α = ¬Tcα ∧TcWs in essentially the same way as ë, which is
surely desirable. Until §6 I focus exclusively on examples where the relativity of the official
definition can safely be ignored. However, even once it is taken into account, we can recover
an absolute notion: just say that something is a loop in the absolute sense if it is one at some
stage of the construction.

16 It is sometimes convenient to put things, as I just have, in terms of whether what a sentence
says is the case. For the purposes of this paper, however, this is simply a rhetorical device.
The claim that whatWs says is the case, for example, can without essential loss be replaced
by:Ws says that snow is white, and snow is white; and similarly elsewhere.
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appreciated, there does not seem to be any objection of principle to a true conjunction
with an untrue conjunct.17

Another way to put the point is this. What would be incoherent would be for a
conjunction to be true, without what its conjuncts say being the case. For example, for
Ws ∧Gg to be true without snow being white, or without grass being green. In the case
of our exception to conjunction elimination, however, nothing like that occurs. What
the conjuncts of ë∧Ws say, i.e., that ë is untrue and that snow is white, is indeed the
case. The rule fails simply because ë is untrue, despite what it says being the case.
What now about conjunction introduction: α,â / α∧â? Our previous examples of

logical exceptions both involved the standard liar sentence ë. But since that is not a
conjunction, it won’t give a counterexample to this rule. Instead, let æ be ¬Tcæ ∧Ws .
In this case, æ is a loop, just as Z and ë were: it is about its own truth status, and not
about that of any other sentence. Consequently, æ , just like Z and ë, is neither true nor
false.
On the other hand, ¬Tcæ is not a loop: it is about the truth status of æ , not about

its own. Just as with previous examples, then, ¬Tcæ is simply true, giving: ¬Tcæ,Ws 2
¬Tcæ ∧Ws .
What this example turns on is the fact that the notion of a loop is defined purely in

terms of the relation that a sentence stands in to those whose truth status it is about. An
alternative course would be to work with a broader notion of ‘dependence’ that is the
union of this relation and that which sentences stand in to their sentential components,
their instances, and so on.18 This approach would in a natural sense be ‘upwards strict’:
if α and â are each true or false, then so would be ¬α, α∧â , etc. Thus, while we would
still have exceptions to the indiscernibility of identicals and conjunction elimination,
for example, we would no longer have one to conjunction introduction. For neither
ë nor æ would any longer count as loops, i.e., on their own; rather, the loops would
instead be {ë,Tcë} and {æ,Tcæ}.
I consider this approach in §7.2, but there seem to be two reasons for preferring that

which I have focused on. Firstly, sentences that are neither true nor false are in a sense
failures. On the alternative, then, more sentences are classified as failures: e.g., Tcë as
well as ë, Tcæ as well as æ . But if we can avoid counting these additional sentences as
failures—as we will see that we can—it seems desirable to do so. However, a deeper
reason for preferring the approach that I have focused on is this. The relation that a
sentence stands in to those whose truth statuses it is about is simply very different from
that which it stands in to its components and instances (and so on). The former is a
semantic relation—it is a function of what the sentence says—while the latter is merely
syntactic—one doesn’t need to know how a sentence’s predicate symbols and constants
are interpreted, for example, to know what its components and instances are. Thus,
if we define loops, as on the alternative, in terms of the union of these relations, we

17 It might be objected that we should view our formal sentences are mere abbreviations of
English ones. In that case, appeal to the English conjunction might be thought unpersuasive:
why not regard each conjunction as being about ‘snow is white’ and ‘grass is green’?
Essentially the same point, however, can still be made by appealing to, for example, the
Japanese translation of Ws ∧Gg. That Japanese sentence is surely not about English
sentences. But since it is about the same things as Ws ∧Gg, that cannot be about these
either.

18 The sentential components of ¬α are α together with its such components; if ∗ is a binary
connective, then those of α ∗â are α and â together with theirs.
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are really running together two quite different things. Our notion of a loop, and our
overall account based on it, would thus seem to be less natural if we were to do this.
We have, then, exceptions to both conjunction introduction and elimination. But I

promised exceptions to ‘almost all’ logical rules. Focusing initially on propositional
logic, that promise is kept by the following result.

Theorem. Let α1, ..., αn, â be propositional formulas such that

â 6= αi for i = 1, ...,n,
{α1, ...,αn} is classically consistent.

Then α1, ...,αn � â has a false instance.

Here propositional formulas are used schematically to express claims about sentences
of our language. Thus, by an instance of α1, ...,αn � â I mean a claim of the form

α′

1, ...,α
′

n � â
′

where α′

1, ...,α
′

n,â
′ result from uniformly substituting sentences of our language for

propositional symbols in α1, ...,αn,â (i.e., substituting every occurrence of a given
propositional symbol in these formulas for the same sentence). The argument of the
theorem yields an instance where α′

1, ..., α
′

n are true but â
′ is not.

This result substantiates the ‘almost all’ (in the propositional case). For given the
result, the only rules that are always truth preserving are those where this claim is in
some way vacuous: either because the conclusion is simply one of the premises (i.e.,
the first condition of the theorem is not met), or because the premises cannot all be
true (the second condition is not met). In every other case, we get an exception.
This is a much wider class of exceptions than we get on extant non-classical

approaches. Consider, for example, the most celebrated such approach: the strong
Kleene theory of Kripke (1975).19 This theory yields exceptions to all classical
propositional logical truths, but it certainly does not give exceptions to classical rules
such as conjunction introduction and elimination, modus ponens, double negation
introduction and elimination, and so on. Given the above theorem, however, we get
exceptions to all of these on the present proposal. This proposal can be similarly
contrasted with other extant nonclassical approaches, such as those mentioned in the
introduction.
The result is proved in §6, as theorem 2. But the basic idea is as follows.

Proof Sketch. If α1, ...,αn / â is not classically valid, then of course we can find a
false instance. So suppose that it is. Let p1, ..., pm be the propositional symbols that
occur in α1, ..., αn, â , and let r be a row of the truth table for α1, ..., αn, â in which each
is true. For ã ∈ {α1, ...,αn,â}, ã

′ is the result of making the following substitutions
in ã: if pi is true in r, then replace pi with ¬Tcâ′ ∧ i = i ; otherwise, replace it with
Tcâ′ ∧ i = i . Then â

′ is a loop and so neither true nor false, while each αi is true. Thus
α′

1, ...,α
′

n 2 â
′. �

Similar claims hold in the first-order case. To illustrate, consider existential
generalization: ϕ(x/ô) / ∃xϕ. To get an exception to this, let î be ∃x(x = cî ∧¬Tx).

19 Kripke of course declares himself ‘amazed’ [1975: 700] that anyonewould regard his proposal
as a revision of classical logic. Nevertheless, most readers have found this to be the most
natural way to take his proposal.
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î is then a loop, and so neither true nor false. On the other hand, cî = cî ∧¬Tcî is not
a loop; rather it is simply true, giving the desired exception. Other examples can easily
be produced, but I do not in this paper give a general result analogous to that above
concerning the propositional case.
All of the exceptions that I have given involve sentences that, in one way or other,

say of themselves that they are untrue. However, not all sentences that are loops in the
relevant sense do this. For example, sentences that say of themselves that they are true,
e.g., è = Tcè , are also loops. Do other such loops generate logical exceptions? Yes, but
only some of them.
For an example of a sentence that gives an exception, but that does not ascribe

untruth to itself, let ì = Tcì ∨¬Tcì. This is a loop, and so gives an exception to
the law of excluded middle, α ∨¬α. In contrast, the truth teller è does not yield an
exception to classical logic. That is, there is no classically valid argument α1, ...,αn / è,
where α1, ...,αn are true despite the fact that è (being a loop) is not. For if α1, ...,αn are
true, then what they say is the case. But then, by the classical validity of the argument,
what è says must be the case too, which is just that è is true: contradicting the fact that
è isn’t true. The fact that è is about truth is in a sense irrelevant here. By just the same
token (using B for black) we cannot have a classically valid argument â1, ...,âm / Bs ,
the premises of which are all true. For in this case what they say would be the case, in
which case (by the classical validity), snow would have to be black.
This style of reasoning might set off alarm bells: how, given that I am claiming there

are exceptions to classical rules, can I rely on classical validity in this way? The point,
though, is that while we can have classically valid rules that fail to preserve truth, what
we cannot have is a situation where what the premises say is the case, while what the
conclusion says isn’t. For example, while we haveWs ∧¬Tcë being true without ¬Tcë
being, we certainly do not have snow being white and ë being untrue, without ë being
untrue—that would be absurd!
More generally, we get logical exceptions precisely in the cases of loops that are

classically entailed by their own untruth (and ‘unfalsity’, together perhaps with other
facts): any other loop would require its own truth or falsity, and so would not yield an
exception for the same reason that è doesn’t.
We get exceptions to classical rules only in cases in which the conclusion is neither

true nor false. This means that corresponding to any classical rule α1, ...,αn / â , there
is a rule that holds strictly—i.e., without exception—on this approach. Namely, that
which results from adding Tôâ ∨Fôâ (for some closed term ôâ) to the premises.

20 This
rule will in general play a role that is significantly different from that played by the
original—at least as traditionally understood. Consider conjunction introduction, for
example. On the traditional understanding, this allows us to go from ã and ä to a
distinct claim ã ∧ä—even if we do not have any previous knowledge of this claim. The
modified rule is quite different: it allows us to pass from ã and ä to their conjunction
only if we have already established something about the latter (i.e., that it is either
true or false). Nevertheless, the existence of these modifications shows that we retain a
system of strict rules that ‘shadow’ the standard logical ones.
Although the focus of this paper is on logical rules, I should mention how things

stand with the most discussed truth-theoretic principle: the truth schema, Tôα ↔ α,

20 Here F means falsity. On this approach, we add a falsity predicate as well as a truth one: see
§6.
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where ôα is a closed term denoting α. An instance of this— Tcë ↔ ë—is of course
classically inconsistent, and so all instances of the schema are certainly not true on the
present approach. This much is in common with many extant approaches. However,
there are two ways in which the present approach goes beyond this. Firstly, it is not
merely that some instances of the schema fail to be true: some are false. For example,
that just mentioned for cë: similarly to ë∧Ws , this instance is not a loop, and so is
straightforwardly false in virtue of the fact that what it says (i.e., that ë is true iff it
is not) is not the case. Secondly, the sentences on the two sides of an instance of the
schema need not have the same truth status. In particular, the left hand sentence can
be false while the right hand one is neither true nor false (this is what we have in the
case of Tcë and ë).

21 Just as with the exceptions to logical rules discussed above, these
features of the proposal seem to be naturally and straightforwardly motivated by the
Chrysippus phenomenon.

2.3. Which logic is correct?. What follows for the question of which logic is correct?
For simplicity, let us again focus on the propositional case. The upshot of the above
theorem is that if we insist that logically valid rules hold strictly then there are almost
none of these. More precisely, the only logically valid arguments will be those that are
(in one of two ways) vacuously truth preserving.
On the other hand, there remains a natural sense in which classical logic is correct,

despite the exceptions. For on the proposed account, a sentence can have its truth
status determined compositionally or otherwise. Thus, let G andH be unary predicate
symbols whose semantic values are the sets X and Y, respectively. Then for Gco, for
example, to have its truth status determined compositionally is for it to be true if o ∈X ,
and false otherwise. For ¬Gco, it is for this to be true if o /∈ X , and false otherwise.
Similarly, for Gco ∧Hcr to have its truth status determined in this way is for it to
be true if o ∈ X and r ∈ Y , and false otherwise, and so on.22 Sentences like ë are
such that if one tries to determine their truth status compositionally, one finds that
the process never ends. In the case of ë in particular one finds oneself going round
in a circle. Because of this, these sentences are neither true nor false; a status that
is not determined compositionally in the relevant sense. It is only when dealing with
this latter class of sentences that we get exceptions to classical logic. This logic thus
remains correct in the following sense: its arguments are truth preserving as long as
the sentences involved have their truth statuses determined compositionally.23

21 This is the only way in which such pairs can differ in truth status, however. For if Tôα is true,
then what it says must be the case, i.e., α must be true too. Further, if α is true or false, then
Tôα will be true or false (respectively) too: see example 2(vi) of §6. The reason is that, given
thatα is true or false, then the only way thatTôα could fail to be is if it belonged to a loop; but
any such loop would have to contain α, in which case α would not be true or false after all.

22 Note that for a sentence to have its truth status determined compositionally is not necessarily
for it to be determined on the basis of the statuses of subsentences (or instances thereof) in
the familiar way. For example, ë∧Ws has its status determined compositionally as long as
it is true if ë is untrue and snow is white, and it is false otherwise. We do not however have:
this conjunction is true if both of its conjuncts are, and false otherwise. (As we have seen, the
conjunction is true despite the fact that its first conjunct isn’t.) Given that ë is neither true nor
false, to determine the truth status of the conjunction on the basis of that of ëwould not really
be to determine it compositionally, because this latter truth status is not itself so determined.

23 Indeed, it is sufficient for the conclusion to have its truth status determined in this way (for a
sentence whose truth status is determined noncompositionally is neither true nor false, and
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Here is another way to put it. The exceptions to classical logic given above all involve
sentences whose truth status is not determined by what they express in the standard
way. That is, in the normal case, a sentence α says something p, and α is true if p is the
case, and false if p is not the case. By saying that α has its truth status determined by
what it says, I mean that it has its truth status determined in this way. Loops such as ë
do not have their truth statuses determined by what they say: for ë is neither true nor
false, despite the fact that what it says, i.e., that it itself is untrue, is indeed the case.
This allows an alternative characterization of the status of classical logic: its arguments
preserve truth as long as the sentences involved have their truth statuses determined
by what they say.24

The natural answer to the question—which logic is correct?—would thus seem to be:
classical logic. Similarly, continuing to use ‘valid’ to mean logically correct, the valid
arguments seem precisely to be those of classical logic.
An alternative answer to the question ‘Which logic is correct?’ would be: classical

logicminus the exceptions. That is, the logic consisting of those classical arguments that
do in fact preserve truth. This answer, however, would sever the connection between
the traditional logical expressions, i.e., the connectives, quantifiers and variables, and
validity: for whether an argument is valid would no longer be determined by the
meanings of these logical expressions. That is, an argument would no longer be
classified as valid or not on the basis of its ‘form’. For this reason, the previous
answer to the question of which logic is correct seems preferable. However, many of
the points to follow, e.g., those about a priority and necessity in the next section, would
be unaffected by moving to this alternative answer.
It is instructive to once again compare the present proposal with Kripke’s strong

Kleene theory. On that theory, classical logic is not retained in either of the senses given
above. Thus, onKripke’s approach, ë∨¬ë is neither true nor false. But this truth status
is determined compositionally: i.e., using the partial interpretation that Kripke assigns
T, together with Kleene’s strong scheme. Similarly, on what would seem to be the most
natural account of what ë says—given Kripke’s proposal— ë does have its truth status
determined by what it says. For ë would seem to express the proposition 〈¬TRUE(ë)〉,
where TRUE is the property that applies precisely to the objects in the extension of T,
and whose negation applies precisely to those objects in the anti-extension of T. But it
would then seem that what ë says is neither the case nor not the case—and so the truth
status of ë is determined by what it says.25

Of course, it remains true that, even on Kripke’s proposal, classical arguments
preserve truth as long as all of the sentences involved are either true or false. But
this does not seem to constitute a very substantive sense in which classical logic
remains correct. For if the status of being neither true nor false is one that can be

so cases where an argument’s premises are so determined do not lead to failures of truth
preservation).

24 Again the condition can be weakened to require only that this holds of the conclusion of the
argument (cf. note 23).

25 I should note that, just as Kripke insists that his proposal does not amount to a revision of
classical logic, so he suggests that, according to it, sentences that are neither true nor false fail
to express propositions [1975: 700–701]. It does however seem rather more natural to regard
ë, for example, as expressing the proposition mentioned in the text. For a fuller defence of
the claim that liar sentences express propositions, see Whittle (2017).
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determined by whether what a sentence says is the case—and one which is determined
in a straightforward compositional way—then why should logic disregard this status?

§3. Wider implications. In this section I consider the implications that the above
account has for widely held views about logic, specifically, that it is a priori and
necessary.

3.1. A priority. Logic is widely held to be a priori in the sense: if an argument is
logically valid, then we can know a priori that it is truth preserving. On the present
proposal, the valid arguments are those of classical logic. Since these are not always
truth preserving, we certainly cannot always know—a priori or otherwise—that they
are.
Nevertheless, logic would still be a priori in an important sense if the exceptions

could be determined a priori. They can’t be, however. For we get exceptions in the case
of liar sentences, for example, and we cannot, in general, determine a priori whether
something is a liar sentence. To illustrate, suppose that at noon on November 8, 2016
Donald Trump says: what the next president is saying at noon on November 8, 2016
is untrue. Call the sentence uttered è (and, for simplicity, take Trump’s talk of ‘saying’
to be referring to the relevant sentence). As it turned out, è is a loop, but this was not
of course something that could be determined a priori. Thus, we could not determine
a priori whether, e.g., è ∧Ws / è is an exception.

3.2. Necessity. Logic is also widely held to be necessary: i.e., its arguments do not
just preserve truth, they do so necessarily. Again, since not all classical arguments
preserve truth simpliciter, they do not do so of necessity. Thus logic is not necessary in
this sense. However, it would still be so in an important sense if the classical arguments
that actually preserve truth do so necessarily.
This is false, however: simply suppose that Clinton, rather than Trump, was the one

uttering è at noon on November 8, 2016. è ∧Ws / è would then be truth preserving,26

but merely contingently so.

§4. The bigger picture. I now sketch the bigger picture that the above account of
the Chrysippus phenomenon, and of logic, extends to. This picture is cast into a formal
theory in §6.
Since Kripke (1975) we have been used to the idea that the property of truth can

usefully be thought of as constructed via an iterative procedure. The basic idea behind
Kripke’s theory is this.
The nonsemantic facts makeWs true and Bs false. This then gives the first level of

semantic facts. These then make TcWs and ¬TcBs true, and TcBs and ¬TcWs false. Etc.
The property of truth applies to those sentences that are eventually made true by this
procedure, and ‘disapplies’ (its negation applies) to those sentences that are made false
by it.
In Kripke’s picture, sentences receive one of three values: t, f or n (i.e., neither true

nor false). For example, ë receives n. However, it is only assignments of t and f that
affect later assignments of values. The sentences that receive n are simply those that

26 Strictly speaking, this requires a further assumption, e.g., that Trump is saying something
straightforwardly true or false at noon on November 8, 2016.
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are left over when all possible assignments of t and f have been made. As one might
put it, we ‘actively’ assign sentences only t and f, and merely ‘passively’ assign them n.
If we are to accommodate the Chrysippus phenomenon, then something quite

different is required. For consider ë and ç ( = ¬Tbë). ç is made true by something
about ë. But not of course by ë being true or false (it is not!) Rather, ç is made true by
ë being neither true nor false. Thus, the assignment of t to ç depends on the assignment
of n to ë. So we need ‘active’ assignments not merely of t and f but also of n.
The natural addition to Kripke’s picture is simply this: a rule ‘actively’ assigning n

to loops. This rule would allow us to assign n to ë, which would then allow us to assign
t to ç.27

§5. Further issues. In this section I discuss a number of issues that the above
discussion makes salient.

5.1. Paradoxes without circularity. The above proposal is in terms of the notion of a
loop. But what about paradoxes—or, more generally, sets of ‘ungrounded’ sentences—
that do not involve any such circularity, such as Yablo’s paradox? Why have these been
neglected?
The reason is that in such cases there is no comparable distinction between the

sentences that are in the paradox versus those that are merely about it and, as a result,
these do not give rise to instances of the Chrysippus phenomenon, or to the sort of
logical exceptions considered in §2.
To illustrate, consider Yablo’s paradox, which arises from the following sentences

(see [1993]).

α1: ∀m> 1, αm is untrue.
α2: ∀m> 2, αm is untrue.
...

In the original instance of the Chrysippus phenomenon, there is a clear distinction
between the utterances that are in the paradox and those that are merely about it—and
C is true because it is on the ‘about’ side of this distinction.
There is a similar distinction in the case of more complicated circular paradoxes, i.e.,

more complicated loops. For example, if â is Tcã , while ã is ¬Tcâ , then â and ã—in
the paradox—are neither true nor false. In contrast, ä = ¬Tcâ ∧¬Tcã—merely about
it—is simply true.
We find a similar distinction in the case of infinitary circular paradoxes. Thus,

suppose that for each natural number m, æm is:

m =m∧∀l,æl is untrue.

Then each æi (‘in’) is neither true nor false, while a sentence along the following lines
(‘about’) is true:

Ws ∧∀m,æm is untrue.

27 As I said above (§2.1), although I have indulged in the simplification of talking of single
sentences as loops, these must in general be regarded as sets: see definition 3. The rule would
then assign n to the members of loops.
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In the case of Yablo’s paradox, however, there is no such natural distinction to be
found: if α0 is

∀m> 0,αm is untrue,

then this stands to α1 α2, ... just as α1 stands to α2, α3, ... So any line drawn between
α0 and the sentences that it is about would be arbitrary. And a similar point could
be made about any other sentence asserting the untruth (or for that matter unfalsity)
of the sentences in Yablo’s paradox. Consequently, the Chrysippus phenomenon is
absent, and thus so are the sort of exceptions that it gives rise to.
We do get some exceptions. Specifically, to logical truths: e.g., α1 ∨¬α1 is neither

true nor false. But these are the only exceptions that noncircular paradoxes (more
generally, noncircular ungrounded sets) give rise to. Hence the focus here on circular
paradoxes.28

5.2. Logic for tokens. As I said in §1.1, I have focused mainly on types so as to
make claims that relate directly to standard presentations of logic. However, very
similar points can also be made about tokens. Indeed, the analogue of the theorem
of §2 can even be strengthened to remove the condition that the conclusion of the
propositional argument (i.e., the argument schema) be distinct from each premise: for,
as the original Chrysippus phenomenon shows, when it comes to tokens we can have
an exception even to the schema p / p; i.e., the instance of this with premise C and
conclusion Z.

5.3. Propositions. We have seen that, at the level of sentences (as well of that of
tokens), the Chrysippus phenomenon gives rise to exceptions to almost all logical
rules. But one might wonder if the position couldn’t be made less radical by combining
it with the claim that, at the level of propositions, classical logic holds strictly. That
is, might we, by taking the traditional line that paradoxical sentences fail to express
propositions, be able to vindicate strict classical logic for propositions?
There are reasons to think not. Suppose first that we take propositions to be

structured, as on Fregean or Russellian accounts, for example. Then—quite apart
from the issue of whether paradoxical sentences express propositions—there will be
instances of the Chrysippus phenomenon at the level of propositions. This can be seen
as follows.
Although it is arguable that therewill not be a proposition p of the form 〈¬TRUE(p)〉

(since such a proposition would have to have itself as a constituent), we can generate a

28 The sentences of Yablo’s paradoxes are only about later sentences, i.e., αi is only about αj for
j > i . But a similar point could be made about the version of the paradox that replaces ‘>’
with ‘≥’. Again, there is no clear demarcation between the sentences that are in the paradox
versus those that are merely about it: a fact that can be illustrated by considering a distinct
sentence that essentially says ‘me and all of the sentences in the original paradox are untrue’.
The crucial point is that once we are dealing with a set of sentences some members of which
are not about some others, then we seem no longer to be in a position to draw a clear line
between the sentences that are in the paradox versus those that are merely about it: for the
natural way of doing this would be by counting as ‘merely about’ those that some sentences
involved in the paradox are not about; but in the case of Yablo’s paradox (or its variant) this
won’t work, because sentences that are clearly in the paradox already have this property.
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proposition that says of itself that it is untrue.29 Simply consider a function d that sends
a proposition q to the result of replacing all occurrences of the proposition 〈0 = 0〉
(say) with q itself. The following is then a proposition that says that it itself is untrue:

〈¬TRUE(d (〈¬TRUE(d (〈0 = 0〉))〉))〉.

Call this LP (for ‘liar proposition’). LP is a loop in essentially the same way that Z
and ë are. But distinct propositions that say that LP is untrue, such as 〈LP∧LP〉, are
not. Just like C, ë∧Ws etc. these distinct propositions are simply true. But we then get
logical exceptions precisely analogous to as in the sentential case.
There remains the possibility of giving an unstructured account of propositions, e.g.,

identifying them with sets of possible worlds. But, even ignoring the counterexamples
generated by the fact that there is only one necessary proposition, this account does
not seem to allow a very robust vindication of classical logic. For classical logic is the
theory of the forms generated by the familiar connectives and quantifiers (together
with identity); especially, the consequence relation that holds between these. But
sets of possible worlds do not realize this structure in any natural sense: that is an
upshot of the fact that the possible worlds account identifies logically equivalent
propositions.
Either way, then, the hope for a vindication of classical logic that avoids exceptions

seems likely to be dashed. Rather, the exceptions are a robust phenomenon.

§6. A formal theory. In this section I present a formal theory that vindicates
the claims made above. In the next section I consider alternative approaches.
The theory of this section is a version of the contextualist approach of Gaifman
(2000), with the crucial difference that truth applies to sentences rather than
tokens (cf. §1.1).30, 31

Let L be a first-order language with classical interpretation A, the domain of which
is A. I assume that every member of A is denoted by some closed term of L. We extend
L to L by adding two new unary predicate symbols, T and F. Below, unless otherwise
stated, by ‘sentence’, ‘term’ etc. I mean sentence ofL, term ofL etc. I assume that every
sentence belongs to A. The formal theory being presented is a recipe for extending A
to an interpretation of L, under which T is a truth predicate for L, and F is a falsity
predicate for L. We add a falsity predicate as well as a truth one because on this
approach falsity is distinguished both from untruth and from having a false negation:
ë is untrue but not false; and if α = Tcα , then it is neither true nor false, while ¬α is
true.

29 See Whittle (2017).
30 Gaifman mentions in passing something like this version of his approach. However, he does
not discuss the consequences for logic—i.e., whether we get logical exceptionalism—of this
or any other version of his approach.

31 The fact that this theory focuses exclusively on typesmeans that it does not of course treat the
tokens Z and C with which we began the paper. Further, since these are tokens of the same
type, yet Z is neither true nor false while C is true, we cannot extend the theory to tokens
simply by saying essentially that a token is true iff its type is (as we might in the case of a
theory that does not aim to incorporate this version of theChrysippus phenomenon). Rather,
to adequately treat tokens we must give a version of the construction that incorporates them
from the ground up. It is, however, straightforward enough to do this: this is in effect what
the original theory of Gaifman (2000) does.
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We simultaneously construct the interpretations of T and F via a sequence of pairs
of partial interpretations: {〈Tì,Fì〉 : ì ∈ On}.32 Of course, the idea is that Tì is an
interpretation of T, while Fì is one of F. I use Iì for 〈Tì,Fì〉. Further, if S is a partial
interpretation, then S+ is the extension of S, and S– is the anti-extension.
In defining Iì there are four cases to consider (the third is the most involved).
(1) ì= 0. Then T+ì = F

+
ì =∅, and T –ì = F

–
ì is the set of members of A that are not

sentences.
(2) ì = î+1 is odd.33 By saying that a sentence is satisfied by a pair of partial

interpretationsP = 〈S,R〉 I mean that it is satisfied by the extension ofA that interprets
T by S and F by R, under Kleene’s strong scheme.
A sentence α is determined by P if either α or ¬α is satisfied by P ; and undetermined

by P otherwise. In contrast, α is evaluated by P if α ∈ S+ ∪ S– ∪R+ ∪R–; and
unevaluated by P otherwise.
Intuitively, in this caseIì results fromassigning t to all sentences that are unevaluated

but satisfied by Iî ; and assigning f to all sentences that are unevaluated, but whose
negations are satisfied, by Iî . It is essential to restrict attention to unevaluated sentences
here: for, looking ahead, once ë has been assigned n, for example, it will become
satisfied, but we do not of course want to assign t to it.
That is, let Φî be the set of sentences that are unevaluated but satisfied by Iî ; and

let Σî be the set of sentences that are unevaluated, but whose negations are satisfied,
by Iî . Then:

(OT) T+ì = T
+
î ∪Φî and T

–
ì = T

–
î ∪Σî ;

(OF) F +ì = F
+
î ∪Σî and F

–
ì = F

–
î ∪Φî .

Thus, unevaluated sentences that are satisfied by Iî are placed into the extension of
T and the anti-extension of F. (Those whose negations are satisfied are rather placed
into the extension of F and the anti-extension of T.) In general, i.e., at each stage
of the construction, anything in the extension of T is in the anti-extension of F, and
similarly everything in the extension of F is in the anti-extension of T. The reverse
claims however do not hold: sentences like ë that are neither true nor false will be
placed into each anti-extension, but neither extension (a fate shared of course by any
member of the domain that is not a sentence).
(3) ì = î+1 is even. It is in this case that we ‘actively’ assign n to sentences (cf.

§4). That is, we make assignments of n that affect later assignments of values: e.g.,
that to ë, which is the basis of the later assignment of t to ç (see example 2(ii)).
Formally speaking, to assign n to a sentence is to place it in the anti-extension of both
T and F.
The following sequence of definitions leads up to that of a loop. The first codifies

the notion of a sentence α being directly about the truth status of an unevaluated
sentence â . We restrict attention to the case where â is unevaluated because we want
to treat, e.g., ã = ¬Tcã ∧TcWs as essentially on a par with ë. That is, onceWs has been
assigned t, we ignore the fact that ã is about this truth status. The basic idea is that
α is about the truth status of â if â is one of the sentences that must receive a truth
status for α to become determined. This means that if α is ¬Tcα ∧Ws or ¬Tcα ∨Bs

32 On is the class of ordinals.
33 That is, ì= ñ+m for some limit ordinal ñ and odd m ∈ ù.
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(and unevaluated), then it will, in the relevant sense, be about its own truth status. In
contrast, if α is ¬Tcα ∨Ws , then it won’t be. This seems desirable: for while we want to
treat the first two sentences as akin to ë, we do not so want to treat the third, because
intuitively it is not a loop in the same way; ask whether this sentence is true and there
is no need to return to that question, the matter is settled simply by the fact that snow
is white.34

Definition 1. Let P be a pair of partial interpretations, and let α and â be sentences. α
calls directly â under P if there are sentences ã1, ..., ãm such that:

(i) each ãi is undetermined by P ;
(ii) ã1 is α;
(iii) for each i < m, ãi+1 is an immediate sentential component

35 or an instance of ãi ;
(iv) ãn is Tô or Fô for some closed term ô with ô

A = â .

I omit mention of the pair of partial interpretations when this is clear from the
context. For example, if ä is ∃x[(x = cæ ∨x = cè)∧Tx], and æ and è are unevaluated
byP , then ä calls directly æ underP , via the sequence: ä (=ã1); (x = cæ ∨x = cè)∧Tcæ ;
Tcæ .

36 Similarly, ä calls directly è, but it does not call directly any other sentences.
And, as expected, if ë is unevaluated by P , then it calls directly itself, via the
sequence: ë; Tcë. ë does not however call directly anything else. The following codifies
the general notion of a sentence being about the truth status of some unevaluated
sentence.

Definition 2. Let P be a pair of partial interpretations, and let α and â be sentences. α
calls â under P if there are sentences ã1, ..., ãm ( m ≥ 2) such that: ã1 is α; for i < m, ãi
calls directly ãi+1 under P ; ãm is â .

Definition 3. Let P be a pair of partial interpretations, and let Γ be a set of sentences.
Γ is a loop under P if every member of Γ calls exactly the members of Γ under P .

Example 1. In the following, I assume that all of the sentences mentioned are
unevaluated by P . These sets are then loops under P .

(i) {ë}.
(ii) {α}, where α is Tcα .
(iii){â,ã}, where â is Tcã and ã is Fcâ .
(iv) {ä}, where ä is Tcä → 0 = 1.
(v) Θ = {÷m :m ∈ ù}, where ÷i is ∀x(x ∈ cΘ→¬Tx)∧ i = i .

Intuitively, Iì results from assigning n to every sentence that belongs to a loop under
Iî . Thus, let Ψî be

⋃
{Γ : Γ is a loop under Iî}. Then:

34 Note that in the following we do not need to stipulate that â is unevaluated: this will follow
from the fact that a sentence of the form Tô or Fô, for ô a closed term denoting â is
undetermined, together with the definition of our sequence of partial interpretations.

35 The immediate sentential component of ¬ä is ä; and if ∗ is a binary connective, then the
immediate sentential components of ä ∗ æ are ä and æ.

36 Strictly speaking, this assumes that ∃ and ∧ are basic symbols of L. If they are instead
defined, then ä will still call directly æ, but via a different sequence. For simplicity, I assume
below that all the logical symbols mentioned are basic symbols of L, but nothing essential
turns on this. For it is easy to see that which sets are loops, and thus which sentences are
assigned n, is unaffected by which logical symbols are basic and which defined.
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(ET) T+ì = T
+
î and T

–
ì = T

–
î ∪Ψî ;

(EF) F +ì = F
+
î and F

–
ì = F

–
î ∪Ψî .

(4) ì is a limit ordinal. Then T+ì =
⋃
î<ìT

+
î and T

–
ì =

⋃
î<ìT

–
î . Similarly for Fì.

Since we only ever assign values to sentences that were previously unevaluated, we
have that if ì≤ î, then Tì ≤ Tî and Fì ≤ Fî .

37 The fact that there are more ordinals
than sentences thus gives:

Theorem 1. There is ñ ∈On such that for all ì≥ ñ, Tì = Tñ and Fì = Fñ.

According to the proposed theory, the sentences that are true are those that are
assigned t in the above construction, i.e., those that belong to T+ñ . Similarly, the
sentences that are false are those that belong to F +ñ . These sets, T

+
ñ and F

+
ñ , are also

the proposed interpretations ofT and F, respectively. I useT forT+ñ , F forF
+
ñ , and I for

〈T,F〉. Thus, the proposed interpretations are classical, or total, rather than partial: as
required, if we are to vindicate the claim of §2.3 that classical arguments preserve truth
when the sentences involved have their truth statuses determined compositionally.
By the monotonicity of Kleene’s strong scheme, if α ∈ T, then I � α; and if α ∈ F,

then I � ¬α. But of course the converses of these claims do not hold. For example,
I � ë, but ë /∈ T. And if â is Tcâ , then I � ¬â , but â /∈ F.
It might be complained that there is something arbitrary about the above

construction: for example, why handle the first batch of loops at the second, rather
than the first or third stage, say? Indeed, why even separate the assignment of standard
values (i.e., t and f ) from that of n, as I have, rather than dealing with these together
at each stage? It can be proved, however, that the end result of the construction, i.e.,
I, does not depend on such choices. (For reasons of space I do not give this argument
here.) It follows that there is nothing arbitrary about our proposed interpretations of
T and F.

Example 2. (i) All of the sentences mentioned in example 1 belong to T –2 ∩F
–
2 :

it is easy to see that none of these or their negations are satisfied by I0, and thus
that they belong to Ψ1.

(ii) ç ∈ T+3 . Recall that ç is ¬Tbë, where bë is distinct from cë. Given ë∈ T
–
2 , I2 � ç.

ç ∈ T+3 is then clear as long as ç /∈Ψ1. But this follows from the fact that if Γ is
a loop under I1, then ç ∈ Γ would require ë ∈ Γ and thus for ë to call ç, which is
clearly impossible.

(iii) ë∧Ws ∈ T+3 , Tcë ∈ F
+
3 , Tcë↔ ë ∈ F

+
3 , and ∀x(x ∈ cΘ→¬Tx) ∈ T+3 (where

Θ is as in example 1(v)) by similar arguments.
(iv) If æ is ¬Tcæ ∧Ws , then æ ∈ T

–
2 ∩F

–
2 but ¬Tcæ ∈ T

+
3 . First, {æ} is a loop under

I1. For æ calls directly itself via the sequence: æ ; ¬Tcæ ; Tcæ . It is easy to see,
however, that æ does not call directly anything else. It follows that æ ∈ Ψ1 and
thus T –2 ∩F

–
2 . Since it is clear that ¬Tcæ does not belong to a loop under I1, but

I2 � ¬Tcæ , we have ¬Tcæ ∈ T
+
3 .

(v) Let ϕ(x,y) be a formula of L satisfied precisely by 〈m,αm〉, for m ∈ ù, where
αi is:

∀x∀y[(x > i ∧ϕ(x,y))→¬Ty].

37 If R and S are partial interpretations, then S ≤R means S+ ⊆R+ and S– ⊆R–.
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Then, for each m, αm /∈ T∪F. We must show that no αi or ¬αi is satisfied by
Iì; and also that no αi belongs to a loop under Iì ( for any ì ∈On). We prove
both claims by a simultaneous induction on ì. Thus, suppose that ì is least such
that one of the claims fails. If Iì satisfies either αi or ¬αi , for some i, then it
is easy to see that some αj must be evaluated by Iì, which is impossible by the
inductive hypothesis. So some αi must belong to a loop under Iì. But this would
require αi to call itself, which it is easy to see is impossible (since αi will only
call αj for j > i). It follows that, for each m, αm /∈ T∪F.

(vi) If α ∈ T, then Tôα ∈ T and Fôα ∈ F; and if α ∈ F, then Tôα ∈ F and Fôα ∈ T.
Suppose α ∈ T+ì for some even ì. Then Iì � Tôα , and so Tôα ∈ Tì+1 as long as
Tôα does not belong to a loop for some î < ì. It is easy to see, however, that any
loop that contained Tôα would also contain α, which is impossible given α ∈ T+ì .
Thus, Tôα ∈ T. Similarly for the other cases.

Finally, we prove a version of the theorem of §2. I assume that for each formula ϕ
of L, with at most x free, there is a closed term ð of L such that ðA = ϕ(x/ð).38

Let α1, ..., αm be propositional formulas and let α
′

1, ..., α
′

m be sentences of L. We
say that α′

1, ..., α
′

m result by uniform substitution from α1, ..., αm, respectively, if α
′

1, ...,
α′

m can be obtained from α1, ..., αm, respectively, by uniformly substituting sentences
of L for propositional symbols.

Theorem 2. Let α1, ..., αm, â be propositional formulas such that

â 6= αi for i = 1, ...,m,
{α1, ...,αm} is classically consistent.

Then there are sentences α′

1, ..., α
′

m, â
′ of L such that:

(i) α′

1, ..., α
′

m, â
′ result by uniform substitution from α1, ..., αm, â , respectively;

(ii) for i = 1, ...,m, α′

i ∈ T;
(iii) â ′ /∈ T.

Proof. We use essentially the argument of the sketch of §2. The claim is clear if â is
not a classical consequence of α1, ..., αm, so suppose that it is. Then let p1, ..., pl be
the propositional symbols that occur in α1, ..., αm, â , and let r be a row of the truth
table for α1, ..., αm, â in which each of these is true. For ã ∈ {α1, ...,αm,â}, ã

∗ is the
result of making the following substitutions in ã: if pi is true in r, then replace pi with
¬Tx ∧ i = i ; otherwise, replace it with Tx ∧ i = i . Then let ã ′ be ã∗(x/ð), where ð is a
closed term of L that denotes â∗(x/ð), i.e., â ′.
It is easy to see that {â ′} is a loop under I1, and thus â

′ /∈T. Further, since {â ′} ∈T –2 ,
each α′

i is satisfied by I2, and so α
′

i ∈ T
+
3 ⊆ T. �

§7. Alternative approaches.

7.1. Supervaluationist. The most obvious alternative to the theory of §6 would
replace the evaluation scheme used there, i.e., Kleene’s strong scheme, with an
alternative: specifically, the supervaluationist scheme. The result would be a slightly—

38 This assumption would be satisfied if formulas of L are in A (the domain of A), and L
contains a term for a diagonal function. Alternatively, a version of it would be satisfied if we
used the language of arithmetic and Gödel numbers in place of expressions of L.
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but only slightly—less thoroughgoing form of logical exceptionalism. In particular,
theorem 2 would no longer hold. However, if we add the condition that â is not a
logical truth, then the result does hold (and by a similar argument).

7.2. Upwards strict. In §2.1 I argued that in defining loops, we should consider
only the sentences that a given sentence is about, rather than those that are merely
components of the sentence.And it is this approach thatwe pursued in §6.Nevertheless,
it is instructive to consider what happens if we reject this conclusion.
On this alternative approach, then, definition 1 would be replaced with the

following.39

Definition 4. Let P be a pair of partial interpretations, and let α and â be sentences. α
calls∗ directly â under P if α is undetermined by P and one of the following conditions
obtains.

(a) â is undetermined by P and an immediate sentential component or an instance
of α.

(b) α is Tô or Fô for some closed term ô with ôA = â .

Everything else is as in §6.
This change has the effect that one can never have, e.g., a conjunction that is neither

true nor false, but whose conjuncts are true. More generally, we have the following. If
α is a propositional formula, then C (α) is the set of its components.40 I use �SK for
the strong Kleene consequence relation.

Theorem 3. Let α1, ..., αm, â be propositional formulas such that C (â) ∩
{α1, ...,αm} �SK â . Then α1, ...,αm � â holds on this approach.

Conversely, however:

Theorem 4. Let α1, ..., αm, â be propositional formulas such that

C (â)∩{α1, ...,αm}=∅,
{α1, ...,αm} is classically consistent.

Then α1, ...,αm � â has a false instance on this approach.

Both results can be strengthened a bit, but for simplicity I omit the details. As before,
similar claims hold for the first-order case.
One disadvantage of this approach is that the relation of calling∗ directly, and

ultimately the final result of the evaluation procedure, is sensitive to which connectives
we take as basic. To illustrate, consider a Curry sentence α = Tcα→ 0 = 1. Regardless
of whether we take → as basic, α will belong to a loop under I1 (i.e., on this
alternative approach). However, which other sentences belong to this loop depends
on whether we take→ as basic—as, ultimately, does the issue of which sentences are
assigned n.

39 The approach of Hansen (2014) in effect uses this definition. However, since the rest of that
approach is importantly different from that of §6, the overall approach is also different from
that of this subsection. I discuss Hansen’s approach in §7.4.2.

40 That is, C (α) is the closure of {α} under the relation of being an immediate sentential
component.

https://doi.org/10.1017/S1755020320000210 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000210


EXCEPTIONAL LOGIC 107

Specifically, if→ is basic, then the loop that contains α will be {α,Tcα}. In this case,
¬Tcα will belong to T

+
3 (i.e., be assigned t); while Tcα ∧0 6= 1 will belong to F

+
3 (i.e.,

be assigned f ). In contrast, if → is instead defined in terms of ¬ and ∨ (so that α is
¬Tcα ∨ 0 = 1), then the loop containing α will rather be {α,¬Tcα,Tcα}. Thus, ¬Tcα
will instead be assigned n. (Tcα ∧ 0 6= 1 will still be assigned f.) But if → is instead
defined in terms of ¬ and ∧ (so α is ¬(Tcα ∧ 0 6= 1)), then the loop will rather be
{α,Tcα∧0 6= 1,Tcα}. This means that Tcα∧0 6= 1 is assigned n (while ¬Tcα is assigned
t). And so on.
As I said (in note 36), things are quite different on the approach of §6: under that,

which sets are loops, and thus which sentences are assigned which values, does not
depend on which symbols are taken as basic. This would seem to be an advantage of
that approach.

7.3. Downwards strict. To get a sort of opposite of this, we need to change the way
in which standard values are assigned.41 According to (OT) and (OF), unevaluated
sentences are assigned t (or f ) if they (their negations) are satisfied. To get an approach
that is downwards strict, one would instead assign standard values on the basis of
sentential components and instances. Thus, ¬α is assigned t if α has been assigned f ;
and f if α has been assigned t. α∧â is assigned t if α and â have been; and f if one of
α or â has been. ∀xϕ is assigned t if, for every a ∈A, there is a closed term ô denoting
a such that ϕ(x/ô) has been assigned t; ∀xϕ is assigned f if some instance of it has
been. The rest of the approach is as before.
Let Γ∪{ä} be a set of propositional formulas. Γ downward entails ä if Γ �SK ä and

for some ã ∈ Γ, ä ∈ C (ã). We then have the following.

Theorem 5. Let α1, ..., αm, â be propositional formulas. Then α1, ...,αm � â holds
strictly on this approach iff {α1, ...,αm} downward entails â .

Again, similar claims hold for first-order logic. Further, we can combine the
approaches of this and the last subsection to get one that is both upwards and
downwards strict (in the senses exemplified by those approaches).

7.4. Two extant proposals. Finally, I consider two approaches from the literature
that bear similarities to the present one.

7.4.1. Skyrms. As I mentioned in note 13, Skyrms (1984) advocates a treatment
of the Chrysippus phenomenon that involves exceptions to rules of classical logic:
specifically, instances of intensionality, i.e., cases where the substitution of coreferential
terms results in a change in truth status. It is instructive to compare this approach to
that proposed here.
Themain difference is that, on Skyrms’ approach, the only exceptions to logical rules

are such instances of intensionality. And this is an essential feature of the approach,
since its central innovation is to think of the semantic value of the truth predicate not
as the set of objects that it applies to (or as the pair of this set together with the set of
objects that it disapplies to), but rather as a set of pairs of objects together with terms
denoting them (or a pair of such sets); where the idea is that Tô is true iff 〈ôA,ô〉 is in

41 The approach of this subsection is a version of that of Gaifman (1992), but with again the
difference that truth applies to sentences rather than tokens.
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the set.42, 43 Compound sentences then have their truth status determined from atomic
ones in the obvious way.
This allows for the Chrysippus phenomenon as follows. Consider ë and ç. One can

have ç but not ë being true by placing 〈ë,bë〉, but not 〈ë,cë〉, into the anti-extension of
T.
Themain problemwith this proposal, however, is that we have seen (§2) that there are

instances of theChrysippus phenomenon—i.e., instances of the samephenomenon that
ë and ç give rise to—that do not involve distinct coreferential names (or distinct tokens
of names). For example, the instances discussed in §2 in connection with conjunction
introduction and elimination.What is really responsible for the phenomenon, therefore,
is not anything to do with distinct coreferential names in particular. Rather, what is
responsible is the very natural distinction between sentences that are in a paradox
versus those that are merely about it. And this is a distinction that occurs both in cases
that involve multiple coreferential names, and in cases that do not. It seems, therefore,
that Skyrms’ proposal does not get to the heart of the matter.44

7.4.2. Hansen. Finally, I consider the approach of Hansen (2014). This involves a
wider range of exceptions to classical rules than that of Skyrms (and, unlike on that
approach, these are not tied to the presence of distinct coreferential names). In terms of
motivation and general shape, there are a number of ways in which Hansen’s approach
is similar to the proposal of this paper. However, there are also significant differences—
which, it seems tome, favour the approach proposed here. Themost important of these
are as follows.

42 Although Skyrms thinks of the semantic value of T as constituted by pairs of this form,
there is of course a sense in which this is optional: the same information would be carried
more simply by the set of terms ô such that Tô is true.

43 It is not part of the proposal as stated, but the idea would be to extend this to instances of
the Chrysippus phenomenon involving different tokens of the same type (e.g., our original
case of Z and C) by further augmenting the semantic value of T. For example, by allowing it
to contain triples of objects, terms and utterances. (In fact, this sort of extension of Skyrms’
proposal would fix a flaw in that which he envisages which results from his apparent failure
to realize that one can have instances of the phenomenon involving different tokens of the
same type, even without the involvement of indexicals: e.g., the case of Z and C.)

44 There is another significant drawback with the specific formal theory of Skyrms (1984),
which is that it is completely unsystematic. Thus, this theory allows for interpretations of L
in which ç is true but ë is not. However, it also allows for interpretations in which ç and ë
are both untrue—the interpretations under which ç is true are generated simply by putting
〈ë,bë〉 into the extension of T ‘by hand’. Similarly, let b

′

ë be a new name (distinct from cë and

bë), and let ç
′ be ¬Tb′ë. Then Skyrms’ theory also allows for interpretations in which, e.g., ç

is true while ç′ and ë are not. What is desirable (both simpliciter and by Skyrms’ lights) is an
interpretation on which ç and ç′ are both true while ë is not. However, the theory provides
no deterministic procedure which results in such an interpretation, as opposed to one of the
other interpretations just mentioned. This is of course in stark contrast to the theory of §6
which does include such a procedure (i.e., which yields an interpretation on which ç and ç′

are true while ë is neither true nor false). The failure of Skyrms’ approach to provide such
a procedure seems problematic for a number of reasons. To give just the most obvious: it
seems that he has failed to in fact propose a definite extension of our original interpreted
language.
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Definition of loops. Hansen in effect uses the notion of calling∗ directly, and thus
the definition of loops, of §7.2. As a consequence, his approach is upwards strict in the
sense of theorem 3. However, this definition of loops has the disadvantages that we
have noted. Firstly, it seems to ride roughshod over the distinction between the things
that a sentence is about, versus those that are its components (see §2). And, secondly,
it means that the approach is sensitive to which logical symbols we take as basic (see
§7.2).

Special treatment of quote names. Another difference (which is less obviously a
disadvantage) is thatHansen singles out quote names for special treatment. Essentially,
quote names are privileged in the following way: when considering a loop, for example,
sentences that contain quote names are assigned values after those that don’t, with the
result that sentences with quote names stand a better chance of receiving a standard
value.
A simple example: let α be T ‘â ’, where â is Tcα (and where cα is not a quote name).

On the approach of §6, α and â are both assigned n. On Hansen’s approach, however,
while â will be neither true nor false, α will be false.
The main selling point of this feature of Hansen’s approach is that it means that we

can always truthfully describe a sentence’s truth status. This is in contrast to the present
approach on which, for example, any sentence that says that one of the sentences in
Yablo’s paradox is neither true nor false is itself neither true nor false.
The disadvantage of this feature, it seems to me, is that truth statuses are no longer

determined purely by the structure of the referential network that the sentences of our
language form. Rather, they depend also on what might seem to be rather arbitrary
distinctions between the means by which the links of this network are forged.
Nevertheless, if desired one could straightforwardly enough incorporate this aspect

of Hansen’s approach into the present one (although for reasons of space I omit
the details).45 That is, this difference is independent of the others discussed in this
subsection, and which do seem to me to clearly favour the approach proposed in this
paper.

Classical inconsistency. The main difference between Hansen’s approach and the
present one, however, is that it is classically inconsistent in the sense: there are classically
inconsistent sets of sentences, each member of which is true on Hansen’s approach.
This is due to the following two features of Hansen’s approach:46 (i) sentences that
receive standard values have these determined compositionally from the values of their
sentential components; and (ii) in such cases, n is treated identically to f.
In some cases, this seems to give the right result. Thus, to illustrate, consider ¬α,

where α is Fcα . On Hansen’s approach (as on the present one), α is neither true nor

45 Indeed, for a version of the approach ofGaifman (2000) that incorporates such an idea—and
which, when transposed from tokens to types would give a version of the approach of §6 that
incorporates such an idea—see 2000, pp. 113–18).

46 For simplicity, I restrict attention here to the relationship between the truth status of a
sentence and the statuses of its sentential components, but similar remarks apply to the
relationship between the truth status of a sentence and those of its instances, those of
instances of its sentential components, etc.

https://doi.org/10.1017/S1755020320000210 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000210


110 BRUNO WHITTLE

false, while¬α is simply true. But sinceHansen insists on deriving the t that¬α receives
from the n that its sentential component α receives, he is forced to say that whenever a
sentence â is neither true nor false, and ¬â receives a standard value, then ¬â is true.
But while this gives the right result in the case of ¬α, it gives disastrous ones in other
cases. For example, ¬ë, i.e., ¬¬Tcë, comes out as true, despite the fact that ë is not
true. But how can something be not not true, when it is in fact not true? This also gives
a classical inconsistency: since ç, i.e., ¬Tbë, and bë = cë are both true. It is hard not to
feel that something has gone badly wrong.
The mistake, I would suggest, is thinking that ¬α’s t must be derived from its

sentential component α’s n. Rather, ¬α is true because, once α has been assigned n,
what ¬α says is the case (i.e., ¬α becomes satisfied). Seeing things this way—as on the
present approach—allows ¬α to be true in a way that does not bring the undesirable
truth of ¬ë in its wake. As far as I can tell, then, the main differences between Hansen’s
approach and the present one favour the latter.47

We have seen, then, that logic is exceptional, if not in quite the way that was
expected.48
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