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Recently, in order to mix algebraic and logic styles of specification in a uniform framework,

the notion of a logic labelled transition system (Logic LTS or LLTS for short) has been

introduced and explored. A variety of constructors over LLTS, including usual

process-algebraic operators, logic connectives (conjunction and disjunction) and standard

temporal modalities (always and unless), have been given. However, no attempt has been

made so far to develop the general theory concerning (nested) recursive operations over

LLTS and a few fundamental problems are still open. This paper intends to study this issue

in a pure process-algebraic style. A few fundamental properties, including precongruence

and the uniqueness of consistent solutions of equations, will be established.

1. Introduction

Algebra and logic are two dominant approaches for the specification, verification and sys-

tematic development of reactive and concurrent systems. They take different standpoints

for looking at specifications and verifications, and offer complementary advantages (Peled

2001).

Logical approaches (Pnueli 1977) devote themselves to specifying and verifying abstract

properties of systems. In such frameworks, the most common reasonable properties of

concurrent systems, such as safety, liveness, etc., can be formulated in terms of logic

formulas without resorting to operational details and verification is a deductive or model-

checking activity (Clarke et al. 2000). However, due to their global perspective and abstract

nature, logical approaches often give little support for modular design and compositional

reasoning (Peled 2001).

Algebraic approaches put attention to behavioural aspects of systems, which have

tended to use formalisms in algebraic styles. These formalisms are referred to as process

algebras or process calculi (Bergstra and Klop 1984; Hoare 1985; Milner 1989a). In

such paradigm, a specification and its implementation usually are formulated in terms

of expressions (terms) built from a number of operators, and the underlying semantics

is often defined operationally. The verification amounts to comparing terms, which is
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often referred to as implementation verification or equivalence checking (Aceto et al. 2012).

Algebraic approaches often support compositional construction and reasoning, which

bring us advantages in developing systems, such as, supporting modular design and

verification, avoiding verifying the whole system from scratch when its parts are modified,

allowing reusability of proofs and so on (Andersen et al. 1994). Thus such approaches

offer significant support for rigorous systematic development of reactive and concurrent

systems. However, since algebraic approaches specify a system by means of prescribing in

detail how the system should behave, it is often difficult for people to describe abstract

properties of systems in this paradigm.

To take advantage of these two approaches when designing systems, so-called heterogen-

eous specifications have been proposed, which uniformly integrate these two specification

styles. Based on Büchi automata and labelled transition system (LTS) augmented with a

predicate, a semantic framework for heterogenous system design is given in Cleaveland

and Lüttgen (2000, 2002). In this framework, not only usual operational operators but also

logic connectives are considered, and the must-testing preorder presented in Nicola and

Hennessy (1983) is adopted to capture refinement relations. Unfortunately, this setting does

not support compositional reasoning since must-testing preorder is not a precongruence

in this situation. Moreover, the logic connective conjunction in this framework lacks the

desired property that r is an implementation of a given specification p ∧ q if and only if r

implements both p and q.

Recently, Lüttgen and Vogler have introduced the notion of a Logic LTS (LLTS),

which combines operational and logic styles of specification in one unified framework

(Lüttgen and Vogler 2007, 2010, 2011). In addition to usual operational constructors,

e.g., CSP-style parallel composition, hiding and so on, logic connectives (conjunction and

disjunction) and standard modal operators (always and unless) are also integrated into this

framework. Moreover the drawbacks in Cleaveland and Lüttgen (2000, 2002) mentioned

above have been remedied by adopting the ready-tree semantics (Lüttgen and Vogler

2007). To support compositional reasoning in the presence of the parallel constructor, a

variant of the usual notion of ready simulation is employed, which has been shown to be

the largest precongruence satisfying some desired properties (Lüttgen and Vogler 2010).

Along the direction suggested by Lüttgen and Vogler (2010), a process calculus called

CLL is presented in Zhang et al. (2011), which reconstructs their settings in a pure

process-algebraic style. Moreover, a sound and ground-complete proof system for CLL is

provided. In effect, it gives an axiomatization of ready simulation in the presence of logic

operators. However, CLL is lack of the capability of describing infinite behaviour, which

is important for representing reactive systems.

It is well known that recursive operations are widely used in representing objects with

infinite behaviour (see for instance Bergstra et al. (2001)). However, to the best of our

knowledge, as yet no attempt has been made to develop a general theory concerning

recursive operations over LLTS and a few fundamental problems are still open. Since

LLTS involves consideration of inconsistencies, it is far from straightforward to re-

establish existent results concerning recursive operations in this framework. A solid effort

is required, especially for handling inconsistencies. This paper intends to explore recursive

operations over LLTS in a pure process-algebraic style. To this end, a process calculus
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CLLR will be given in this paper, which is obtained by enriching CLL with recursive

operations. Following Baeten and Bravetti (2008), expressions with the form like 〈X|E〉
will be used to denote recursions. We will find that usual SOS rules associated with

recursive operations are insufficient to capture recursions in CLLR . The main theoretical

results obtained in this paper include:

— It is shown that the ready simulation relation presented in Lüttgen and Vogler (2010)

is precongruent w.r.t all operators in CLLR .

— Under the hypothesis that X is strongly guarded and does not occur in the scope

of any conjunction in t, it is shown that, modulo =RS recalled in the next section,

there exists at most one consistent solution of any given equation X =RS t. Moreover

the process 〈X|X = t〉 is indeed the unique consistent solution whenever consistent

solutions exist.

The remainder of this paper is organized as follows. The next section recalls some

related notions. Section 3 introduces SOS rules of CLLR . In Section 4, the existence

and uniqueness of stable transition model for CLLR is demonstrated, and a few of

basic properties of the LTS associated with CLLR are given. In Section 5, a number

of preliminary properties of unfolding and transitions are considered. In Section 6, we

shall show that the variant of ready simulation presented by Lüttgen and Vogler is

precongruent in the presence of (nested) recursive operations. In Section 7, a theorem on

the uniqueness of consistent solutions of equations is obtained. Finally, a brief discussion

is given in Section 8.

2. Preliminaries

This section will set up notations and briefly recall the notions of LLTS and ready

simulation presented in Lüttgen and Vogler (2010, 2011).

Let Act be the set of visible actions ranged over by letters a, b, etc., and let Actτ denote

Act ∪ {τ} ranged over by α and β, where τ represents invisible actions. AnLTS with a

predicate is a quadruple (P , Actτ,−→, F), where P is a set of states, −→⊆ P ×Actτ × P is

a transition relation and F ⊆ P .

As usual, we write p
α−→ (or, p 	 α−→) if ∃q ∈ P .p

α−→ q (�q ∈ P .p
α−→ q resp.). Given

a state p, the ready set {α ∈ Actτ|p
α−→} of p is denoted by I(p). A state p is stable if

p 	 τ−→. We also list some useful decorated transition relations: p
α−→F q iff p

α−→ q and

p, q /∈ F; p
ε

=⇒ q iff p(
τ−→)∗q, where (

τ−→)∗ is the transitive reflexive closure of
τ−→;

p
α

=⇒ q iff ∃r, s ∈ P .p
ε

=⇒ r
α−→ s

ε
=⇒ q; p

γ
=⇒ |q iff p

γ
=⇒ q 	 τ−→ with γ ∈ Actτ ∪ {ε};

p
ε

=⇒F q iff there exists a sequence of τ-transitions from p to q such that all states along

this sequence, including p and q, are not in F; the decorated transition p
α

=⇒F q may be

defined similarly; p
ε

=⇒F |q (or, p
α

=⇒F |q) iff p
ε

=⇒F q (p
α

=⇒F q resp.) and q is stable.

Remark 2.1. Notice that some notations above are slightly different from ones adopted

by Lüttgen and Vogler. The notation p
ε

=⇒|q (or, p
α

=⇒|q) in Lüttgen and Vogler (2010,

2011) has the same meaning as p
ε

=⇒F |q (p
α

=⇒F |q resp.) in this paper, while p
ε

=⇒ |q in

this paper does not involve any requirement on F-predicate.
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Definition 2.1 (Lüttgen and Vogler 2010). An LTS (P , Actτ,−→, F) is an LLTS if, for each

p ∈ P ,

(LTS1) p ∈ F if ∃α ∈ I(p)∀q ∈ P (p
α−→ q implies q ∈ F);

(LTS2) p ∈ F if �q ∈ P .p
ε

=⇒F |q.
Moreover, an LTS (P , Actτ,−→, F) is τ-pure if, for each p ∈ P , p

τ−→ implies �a ∈
Act. p

a−→.

Any state p in a τ-pure LTS represents either an external or internal choice between its

outgoing transitions. The predicate F is used to denote the set of all inconsistent states.

Intuitively, an inconsistent state represents empty behaviour that cannot be implemented

(Lüttgen and Vogler 2011). In the sequel, we shall use the phrase ‘inconsistency predicate’

to refer to F . Compared with usual LTSs, it is one distinguishing feature of LLTS that it

involves consideration of inconsistencies. Roughly speaking, the main motivation behind

such consideration lies in dealing with inconsistencies caused by conjunctive composition.

In classical process-algebraic frameworks, the composition between a process and its

environment is captured by some parallel operator. The conjunction operator presented

in Lüttgen and Vogler (2007) offers another pattern to compose a process and its

environment. In this setting, some logical consideration is involved. For example, consider

the process a.0 and its environment b.0, the usual synchronous composition of them is

equivalent to the inactive process 0. In contrast, the conjunction composition of them is

marked as inconsistent since a run of a process cannot begin with both a and b (in other

words, this conjunction composition cannot be implemented nontrivially). Lüttgen and

Vogler have proved that this conjunction setting (w.r.t �RS recalled below) indeed satisfies

the expected boolean laws. For more intuitive ideas and motivation about inconsistency,

the reader may refer to Lüttgen and Vogler (2007, 2010). The condition (LTS1) formalizes

the backward propagation of inconsistencies, and (LTS2) captures the intuition that

divergence (i.e., infinite sequences of τ-transitions) should be viewed as catastrophic.

In Lüttgen and Vogler (2010, 2011), the notion of ready simulation below is adopted

to capture the refinement relation, which is a variant of the usual notion of weak ready

simulation (Bloom et al. 1995; Larsen and Skou 1991). It has been proven that such

kind of ready simulation is the largest precongruence w.r.t parallel composition and

conjunction which satisfies the desired property that an inconsistent specification can only

be refined by inconsistent ones (see Theorem 21 in Lüttgen and Vogler (2010)).

Definition 2.2 (ready simulation on LLTS). Let (P , Actτ,−→, F) be a LLTS. A relation

R ⊆ P × P is a stable ready simulation relation, if for any (p, q) ∈ R and a ∈ Act

(RS1) both p and q are stable;

(RS2) p /∈ F implies q /∈ F;

(RS3) p
a

=⇒F |p′ implies ∃q′.q
a

=⇒F |q′ and (p′, q′) ∈ R;

(RS4) p /∈ F implies I(p) = I(q).

We say that p is stable ready simulated by q, in symbols p �
�RS

q, if there exists a stable

ready simulation relation R with (p, q) ∈ R. Further, p is ready simulated by q, written

p �RS q, if ∀p′(p
ε

=⇒F |p′ implies ∃q′(q
ε

=⇒F |q′ and p′ �
�RS

q′)). The kernels of �
�RS

and
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�RS are denoted by ≈RS and =RS respectively. It is easy to see that �
�RS

is a stable ready

simulation relation and both �
�RS

and �RS are preorder.

3. Syntax and SOS rules of CLLR

Following Baeten and Bravetti (2008), this paper adopts the notation 〈X|E〉 to denote

recursive operations, which encompasses both the CCS operator recX.t and standard way

of expressing recursion in ACP. Let VAR be an infinite set of variables. The terms in CLLR

are defined by BNF:

t ::= 0 | ⊥ | (α.t) | (t�t) | (t ∧ t) | (t ∨ t) | (t ‖A t) | X | 〈Z |E〉

where X ∈ VAR , α ∈ Actτ, A ⊆ Act and recursive specification E = E(V ) with V ⊆ VAR is

a set of equations {X = t|X ∈ V } and Z is a variable in V that acts as the initial variable.

As usual, 0 encodes deadlock. The prefix α.t has a single capability, expressed by α;

the process t cannot proceed until α has been exercised. � is an external choice operator.

‖A is a CSP-style parallel operator, t1 ‖A t2 represents a process that behaves as t1 in

parallel with t2 under the synchronization set A. ⊥ represents an inconsistent process with

empty behaviour. ∨ and ∧ are logical operators, which are intended for describing logical

combinations of processes.

In the sequel, we often denote 〈X|{X = tX}〉 briefly by 〈X|X = tX〉. Given a term

〈X|E〉 and variable Y , the phrase ‘Y occurs in 〈X|E〉’ means that Y occurs in tZ for some

Z = tZ ∈ E. Moreover the scope of a recursive operation 〈X|E〉 exactly consists of all tZ
with Z = tZ ∈ E. An occurrence of a variable X in a given t is free if it does not occur

in the scope of any recursive operation 〈Y |E〉 with E = E(V ) and X ∈ V . A variable X

in term t is a free variable if all occurrences of X in t are free, otherwise X is a recursive

variable in t.

Convention 3.1. Throughout this paper, as usual, we make the assumption that recursive

variables are distinct from each other. That is, for any two recursive specifications E(V1)

and E ′(V2) we have V1 ∩ V2 = �. Moreover we will tacitly restrict our attention to

terms where no recursive variable has free occurrences. For example we will not consider

terms such as X�〈X|X = a.X〉 because this term could be replaced by the clear term

X�〈Y |Y = a.Y 〉 with the same meaning.

In the following, given a term t, we use FV (t) to denote the set of all free variables of t.

As usual, a term t is a process if it is closed, that is FV (t) = �. The set of all processes of

CLLR is denoted by T (ΣCLLR
). Unless noted otherwise we use p, q, r to represent processes.

We shall always use t1 ≡ t2 to mean that expressions t1 and t2 are syntactically identical.

In particular, 〈Y |E〉 ≡ 〈Y ′|E ′〉 means that Y ≡ Y ′ and for any Z and tZ , Z = tZ ∈ E iff

Z = tZ ∈ E ′.

Definition 3.1. For any recursive specification E(V ) and term t, we define 〈t|E〉 to be

t{〈X|E〉/X : X ∈ V }, that is, 〈t|E〉 is obtained from t by simultaneously replacing all free

occurrences of each X(∈ V ) by 〈X|E〉.
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Table 1. Operational rules.

(Ra1)
−

α.x1
α−→ x1

(Ra2)
x1

a−→ y1, x2 	 τ−→
x1�x2

a−→ y1

(Ra3)
x1 	 τ−→, x2

a−→ y2

x1�x2
a−→ y2

(Ra4)
x1

τ−→ y1

x1�x2
τ−→ y1�x2

(Ra5)
x2

τ−→ y2

x1�x2
τ−→ x1�y2

(Ra6)
x1

a−→ y1, x2
a−→ y2

x1 ∧ x2
a−→ y1 ∧ y2

(Ra7)
x1

τ−→ y1

x1 ∧ x2
τ−→ y1 ∧ x2

(Ra8)
x2

τ−→ y2

x1 ∧ x2
τ−→ x1 ∧ y2

(Ra9)
−

x1 ∨ x2
τ−→ x1

(Ra10)
−

x1 ∨ x2
τ−→ x2

(Ra11)
x1

τ−→ y1

x1 ‖A x2
τ−→ y1 ‖A x2

(Ra12)
x2

τ−→ y2

x1 ‖A x2
τ−→ x1 ‖A y2

(Ra13)
x1

a−→ y1, x2 	 τ−→
x1 ‖A x2

a−→ y1 ‖A x2

(a /∈ A) (Ra14)
x1 	 τ−→, x2

a−→ y2

x1 ‖A x2
a−→ x1 ‖A y2

(a /∈ A)

(Ra15)
x1

a−→ y1, x2
a−→ y2

x1 ‖A x2
a−→ y1 ‖A y2

(a ∈ A) (Ra16)
〈tX |E〉 α−→ y

〈X|E〉 α−→ y
(X = tX ∈ E)

For example, consider t ≡ X�a.〈Y |Y = X �Y 〉 and E({X}) = {X = tX} then 〈t|E〉 ≡
〈X|X = tX〉�a.〈Y |Y = 〈X|X = tX〉�Y 〉. In particular, for any recursive specification

E(V ) and t ≡ X, 〈t|E〉 ≡ 〈X|E〉 whenever X ∈ V and 〈t|E〉 ≡ X if X /∈ V .

As usual, an occurrence of X in t is strongly (or, weakly) guarded if such occurrence is

within some subexpression a.t1 with a ∈ Act (τ.t1 or t1 ∨ t2 resp.). A variable X is strongly

(or, weakly) guarded in t if each occurrence of X is strongly (weakly resp.) guarded. Notice

that, since the first move of r ∨ s is a τ-transition (see Table 1), which is independent of

r and s, any occurrence of X in r ∨ s is treated as being weakly guarded. A recursive

specification E(V ) is guarded if for each X ∈ V and Z = tZ ∈ E(V ), each occurrence of

X in tZ is (weakly or strongly) guarded.

Convention 3.2. It is well known that unguarded processes cause many problems in many

aspects of the theory (Milner 1983) and unguarded recursion is incompatible with negative

rules (Bloom 1994). As usual, we assume that all recursive specifications considered in the

remainder of this paper are guarded.

We now provide SOS rules to specify the behaviour of processes (i.e., closed terms)

formally. All SOS rules are divided into two parts: operational and predicate rules.

Operational rules Rai(1 � i � 16) are listed in Table 1, where a ∈ Act, α ∈ Actτ and

A ⊆ Act. Negative premises in Rules Ra2, Ra3, Ra13 and Ra14 give τ-transition precedence

over visible transitions, which guarantees that the transition model of CLLR is τ-pure.

Rules Ra9 and Ra10 illustrate that the operational aspect of t1∨t2 is same as internal choice

in usual process calculus. Rule Ra6 reflects that conjunction operator is a synchronous

product for visible transitions. The operational rules of the other operators are as usual.
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Table 2. Predicate rules.

(Rp1)
−

⊥F
(Rp2)

x1F

α.x1F
(Rp3)

x1F, x2F

x1 ∨ x2F

(Rp4)
x1F

x1�x2F
(Rp5)

x2F

x1�x2F
(Rp6)

x1F

x1 ‖A x2F

(Rp7)
x2F

x1 ‖A x2F
(Rp8)

x1F

x1 ∧ x2F
(Rp9)

x2F

x1 ∧ x2F

(Rp10)
x1

a−→ y1, x2 	 a−→, x1 ∧ x2 	 τ−→
x1 ∧ x2F

(Rp11)
x1 	 a−→, x2

a−→ y2, x1 ∧ x2 	 τ−→
x1 ∧ x2F

(Rp12)
x1 ∧ x2

α−→ z, {yF : x1 ∧ x2
α−→ y}

x1 ∧ x2F
(Rp13)

{yF : x1 ∧ x2
ε

=⇒ |y}
x1 ∧ x2F

(Rp14)
〈tX |E〉F
〈X|E〉F (X = tX ∈ E) (Rp15)

{yF : 〈X|E〉 ε
=⇒ |y}

〈X|E〉F

Predicate rules in Table 2 specify the inconsistency predicate F . Rule Rp1 says that

⊥ is inconsistent. Hence ⊥ cannot be implemented. While 0 is consistent, which is an

implementable process. Thus 0 and ⊥ represent different processes. Rule Rp3 reflects that

if both two disjunctive parts are inconsistent then so is the disjunction. Rules Rp4 − Rp9

describe the system design strategy that if one part is inconsistent, then so is the whole

composition. Rules Rp10 and Rp11 reveal that a stable conjunction is inconsistent if its

conjuncts have distinct ready sets.

Rules Rp13 and Rp15 are used to capture (LTS2) in Definition 2.1, which are the

abbreviation of the rules with the format

{yF : ∃y0, y1, . . . , yn(z ≡ y0
τ−→ y1

τ−→ · · · τ−→ yn ≡ y and y 	 τ−→)}
zF

with z ≡ x1 ∧ x2 or 〈X|E〉. Intuitively, these two rules say that if all stable τ-descendants

of z are inconsistent, then z itself is inconsistent. Notice that, especially for readers who

are familiar with notations used in Lüttgen and Vogler (2010), the transition relation
ε

=⇒ | occurring in these two rules does not involve any requirement on consistency (see

Remark 2.1 and notations above it).

Since the behaviour of any process in CLL is finite, each process can reach a stable

state, and Rules Rp1 −Rp12 suffice to capture the inconsistency predicate F . In particular,

these rules guarantee that the LTS associated with CLL satisfies (LTS1) and (LTS2) in

Definition 2.1 (Zhang et al. 2011). However, for CLLR , Rules Rp1 − Rp12 are insufficient

even if the usual rule for recursive operations (i.e., Rp14) is added. For instance, consider

processes q ≡ 〈X|X = τ.X〉 and p ≡ 〈X|X = X ∨ 0〉 ∧ a.0, it is not difficult to see that

neither qF nor pF can be inferred by using only Rules Rp1 − Rp12 and Rp14, however,

both p and q should be inconsistent due to (LTS2). Fortunately, an inference of pF (or,

qF) is at hand by admitting Rule Rp13 (Rp15 resp.).
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In the remainder of this paper, we use PCLLR
to denote the transition system specification

(ΣCLLR
, Actτ, {F},RCLLR

) for CLLR , where ΣCLLR
is the set of all operators of CLLR and

RCLLR
= {Ra1, . . . , Ra16} ∪ {Rp1, . . . , Rp15}.

4. Stable transition model of PCLLR

For process calculi involving only positive SOS rules (e.g., CCS (Milner 1989a), π-calculus

(Milner et al. 1992)), every transition p
α−→ q is justified by an inference, which is a

well-founded tree whose root is the transition itself. Therefore, it is appropriate to prove

properties of transitions by induction on the depth of inference trees. In the framework

of transition system specifications (TSSs), Bol and Groote have observed that such proof

method is also powerful for some process calculi whose SOS rules contain negative

premises. However, in the presence of negative premises, inference rules applied in proof

trees are not SOS rules themselves but their stripped version (Bol and Groote 1996).

Several times in the remainder of this paper we shall need to prove properties of

transitions
α−→ and inconsistency predicate by induction on the depth of proof trees.

This section will give the stripped version of PCLLR
and provide a few basic properties

of the LTS associated with PCLLR
. Here we assume that the notions of transition model,

stable model, TSS and stratification of a TSS (see for instance Bol and Groote (1996))

are already familiar to the reader.

We begin with illustrating the existence and uniqueness of the stable model of PCLLR
.

By well-known results obtained in Bol and Groote (1996) and Groote (1993), in order to

demonstrate that PCLLR
has a unique stable model, it is sufficient to give a stratification

function of PCLLR
. To this end, a few preliminary notions are introduced. Given a term t,

the degree of t, denoted by |t|, is inductively defined as:

— |0| = |⊥| = |〈X|E〉| � 1; |α.t| � |t| + 1 with α ∈ Actτ;

— |t1 � t2| � |t1| + |t2| + 1 for each � ∈ {∧,�,∨, ‖A}.
Since it does not always hold that |〈tX |E〉| � |〈X|E〉|, we cannot afford a stratification by

using only this notion in the presence of Rule Ra16. Fortunately, thanks to Convention 3.2,

the function G defined below will bring us a measurement such that G(〈tX |E〉) � G(〈X|E〉).
The function G : T (ΣCLLR

) −→ N is defined by:

— G(〈X|E〉) � 1; G(t1 � t2) � G(t1) + G(t2) for each � ∈ {∧,�, ‖A};
— G(0) = G(⊥) = G(α.t) = G(t1 ∨ t2) � 0 with α ∈ Actτ.

Clearly, given a term t, G(t) is the number of unguarded recursive operations occurring in

t. Further, the function SPCLLR
: T (ΣCLLR

)×Actτ×T (ΣCLLR
) ∪ T (ΣCLLR

)×{F} −→ ω×2+1

is given below, where ω is the initial limit ordinal,

— SPCLLR
(t

α−→ t′) � G(t) × ω + |t|;
— SPCLLR

(tF) � ω × 2.

It is trivial to check that SPCLLR
is a stratification of PCLLR

. Here we only consider Rule

Ra16 as an example. It follows from Convention 3.2 that G(〈tX |E〉) = 0 and G(〈X|E〉) = 1,

which implies SPCLLR
(〈tX |E〉 α−→ y) < SPCLLR

(〈X|E〉 α−→ y) for any y ∈ T (ΣCLLR
), as

desired.
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Consequently, PCLLR
has a unique stable transition model. From now on, we use

MCLLR
to denote such stable model. In detail, MCLLR

consists of all positive liter-

als of the form t
α−→ t′ or tF which are provable in Strip(PCLLR

,MCLLR
), where

Strip(PCLLR
,MCLLR

) is the stripped version of PCLLR
, that is, it is the positive TSS

(ΣCLLR
, Actτ, {F}, Strip(RCLLR

,MCLLR
)) with

Strip(RCLLR
,MCLLR

) �

{
pprem(r)

conc(r)
| r ∈ RCLLR ground and MCLLR

|= nprem(r)

}
,

where RCLLR ground denotes the set of all ground instances of rules in RCLLR
, nprem(r) (or,

pprem(r)) is the set of negative (positive resp.) premises of r, conc(r) is the conclusion of

r and MCLLR
|= nprem(r) means that for each t 	 α−→∈ nprem(r), t

α−→ s /∈ MCLLR
for any

s ∈ T (ΣCLLR
).

Definition 4.1. The LTS associated with CLLR , in symbols LTS(CLLR), is the quadruple

(T (ΣCLLR
), Actτ,−→CLLR

, FCLLR
), where p

α−→CLLR
p′ iff p

α−→ p′ ∈ MCLLR
, and p ∈ FCLLR

iff pF ∈ MCLLR
.

Therefore, p
α−→CLLR

p′ (or, p ∈ FCLLR
) iff Strip(PCLLR

,MCLLR
) � p

α−→ p′ (pF resp.) for

any p, p′ and α ∈ Actτ. This allows us to proceed by induction on depths of inferences in

Strip(PCLLR
,MCLLR

) when demonstrating propositions concerning −→CLLR
and FCLLR

.

Convention 4.1. To simplify notation, we shall omit the subscript in labelled transition

relations
α−→CLLR

. Thus, the notation
α−→ has double utility: predicate symbols in the

TSS PCLLR
and labelled transition relations on processes in LTS(CLLR). Similarly, the

notation FCLLR
will be abbreviated by F . Hence the symbol F is overloaded, predicate

symbol in the TSS PCLLR
and the set of all inconsistent processes within LTS(CLLR).

In the following, we intend to provide a number of simple properties of LTS(CLLR).

In particular, we will show that LTS(CLLR) is a τ-pure LLTS. We begin with a list of

elementary facts.

Lemma 4.1. Let p and q be any two processes. Then

1. p ∨ q ∈ F iff p, q ∈ F .

2. α.p ∈ F iff p ∈ F for each α ∈ Actτ.

3. p � q ∈ F iff either p ∈ F or q ∈ F with � ∈ {�, ‖A}.
4. Either p ∈ F or q ∈ F implies p ∧ q ∈ F .

5. 0 /∈ F and ⊥ ∈ F .

6. 〈X|X = τ.X〉 ∈ F .

7. If ∀q(p ε
=⇒ |q implies q ∈ F) then p ∈ F .

8. 〈X|E〉 ∈ F iff 〈tX |E〉 ∈ F for each X with X = tX ∈ E.

Lemma 4.2. For any process p with τ ∈ I(p), if p ∈ F then ∀q(p τ−→ q implies q ∈ F).

Proof. Suppose p
τ−→ q. We may prove q ∈ F by induction on the depth of the inference

of Strip(PCLLR
,MCLLR

) � p
τ−→ q. The induction is easy to carry out by distinguishing

several cases based on the form of p.
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Theorem 4.1. LTS (CLLR) is a τ-pure LLTS.

Proof. (τ-purity) Suppose p
τ−→. Hence p

τ−→ q for some q. Then it would be established

by proving that p 	 a−→ for any a ∈ Act. It is straightforward by induction on the depth

of the inference of p
τ−→ q. (LTS1) Suppose α ∈ I(p) and ∀r(p α−→ r implies r ∈ F).

Then p
α−→ q for some q. To complete the proof, it suffices to show p ∈ F . It proceeds

by induction on the depth of the inference of p
α−→ q. The induction carries out by

distinguishing several cases based on the form of p. It is left to the reader. (LTS2) It

immediately follows from Lemmas 4.1(7) and 4.2.

Remark 4.1. It is worth pointing out that Lemma 4.2 does not always hold for LLTS. In

fact, the property ‘p ∈ F implies q ∈ F for each τ-derivative q of p’ is logically independent

of Definition 2.1. It is SOS rules adopted in this paper that bring such additional

property. Hence this paper restricts itself to specific LLTSs, which makes reasoning about

inconsistency a bit easier than in the general LLTS setting.

A simple observation on proof trees for Strip(PCLLR
,MCLLR

) � p ∧ qF is given below,

which will be used in establishing a fundamental property of conjunctive compositions.

Lemma 4.3. For any finite sequence p0 ∧q0
τ−→, . . . ,

τ−→ pi ∧qi
τ−→, . . . ,

τ−→ |pn ∧qn(n � 0),

if pi ∧qi ∈ F and pi, qi /∈ F for each i � n, then the inference of p0 ∧q0F essentially depends

on pn ∧ qnF , that is, each proof tree for Strip(PCLLR
,MCLLR

) � p0 ∧ q0F has a subtree with

root pn ∧ qnF , in particular, such subtree is proper if n � 1.

Proof. We prove the statement by induction on n. For the inductive basis n = 0, it

holds trivially due to p0 ∧ q0 ≡ pn ∧ qn. For the inductive step, assume that p0 ∧ q0
τ−→

p1 ∧ q1(
τ−→)k|pk+1 ∧ qk+1. Let T be any proof tree for Strip(PCLLR

,MCLLR
) � p0 ∧ q0F .

Since p0, q0 /∈ F and p0 ∧ q0
τ−→, the last rule applied in T is

either
p0 ∧ q0

α−→ r′, {rF : p0 ∧ q0
α−→ r}

p0 ∧ q0F
or

{rF : p0 ∧ q0
ε

=⇒ |r}
p0 ∧ q0F

.

For the first alternative, since LTS(CLLR) is τ-pure, we have α = τ. Then it follows

from p0 ∧ q0
τ−→ p1 ∧ q1 that, in the proof tree T , one of nodes directly above the root is

labelled with p1 ∧ q1F . Thus, by IH, T has a proper subtree with root pk+1 ∧ qk+1F .

For the second alternative, since p0 ∧ q0
ε

=⇒ |pk+1 ∧ qk+1, one of nodes directly above

the root of T is labelled with pk+1 ∧ qk+1F , as desired.

The next three results has been obtained for CLL in a pure process-algebraic style in

Zhang et al. (2011), where the proof essentially depends on the fact that, for any p within

CLL and α ∈ Actτ, p is of more complex structure than its α-derivatives. Unfortunately,

such property does not always hold for CLLR . Here we give another proof based on the

well foundness of proof trees.

Lemma 4.4. If p1 �
�RS

p2, p1 �
�RS

p3 and p1 /∈ F then p2 ∧ p3 /∈ F .

Proof. Let Ω = {q ∧ r : p �
�RS

q, p �
�RS

r and p /∈ F}. Clearly, it suffices to prove that

F ∩ Ω = �. Conversely, suppose that F ∩ Ω 	= �. In the following, we intend to prove

https://doi.org/10.1017/S0960129514000073 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000073


Y. Zhang, Z. H. Zhu and J. J. Zhang 1392

that, for each t ∈ Ω, any proof tree of tF has a proper subtree with root t′F for some

t′ ∈ Ω. This contradicts the requirement on proof trees that they are well founded, and

hence a contradiction arises at this point, as desired. So, to complete the proof, it suffices

to show:

Claim. For any s ∈ Ω, each proof tree for Strip(PCLLR
,MCLLR

) � sF has a proper subtree

with root s′F for some s′ ∈ Ω.

Suppose q ∧ r ∈ Ω. Then p �
�RS

q, p �
�RS

r and p /∈ F for some p. Thus it follows that

q /∈ F, r /∈ F and I(p) = I(q) = I(r). (4.4.1)

Let T be any proof tree of q ∧ rF . By (4.4.1), the last rule applied in T is

either
{sF : q ∧ r

ε
=⇒ |s}

q ∧ rF
or

q ∧ r
α−→ s′, {sF : q ∧ r

α−→ s}
q ∧ rF

.

Since both q and r are stable, so is q ∧ r. Then, for the first alternative, the label of the

node directly above the root of T is q ∧ rF itself, as desired.

Next we consider the second alternative. In this case, τ 	= α ∈ I(q ∧ r) and

∀s(q ∧ r
α−→ s implies s ∈ F). (4.4.2)

Hence α ∈ I(q) ∩ I(r). Then α ∈ I(p) due to (4.4.1). Further, since p /∈ F , by Theorem 4.1,

we get

p
α−→F p′ ε

=⇒F |p′′ for some p′ and p′′. (4.4.3)

Then it immediately follows from p �
�RS

q and p �
�RS

r that

q
α−→F q′ ε

=⇒F |q′′ and p′′ �
�RS

q′′ for some q′, q′′, and (4.4.4)

r
α−→F r′ ε

=⇒F |r′′ and p′′ �
�RS

r′′ for some r′, r′′. (4.4.5)

So, q ∧ r
α−→ q′ ∧ r′. Then q′ ∧ r′ ∈ F by (4.4.2). Moreover, we obtain q′ ≡ q0

τ−→F

, . . . ,
τ−→F |qn ≡ q′′ for some qi(0 � i � n), and r′ ≡ r0

τ−→F , . . . ,
τ−→F |rm ≡ r′′ for some

rj(0 � j � m). Then

q′ ∧ r′ ≡ q0 ∧ r0
τ−→, . . . ,

τ−→ qn ∧ r0
τ−→ qn ∧ r1, . . . ,

τ−→ |qn ∧ rm ≡ q′′ ∧ r′′. (4.4.6)

By Lemma 4.2, it follows from q′ ∧ r′ ∈ F that

qi ∧ rj ∈ F for each qi ∧ rj occurring in (4.4.6). (4.4.7)

It follows from (4.4.3)–(4.4.5) that qn ∧ rm ≡ q′′ ∧ r′′ ∈ Ω. Moreover, since one of nodes

directly above the root of T is labelled with q′ ∧ r′F , by (4.4.6), (4.4.7) and Lemma 4.3, it

follows from qi /∈ F(0 � i � n) and rj /∈ F(0 � j � m) that T has a proper subtree with

root qn ∧ rmF .

Remark 4.2. The preceding proof is our first example of reasoning about consistency via

proof trees for the F-predicate. We shall see many other proofs of this type later. The
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soundness of this reasoning manner relies on the fact that the predicate F is interpreted

as the set of all terms p such that Strip(PCLLR
,MCLLR

) � pF . It is not difficult to see that

this fact is equivalent to the statement that FCLLR
is the least set closed under positive

rules with the form like pprem(r)
conc(r)

, where r is any ground instance of rules in Table 2 such

that MCLLR
|= nprem(r). Based on the notion of so-called witnesses, Lüttgen and Vogler

employ another manner to reason about consistency of states in the frameworks of LLTS.

Such manner depends on the fact that for each operator � over LLTSs considered in

Lüttgen and Vogler (2010), the inconsistent set F� is defined as the least set of states

satisfying analogous closure properties. These two reasoning manners are the same in

spirit and are actually the two sides of the same coin: they both rely on the fact that F is

the least set closed under certain rules but apply it in different style.

Lemma 4.5. If p �
�RS

q and p �
�RS

r then p �
�RS

q ∧ r.

Proof. Set R = {(p1, p2 ∧ p3) : p1 �
�RS

p2 and p1 �
�RS

p3}. It suffices to show that R
is a stable ready simulation relation, which is almost immediate by using Lemma 4.4 to

handle (RS2) and (RS3).

We conclude this section with recalling a result obtained in Lüttgen and Vogler (2010)

and Zhang et al. (2011) in different style, which reveals that �RS is precongruent w.r.t the

operators �, ‖A, ∨ and ∧. Its proof is not much different from one given in Zhang et al.

(2011). In particular, Lemma 4.5 is applied in the proof for the case � = ∧.

Theorem 4.2.

1. For each � ∈ {�, ‖A,∧}, if p �
�RS

q and s �
�RS

r then p � s �
�RS

q � r.

2. For each � ∈ {�, ‖A,∨,∧}, if p �RS q and s �RS r then p � s �RS q � r.

5. Unfolding, context and transitions

As mentioned in Introduction, reasoning about the F-predicate is a crucial issue in this

paper. The reasoning manner of Lemma 4.4 will be adopted often in the sequel. The

main steps in such reasoning manner include: defining a set Ω of processes firstly, and

then arguing that any proof tree of pF with p ∈ Ω contains a proper subtree with root

qF for some q ∈ Ω. Since the definition of Ω often depends on the formats of processes

and SOS rules concerning F-predicate involve predicates
α−→ and

ε
=⇒ |, to carry out

such reasoning, it is necessary to capture the connection between the formats of p and

q for a given transition p
α−→ q (or, p

ε
=⇒ |q). This section will provide a detailed

exposition of this. In Subsection 5.1, we will recall the notion of unfolding, which plays

an important role when describing formats of derivatives in the presence of recursions.

Subsection 5.2 will be concerned with capturing one-step transitions in terms of contexts

and substitutions. A treatment of a more general case involving sequences of τ-transitions

will be considered in Subsection 5.3.
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5.1. Unfolding

In the presence of recursions, an α-derivative q of a given process p is not always a

subterm of p. To describe the format of q explicitly, the notion of so-called unfolding is

needed. This subsection will focus on this notion.

Definition 5.1. Let X be a free variable in a given term t. An occurrence of X in t is

unfolded, if this occurrence does not occur in the scope of any recursive operation 〈Y |E〉.
Moreover, X is unfolded if all occurrences of X in t are unfolded.

Definition 5.2 (Baeten and Bravetti 2008). A series of binary relations�k over terms with

k < ω is defined inductively as:

— t�0 s if t ≡ s;

— t �1 s if t has a subterm 〈Y |E〉 with Y = tY ∈ E which is not in the scope of any

recursive operation, and s is obtained from t by replacing this subterm by 〈tY |E〉;
— t�k+1 s if t�k t

′ and t′ �1 s for some term t′.

Moreover ��
⋃

0�k<ω

�k . For any t and s, s is a multi-step unfolding of t if t� s.

For instance, consider t ≡ (〈X|X = a.X�b.〈Y |Y = c.Y 〉〉�d.0)�Z , we have

t�1 ((a.〈X|X = a.X�b.〈Y |Y = c.Y 〉〉�b.〈Y |Y = c.Y 〉)�d.0)�Z,

but it does not hold that t �1 (〈X|X = a.X�b.c.〈Y |Y = c.Y 〉〉�d.0)�Z because the

subterm 〈Y |Y = c.Y 〉 is in the scope of the recursive operation 〈X|X = a.X�b.〈Y |Y =

c.Y 〉〉. As an immediate consequence of Definition 5.2, the simple result below provides

an equivalent formulation of �1.

Lemma 5.1. t1 �1 t2 iff there exists a term s and variable X such that

1�. X is a unfolded variable in s,

2�. X occurs in s exactly once and

3�. t1 ≡ s{〈Y |E〉/X} and t2 ≡ s{〈tY |E〉/X} for some Y , E with Y = tY ∈ E.

A few trivial but useful results concerning �n are listed in the next lemma. With the

help of Lemma 5.1 and Convention 3.2, its proof is straightforward by induction on n.

Lemma 5.2. For any terms t, s and X ∈ FV (t), if t�n s then,

1. if X is unfolded in t then so it is in s and the number of occurrences of X in s is equal

to that in t;

2. the number of unguarded occurrences of X in s is not more than that in t;

3. if X is (strongly) guarded in t then so it is in s;

4. FV (s) ⊆ FV (t);

5. if X occurs in the scope of conjunction in s (that is, there exists a subterm t1 ∧ t2 of s

such that X occurs in either t1 or t2) then so does it in t.

Notice that the clause (2) in the above lemma does not always hold for guarded

occurrences. For example, consider t ≡ 〈X|X = a.X ∧ b.Y 〉, we have t �1 a.〈X|X =

a.X ∧ b.Y 〉 ∧ b.Y , and Y guardedly occurs in the latter twice but occurs in t only once.
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Clearly, the clause (2) strongly depends on Convention 3.2. Moreover the clause (4) cannot

be strengthened to ‘FV (s) = FV (t)’. Consider t ≡ 〈X1|{X1 = a.0, X2 = b.X1�Y }〉 and

t�1 a.0, then we have FV (t) = {Y } and FV (a.0) = �.

The next result depends on Convention 3.2, which asserts that, for any term t, its

all unguarded occurrences of free variables may become unfolded through unfolding

t enough times. For instance, consider t ≡ 〈Z |Z = a.Z�〈Y |Y = b.Y�X〉〉, we have

t �1 a.t�〈Y |Y = b.Y�X〉 �1 a.t�(b.〈Y |Y = b.Y�X〉�X). The proof of this result has

been given in Zhang et al. (2013).

Lemma 5.3. For any term t, there exists a term s such that t � s and each unguarded

occurrence of any free variable in s is unfolded.

5.2. Contexts and transitions

To show that �RS is precongruent, i.e., p �RS q implies CX{p/X} �RS CX{q/X} for any

context CX , we are required to capture the connection between behaviours of CX{p/X}
and CX{q/X}. To this end, it is necessary to extract the pattern behind a given transition

CX{p/X} α−→ r. This subsection intends to explore this issue. In particular, Lemmas 5.6

and 5.7 give general conclusions for this issue in cases α = τ and α ∈ Act respectively. As

simple applications of these results, Lemmas 5.8 and 5.9 consider two particular instances;

moreover a few of useful properties concerning unfolding are also given in Lemmas 5.10,

5.12 and 5.13.

Definition 5.3 (context). A context CX̃ is a term whose free variables are in some n-

tuple distinct variables X̃ = (X1, . . . , Xn) with n � 0. Given p̃ = (p1, . . . , pn), the term

CX̃{p1/X1, . . . , pn/Xn} (CX̃{p̃/X̃} for short) is obtained from CX̃ by replacing Xi by pi for

each i � n simultaneously. In particular, we use CX̃{p/X̃} to denote the result of replacing

all variables in X̃ by p. A context CX̃ is stable if CX̃{0/X̃} 	 τ−→.

In the remainder of this paper, whenever the expression CX̃{p̃/X̃} occurs, we always

assume that |p̃| = |X̃| and CX̃{p̃/X̃} is subject to Convention 3.1 (recursive variables

occurring in p̃ may be renamed if it is necessary), where |X̃| is the length of the tuple X̃.

Definition 5.4 (active). An occurrence of a free variable X in t is active if such occurrence

is unguarded and unfolded. A free variable X in t is active if all its occurrences are active.

A free variable X in t is 1-active if X occurs in t exactly once and such occurrence is

active.

For example, X is 1-active in 〈Y |Y = a.Y 〉�X. Moreover, it is evident that, for any

context CX̃ , if there exists an active occurrence of some variable within CX̃ , then CX̃ is

not of the form α.BX̃ , BX̃ ∨ DX̃ and 〈Y |E〉. Applying this fact, the next two lemmas are

almost immediate by induction on the structure of context.

Lemma 5.4. For any CX̃ with 1-active variable Xi0 and p̃ with pi0
τ−→ p′, CX̃{p̃/X̃} τ−→

CX̃{p̃ [p′/pi0 ]/X̃} where p̃ [p′/pi0 ] is obtained from p̃ by replacing pi0 by p′.

Lemma 5.5. For any p and CX with 1-active variable X, if p ∈ F then CX{p/X} ∈ F .
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Notice that Lemma 5.4 does not always hold for visible transitions. For instance,

consider CX ≡ X�τ.r and p ≡ a.q, although p
a−→ q and X is 1-active in CX , it is false

that CX{p/X} a−→.

To prove that �RS is still precongruent in the presence of recursive operations, it

is necessary to formally describe the contribution of CX̃ and p̃ for a given transition

CX̃{p̃/X̃} α−→ r. In the following, we provide a few of results concerning this.

We begin with considering τ-transitions. Before giving the next lemma formally, we

illustrate the intuition behind it by means of an example. Consider CX ≡ (a.0 ∨ X)�X,

BX ≡ 〈Y |Y = X�b.Y 〉�c.0, p ≡ τ.0 and q ≡ d.0, then we have two τ-transitions

CX{q/X} τ−→ a.0�d.0

and

BX{p/X} τ−→ (0�b.〈Y |Y = τ.0�b.Y 〉)�c.0.
It is not difficult to see that these two τ-transitions depend on the capability of CX and p

respectively. For the former, no matter what q′ is, the corresponding τ-transition still exists

for CX{q′/X}. Moreover the target has the same pattern. That is, CX{q′/X} τ−→ C ′
X{q′/X}

for any q′, where C ′
X ≡ a.0�X. To gain more intuition, we consider the proof tree of the

second τ-transition:

τ.0
τ−→ 0

τ.0�b.〈Y |Y = τ.0�b.Y 〉 τ−→ 0�b.〈Y |Y = τ.0�b.Y 〉
〈Y |Y = τ.0�b.Y 〉 τ−→ 0�b.〈Y |Y = τ.0�b.Y 〉

BX{p/X} ≡ 〈Y |Y = τ.0�b.Y 〉�c.0 τ−→ (0�b.〈Y |Y = τ.0�b.Y 〉)�c.0
It is evident that, although the free variable X occurs in BX only once, the term p(≡ τ.0)

occurs twice in the unfolding (τ.0�b.〈Y |Y = τ.0�b.Y 〉)�c.0 (of BX{p/X}). It is the

leftmost occurrence of τ.0 that causes this τ-transition. For any p′ with p′ τ−→ p′′, we

can get the proof tree of the τ-transition BX{p′/X} τ−→ (p′′�b.〈Y |Y = p′�b.Y 〉)�c.0
by modifying the tree above in an obvious way. In order to illustrate that these two

τ-derivatives (0�b.〈Y |Y = τ.0�b.Y 〉)�c.0 and (p′′�b.〈Y |Y = p′�b.Y 〉)�c.0 have the

same pattern, we may set B′
X,Z ≡ (Z�b.〈Y |Y = X�b.Y 〉)�c.0 with Z 	≡ X. Clearly,

(0�b.〈Y |Y = τ.0�b.Y 〉)�c.0 ≡ B′
X,Z{τ.0/X, 0/Z} and (p′′�b.〈Y |Y = p′�b.Y 〉)�c.0 ≡

B′
X,Z{p′/X, p′′/Z}. Here the fresh variable Z is used to indicate the place where p′′(or 0)

is introduced.

We capture the preceding observation formally as follows, where two clauses concern

themselves about τ-transitions exited by contexts and substitutions respectively; moreover

some simple properties on contexts are also listed in (C-τ-3) which will be used in the

sequel.

Lemma 5.6. For any CX̃ and p̃, if CX̃{p̃/X̃} τ−→ r then one of conclusions below holds.

1. There exists C ′
X̃

such that

(C-τ-1) r ≡ C ′
X̃

{p̃/X̃};
(C-τ-2) for any processes q̃, CX̃{q̃/X̃} τ−→ C ′

X̃
{q̃/X̃};
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(C-τ-3) for each X ∈ X̃,

(C-τ-3-i) if X is active in CX̃ then so it is in C ′
X̃

and the number of occurrences of

X in C ′
X̃

is equal to that in CX̃;

(C-τ-3-ii) if X is unfolded in CX̃ then so it is in C ′
X̃

and the number of occurrences

of X in C ′
X̃

is not more than that in CX̃;

(C-τ-3-iii) if X is strongly guarded in CX̃ then so it is in C ′
X̃
;

(C-τ-3-iv) if X does not occur in the scope of any conjunction in CX̃ then neither

does it in C ′
X̃
.

2. There exist C ′
X̃
, C ′′

X̃,Z
with Z /∈ X̃ and i � |X̃| such that

(P-τ-1) CX̃ � C ′
X̃
, in particular, if Xi is active in CX̃ then C ′

X̃
≡ CX̃;

(P-τ-2) pi
τ−→ p′ and r ≡ C ′′

X̃,Z
{p̃/X̃, p′/Z} for some p′;

(P-τ-3) C ′′
X̃,Z

{Xi/Z} ≡ C ′
X̃

and Z is 1-active in C ′′
X̃,Z

;

(P-τ-4) CX̃{q̃/X̃} τ−→ C ′′
X̃,Z

{q̃/X̃, q′/Z} for any processes q̃ with qi
τ−→ q′.

Proof. It proceeds by induction on the depth of the inference of CX̃{p̃/X̃} τ−→ r. It is

easy to carry out based on the form of CX̃ . In particular, Lemma 5.2 is used to handle

the case CX ≡ 〈X|E〉. The details may be found in Zhang et al. (2013).

In the following, we intend to provide an analogue of Lemma 5.6 for visible transitions.

To explain intuition behind the next result clearly, it is best to work with an example.

Consider CX1 ,X2
≡ ((X1 ∧ 〈Y |Y = a.Y 〉)�a.b.0) ‖{b} (X1 ∧ X2), p1 ≡ a.0 and p2 ≡ a.c.0, we

have three a-transitions

CX1 ,X2
{p1/X1, p2/X2} a−→ (0 ∧ 〈Y |Y = a.Y 〉) ‖{b} (a.0 ∧ a.c.0),

CX1 ,X2
{p1/X1, p2/X2} a−→ b.0 ‖{b} (a.0 ∧ a.c.0),

and

CX1 ,X2
{p1/X1, p2/X2} a−→ ((a.0 ∧ 〈Y |Y = a.Y 〉)�a.b.0) ‖{b} (0 ∧ c.0).

These visible transitions starting from CX1 ,X2
{p1/X1, p2/X2} are activated by three distinct

events. Clearly, both the context CX1 ,X2
and the substitution p1 contribute to the first

transition, while two latter transitions depend merely on the capability of CX1 ,X2
and p̃1,2

respectively. These three situations may be described uniformly in the lemma below. Here

some additional properties on contexts are also listed in (CP-a-4).

Lemma 5.7. For any a ∈ Act, CX̃ and p̃, if CX̃{p̃/X̃} a−→ r then there exist C ′
X̃
, C ′

X̃,Ỹ
and

C ′′
X̃,Ỹ

with X̃ ∩ Ỹ = � satisfying the conditions:

(CP-a-1) CX̃ � C ′
X̃
;

(CP-a-2) for each Y ∈ Ỹ , Y is 1-active in C ′
X̃,Ỹ

and C ′′
X̃,Ỹ

;

(CP-a-3) there exist iY � |X̃| for each Y ∈ Ỹ such that

(CP-a-3-i) C ′
X̃,Ỹ

{X̃iY /Ỹ } ≡ C ′
X̃
;

(CP-a-3-ii) for each Y ∈ Ỹ , piY
a−→ p′

Y for some p′
Y , and r ≡ C ′′

X̃,Ỹ
{p̃/X̃, p̃′

Y /Ỹ };
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(CP-a-3-iii) for any q̃ with |q̃| = |X̃| and q̃′ such that |q̃′| = |Ỹ | and qiY
a−→ q′

Y for each

Y ∈ Ỹ , if CX̃{q̃/X̃} is stable then CX̃{q̃/X̃} a−→ C ′′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ };

(CP-a-4) for each X ∈ X̃,

(CP-a-4-i) the number of occurrences of X in C ′′
X̃,Ỹ

is not more than that in C ′
X̃,Ỹ

;

(CP-a-4-ii) if X is active in C ′
X̃,Ỹ

then so it is in C ′′
X̃,Ỹ

;

(CP-a-4-iii) if X does not occur in the scope of any conjunction in CX̃ then neither

does it in C ′′
X̃,Ỹ

.

Proof. By induction on the depth of the inference of CX̃{p̃/X̃} a−→ r. A full proof is

given in Zhang et al. (2013).

Intuitively, whenever all free variables occurring in CX̃ are guarded, any transition

starting from CX̃{p̃/X̃} must be performed by CX̃ itself. Formally, we have the following

result whose proof is a simple application of Lemmas 5.2, 5.6 and 5.7.

Lemma 5.8. Let X be guarded in CX̃ for each X ∈ X̃. If CX̃{p̃/X̃} α−→ r then there exists

BX̃ such that r ≡ BX̃{p̃/X̃} and CX̃{q̃/X̃} α−→ BX̃{q̃/X̃} for any q̃.

The next lemma is another particular instance of Lemmas 5.6 and 5.7, which considers

the case where the substitution is of the form 〈Y |E〉 or 〈tY |E〉. Its argument is splitted

into two cases α = τ or α ∈ Act, and uses Lemmas 5.2, 5.6 and 5.7. Its full proof is also

contained in Zhang et al. (2013).

Lemma 5.9. For any Y , E with Y = tY ∈ E and context CX with at most one occurrence

of the unfolded variable X, if CX{〈Y |E〉/X} α−→ q then there exists BX such that

q ≡ BX{〈Y |E〉/X}, CX{〈tY |E〉/X} α−→ BX{〈tY |E〉/X}, and X occurs in BX at most once

and such occurrence is unfolded. Moreover the statement still holds if we replace 〈Y |E〉
and 〈tY |E〉 by 〈tY |E〉 and 〈Y |E〉 respectively.

Based on the results obtained so far, we shall give a few further properties of unfolding.

We first want to indicate some simple properties.

Lemma 5.10. The relation� satisfies the forward and backward conditions, that is, p� q

implies that, for any �∈ { α−→,
ε

=⇒,
ε

=⇒ | : α ∈ Actτ},
1. if p� p′ then q � q′ and p′ � q′ for some q′;

2. if q � q′ then p� p′ and p′ � q′ for some p′.

Proof. It follows from p � q that p �n q for some n. In case �=
α−→, the proof is

straightforward by induction on n and using Lemmas 5.1 and 5.9. Moreover the arguments

of other cases are also immediate by applying the conclusion for
α−→ finitely often.

In fact, it is to be expected that p � q implies p =RS q. To verify it, we need to prove

that p ∈ F iff q ∈ F . The next lemma will serve as a stepping stone in proving this.

Lemma 5.11. For any Y , E with Y = tY ∈ E and context CX with at most one occurrence

of the unfolded variable X, CX{〈Y |E〉/X} ∈ F iff CX{〈tY |E〉/X} ∈ F .
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Proof. With the help of Lemma 5.9, both implications can be readily proved by induc-

tion on the depth of the inference of CX{〈Y |E〉/X}F and CX{〈tY |E〉/X}F respectively.

By Lemmas 5.1 and 5.11, it is not difficult to get the following result, which asserts that

the relation � preserves and respects the inconsistency.

Lemma 5.12. For any p, q, if p� q, then p ∈ F iff q ∈ F .

We now have the assertion of the equivalence of p and q modulo =RS whenever p� q.

Lemma 5.13. If p1 � p2 then p1 =RS p2, in particular, p1 ≈RS p2 whenever p1 	 τ−→.

Proof. We only prove p1 �
�RS

p2 whenever p1 	 τ−→. Set R = {(p, q) : p � q and p 	 τ−→}.
It suffices to prove that R is a stable ready simulation relation. Let (p, q) ∈ R. By

Lemmas 5.10 and 5.12, it is evident that such pair satisfies (RS1), (RS2) and (RS4). For

(RS3), suppose p
a

=⇒F |p′. Then p
a−→F p′′ ε

=⇒F |p′ for some p′′. By Lemmas 5.10 and

5.12, there exists q′′ such that q
a−→F q′′ and p′′ � q′′. Further, by Lemmas 4.2, 5.10 and

5.12, p′ � q′ and q′′ ε
=⇒F |q′ for some q′. Moreover (p′, q′) ∈ R, as desired.

5.3. τ-transition sequences and canonical evolution paths

We have considered the pattern behind a given transition CX̃{p̃/X̃} α−→ r. However, it is

insufficient for the aim of this paper. The transitions with the form like CX̃{p̃/X̃} ε
=⇒ r

play a central role when arguing consistency and behaviour of processes. Thus, this

subsection will generalize Lemma 5.6 to the situation involving a sequence of τ-transitions

(see Lemma 5.14). Moreover two kinds of canonical evolution paths for a given transition

CX̃{p̃/X̃} ε
=⇒ |r will be given in Lemmas 5.17 and 5.18.

Given a process CX̃{p̃/X̃}, by Lemma 5.6, any τ-transition starting from CX̃{p̃/X̃}
may be caused by CX̃ itself or some pi. Thus, for a sequence of τ-transitions, these two

situations may occur alternately. Based on Lemma 5.6, we can capture this as follows.

Lemma 5.14. If CX̃{p̃/X̃} ε
=⇒ r then there exist C ′

X̃,Ỹ
, iY � |X̃| and p′

Y for Y ∈ Ỹ such

that

(MS-τ-1) X̃ ∩ Ỹ = � and Y is 1-active in C ′
X̃,Ỹ

for each Y ∈ Ỹ ;

(MS-τ-2) piY
τ

=⇒ p′
Y for each Y ∈ Ỹ and r ≡ C ′

X̃,Ỹ
{p̃/X̃, p̃′

Y /Ỹ };

(MS-τ-3) for any q̃ and q̃′
Y with |q̃| = |X̃| and Y ∈ Ỹ ,

(MS-τ-3-i) if qiY
ε

=⇒ q′
Y for each Y ∈ Ỹ then CX̃{q̃/X̃} ε

=⇒� C ′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ };

(MS-τ-3-ii) if qiY
τ

=⇒ q′
Y for each Y ∈ Ỹ then CX̃{q̃/X̃} ε

=⇒ C ′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ };

(MS-τ-4) if CX̃ is stable then so is C ′
X̃,Ỹ

and CX̃{q̃/X̃}� C ′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ } for any q̃;

(MS-τ-5) for each X ∈ X̃, if X is strongly guarded in CX̃ then so it is in C ′
X̃,Ỹ

and

X 	≡ XiY for each Y ∈ Ỹ ;

(MS-τ-6) for each X ∈ X̃ (or, Y ∈ Ỹ ), if X (XiY resp.) does not occur in the scope of any

conjunction in CX̃ then neither does X (Y resp.) in C ′
X̃,Ỹ

;

(MS-τ-7) if r is stable then so are C ′
X̃,Ỹ

and p′
Y for each Y ∈ Ỹ .
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Proof. Suppose CX̃{p̃/X̃}( τ−→)nr(n � 0). We proceed by induction on n. For the

inductive base n = 0, the conclusion holds trivially by taking C ′
X̃,Ỹ
� CX̃ with Ỹ = �.

For the inductive step, assume CX̃{p̃/X̃}( τ−→)ks
τ−→ r for some s. For the transition

CX̃{p̃/X̃}( τ−→)ks, by IH, there exist C ′
X̃,Ỹ

, iY � |X̃| and p′
Y for Y ∈ Ỹ that realize (MS-τ-l)

(1 � l � 7). In particular, we have s ≡ C ′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } due to (MS-τ-2). Then, for the

transition s
τ−→ r, either the clause (1) or (2) in Lemma 5.6 holds. The argument splits

into two cases.

Case 1. For the transition s
τ−→ r, the clause (1) in Lemma 5.6 holds.

That is, for the transition C ′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } ≡ s

τ−→ r, there exists C ′′
X̃,Ỹ

satisfying

(C-τ-1,2,3) in Lemma 5.6. We shall check that C ′′
X̃,Ỹ

, ĩY and p̃′
Y realize (MS-τ-1) - (MS-τ-7)

w.r.t CX̃{p̃/X̃}( τ−→)k+1r.

Since C ′
X̃,Ỹ

satisfies (MS-τ-1,5,6), it follows that C ′′
X̃,Ỹ

and ĩY realize (MS-τ-1), (MS-τ-5)

and (MS-τ-6) due to (C-τ-3-i), (C-τ-3-iii) and (C-τ-3-iv) respectively. Moreover, as C ′′
X̃,Ỹ

satisfies (C-τ-1) it follows immediately that (MS-τ-2) holds. Since C ′′
X̃,Ỹ

satisfies (C-τ-2),

by Lemma 5.6, C ′
X̃,Ỹ

is not stable. Then neither is CX̃ because C ′
X̃,Ỹ

satisfies (MS-τ-4).

Thus C ′′
X̃,Ỹ

satisfies (MS-τ-4) trivially. Next we verify (MS-τ-3). Let q̃ be any processes

with |q̃| = |X̃| and qiY
ε

=⇒ q′
Y for each Y ∈ Ỹ .

(MS-τ-3-i) Since C ′
X̃,Ỹ

satisfies (MS-τ-3-i), CX̃{q̃/X̃} ε
=⇒ t � C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } for

some t. Moreover we have C ′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ } τ−→ C ′′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } due to (C-τ-2). Then

it follows from Lemma 5.10 that t
τ−→ t′ � C ′′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } for some t′. Therefore

CX̃{q̃/X̃} ε
=⇒ t

τ−→ t′ � C ′′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ }, as desired.

(MS-τ-3-ii) Straightforward as C ′
X̃,Ỹ

satisfies (MS-τ-3-ii) and C ′′
X̃,Ỹ

satisfies (C-τ-2).

(MS-τ-7) Suppose r ≡ C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } 	 τ−→. Then, since C ′′

X̃,Ỹ
satisfies (MS-τ-1), by

Lemmas 5.4 and 5.6, it is easy to see that both C ′′
X̃,Ỹ

and p̃′
Y are stable.

Case 2. For the transition s
τ−→ r, the clause (2) in Lemma 5.6 holds.

Then there exist i0 � |X̃| + |Ỹ |, C ′′
X̃,Ỹ

(≡ C ′′
X1 ,...,X|X̃| ,Y|X̃|+1 ,...,Y|X̃|+|Ỹ |

) and C ′′′
X̃,Ỹ ,Z

(≡
C ′′′
X1 ,...,X|X̃| ,Y|X̃|+1 ,...,Y|X̃|+|Ỹ | ,Z

) with Z /∈ X̃ ∪ Ỹ satisfying (P-τ-1) - (P-τ-4). By (P-τ-3),

C ′′
X̃,Ỹ

≡

⎧⎪⎨
⎪⎩

C ′′′
X̃,Ỹ ,Z

{Xi0/Z}, if 1 � i0 � |X̃|;

C ′′′
X̃,Ỹ ,Z

{Yi0/Z}, if |X̃| + 1 � i0 � |X̃| + |Ỹ |.

In case |X̃| + 1 � i0 � |X̃| + |Ỹ |, by (P-τ-2), there exists p′ such that p′
Yi0

τ−→ p′ and r ≡
C ′′′
X̃,Ỹ ,Z

{p̃/X̃, p̃′
Y /Ỹ , p′/Z}. Moreover, since Yi0 is 1-active in C ′

X̃,Ỹ
, by (P-τ-1), we have

C ′
X̃,Ỹ

≡ C ′′
X̃,Ỹ

. Further, since Z is 1-active in C ′′′
X̃,Ỹ ,Z

and C ′′
X̃,Ỹ

≡ C ′′′
X̃,Ỹ ,Z

{Yi0/Z}, it is

easy to see that Yi0 does not occur in C ′′′
X̃,Ỹ ,Z

. Hence r ≡ C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y [p′/p′

Yi0
]/Ỹ }
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≡ C ′
X̃,Ỹ

{p̃/X̃, p̃′
Y [p′/p′

Yi0
]/Ỹ }. Then it is not difficult to check that C ′

X̃,Ỹ
, p̃′

Y [p′/p′
Yi0

] and

ĩY realize (MS-τ-l)(1 � l � 7) w.r.t the transition CX̃{p̃/X̃}( τ−→)k+1r, as desired.

In case 1 � i0 � |X̃|, by (P-τ-2), there exists p′′ such that pi0
τ−→ p′′ and r ≡

C ′′′
X̃,Ỹ ,Z

{p̃/X̃, p̃′
Y /Ỹ , p′′/Z}. Set iZ � i0 and p′

Z � p′′. In the following, we intend to verify

that C ′′′
X̃,Ỹ ,Z

, iU (U ∈ Ỹ ∪ {Z}) and |Ỹ | + 1-tuple p̃′
U with U ∈ Ỹ ∪ {Z} realize (MS-τ-1) -

(MS-τ-7) w.r.t CX̃{p̃/X̃}( τ−→)k+1r.

(MS-τ-1) By (P-τ-1), we have C ′
X̃,Ỹ
� C ′′

X̃,Ỹ
. Moreover, since C ′

X̃,Ỹ
satisfy (MS-τ-1), by

Lemma 5.2(1), Y is 1-active in C ′′
X̃,Ỹ

for each Y ∈ Ỹ . Further, by (P-τ-3), each Y (∈ Ỹ ) and

Z are 1-active in C ′′′
X̃,Ỹ ,Z

. (MS-τ-2) It is straightforward. (MS-τ-4) Assume CX̃ is stable.

By (MS-τ-4), C ′
X̃,Ỹ

is stable and for any q̃, CX̃{q̃/X̃} � C ′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ }. Then, by

Lemma 5.10, it follows from C ′
X̃,Ỹ
� C ′′

X̃,Ỹ
(i.e., (P-τ-1)) and C ′′′

X̃,Ỹ ,Z
{XiZ /Z} ≡ C ′′

X̃,Ỹ
((P-τ-

3)) that C ′′′
X̃,Ỹ ,Z

is stable and C ′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ }� C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃iY /Ỹ , qiZ /Z}. (MS-τ-5,6)

By Lemma 5.2(3)(5), they immediately follow from the fact that C ′
X̃,Ỹ

satisfies (MS-τ-5,6)

and C ′′′
X̃,Ỹ ,Z

satisfies (P-τ-1,3). (MS-τ-7) Immediately follows from (MS-τ-1), (MS-τ-2) and

Lemmas 5.4 and 5.6. In the following, we check (MS-τ-3). Let q̃ be any processes with

|q̃| = |X̃|.
(MS-τ-3-i) Suppose qiU

ε
=⇒ q′

U for each U ∈ Ỹ ∪ {Z}. Since C ′
X̃,Ỹ

satisfies (MS-τ-3-i),

we have CX̃{q̃/X̃} ε
=⇒ t� C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } for some t. It follows from qiZ
ε

=⇒ q′
Z that

qiZ (
τ−→)mq′

Z for some m � 0. We shall distinguish two cases based on m.

In case m = 0, we get qiZ ≡ q′
Z . Since C ′′′

X̃,Ỹ ,Z
satisfies (P-τ-1) and (P-τ-3), we have

C ′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ }� C ′′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } ≡ C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′

Z/Z}.

Therefore, CX̃{q̃/X̃} ε
=⇒ t� C ′′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } ≡ C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′

Z/Z}.

In case m > 0, i.e., qiZ
τ−→ q′′ ε

=⇒ q′
Z for some q′′, by (P-τ-4), we obtain

C ′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ } τ−→ C ′′′

X̃,Ỹ ,Z
{q̃/X̃, q̃′

Y /Ỹ , q′′/Z}.

Moreover, since Z is 1-active, C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′′/Z} ε

=⇒ C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′

Z/Z}

by Lemma 5.4. Then, by Lemma 5.10, it follows from t � C ′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ } that there

exist t′ such that t
ε

=⇒ t′ � C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′

Z/Z}. Consequently, CX̃{q̃/X̃} ε
=⇒ t

ε
=⇒

t′ � C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′

Z/Z}.

(MS-τ-3-ii) Suppose qiU
τ

=⇒ q′
U for each U ∈ Ỹ ∪ {Z}. Since C ′

X̃,Ỹ
satisfies (MS-τ-3-ii),

we have CX̃{q̃/X̃} ε
=⇒ C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ }. Moreover, qiZ
τ−→ q′′ ε

=⇒ q′
Z for some q′′

because of qiZ
τ

=⇒ q′
Z . Hence, C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } τ−→ C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′′/Z} by (P-τ-

4). Further, since Z is 1-active, C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′′/Z} ε

=⇒ C ′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′
Y /Ỹ , q′

Z/Z}

by Lemma 5.4. Consequently, CX̃{q̃/X̃} ε
=⇒ C ′′′

X̃,Ỹ ,Z
{q̃/X̃, q̃′

Y /Ỹ , q′
Z/Z}, as desired.
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Lemma 5.15. For any p̃ and stable context CX̃ , if, for each i � |X̃|, pi
ε

=⇒ |p′
i then

CX̃{p̃/X̃} ε
=⇒ |q for some q.

Proof. By Lemmas 5.3 and 5.2(4), CX̃ � C ′
X̃

for some C ′
X̃

such that each unguarded

occurrence of any free variable in C ′
X̃

is unfolded. Moreover, since CX̃ is stable, so is C ′
X̃

by CX̃{0/X̃}� C ′
X̃

{0/X̃} and Lemma 5.10.

Let C ′
X̃,Ỹ

be the context obtained from C ′
X̃

by replacing simultaneously all unguarded

and unfolded occurrences of free variables in X̃ by distinct and fresh variables Ỹ . Here

distinct occurrences are replaced by distinct variables. Clearly, we have

1. for each Y ∈ Ỹ , there exists exactly one iY � |X̃| such that C ′
X̃

≡ C ′
X̃,Ỹ

{X̃iY /Ỹ },
2. all variables in Ỹ are 1-active in C ′

X̃,Ỹ
and

3. C ′
X̃,Ỹ

is stable.

Then CX̃{p̃/X̃} � C ′
X̃

{p̃/X̃} ≡ C ′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ }, and by Lemma 5.4, we obtain

C ′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } ε
=⇒ C ′

X̃,Ỹ
{p̃/X̃, p̃′

iY
/Ỹ }. Further, since C ′

X̃,Ỹ
and p̃′

iY
are stable and

Ỹ contains all unguarded occurrences of variables in C ′
X̃,Ỹ

, C ′
X̃,Ỹ

{p̃/X̃, p̃′
iY
/Ỹ } 	 τ−→ by

Lemma 5.6. So, by Lemma 5.10, CX̃{p̃/X̃} ε
=⇒ |q � C ′

X̃,Ỹ
{p̃/X̃, p̃′

iY
/Ỹ } for some q.

Now we turn to considering ‘canonical’ paths. Given CX̃{p̃/X̃} ε
=⇒ |r, in general there

exist more than one evolution paths from CX̃{p̃/X̃} to r. Since each τ-transition in CLLR

is activated by a single process, a natural conjecture arises at this point that there exist

some ‘canonical’ evolution paths from CX̃{p̃/X̃} to r in which the context CX̃ first evolves

itself into a stable context then pi evolves. Clearly, if such canonical path indeed exists, by

Lemma 4.2, each process along this path is not in F whenever r /∈ F . A weak version of

this conjecture will be verified in Lemma 5.17. To this end, a preliminary result is given

below. Its proof is a tedious but straightforward induction on t1, and hence is omitted.

Lemma 5.16. Let t1, t2 be two terms and X̃ a tuple of variables such that any recursive

variable occurring in ti(i = 1, 2) is not in X̃, and let ãX .0 be a tuple of processes, where

aX is a fresh visible action for each X ∈ X̃. Then

1. if t1{ãX .0/X̃} ≡ t2{ãX .0/X̃} then t1 ≡ t2;

2. if t1{ãX .0/X̃}�1 t2{ãX .0/X̃} then t1{̃r/X̃}�1 t2{̃r/X̃} for any r̃.

Having disposed of this preliminary step, we can now verify a weak version of the

conjecture mentioned above, which is sufficient for the aim of this paper.

Lemma 5.17. If CX̃{p̃/X̃} ε
=⇒ |r then there exists a stable context DX̃ such that

1. CX̃{p̃/X̃} ε
=⇒ DX̃{p̃/X̃} ε

=⇒ |r′ � r for some r′ and

2. CX̃{q̃/X̃} ε
=⇒ DX̃{q̃/X̃} for any q̃ with |q̃| = |X̃|.

Proof. Suppose CX̃{p̃/X̃}( τ−→)n|r. It proceeds by induction on n. For the inductive base

n = 0, it follows from CX̃{p̃/X̃} ≡ r 	 τ−→ that CX̃ is stable by Lemma 5.6. Then it is

straightforward to verify that CX̃ itself is exactly what we seek. For the inductive step,
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assume CX̃{p̃/X̃} τ−→ t(
τ−→)k|r for some t. Then, for CX̃{p̃/X̃} τ−→ t, either the clause (1)

or (2) in Lemma 5.6 holds. The first alternative is easy to handle and is thus omitted. Next

we consider the second alternative. In this situation, there exist C ′
X̃
, C ′′

X̃,Z
with Z /∈ X̃ and

i0 � |X̃| that satisfy (P-τ-1) – (P-τ-4). By (P-τ-2), we have

t ≡ C ′′
X̃,Z

{p̃/X̃, p′/Z} for some p′ with pi0
τ−→ p′.

Then, for C ′′
X̃,Z

{p̃/X̃, p′/Z}( τ−→)k|r, by IH, there exists a stable context D′
X̃,Z

such that

C ′′
X̃,Z

{p̃/X̃, p′/Z} ε
=⇒ D′

X̃,Z
{p̃/X̃, p′/Z} ε

=⇒ |r′ � r for some r′ (5.17.1)

and for any q′ and q̃, we have

C ′′
X̃,Z

{q̃/X̃, q′/Z} ε
=⇒ D′

X̃,Z
{q̃/X̃, q′/Z}. (5.17.2)

In particular, we have C ′′
X̃,Z

{ãX .0/X̃, aZ .0/Z} ε
=⇒ D′

X̃,Z
{ãX .0/X̃, aZ .0/Z} where distinct

visible actions ãX and aZ are fresh. For this transition, applying Lemma 5.6 finitely often

(notice that, in this procedure, since ãX .0 and aZ .0 are stable, the clause (2) in Lemma 5.6

is always false), then by clause (1) in Lemma 5.6, we get the sequence

C ′′
X̃,Z

{ãX .0/X̃, aZ .0/Z} ≡ C0
X̃,Z

{ãX .0/X̃, aZ .0/Z} τ−→ C1
X̃,Z

{ãX .0/X̃, aZ .0/Z} τ−→

· · · τ−→ Cn

X̃,Z
{ãX .0/X̃, aZ .0/Z} ≡ D′

X̃,Z
{ãX .0/X̃, aZ .0/Z}.

Here, n � 0 and Ci

X̃,Z
satisfies (C-τ-1,2,3) for each 1 � i � n. Moreover, since Z is 1-active

in C ′′
X̃,Z

, by (C-τ-3-i), so is Z in Cn

X̃,Z
. We also have Cn

X̃,Z
≡ D′

X̃,Z
by Lemma 5.16. Hence

we can conclude that

Z is 1-active in D′
X̃,Z

. (5.17.3)

Since C ′
X̃

and C ′′
X̃,Z

satisfy (P-τ-1) and (P-τ-3), for any s̃, we get

CX̃ {̃s/X̃}� C ′
X̃

{̃s/X̃} ≡ C ′′
X̃,Z

{̃s/X̃, si0/Z}. (5.17.4)

In order to complete the proof, it suffices to find a stable context DX̃ satisfying conditions

(1) and (2). In the following, we shall use ãX .0 again to obtain such context.

Since ãX .0 and D′
X̃,Z

are stable, by (5.17.2), we get C ′′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} ε

=⇒ |
D′

X̃,Z
{ãX .0/X̃, aXi0

.0/Z}. Moreover we have C ′
X̃

{ãX .0/X̃} ≡ C ′′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} by

(5.17.4). Thus C ′
X̃

{ãX .0/X̃} ε
=⇒ |D′

X̃,Z
{ãX .0/X̃, aXi0

.0/Z}. Then, since ãX .0 are stable, by

Lemma 5.14, there exists a stable context BX̃ such that

BX̃{ãX .0/X̃} ≡ D′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} (5.17.5)

and

C ′
X̃

{̃s/X̃} ε
=⇒ BX̃ {̃s/X̃} for any s̃. (5.17.6)

In addition, by (5.17.4) and Lemma 5.10, we have CX̃{ãX .0/X̃} � C ′
X̃

{ãX .0/X̃} and

CX̃{ãX .0/X̃} ε
=⇒ |t′ � D′

X̃,Z
{ãX .0/X̃, aXi0

.0/Z} for some t′. Further, since ãX .0 are stable,
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by Lemma 5.14, there exists a stable context DX̃ such that

t′ ≡ DX̃{ãX .0/X̃}� D′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} (5.17.7)

and

CX̃ {̃s/X̃} ε
=⇒ DX̃ {̃s/X̃} for any s̃. (5.17.8)

Notice that, (5.17.8) follows from (MS-τ-3-ii) with Ỹ = �. In the following, we intend to

prove that DX̃ is what we seek. It immediately follows from (5.17.8) that DX̃ meets the

requirement (2). We are left with the task of verifying that DX̃ satisfies the condition (1).

So far, for any s̃, we have the diagram below, where the first line follows from (5.17.4),

CX̃ {̃s/X̃} � C ′
X̃

{̃s/X̃} ≡ C ′′
X̃,Z

{̃s/X̃, si0/Z}

⇓ε by (5.17.8) ⇓ε by (5.17.6) ⇓ε by (5.17.2)

DX̃ {̃s/X̃} � BX̃ {̃s/X̃} ≡ D′
X̃,Z

{̃s/X̃, si0/Z}.

Here the last line in the above follows from (5.17.7) and (5.17.5) using Lemma 5.16.

Further, by Lemma 5.4 and pi0
τ−→ p′, it follows from (5.17.1) and (5.17.3) that

BX̃{p̃/X̃} ≡ D′
X̃,Z

{p̃/X̃, pi0/Z} τ−→ D′
X̃,Z

{p̃/X̃, p′/Z} ε
=⇒ |r′ � r.

Finally, since DX̃{p̃/X̃} � BX̃{p̃/X̃}, by Lemma 5.10, we get DX̃{p̃/X̃} ε
=⇒ |r′′ � r′ � r

for some r′′, which, together with CX̃{p̃/X̃} ε
=⇒ DX̃{p̃/X̃}, implies that the stable context

DX̃ also meets the requirement (1), as desired.

The result below asserts that there exist another ‘canonical’ evolution paths from

CX̃{p̃/X̃} to a given stable τ-descendant r. For these paths, an unstable pi evolves first

provided that such pi is located in an active position.

Lemma 5.18. If CX̃{p̃/X̃} ε
=⇒ |q and Xi is 1-active in CX̃ for some i � |X̃|, then there

exists p′ such that pi
ε

=⇒ |p′ and CX̃{p̃/X̃} ε
=⇒ CX̃{p̃ [p′/pi]/X̃} ε

=⇒ |q.

Proof. Suppose CX̃{p̃/X̃}( τ−→)n|q for some n � 0. We shall prove it by induction on n.

For the inductive base n = 0, we have pi 	 τ−→ by Lemma 5.4, and hence it holds trivially

by taking p′ ≡ pi. For the inductive step n = k + 1, suppose CX̃{p̃/X̃} τ−→ r(
τ−→)k|q for

some r. For CX̃{p̃/X̃} τ−→ r, either the clause (1) or (2) in Lemma 5.6 holds. For the first

alternative, there exists a context C ′
X̃

such that

1.1. Xi is 1-active in C ′
X̃

(by (C-τ-3-i)),

1.2. r ≡ C ′
X̃

{p̃/X̃} and

1.3. CX̃ {̃s/X̃} τ−→ C ′
X̃

{̃s/X̃} for any s̃.

By (1.1), we can apply IH for the transition r ≡ C ′
X̃

{p̃/X̃}( τ−→)k|q, and hence there exists

p′ such that pi
ε

=⇒ |p′ and C ′
X̃

{p̃/X̃} ε
=⇒ C ′

X̃
{p̃ [p′/pi]/X̃} ε

=⇒ |q. Moreover, since Xi is

1-active in CX̃ and pi
ε

=⇒ |p′, we have CX̃{p̃/X̃} ε
=⇒ CX̃{p̃ [p′/pi]/X̃} by Lemma 5.4.
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We also have CX̃{p̃ [p′/pi]/X̃} τ−→ C ′
X̃

{p̃ [p′/pi]/X̃} by (1.3). Therefore, CX̃{p̃/X̃} ε
=⇒

CX̃{p̃ [p′/pi]/X̃} τ−→ C ′
X̃

{p̃ [p′/pi]/X̃} ε
=⇒ |q, as desired.

For the second alternative, there exist C ′
X̃
, C ′′

X̃,Z
and i0 � |X̃| such that

2.1. Z is 1-active in C ′′
X̃,Z

,

2.2. r ≡ C ′′
X̃,Z

{p̃/X̃, p′
i0
/Z} for some p′

i0
with pi0

τ−→ p′
i0

and

2.3. CX̃ {̃s/X̃} τ−→ C ′′
X̃,Z

{̃s/X̃, s′/Z} for any s̃ and s′ with si0
τ−→ s′.

In case i0 = i, we have CX̃ ≡ C ′
X̃

by (P-τ-1), and hence r ≡ CX̃{p̃ [p′
i0
/pi]/X̃} by (2.2) and

(P-τ-3). For the transition r ≡ CX̃{p̃ [p′
i0
/pi]/X̃}( τ−→)k|q, by IH, there exists p′′ such that

p′
i0

ε
=⇒ |p′′ and CX̃{p̃ [p′

i0
/pi]/X̃} ε

=⇒ CX̃{p̃ [p′′/pi]/X̃} ε
=⇒ |q. Hence pi0

τ−→ p′
i0

ε
=⇒ |p′′

and CX̃{p̃/X̃} τ−→ CX̃{p̃ [p′
i0
/pi]/X̃} ε

=⇒ CX̃{p̃ [p′′/pi]/X̃} ε
=⇒ |q. Next we consider the

other case i0 	= i. Then for the transition r ≡ C ′′
X̃,Z

{p̃/X̃, p′
i0
/Z}( τ−→)k|q, by IH, there exists

p′ such that pi
ε

=⇒ |p′ and

C ′′
X̃,Z

{p̃/X̃, p′
i0
/Z} ε

=⇒ C ′′
X̃,Z

{p̃ [p′/pi]/X̃, p′
i0
/Z} ε

=⇒ |q.

In addition, since Xi is 1-active in CX̃ and pi
ε

=⇒ |p′, by Lemma 5.4, we obtain

CX̃{p̃/X̃} ε
=⇒ CX̃{p̃ [p′/pi]/X̃}. Moreover CX̃{p̃ [p′/pi]/X̃} τ−→ C ′′

X̃,Z
{p̃ [p′/pi]/X̃, p′

i0
/Z}

by (2.3). Thus CX̃{p̃/X̃} ε
=⇒ CX̃{p̃ [p′/pi]/X̃} τ−→ C ′′

X̃,Z
{p̃ [p′/pi]/X̃, p′

i0
/Z} ε

=⇒ |q.

6. Precongruence

This section intends to establish a fundamental property that �RS is a precongruence.

Its proof is far from trivial and requires a solid effort. As mentioned in Section 1, a

distinguishing feature of LLTS is that it involves consideration of inconsistencies. It is the

inconsistency predicate F that makes everything become quite troublesome. A crucial part

in carrying out the proof is that we need to prove that CX{q/X} ∈ F implies CX{p/X} ∈ F

whenever p �RS q. Its argument will be divided into two steps. First, we shall show that,

for any stable process p, CX{τ.p/X} ∈ F iff CX{p/X} ∈ F (see Lemmas 6.2 and 6.4).

Second, we intend to prove that CX{q/X} ∈ F implies CX{p/X} ∈ F whenever p and q

are uniform w.r.t stability and p �RS q (see Lemma 6.6).

Definition 6.1 (uniform w.r.t stability). Two tuples p̃ and q̃ with |q̃| = |p̃| are uniform w.r.t

stability, in symbols p̃ 	
 q̃, if for each i � |p̃|, pi is stable iff qi is stable.

Notation. For convenience, given tuples p̃ and q̃, for R ∈ {�RS ,�
�RS

,
ε

=⇒ |,≡}, the notation

p̃Rq̃ means that |p̃| = |q̃| and piRqi for each i � |p̃|.

Lemma 6.1. For any CX̃ , p̃ and q̃ with p̃ �RS q̃, if CX̃{p̃/X̃} and CX̃{q̃/X̃} are stable and

CX̃{p̃/X̃} /∈ F , then CX̃{p̃/X̃} a−→ iff CX̃{q̃/X̃} a−→ for any a ∈ Act.

Proof. We give the proof only for the implication from right to left, the same argument

applies to the other implication. Assume CX̃{q̃/X̃} a−→ q′. Then there exist C ′
X̃
, C ′

X̃,Ỹ
and
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C ′′
X̃,Ỹ

with X̃ ∩ Ỹ = � that satisfy (CP-a-1) – (CP-a-4) in Lemma 5.7. Hence, due to

(CP-a-1) and (CP-a-3-i), there exist iY � |X̃|(Y ∈ Ỹ ) such that for any r̃ with |̃r| = |X̃|

CX̃ {̃r/X̃}� C ′
X̃

{̃r/X̃} ≡ C ′
X̃,Ỹ

{̃r/X̃, r̃iY /Ỹ }. (6.1.1)

In particular, by Lemma 5.10, it follows from CX̃{p̃/X̃} 	 τ−→ and CX̃{q̃/X̃} 	 τ−→ that

both C ′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } and C ′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ } are stable. Then, for each Y ∈ Ỹ , both

piY and qiY are stable by Lemma 5.4 and (CP-a-2). Moreover, by (6.1.1) with r̃ ≡ p̃ and

Lemmas 5.12 and 5.5, we have piY /∈ F for each Y ∈ Ỹ due to CX̃{p̃/X̃} /∈ F . Therefore,

for each Y ∈ Ỹ , it follows from p̃ �RS q̃ that piY ��RS
qiY , and I(piY ) = I(qiY ) because of

piY /∈ F . Hence CX̃{p̃/X̃} a−→ by (CP-a-3-iii).

Convention 6.1. The arguments in the remainder of this paper often proceed by distin-

guishing several cases based on the last rule applied in an inference. For such argument,

since rules associated with operations ∧, ∨, ‖A and � are symmetric w.r.t their two

operands, we shall consider only one of two symmetric rules and omit the other one.

In the following, we intend to show that CX{p/X} ∈ F iff CX{τ.p/X} ∈ F for any stable

p, which falls naturally into two parts: Lemmas 6.2 and 6.4.

Lemma 6.2. For any CX and stable p, CX{p/X} /∈ F implies CX{τ.p/X} /∈ F .

Proof. Let p be any stable process. Set

Ω � {BX{τ.p/X} : BX{p/X} /∈ F and BX is a context}.

Similar to Lemma 4.4, it suffices to prove that for any t ∈ Ω, each proof tree of tF has a

proper subtree with root sF for some s ∈ Ω. Suppose that CX{τ.p/X} ∈ Ω and T is any

proof tree of Strip(PCLLR
,MCLLR

) � CX{τ.p/X}F . Hence CX{p/X} /∈ F . The rest of the

proof runs by distinguishing cases based on CX . Here we handle only two cases.

Case 1. CX ≡ 〈Y |E〉. Then the last rule applied in T is

either
〈tY |E〉{τ.p/X}F
〈Y |E〉{τ.p/X}F with Y = tY ∈ E or

{rF : 〈Y |E〉{τ.p/X} ε
=⇒ |r}

〈Y |E〉{τ.p/X}F .

For the first alternative, since CX{p/X} ≡ 〈Y |E〉{p/X} /∈ F , by Lemma 4.1(8), we get

〈tY |E〉{p/X} /∈ F . Hence 〈tY |E〉{τ.p/X} ∈ Ω. For the second alternative, since CX{p/X} /∈
F , we get CX{p/X} ε

=⇒F |q for some q. Moreover, by Lemma 5.14, it follows from p 	 τ−→
that there exists a stable context C ′

X such that

q ≡ C ′
X{p/X} and CX{τ.p/X} ε

=⇒ C ′
X{τ.p/X}. (6.2.1)

Further, by Lemma 5.15 and τ.p
τ−→ |p, we get

C ′
X{τ.p/X} ε

=⇒ |s for some s. (6.2.2)

So, by Lemma 5.14 again, there exists C ′′
X,Z̃

with X /∈ Z̃ such that s ≡ C ′′
X,Z̃

{τ.p/X, p/Z̃}
and C ′

X{p/X}� C ′′
X,Z̃

{p/X, p/Z̃}. Thus, by Lemma 5.12, C ′′
X,Z̃

{p/X, p/Z̃} /∈ F because of
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q ≡ C ′
X{p/X} /∈ F . Set C ′′′

X � C ′′
X,Z̃

{p/Z̃}. It follows from C ′′′
X {p/X} ≡ C ′′

X,Z̃
{p/X, p/Z̃} /∈ F

that s ≡ C ′′′
X {τ.p/X} ∈ Ω. Moreover T contains a proper subtree with root sF due to

(6.2.1) and (6.2.2).

Case 2. CX ≡ BX ∧ DX .

Clearly, if the last rule applied in T is Rule Rp8 then it is immediate that BX{τ.p/X} ∈ Ω,

as desired. Moreover, similar to the second alternative in Case 1, we can deal with the

case where Rule Rp13 is the last rule employed in T . We now turn to the other cases.

Case 2.1.
BX{τ.p/X} a−→r

CX{τ.p/X}F with DX{τ.p/X} 	 a−→ and CX{τ.p/X} 	 τ−→.

In this situation, BX{τ.p/X}, CX and BX are stable. Moreover, since p is stable, so is

BX{p/X}. Due to CX{p/X} /∈ F , we obtain BX{p/X} /∈ F . Then, by Lemma 6.1, it follows

from p =RS τ.p and BX{τ.p/X} a−→ that

BX{p/X} a−→ r1 for some r1. (6.2.3)

Similarly, it follows from DX{τ.p/X} 	 a−→ that

DX{p/X} 	 a−→ . (6.2.4)

In addition, since BX ∧ DX and p are stable, so is BX{p/X} ∧ DX{p/X}. Clearly, the rule
BX{p/X} a−→r1
CX{p/X}F is a ground instance of the rule pprem(Rp10)

conc(Rp10)
; moreover it is in Strip(RCLLR

,MCLLR
)

because of (6.2.4) and CX{p/X} 	 τ−→. So, we get CX{p/X} ≡ BX{p/X} ∧DX{p/X} ∈ F by

(6.2.3), which contradicts that CX{τ.p/X} ∈ Ω. Hence this case is impossible.

Case 2.2.
CX{τ.p/X} α−→s,{rF:CX{τ.p/X} α−→r}

CX{τ.p/X}F .

The argument splits into two cases based on α.

Case 2.2.1. α = τ. We distinguish two cases depending on whether CX is stable.

Case 2.2.1.1. CX is not stable.

Since CX{p/X} /∈ F , we have CX{p/X} ε
=⇒F |p′ for some p′. Moreover, by Lemma 5.17,

there exist p′′ and stable C∗
X such that CX{p/X} ε

=⇒ C∗
X{p/X} ε

=⇒ |p′′ � p′ and

CX{t/X} ε
=⇒ C∗

X{t/X} for any t. Further, since CX is not stable and p 	 τ−→, by Lemma 5.6,

there exists C ′
X such that

CX{p/X} τ−→ C ′
X{p/X} ε

=⇒ C∗
X{p/X} and CX{τ.p/X} τ−→ C ′

X{τ.p/X}.

Since p′ /∈ F and p′′ � p′, by Lemma 5.12, we get p′′ /∈ F . Together with the transitions

C ′
X{p/X} ε

=⇒ C∗
X{p/X} ε

=⇒ |p′′, by Lemma 4.2, this implies C ′
X{p/X} /∈ F . Hence

C ′
X{τ.p/X} ∈ Ω, and T has a proper subtree with root C ′

X{τ.p/X}F .

Case 2.2.1.2. CX is stable.

Due to CX{τ.p/X} τ−→ s, either the clause (1) or (2) in Lemma 5.6 holds. Since CX is

stable, by (C-τ-2) in Lemma 5.6, it is easy to see that the clause (1) does not hold, and

hence the clause (2) holds, that is, there exists C ′
X,Z with X 	= Z such that

CX{τ.p/X} τ−→ C ′
X,Z{τ.p/X, p/Z} and CX{p/X}� C ′

X,Z{p/X, p/Z}.

Set C ′′
X � C ′

X,Z{p/Z}. Hence T has a proper subtree with root C ′′
X{τ.p/X}F . Moreover,

by Lemma 5.12 and CX{p/X} /∈ F , we have C ′
X,Z{p/X, p/Z} /∈ F . Thus C ′′

X{τ.p/X} ≡
C ′
X,Z{τ.p/X, p/Z} ∈ Ω, as desired.
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Case 2.2.2. α ∈ Act.

Then both CX and CX{p/X} are stable. Moreover, since CX{τ.p/X} α−→, τ.p =RS p

and CX{p/X} /∈ F , by Lemma 6.1, we get CX{p/X} α−→. Further, by Theorem 4.1,

it follows from CX{p/X} /∈ F that CX{p/X} α−→F q for some q. For this transition,

by Lemma 5.7, there exist C ′
X , C ′

X,Z̃
and C ′′

X,Z̃
with X /∈ Z̃ that realize (CP-a-1,2,3,4).

To complete the proof, we intend to prove that Z̃ = �. On the contrary, suppose

Z̃ 	= �. Then, by (CP-a-2) and (CP-a-3-i), there exists an active occurrence of the

variable X in C ′
X . So, by Lemma 5.4, C ′

X{τ.p/X} τ−→. Then, by Lemma 5.10, it follows

from CX{τ.p/X} � C ′
X{τ.p/X} (i.e., (CP-a-1)) that CX{τ.p/X} τ−→, which contradicts

CX{τ.p/X} α−→. Thus Z̃ = �, and hence q ≡ C ′′
X,Z̃

{p/X} by (CP-a-3-ii). Since CX{τ.p/X}

is stable, by (CP-a-3-iii), we get CX{τ.p/X} α−→ C ′′
X,Z̃

{τ.p/X}. Thus, T contains a proper

subtree with root C ′′
X,Z̃

{τ.p/X}F; moreover C ′′
X,Z̃

{τ.p/X} ∈ Ω due to C ′′
X,Z̃

{p/X} ≡ q /∈ F .

To show the converse of the above result, the preliminary result below is given. Here,

for any finite set S of processes, by virtue of the commutative and associative laws of

external choice (Zhang et al. 2011), we may introduce the notion of a generalized external

choice (denoted by �
p∈S

p) by the standard method.

Lemma 6.3. Let t1, t2 be two terms and {X} ∪ Z̃ a tuple of variables such that none of

recursive variable occurring in ti(i = 1, 2) is in {X} ∪ Z̃ . Suppose that Z is active in t1, t2
for each Z ∈ Z̃ . Given a ∈ Act and distinct fresh visible actions aX and ãZ , we put

Ta �

⎧⎪⎨
⎪⎩
�

Z∈Z̃
a.aZ .0 if Z̃ 	= �;

aX.0 otherwise.

Then, for any p and q̃,

1. t1{Ta/X, ãZ .0/Z̃} ≡ t2{Ta/X, ãZ .0/Z̃} implies t1{p/X, q̃/Z̃} ≡ t2{p/X, q̃/Z̃};
2. t1{Ta/X, ãZ .0/Z̃}�1 t2{Ta/X, ãZ .0/Z̃} implies t1{p/X, q̃/Z̃}�1 t2{p/X, q̃/Z̃}.

Proof. (1) If FV (t1) ∩ ({X} ∪ Z̃) = � then (1) holds trivially. In the following, we

consider the other case FV (t1) ∩ ({X} ∪ Z̃) 	= �. It proceeds by induction on t1. We give

the proof only for the case t1 ≡ s1�s2, the others are left to the reader.

In this case, the topmost operator of t2{Ta/X, ãZ .0/Z̃} is an external choice �. Clearly,

such operator comes from either t2 or Ta. For the former, we get t2 ≡ s′
1�s

′
2 for some s′

1

and s′
2, and the proof is easy to carry out by using IH. Next we shall show that the latter

case is impossible. In this situation, we have t2 ≡ X and |Z̃ | > 1 (otherwise, Ta does not

contain any operator � at all). Clearly, aZ .0 is guarded in Ta for each Z ∈ Z̃ . Moreover,

since each Z in Z̃ is active in t1 and t1{Ta/X, ãZ .0/Z̃} ≡ t2{Ta/X, ãZ .0/Z̃} ≡ Ta, we

get FV (t1) ∩ Z̃ = �. Hence it follows from the assumption FV (t1) ∩ ({X} ∪ Z̃) 	= �
that X ∈ FV (t1). Then t1{Ta/X, ãZ .0/Z̃} ≡ s1{Ta/X, ãZ .0/Z̃}�s2{Ta/X, ãZ .0/Z̃} 	≡ Ta ≡
t2{Ta/X, ãZ .0/Z̃} due to X ∈ FV (s1) ∪ FV (s2)(= FV (t1)), a contradiction, as desired.
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(2) If FV (t1) ∩ Z̃ = �, it follows by Lemma 5.16. Next we consider the other case

FV (t1)∩ Z̃ 	= �. It proceeds by induction on t1. Since Z is active in t1 for each Z ∈ Z̃ , we

get either t1 ≡ Z or t1 ≡ s1 � s2 for some s1 and s2, where Z ∈ Z̃ and � ∈ {∧, ‖A,�}. We

give the proof only for the case t1 ≡ s1�s2, and the remaining cases are straightforward.

It follows from t1 ≡ s1�s2 that

t1{Ta/X, ãZ .0/Z̃} ≡ s1{Ta/X, ãZ .0/Z̃}�s2{Ta/X, ãZ .0/Z̃}�1 t2{Ta/X, ãZ .0/Z̃}.

So the topmost operator of t2{Ta/X, ãZ .0/Z̃} is an external choice � which comes from

either Ta or t2. Similar to Case t1 ≡ s1�s2 in item (1), we can conclude that there

exist s′
1, s

′
2 such that t2 ≡ s′

1�s
′
2. Moreover, it is easily seen that either s1{Ta/X, ãZ .0/Z̃}

or s2{Ta/X, ãZ .0/Z̃} triggers the unfolding from t1{Ta/X, ãZ .0/Z̃} to t2{Ta/X, ãZ .0/Z̃}.
W.l.o.g, we consider the first alternative. Then s1{Ta/X, ãZ .0/Z̃} �1 s′

1{Ta/X, ãZ .0/Z̃}
and s2{Ta/X, ãZ .0/Z̃} ≡ s′

2{Ta/X, ãZ .0/Z̃}. Hence, by IH and item (1), for any p and

q̃, we have s1{p/X, q̃/Z̃} �1 s′
1{p/X, q̃/Z̃} and s2{p/X, q̃/Z̃} ≡ s′

2{p/X, q̃/Z̃}. Thus

t1{p/X, q̃/Z̃} ≡ s1{p/X, q̃/Z̃}�s2{p/X, q̃/Z̃}�1 t2{p/X, q̃/Z̃}.

The intuition, which is captured by the above result, is obvious. Since both Ta and ãZ
contain fresh actions, none of them occurs in ti(i = 1, 2). We may take ti{Ta/X, ãZ .0/Z̃}
to be the ‘open’ term obtained from ti by renaming its holes using Ta (or ãZ .0) instead of

X (Z̃ resp.). Based on this intuition, the clause (1) is nothing but the statement that the

relation ≡ is preserved under substituting. For the clause (2), since Ta and ãZ .0 contain no

recursive operators, the unfolding from t1{Ta/X, ãZ .0/Z̃} to t2{Ta/X, ãZ .0/Z̃} is excited

by t1. Then the clause (2) merely asserts that such unfolding is preserved after substituting.

One might wonder why the term Ta is put in such form. It is really due to the application

of Lemma 6.3. Roughly speaking, in the argument of the next lemma, we need a stable

term Q satisfying the following conditions:

i. for each Z ∈ Z̃ , Q
a−→ Q′

Z for some Q′
Z ;

ii. BX,Z̃{Q/X, Q̃′
Z/Z̃} � C ′′′

X,Ỹ ,Z̃
{Q/X,Q/Ỹ , Q̃′

Z/Z̃} implies BX,Z̃{τ.p/X, p̃′
Z/Z̃} �

C ′′′
X,Ỹ ,Z̃

{τ.p/X, τ.p/Ỹ , p̃′
Z/Z̃}.

Clearly, Ta is of the most simple scheme so that (i) holds, while Lemma 6.3 just asserts

that it also realizes (ii).

Lemma 6.4. For any CX and stable process p, CX{τ.p/X} /∈ F implies CX{p/X} /∈ F .

Proof. Let p be any stable process. Set

Ω � {BX{p/X} : BX{τ.p/X} /∈ F and BX is a context}.

Assume t ∈ Ω. Then t ≡ CX{p/X} for some CX such that CX{τ.p/X} /∈ F . Let T be any

proof tree of Strip(PCLLR
,MCLLR

) � CX{p/X}F . Similar to Lemma 6.2, it is sufficient to

prove that T has a proper subtree with root sF for some s ∈ Ω, which is a routine case

analysis based on the last rule applied in T . We treat only three cases.

Case 1.
{rF:CX{p/X} ε

=⇒|r}
CX{p/X}F with CX ≡ 〈Y |E〉.

Since, CX{τ.p/X} /∈ F , we get CX{τ.p/X} ε
=⇒F |q for some q. By Lemma 5.14, for this

transition, there exists a stable context C ′
X,Z̃

satisfying (MS-τ-1) – (MS-τ-7). In particular,
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since p and q are stable, by (MS-τ-2,7), we have q ≡ C ′
X,Z̃

{τ.p/X, p/Z̃} /∈ F . Moreover,

since each Z(∈ Z̃) is 1-active in C ′
X,Z̃

(i.e., (MS-τ-1)) and τ.p
τ−→ p, by Lemma 5.4, we get

C ′
X,Z̃

{τ.p/X, τ.p/Z̃} ε
=⇒ C ′

X,Z̃
{τ.p/X, p/Z̃} ≡ q /∈ F , which, by Lemma 4.2, implies

C ′
X,Z̃

{τ.p/X, τ.p/Z̃} /∈ F. (6.4.1)

Let aX be any fresh visible action. By (MS-τ-3-i), it follows from aX.0
ε

=⇒ |aX.0 that there

exists s such that

CX{aX.0/X} ε
=⇒ s� C ′

X,Z̃
{aX.0/X, aX.0/Z̃}. (6.4.2)

Since aX.0 and C ′
X,Z̃

are stable, so is C ′
X,Z̃

{aX.0/X, aX.0/Z̃} by Lemma 5.6. Then, by

Lemma 5.10, s is stable. Thus, for the transition in (6.4.2), by Lemma 5.14, there exists a

stable context C∗
X such that

s ≡ C∗
X{aX.0/X} and CX{r/X} ε

=⇒ C∗
X{r/X} for any r. (6.4.3)

Then, by Lemma 5.16, it follows from s ≡ C∗
X{aX.0/X} � C ′

X,Z̃
{aX.0/X, aX.0/Z̃} that

C∗
X{τ.p/X} � C ′

X,Z̃
{τ.p/X, τ.p/Z̃}. Hence C∗

X{τ.p/X} /∈ F by (6.4.1) and Lemma 5.12,

which implies C∗
X{p/X} ∈ Ω. Moreover, since C∗

X and p are stable, so is C∗
X{p/X}, which

implies CX{p/X} ε
=⇒ |C∗

X{p/X} by (6.4.3). Therefore T has a proper subtree with root

C∗
X{p/X}F .

Case 2.
BX{p/X} a−→r

CX{p/X}F with CX ≡ BX ∧ DX , DX{p/X} 	 a−→ and CX{p/X} 	 τ−→.

Clearly, in this situation, both BX and DX are stable. Since CX{τ.p/X} /∈ F , we have

CX{τ.p/X} ε
=⇒F |q for some q. So, there exist s and t such that q ≡ s∧t, BX{τ.p/X} ε

=⇒F |s
and DX{τ.p/X} ε

=⇒F |t. Then, for these two transitions, by Lemma 5.14, there exist B′
X,Ỹ

and D′
X,Z̃

satisfying (MS-τ-1) – (MS-τ-7) respectively. In particular, since p, BX and DX

are stable, by (MS-τ-2,4,7), we have

1. s ≡ B′
X,Ỹ

{τ.p/X, p/Ỹ } and BX{p/X}� B′
X,Ỹ

{p/X, p/Ỹ };
2. t ≡ D′

X,Z̃
{τ.p/X, p/Z̃} and DX{p/X}� D′

X,Z̃
{p/X, p/Z̃}.

By (1) and Lemma 5.10, it follows from BX{p/X} a−→ that B′
X,Ỹ

{p/X, p/Ỹ } a−→.

Then, since B′
X,Ỹ

{p/X, p/Ỹ } and B′
X,Ỹ

{τ.p/X, p/Ỹ } are stable, by Lemma 6.1, it follows

from τ.p =RS p and s ≡ B′
X,Ỹ

{τ.p/X, p/Ỹ } /∈ F that B′
X,Ỹ

{τ.p/X, p/Ỹ } a−→ r1 for

some r1. Similarly, we also have D′
X,Z̃

{p/X, p/Z̃} 	 a−→ and then D′
X,Z̃

{τ.p/X, p/Z̃} 	 a−→.

Clearly, the rule
B′
X,Ỹ

{τ.p/X,p/Ỹ } a−→r1

B′
X,Ỹ

{τ.p/X,p/Ỹ }∧D′
X,Z̃

{τ.p/X,p/Z̃}F is a ground instance of the rule pprem(Rp10)
conc(Rp10)

;

moreover it is in Strip(RCLLR
,MCLLR

) due to B′
X,Ỹ

{τ.p/X, p/Ỹ } ∧ D′
X,Z̃

{τ.p/X, p/Z̃} 	 τ−→

and D′
X,Z̃

{τ.p/X, p/Z̃} 	 a−→. Then q ≡ s ∧ t ∈ F due to B′
X,Ỹ

{τ.p/X, p/Ỹ } a−→ r1, a

contradiction. Thus this case is impossible.

Case 3.
CX{p/X} α−→r′ ,{rF:CX{p/X} α−→r}

CX{p/X}F with CX ≡ BX ∧ DX .
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Since CX{τ.p/X} /∈ F , we have

CX{τ.p/X} ε
=⇒F |q for some q. (6.4.4)

Next we distinguish two cases based on α.

Case 3.1. α = τ.

By (6.4.4) and Lemma 5.17, there exist t and stable context C∗
X such that CX{p/X} ε

=⇒
C∗
X{p/X} and CX{τ.p/X} ε

=⇒ C∗
X{τ.p/X} ε

=⇒ |t � q /∈ F . Moreover, since p 	 τ−→ and

τ ∈ I(CX{p/X}), by Lemma 5.6, there exists a context C ′
X such that CX{p/X} τ−→

C ′
X{p/X} ε

=⇒ C∗
X{p/X} and CX{τ.p/X} τ−→ C ′

X{τ.p/X} ε
=⇒ C∗

X{τ.p/X} ε
=⇒ |t. Further,

by Lemma 5.12, it follows from q /∈ F and t � q that t /∈ F . Then C ′
X{τ.p/X} /∈ F by

Lemma 4.2. Hence C ′
X{p/X} ∈ Ω and one of nodes directly above the root of T is labelled

with C ′
X{p/X}F , as desired.

Case 3.2. α ∈ Act.

In this case, CX is stable by Lemma 5.6. By (6.4.4) and Lemma 5.14, there exists

a stable context C ′
X,Ỹ

with X /∈ Ỹ that satisfies (MS-τ-1) – (MS-τ-7). Then we have

q ≡ C ′
X,Ỹ

{τ.p/X, p/Ỹ } due to p 	 τ−→ and (MS-τ-2). Moreover, since CX is stable, by

(MS-τ-4), we have

CX{r/X}� C ′
X,Ỹ

{r/X, r/Ỹ } for any r. (6.4.5)

Then, by CX{p/X} α−→ and Lemma 5.10, we get

C ′
X,Ỹ

{p/X, p/Ỹ } α−→ . (6.4.6)

Further, by Lemma 6.1, we also have C ′
X,Ỹ

{τ.p/X, p/Ỹ } α−→ because of τ.p =RS p and

q ≡ C ′
X,Ỹ

{τ.p/X, p/Ỹ } /∈ F . Thus, by Theorem 4.1, we obtain C ′
X,Ỹ

{τ.p/X, p/Ỹ } α−→F t

for some t. For this transition, by Lemma 5.7, there exist C ′′
X,Ỹ

, C ′′
X,Ỹ ,Z̃

and C ′′′
X,Ỹ ,Z̃

with

({X}∪Ỹ )∩Z̃ = � that realize (CP-a-1,2,3,4). In particular, due to τ.p 	 α−→ and (CP-a-3-ii),

there exist p′
Z (Z ∈ Z̃) such that

p
α−→ p′

Z for each Z ∈ Z̃ and t ≡ C ′′′
X,Ỹ ,Z̃

{τ.p/X, p/Ỹ , p̃′
Z/Z̃} /∈ F. (6.4.7)

Moreover, by (CP-a-3-iii), for any r, s and s′
Z (Z ∈ Z̃) such that s

α−→ s′
Z for each Z ∈ Z̃ ,

we have

C ′
X,Ỹ

{r/X, s/Ỹ } α−→ C ′′′
X,Ỹ ,Z̃

{r/X, s/Ỹ , s̃′
Z/Z̃} whenever C ′

X,Ỹ
{r/X, s/Ỹ } is stable. (6.4.8)

For each Z ∈ Z̃ ∪ {X}, we fix a fresh and distinct visible action aZ and set

Tα �

⎧⎪⎨
⎪⎩
�

Z∈Z̃
α.aZ .0, if Z̃ 	= �;

aX.0, otherwise.

Since, Tα and C ′
X,Ỹ

are stable, so is C ′
X,Ỹ

{Tα/X,Tα/Ỹ } by Lemma 5.6. Then, by (6.4.8), we

have C ′
X,Ỹ

{Tα/X,Tα/Ỹ } α−→ C ′′′
X,Ỹ ,Z̃

{Tα/X,Tα/Ỹ , ãZ .0/Z̃}. So, by Lemma 5.10, it follows
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from (6.4.5) that there exists t′ such that

CX{Tα/X} α−→ t′ and t′ � C ′′′
X,Ỹ ,Z̃

{Tα/X,Tα/Ỹ , ãZ .0/Z̃}. (6.4.9)

Then, by Lemma 5.7, it is not difficult to see that there exists a context BX,Z̃ that satisfies

the conditions:

a. t′ ≡ BX,Z̃{Tα/X, ãZ .0/Z̃};
b. none of aZ with Z ∈ Z̃ occurs in BX,Z̃ ;

c. for any s and s′
Z (Z ∈ Z̃) such that s

α−→ s′
Z for each Z ∈ Z̃ ,

CX{s/X} α−→ BX,Z̃{s/X, s̃′
Z/Z̃} whenever CX{s/X} is stable.

Now we obtain the diagram

by (6.4.5)

CX{p/X} � C ′
X,Ỹ

{p/X, p/Ỹ }

↓ α by (c) ↓ α by (6.4.6) and (6.4.8)

by (6.4.9), (a) and Lemma 6.3

BX,Z̃{p/X, p̃′
Z/Z̃} � C ′′′

X,Ỹ ,Z̃
{p/X, p/Ỹ , p̃′

Z/Z̃}.

By Lemma 6.3, we also have

BX,Z̃{τ.p/X, p̃′
Z/Z̃}� C ′′′

X,Ỹ ,Z̃
{τ.p/X, τ.p/Ỹ , p̃′

Z/Z̃}. (6.4.10)

For each Y ∈ Ỹ , since Y is 1-active in C ′
X,Ỹ

, by Lemma 5.2(1)(2) and C ′
X,Ỹ
� C ′′

X,Ỹ
(i.e.,

(CP-a-1)), so it is in C ′′
X,Ỹ

. Moreover, by (CP-a-4-i,ii), for each Y ∈ Ỹ ∩ FV (C ′′′
X,Ỹ ,Z̃

), Y is

1-active in C ′′′
X,Ỹ ,Z̃

. Then, by Lemma 5.4, we have

C ′′′
X,Ỹ ,Z̃

{τ.p/X, τ.p/Ỹ , p̃′
Z/Z̃} ε

=⇒ C ′′′
X,Ỹ ,Z̃

{τ.p/X, p/Ỹ , p̃′
Z/Z̃}

which, together with (6.4.7), implies C ′′′
X,Ỹ ,Z̃

{τ.p/X, τ.p/Ỹ , p̃′
Z/Z̃} /∈ F by Lemma 4.2.

Hence, by Lemma 5.12, it follows from (6.4.10) that BX,Z̃{τ.p/X, p̃′
Z/Z̃} /∈ F . Thus,

BX,Z̃{p/X, p̃′
Z/Z̃} ∈ Ω; moreover T has a proper subtree with root BX,Z̃{p/X, p̃′

Z/Z̃}F
due to (c) and (6.4.7).

Hitherto we have completed the first step mentioned at the beginning of this section. We

now turn to the second step. The argument of Lemma 6.6 will carry out by distinguishing

several cases based on the form of CX̃ . In particular, in case CX̃ ≡ BX̃ ∧ DX̃ , a common

reasoning pattern is adopted to deal with two subcases. To shorten the argument of

Lemma 6.6, we extract this pattern and describe it first in a separate lemma as follows.

Lemma 6.5. Let CX̃,Z̃ be any context such that for each Z ∈ Z̃ , Z is active and

occurs at most once. If p̃, q̃, t̃, s̃ and r̃ are any processes such that (a) p̃ �RS q̃,

(b) p̃ 	
 q̃, (c) r̃
ε

=⇒ |̃t, (d) s̃ �
�RS

t̃ and (e) CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F , then, for any

proof tree T for Strip(PCLLR
,MCLLR

) � CX̃,Z̃{q̃/X̃, r̃/Z̃}F , there exist C∗
X̃,Z̃ ,Ỹ

, p′′
Y and
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q′′
Y for Y ∈ Ỹ such that (1) T has a subtree with root C∗

X̃,Z̃ ,Ỹ
{q̃/X̃, t̃/Z̃ , q̃′′

Y /Ỹ }F , (2)

C∗
X̃,Z̃ ,Ỹ

{p̃/X̃, s̃/Z̃ , p̃′′
Y /Ỹ } /∈ F and (3) p̃′′

Y ��RS
q̃′′
Y .

Proof. It proceeds by induction on the depth of T . We distinguish several cases

depending on the form of CX̃,Z̃ . Here we give the proof only for two cases, the other cases

are left to the reader.

Case 1. CX̃,Z̃ is closed or CX̃,Z̃ ≡ Xi or CX̃,Z̃ ≡ Zj for some i � |X̃| and j � |Z̃ |.
It is straightforward to show that this lemma holds trivially for such case. As an

example, we consider the case CX̃,Z̃ ≡ Zj . Since CX̃,Z̃{p̃/X̃, s̃/Z̃} ≡ sj /∈ F and s̃ �
�RS

t̃, we

have tj /∈ F . Hence rj
ε

=⇒F |tj by Lemma 4.2. So CX̃,Z̃{q̃/X̃, r̃/Z̃} ≡ rj /∈ F . That is, there

is no proof tree of Strip(PCLLR
,MCLLR

) � CX̃,Z̃{q̃/X̃, r̃/Z̃}F . Thus the conclusion holds

trivially.

Case 2. CX̃,Z̃ ≡ BX̃,Z̃ ∧ DX̃,Z̃ .

The argument splits into four cases based on the last rule applied in T . For the case

where the last rule is Rp8, the proof is straightforward by applying IH. In the following,

we deal with other cases.

Case 2.1.
B
X̃,Z̃

{q̃/X̃,̃r/Z̃} a−→r′

C
X̃,Z̃

{q̃/X̃,̃r/Z̃}F with DX̃,Z̃{q̃/X̃, r̃/Z̃} 	 a−→ and CX̃,Z̃{q̃/X̃, r̃/Z̃} 	 τ−→.

For any Z(∈ Z̃) occurring in CX̃,Z̃ , since Z is active and CX̃,Z̃{q̃/X̃, r̃/Z̃} 	 τ−→, by

Lemma 5.4, we have rZ 	 τ−→, and hence rZ ≡ tZ because of (c). So, CX̃,Z̃{q̃/X̃, r̃/Z̃} ≡
CX̃,Z̃{q̃/X̃, t̃/Z̃}. Hence T has the root labelled with CX̃,Z̃{q̃/X̃, t̃/Z̃}F . Clearly, the

conclusion holds by setting C∗
X̃,Z̃ ,Ỹ

� CX̃,Z̃ with Ỹ = �.

Case 2.2.
C
X̃,Z̃

{q̃/X̃,̃r/Z̃} α−→s′ , {rF:C
X̃,Z̃

{q̃/X̃,̃r/Z̃} α−→r}
C
X̃,Z̃

{q̃/X̃,̃r/Z̃}F .

If α ∈ Act, the argument is similar to one of Case 2.1 and omitted. In the following, we

handle the case α = τ. If rZ 	 τ−→ for any Z(∈ Z̃) occurring in CX̃,Z̃ , then the conclusion

holds trivially by putting C∗
X̃,Z̃ ,Ỹ

� CX̃,Z̃ with Ỹ = �. Next we consider the other case

where rZ0

τ−→ for some Z0(∈ Z̃) occurring in CX̃,Z̃ . Then rZ0

τ−→ r′ ε
=⇒ |tZ0

for some r′

by (c); moreover Z0 is 1-active in CX̃,Z̃ . Thus CX̃,Z̃{q̃/X̃, r̃/Z̃} τ−→ CX̃,Z̃{q̃/X̃, r̃ [r′/rZ0
]/Z̃}

by Lemma 5.4. So, T has a proper subtree T ′ with root CX̃,Z̃{q̃/X̃, r̃ [r′/rZ0
]/Z̃}F .

Since r̃ [r′/rZ0
]

ε
=⇒ |̃t and CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F , by IH, T ′ has a subtree with root

C∗
X̃,Z̃ ,Ỹ

{q̃/X̃, t̃/Z̃ , q̃′′
Y /Ỹ }F for some C∗

X̃,Z̃ ,Ỹ
, p̃′′

Y and q̃′′
Y such that C∗

X̃,Z̃ ,Ỹ
{p̃/X̃, s̃/Z̃ , p̃′′

Y /Ỹ }/∈

F and p̃′′
Y ��RS

q̃′′
Y .

Case 2.3.
{rF:C

X̃,Z̃
{q̃/X̃,̃r/Z̃} ε

=⇒|r}
C
X̃,Z̃

{q̃/X̃,̃r/Z̃}F .

It follows from CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F that CX̃,Z̃{p̃/X̃, s̃/Z̃} ε
=⇒F |p′ for some p′. Then,

by Lemma 5.14, for such transition, there exist a stable context C ′
X̃,Z̃ ,Ỹ

and iY , p
′′′
Y (Y ∈ Ỹ )

that realize (MS-τ-1) – (MS-τ-7). In particular, since each s(∈ s̃) is stable, by (MS-

τ-2,7), for each Y ∈ Ỹ , we have iY � |X̃| and piY
τ

=⇒ |p′′′
Y for some p′′′

Y , and p′ ≡
C ′
X̃,Z̃ ,Ỹ

{p̃/X̃, s̃/Z̃ , p̃′′′
Y /Ỹ } /∈ F . Then, by Lemma 5.5, it follows from (MS-τ-1) that, for each
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Y ∈ Ỹ , p′′′
Y /∈ F and hence piY

τ
=⇒F |p′′′

Y by Lemma 4.2. Further, since p̃ 	
 q̃ and p̃ �RS q̃,

there exist q′′′
Y (Y ∈ Ỹ ) such that qiY

τ
=⇒F |q′′′

Y and p′′′
Y ��RS

q′′′
Y for each Y ∈ Ỹ . Then, by

(MS-τ-3-ii), it follows that

CX̃,Z̃{q̃/X̃, t̃/Z̃} ε
=⇒ C ′

X̃,Z̃ ,Ỹ
{q̃/X̃, t̃/Z̃ , q̃′′′

Y /Ỹ }. (6.5.1)

Moreover, since Z is active and occurs at most once in CX̃,Z̃ for each Z ∈ Z̃ , by

Lemma 5.4, it follows from r̃
ε

=⇒ t̃ that

CX̃,Z̃{q̃/X̃, r̃/Z̃} ε
=⇒ CX̃,Z̃{q̃/X̃, t̃/Z̃}. (6.5.2)

Since p̃ 	
 q̃, s̃ �
�RS

t̃ and p̃′′′
Y ��RS

q̃′′′
Y , by p′ ≡ C ′

X̃,Z̃ ,Ỹ
{p̃/X̃, s̃/Z̃ , p̃′′′

Y /Ỹ } 	 τ−→ and Lemma 5.6,

we can conclude that C ′
X̃,Z̃ ,Ỹ

{q̃/X̃, t̃/Z̃ , q̃′′′
Y /Ỹ } is stable. Hence T has a proper subtree

with root C ′
X̃,Z̃ ,Ỹ

{q̃/X̃, t̃/Z̃ , q̃′′′
Y /Ỹ }F by (6.5.1) and (6.5.2); moreover we also have p′ ≡

C ′
X̃,Z̃ ,Ỹ

{p̃/X̃, s̃/Z̃ , p̃′′′
Y /Ỹ } /∈ F and p̃′′′

Y ��RS
q̃′′′
Y . Consequently, C ′

X̃,Z̃ ,Ỹ
, p̃′′′

Y and q̃′′′
Y are what

we seek.

Lemma 6.6. If r̃ 	
 s̃ and r̃ �RS s̃, then CX̃ {̃r/X̃} /∈ F implies CX̃ {̃s/X̃} /∈ F .

Proof. Set Ω = {BX̃{q̃/X̃} : p̃ 	
 q̃, p̃ �RS q̃, BX̃{p̃/X̃} /∈ F and BX is a context}. Let

CX̃{q̃/X̃} ∈ Ω and T be any proof tree of Strip(PCLLR
,MCLLR

) � CX̃{q̃/X̃}F . Similar to

Lemma 6.2, it suffices to show that T has a proper subtree with root sF for some s ∈ Ω.

The proof proceeds by distinguishing several cases based on the form of CX̃ . We handle

two nontrivial cases.

Case 1. CX̃ ≡ 〈Y |E〉. Clearly, the last rule applied in T is

either
〈tY |E〉{q̃/X̃}F
〈Y |E〉{q̃/X̃}F

with Y = tY ∈ E or
{rF : 〈Y |E〉{q̃/X̃} ε

=⇒ |r}
〈Y |E〉{q̃/X̃}F

.

For the first alternative, we have 〈tY |E〉{p̃/X̃} /∈ F because of CX̃{p̃/X̃} /∈ F , and

hence 〈tY |E〉{q̃/X̃} ∈ Ω. For the second alternative, due to CX̃{p̃/X̃} /∈ F , we get

CX̃{p̃/X̃} ε
=⇒F |s for some s. For this transition, by Lemma 5.14, there exist C ′

X̃,Z̃
, iZ � |X̃|

and p′
Z for Z ∈ Z̃ that realize (MS-τ-1) – (MS-τ-7). Amongst them, by (MS-τ-2,7), we

have

piZ
τ

=⇒ |p′
Z for each Z ∈ Z̃ and s ≡ C ′

X̃,Z̃
{p̃/X̃, p̃′

Z/Z̃} /∈ F. (6.6.1)

Thus, for each Z ∈ Z̃ , by (MS-τ-1) and Lemma 5.5, it follows that p′
Z /∈ F , and hence

piZ
τ

=⇒F |p′
Z by Lemma 4.2. Further, since p̃ 	
 q̃, it follows from p̃ �RS q̃ that

for each Z ∈ Z̃ , qiZ
τ

=⇒F |q′
Z and p′

Z ��RS
q′
Z for some q′

Z . (6.6.2)

Then CX̃{q̃/X̃} ε
=⇒ C ′

X̃,Z̃
{q̃/X̃, q̃′

Z/Z̃} by (MS-τ-3-ii). In addition, since p̃ 	
 q̃, p̃′
Z ��RS

q̃′
Z and s ≡ C ′

X̃,Z̃
{p̃/X̃, p̃′

Z/Z̃} 	 τ−→, by Lemma 5.6, we get C ′
X̃,Z̃

{q̃/X̃, q̃′
Z/Z̃} 	 τ−→.
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Therefore CX̃{q̃/X̃} ε
=⇒ |C ′

X̃,Z̃
{q̃/X̃, q̃′

Z/Z̃}. Hence T has a proper subtree with root

C ′
X̃,Z̃

{q̃/X̃, q̃′
Z/Z̃}F; moreover C ′

X̃,Z̃
{q̃/X̃, q̃′

Z/Z̃} ∈ Ω due to (6.6.1) and (6.6.2).

Case 2. CX̃ ≡ BX̃ ∧ DX̃ .

By Lemmas 5.6 and 6.1, it is not difficult to show that Rule Rp10 cannot be applied in

the last inferring step of T . Hence the argument splits into three cases depending on the

last rule ξ applied in T . If ξ is Rule Rp8, the proof is straightforward. In case ξ = Rp13,

the proof is similar to the second alternative in Case 1 and omitted. In the following, we

handle the case ξ = Rp12 by considering two subcases.

Case 2.1.
C
X̃

{q̃/X̃} τ−→r′ ,{rF:C
X̃

{q̃/X̃} τ−→r}
C
X̃

{q̃/X̃}F .

It follows from CX̃{p̃/X̃} /∈ F that

CX̃{p̃/X̃} ε
=⇒F |s for some s. (6.6.3)

Since p̃ 	
 q̃ and CX̃{q̃/X̃} τ−→, by Lemma 5.6, we get CX̃{p̃/X̃} τ−→. Then, by (6.6.3),

we have CX̃{p̃/X̃} τ−→F t
ε

=⇒F |s for some t. For the τ-transition leading to t, either the

clause (1) or (2) in Lemma 5.6 holds.

For the former, there exists C ′
X̃

such that t ≡ C ′
X̃

{p̃/X̃} and CX̃{q̃/X̃} τ−→ C ′
X̃

{q̃/X̃}.
Hence C ′

X̃
{q̃/X̃}F is one of premises of the last inferring step in T . Moreover it is evident

that C ′
X̃

{q̃/X̃} ∈ Ω.

For the latter, there exist C ′
X̃
, C ′′

X̃,Z
with Z /∈ X̃ and i0 � |X̃| that realize (P-τ-1,2,3,4). In

particular, by (P-τ-2), we have t ≡ C ′′
X̃,Z

{p̃/X̃, p′/Z} for some p′ with pi0
τ−→ p′. Further,

since t
ε

=⇒F |s and Z is 1-active in C ′′
X̃,Z

, by Lemmas 5.18 and 4.2, there exists p′′ such

that p′ ε
=⇒ |p′′ and t ≡ C ′′

X̃,Z
{p̃/X̃, p′/Z} ε

=⇒F C ′′
X̃,Z

{p̃/X̃, p′′/Z} ε
=⇒F |s. Moreover p′′ /∈ F

by Lemma 5.5. Hence pi0
τ−→F p′ ε

=⇒F |p′′ by Lemma 4.2. Since p̃ 	
 q̃, it follows from

p̃ �RS q̃ that

qi0
τ−→F q′ ε

=⇒F |q′′ and p′′ �
�RS

q′′ for some q′ and q′′. (6.6.4)

Then CX̃{q̃/X̃} τ−→ C ′′
X̃,Z

{q̃/X̃, q′/Z} by (P-τ-4). Therefore T contains a proper subtree

T ′ with root C ′′
X̃,Z

{q̃/X̃, q′/Z}F . In order to complete the proof, it is sufficient to show

that T ′ contains a node labelled with s′F for some s′ ∈ Ω. Since Z is 1-active, p̃ �RS q̃,

p̃ 	
 q̃, q′ ε
=⇒ |q′′, p′′ �

�RS
q′′ and C ′′

X̃,Z
{p̃/X̃, p′′/Z} /∈ F , by Lemma 6.5, there exist C∗

X̃,Z,Ỹ
,

q′′′
Y and p′′′

Y for Y ∈ Ỹ such that

a.1. T ′ has a subtree with root C∗
X̃,Z,Ỹ

{q̃/X̃, q′′/Z, q̃′′′
Y /Ỹ }F ,

a.2. C∗
X̃,Z,Ỹ

{p̃/X̃, p′′/Z, p̃′′′
Y /Ỹ } /∈ F , and

a.3. p̃′′′
Y ��RS

q̃′′′
Y .

Clearly, C∗
X̃,Z,Ỹ

{q̃/X̃, q′′/Z, q̃′′′
Y /Ỹ } ∈ Ω due to (a.2), (a.3) and (6.6.4), as desired.

Case 2.2.
C
X̃

{q̃/X̃} a−→r′ ,{rF:C
X̃

{q̃/X̃} a−→r}
C
X̃

{q̃/X̃}F (a ∈ Act).
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Since p̃ 	
 q̃, by Lemma 5.6, it follows from CX̃{q̃/X̃} a−→ that CX̃{p̃/X̃} is stable.

Further, since p̃ �RS q̃ and CX̃{p̃/X̃} /∈ F , we get CX̃{p̃/X̃} a−→ by Lemma 6.1. So, by

Theorem 4.1 and CX̃{p̃/X̃} /∈ F , we have

CX̃{p̃/X̃} a−→F t
ε

=⇒F |s for some t and s. (6.6.5)

On the one hand, for the a-transition in (6.6.5), by Lemma 5.7, there exist C ′
X̃
, C ′

X̃,Ỹ

and C ′′
X̃,Ỹ

that satisfy (CP-a-1) – (CP-a-4). In particular, by (CP-a-3-ii), there exist iY �

|X̃|, p′
Y (Y ∈ Ỹ ) such that piY

a−→ p′
Y for each Y ∈ Ỹ and t ≡ C ′′

X̃,Ỹ
{p̃/X̃, p̃′

Y /Ỹ }.
Moreover, by (CP-a-1) and (CP-a-3-i), CX̃{p̃/X̃}� C ′

X̃
{p̃/X̃} ≡ C ′

X̃,Ỹ
{p̃/X̃, p̃iY /Ỹ }. Hence

C ′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } /∈ F by CX̃{p̃/X̃} /∈ F and Lemma 5.12. Further, for each Y ∈ Ỹ , since

Y is 1-active in C ′
X̃,Ỹ

(i.e., (CP-a-2)), by Lemma 5.5, piY /∈ F .

On the other hand, for the transition t ≡ C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } ε

=⇒F |s in (6.6.5), since Y

is 1-active in C ′′
X̃,Ỹ

for each Y ∈ Ỹ (i.e., (CP-a-2)), by Lemma 5.18, there exist p′′
Y such

that p′
Y

ε
=⇒ |p′′

Y for each Y ∈ Ỹ and t ≡ C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } ε

=⇒ C ′′
X̃,Ỹ

{p̃/X̃, p̃′′
Y /Ỹ } ε

=⇒ |

s. Then, by Lemma 4.2, it follows from s /∈ F that C ′′
X̃,Ỹ

{p̃/X̃, p̃′′
Y /Ỹ } /∈ F , which implies

that p′′
Y /∈ F for each Y ∈ Ỹ due to Lemma 5.5. Thus piY

a−→F p′
Y

ε
=⇒F |p′′

Y for each

Y ∈ Ỹ . Since p̃ 	
 q̃, it follows from p̃ �RS q̃ that,

for each Y ∈ Ỹ , qiY
a−→F q′

Y

ε
=⇒F |q′′

Y and p′′
Y ��RS

q′′
Y for some q′

Y and q′′
Y . (6.6.6)

Then CX̃{q̃/X̃} a−→ C ′′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ } by (CP-a-3-iii). Hence T has a proper subtree T ′

with root C ′′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ }F . In order to complete the proof, it suffices to show that T ′

contains a node labelled with s′F for some s′ ∈ Ω. Since each Y (∈ Ỹ ) is 1-active in C ′′
X̃,Ỹ

,

p̃ �RS q̃, p̃ 	
 q̃, q̃′
Y

ε
=⇒ |q̃′′

Y , p̃′′
Y ��RS

q̃′′
Y and C ′′

X̃,Ỹ
{p̃/X̃, p̃′′

Y /Ỹ } /∈ F , by Lemma 6.5, there

exist C∗
X̃,Ỹ ,Z̃

, q′′′
Z and p′′′

Z for Z ∈ Z̃ such that

b.1. T ′ has a subtree with root C∗
X̃,Ỹ ,Z̃

{q̃/X̃, q̃′′
Y /Ỹ , q̃′′′

Z /Z̃}F ,

b.2. C∗
X̃,Ỹ ,Z̃

{p̃/X̃, p̃′′
Y /Ỹ , p̃′′′

Z/Z̃} /∈ F , and

b.3. p̃′′′
Z ��RS

q̃′′′
Z .

Obviously, C∗
X̃,Ỹ ,Z̃

{q̃/X̃, q̃′′
Y /Ỹ , q̃′′′

Z /Z̃} ∈ Ω due to (b.2), (b.3) and (6.6.6), as desired.

Before proving that �RS is indeed precongruent, let us first recall an equivalent

formulation of �RS due to Van Glabbeek (Lüttgen and Vogler 2010).

Definition 6.2. A relation R ⊆ T (ΣCLLR
) × T (ΣCLLR

) is an alternative ready simulation

relation, if for any (p, q) ∈ R and a ∈ Act

(RSi) p
ε

=⇒F |p′ implies ∃q′.q
ε

=⇒F |q′ and (p′, q′) ∈ R;

(RSiii) p
a

=⇒F |p′ and p, q stable implies ∃q′.q
a

=⇒F |q′ and (p′, q′) ∈ R;

(RSiv) p /∈ F and p, q stable implies I(p) = I(q).
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We write p �ALT q if there exists an alternative ready simulation relation R with

(p, q) ∈ R.

Proposition 6.1 (Lüttgen and Vogler 2010). �RS=�ALT .

One advantage of Definition 6.2 is that, given p and q, we can prove p �RS q by means

of giving an alternative ready simulation relation relating them. It is well known that

up-to technique is a tractable way for such coinduction proof. Here we introduce the

notion of an alternative ready relation up to �
�RS

as follows.

Definition 6.3 (ALT up to �
�RS

). A relation R ⊆ T (ΣCLLR
) × T (ΣCLLR

) is an alternative

ready simulation relation up to �
�RS

, if for any (p, q) ∈ R and a ∈ Act

(ALT-upto-1) p
ε

=⇒F |p′ implies ∃q′.q
ε

=⇒F |q′ and p′ �
�RS

R �
�RS

q′;

(ALT-upto-2) p
a

=⇒F |p′ and p, q stable implies ∃q′.q
a

=⇒F |q′ and p′ �
�RS

R �
�RS

q′;

(ALT-upto-3) p /∈ F and p, q stable implies I(p) = I(q).

As usual, given a relation R satisfying the conditions (ALT-upto-1,2,3), in general, R
in itself is not an alternative ready simulation relation. But simple result below ensures

that up-to technique based on the above notion is sound.

Lemma 6.7. If R is an alternative ready simulation relation up to �
�RS

then R ⊆�RS .

Proof. By Proposition 6.1, it is sufficient to prove that the relation �RS R �RS is an

alternative ready simulation. We leave it to the reader.

Remark 6.1. If we adopt the binary relation �RS R �RS instead of �
�RS

R �
�RS

in the

clauses (ALT-upto-1,2) of Definition 6.3, then it is easy to see that the preceding result is

no longer true by considering the counterexample R = {(τ.a.0, 0)}. In fact, this failure is

similar to one occurring in Milner’s first attempt to define the notion of weak bisimulation

up-to (Milner 1989a).

Now we are ready to prove the main result of this section: �RS is precongruent w.r.t

all operations in CLLR . We shall divide the proof into the next two lemmas.

Lemma 6.8. CX{p/X} =RS CX{τ.p/X} for any context CX and stable process p.

Proof. Let p be any stable process. First, we show that CX{p/X} �RS CX{τ.p/X}. Set

R � {(BX{p/X}, BX{τ.p/X}) : BX is a context}. By Proposition 6.1 and Lemma 6.7, it

is sufficient to prove that R is an alternative ready simulation relation up to �
�RS

. Let

(CX{p/X}, CX{τ.p/X}) ∈ R.

(ALT-upto-1) Assume that CX{p/X} ε
=⇒F |p′. For this transition, since p is stable, by

Lemma 5.14, there exists a stable context C ′
X such that

p′ ≡ C ′
X{p/X} and CX{τ.p/X} ε

=⇒ C ′
X{τ.p/X}. (6.8.1)

Moreover, by Lemma 5.15, it follows from τ.p
τ−→ |p that

C ′
X{τ.p/X} ε

=⇒ |r for some r. (6.8.2)
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For this transition, by Lemma 5.14, there exists a context C ′′
X,Ỹ

with X /∈ Ỹ such that

r ≡ C ′′
X,Ỹ

{τ.p/X, p/Ỹ } and

p′ ≡ C ′
X{p/X}� C ′′

X,Ỹ
{p/X, p/Ỹ }. (6.8.3)

Since p′ /∈ F , by Lemma 5.12, we get C ′′
X,Ỹ

{p/X, p/Ỹ } /∈ F . Further, by Lemma 6.2,

r ≡ C ′′
X,Ỹ

{τ.p/X, p/Ỹ } /∈ F . So, by (6.8.1), (6.8.2) and Lemma 4.2, we have CX{τ.p/X} ε
=⇒F|

C ′′
X,Ỹ

{τ.p/X, p/Ỹ }. Moreover, by Lemma 5.13, it follows from (6.8.3) that

p′ �
�RS

C ′′
X,Ỹ

{p/X, p/Ỹ }RC ′′
X,Ỹ

{τ.p/X, p/Ỹ }.

(ALT-upto-2) Assume that CX{p/X} 	 τ−→, CX{τ.p/X} 	 τ−→ and CX{p/X} a
=⇒F |p′. Then

CX{p/X} a−→F r
ε

=⇒F |p′ for some r. Moreover, by Lemma 6.2 and CX{p/X} /∈ F , we

have

CX{τ.p/X} /∈ F. (6.8.4)

For the transition CX{p/X} a−→F r, by Lemma 5.7, there exist C ′
X , C ′

X,Ỹ
and C ′′

X,Ỹ
that

realize (CP-a-1) – (CP-a-4). By (CP-a-1) and (CP-a-3-i), we have

CX{τ.p/X}� C ′
X{τ.p/X} ≡ C ′

X,Ỹ
{τ.p/X, τ.p/Ỹ }.

If Ỹ 	= � then, by (CP-a-2) and Lemma 5.4, we have C ′
X,Ỹ

{τ.p/X, τ.p/Ỹ } τ−→, and hence

CX{τ.p/X} τ−→ by Lemma 5.10, which contradicts that CX{τ.p/X} is stable. Thus Ỹ = �.

So, r ≡ C ′′
X,Ỹ

{p/X} by (CP-a-3-ii) and

CX{τ.p/X} a−→ C ′′
X,Ỹ

{τ.p/X} by (CP-a-3-iii) and CX{τ.p/X} 	 τ−→ . (6.8.5)

Moreover, by (ALT-upto-1), it follows from (C ′′
X,Ỹ

{p/X}, C ′′
X,Ỹ

{τ.p/X}) ∈ R and r ≡

C ′′
X,Ỹ

{p/X} ε
=⇒F |p′ that C ′′

X,Ỹ
{τ.p/X} ε

=⇒F |q′ and p′ �
�RS

R �
�RS

q′ for some q′. Finally,

we also have CX{τ.p/X} a
=⇒F |q′ due to (6.8.4) and (6.8.5), as desired.

(ALT-upto-3) Immediately follows from Lemma 6.1.

Next we intend to prove CX{τ.p/X} �RS CX{p/X}. Set

R � {(BX{τ.p/X}, BX{p/X}) : BX is a context}.

Similarly, it is sufficient to prove that R is an alternative ready simulation relation up to

�
�RS

. Let (CX{τ.p/X}, CX{p/X}) ∈ R. (ALT-upto-3) immediately follows from Lemma 6.1.

In the following, we prove the other two conditions.

(ALT-upto-1) Assume that CX{τ.p/X} ε
=⇒F |p′. For this transition, by Lemma 5.17,

there exist r and stable context C∗
X such that CX{p/X} ε

=⇒ C∗
X{p/X} and

CX{τ.p/X} ε
=⇒ C∗

X{τ.p/X} ε
=⇒ |r � p′. (6.8.6)

Moreover, since p is stable, so is C∗
X{p/X} by Lemma 5.6. Due to r � p′ and p′ /∈ F ,

by Lemma 5.12, we get r /∈ F . Hence C∗
X{τ.p/X} /∈ F by (6.8.6) and Lemma 4.2.
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Then C∗
X{p/X} /∈ F by Lemma 6.4. Thus CX{p/X} ε

=⇒F |C∗
X{p/X}. It remains to

prove that p′ �
�RS

R �
�RS

C∗
X{p/X}. For the transition C∗

X{τ.p/X} ε
=⇒ |r in (6.8.6), by

Lemma 5.14, there exists a stable context C ′∗
X,Ỹ

such that r ≡ C ′∗
X,Ỹ

{τ.p/X, p/Ỹ }� p′ and

C∗
X{p/X}� C ′∗

X,Ỹ
{p/X, p/Ỹ }, which, by Lemma 5.13, implies

p′ �
�RS

C ′∗
X,Ỹ

{τ.p/X, p/Ỹ }RC ′∗
X,Ỹ

{p/X, p/Ỹ } �
�RS

C∗
X{p/X}.

(ALT-upto-2) Assume that CX{τ.p/X} 	 τ−→, CX{p/X} 	 τ−→ and CX{τ.p/X} a
=⇒F | p′.

Hence CX{τ.p/X} a−→F r
ε

=⇒F |p′ for some r. Moreover, by Lemma 6.4 and CX{τ.p/X} /∈
F , we have CX{p/X} /∈ F . For the a-transition CX{τ.p/X} a−→F r, by Lemma 5.7

and τ.p 	 a−→, it is not difficult to see that there exists C ′
X such that CX{τ.p/X} a−→

C ′
X{τ.p/X} ≡ r and CX{p/X} a−→ C ′

X{p/X}. Moreover, by (ALT-upto-1), it follows from

(C ′
X{τ.p/X}, C ′

X{p/X}) ∈ R and r ≡ C ′
X{τ.p/X} ε

=⇒F |p′ that C ′
X{p/X} ε

=⇒F |q′ and

p′ �
�RS

R �
�RS

q′ for some q′. Clearly, we also have CX{p/X} a
=⇒F |q′, as desired.

Lemma 6.9. If p̃ 	
 q̃ and p̃ �RS q̃ then CX̃{p̃/X̃} �RS CX̃{q̃/X̃} for any CX̃ .

Proof. Set R � {(BX̃{p̃/X̃}, BX̃{q̃/X̃}) : p̃ 	
 q̃, p̃ �RS q̃ and BX̃ is a context}. Similarly,

it suffices to prove that R is an alternative ready simulation relation up to �
�RS

. Suppose

(CX̃{p̃/X̃}, CX̃{q̃/X̃}) ∈ R. Then, by Lemma 6.1, it is obvious that such pair satisfies the

condition (ALT-upto-3). Next we consider the other conditions in turn.

(ALT-upto-1) Assume that CX̃{p̃/X̃} ε
=⇒F |s. For this transition, by Lemma 5.14, there

exist C ′
X̃,Ỹ

, iY � |X̃| and p′
Y for Y ∈ Ỹ that satisfy (MS-τ-1) – (MS-τ-7). In particular, by

(MS-τ-2,7), we have piY
τ

=⇒ |p′
Y for each Y ∈ Ỹ and s ≡ C ′

X̃,Ỹ
{p̃/X̃, p̃′

Y /Ỹ } /∈ F . Then, by

(MS-τ-1) and Lemma 5.5, p′
Y /∈ F and hence piY

τ
=⇒F |p′

Y by Lemma 4.2 for each Y ∈ Ỹ .

Since p̃ 	
 q̃, it follows from p̃ �RS q̃ that there exist q′
Y (Y ∈ Ỹ ) such that

qiY
τ

=⇒F |q′
Y and p′

Y ��RS
q′
Y for each Y ∈ Ỹ . (6.9.1)

So CX̃{q̃/X̃} ε
=⇒ C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } by (MS-τ-3-ii). Moreover, by Lemma 5.6, it follows

from s ≡ C ′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } 	 τ−→, p̃ 	
 q̃ and p̃′

Y ��RS
q̃′
Y that C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } 	 τ−→. In

addition, by Lemma 6.6 and C ′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } /∈ F , we get C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ } /∈ F . Hence,

by Lemma 4.2, we obtain CX̃{q̃/X̃} ε
=⇒F |C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ }. Clearly, by (6.9.1) and the

reflexivity of �
�RS

, (C ′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ }, C ′

X̃,Ỹ
{q̃/X̃, q̃′

Y /Ỹ }) ∈�
�RS

R �
�RS

.

(ALT-upto-2) Let CX̃{p̃/X̃} and CX̃{q̃/X̃} be stable and CX̃{p̃/X̃} a
=⇒F |s. Then

CX̃{p̃/X̃} a−→F r
ε

=⇒F |s for some r. (6.9.2)

Moreover, by Lemma 6.6, it follows from p̃ 	
 q̃, p̃ �RS q̃ and CX̃{p̃/X̃} /∈ F that

CX̃{q̃/X̃} /∈ F. (6.9.3)
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For the transition CX̃{p̃/X̃} a−→ r, by Lemma 5.7, there exist C ′
X̃
, C ′

X̃,Ỹ
and C ′′

X̃,Ỹ
that

satisfy (CP-a-1) – (CP-a-4). In particular, by (CP-a-3-ii), there exist iY � |X̃|, p′
Y such that

piY
a−→ p′

Y for each Y ∈ Ỹ and r ≡ C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ }. Moreover, by (CP-a-1) and (CP-

a-3-i), we have CX̃{p̃/X̃}� C ′
X̃

{p̃/X̃} ≡ C ′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ }. Hence C ′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } /∈ F

by CX̃{p̃/X̃} /∈ F and Lemma 5.12. Further, since each Y (∈ Ỹ ) is 1-active in C ′
X̃,Ỹ

, by

Lemma 5.5, we get

piY /∈ F for each Y ∈ Ỹ . (6.9.4)

For the transition r ≡ C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } ε

=⇒ |s in (6.9.2), by Lemma 5.18, it follows that

for each Y ∈ Ỹ , there exists p′′
Y such that p′

Y

ε
=⇒ |p′′

Y and

C ′′
X̃,Ỹ

{p̃/X̃, p̃′
Y /Ỹ } ε

=⇒ C ′′
X̃,Ỹ

{p̃/X̃, p̃′′
Y /Ỹ } ε

=⇒ |s.

Then C ′′
X̃,Ỹ

{p̃/X̃, p̃′′
Y /Ỹ } /∈ F due to s /∈ F and Lemma 4.2, and hence p′′

Y /∈ F for each

Y ∈ Ỹ by Lemma 5.5. Therefore, by (6.9.4) and Lemma 4.2, we have piY
a−→F p′

Y

ε
=⇒F |

p′′
Y for each Y ∈ Ỹ . Then it follows from p̃ 	
 q̃ and p̃ �RS q̃ that for each Y ∈ Ỹ , there

exist q′
Y and q′′

Y such that qiY
a−→F q′

Y

ε
=⇒F |q′′

Y and p′′
Y ��RS

q′′
Y . By (CP-a-3-iii),

CX̃{q̃/X̃} a−→ C ′′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ }. (6.9.5)

Further, by Lemma 5.4 and (CP-a-2), we obtain

C ′′
X̃,Ỹ

{q̃/X̃, q̃′
Y /Ỹ } ε

=⇒ C ′′
X̃,Ỹ

{q̃/X̃, q̃′′
Y /Ỹ }. (6.9.6)

Clearly, (C ′′
X̃,Ỹ

{p̃/X̃, p̃′′
Y /Ỹ }, C ′′

X̃,Ỹ
{q̃/X̃, q̃′′

Y /Ỹ }) ∈ R. So, by C ′′
X̃,Ỹ

{p̃/X̃, p̃′′
Y /Ỹ } ε

=⇒F |s and

(ALT-upto-1), there exists t such that C ′′
X̃,Ỹ

{q̃/X̃, q̃′′
Y /Ỹ } ε

=⇒F |t and s �
�RS

R �
�RS

t;

moreover CX̃{q̃/X̃} a
=⇒F |t due to (6.9.3), (6.9.5), (6.9.6) and Lemma 4.2.

We are now in a position to state the main result of this section.

Theorem 6.1 (precongruence). If p �RS q then CX{p/X} �RS CX{q/X}.

Proof. Immediately follows from τ.p =RS p �RS q =RS τ.q by Lemmas 6.8 and 6.9.

7. Unique solution of equations

The main conclusion we reach in this section is that any equation X =RS tX has at most

one consistent solution modulo =RS provided that X is strongly guarded and does not

occur in the scope of any conjunction in tX; moreover the process 〈X|X = tX〉 is indeed

the unique consistent solution whenever such equation has a consistent solution. The

proof of this result (Theorem 7.1) will be divided into two lemmas: Lemmas 7.3 and 7.4.

The former considers a particular instance of Theorem 7.1, which asserts the uniqueness

of consistent solutions that are uniform w.r.t stability. The latter ensures that 〈X|X = tX〉
is consistent whenever a given equation X =RS tX has some consistent solutions.
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This section is developed under the hypothesis that X does not occur in the scope of any

conjunction in tX . This hypothesis is essential to the proof of Lemma 7.3: first, we cannot

generalize its present argument to deal with the case CX ≡ BX ∧ DX . Second, Lemma 7.2

is applied to cope with the other cases in the proof of Lemma 7.3, which is no longer

valid without this hypothesis. To relax this restriction of Lemma 7.3 (and Theorem 7.1),

it is sufficient to verify the proposition that ‘for any p, q /∈ F with p 	
 q, if p =RS tX{p/X}
and q =RS tX{q/X} for some tX with strongly guarded X, then CX{p/X} /∈ F implies

CX{q/X} /∈ F for any CX ’. Unfortunately, at present, we do not know whether it is true.

Lemma 7.1. For any stable processes p, q /∈ F and context CX such that X does not occur

in the scope of any conjunction, if CX{p/X} ∈ F then CX{q/X} ∈ F .

Proof. We consider only the nontrivial case where CX is not closed. Assume that

CX{p/X} ∈ F and T is any proof tree of Strip(PCLLR
,MCLLR

) � CX{p/X}F . We proceed

by induction on the depth of T . The argument is a routine case analysis on CX . Moreover,

since X does not occur in the scope of any conjunction, the form of CX is one of the

following: X, α.BX , BX �DX with � ∈ {∨,�, ‖A} and 〈Y |E〉. Here, we give the proof only

for the case CX ≡ 〈Y |E〉, the other cases are straightforward and omitted.

In case CX ≡ 〈Y |E〉, the last rule applied in T is

either
〈tY |E〉{p/X}F
〈Y |E〉{p/X}F with Y = tY ∈ E or

{rF : 〈Y |E〉{p/X} ε
=⇒ |r}

〈Y |E〉{p/X}F .

For the first alternative, we have 〈tY |E〉{q/X} ∈ F by IH, and hence CX{q/X} ≡
〈Y |E〉{q/X} ∈ F . For the second alternative, assume 〈Y |E〉{q/X} ε

=⇒ |s. Since q is stable,

by Lemma 5.14, s ≡ C ′
X{q/X} for some stable C ′

X such that X does not occur in the scope

of any conjunction in C ′
X and 〈Y |E〉{p/X} ε

=⇒ C ′
X{p/X}. Moreover, since p is stable, so

is C ′
X{p/X}. Thus there exists a proper subtree of T with root C ′

X{p/X}F . So, by IH,

s ≡ C ′
X{q/X} ∈ F . Hence CX{q/X} ∈ F by Theorem 4.1, as desired.

This result is of independent interest, but its principle use is that it will serve as an

important step in demonstrating the next lemma, which reveals that the above result

still holds without the hypotheses that q and p are stable. Notice that the next lemma

cannot be true for all CX . In the case where CX is a.0 ∧ X, for example, a.0 ∧ a.0 /∈ F but

a.0 ∧ b.0 ∈ F .

Lemma 7.2. For any processes p, q /∈ F and context CX such that X does not occur in

the scope of any conjunction, if CX{p/X} ∈ F then CX{q/X} ∈ F .

Proof. Suppose that CX{p/X} ∈ F . We proceed by induction on the depth of the proof

tree T of Strip(PCLLR
,MCLLR

) � CX{p/X}F . Similar to the preceding lemma, we handle

only the case CX ≡ 〈Y |E〉. In this situation, the last rule applied in T is

either
〈tY |E〉{p/X}F
〈Y |E〉{p/X}F with Y = tY ∈ E or

{rF : 〈Y |E〉{p/X} ε
=⇒ |r}

〈Y |E〉{p/X}F .

The argument for the former is the same as the one in Lemma 7.1 and omitted. In the

following, we consider the latter and suppose 〈Y |E〉{q/X} ε
=⇒ |s. By Theorem 4.1, to
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complete the proof, it suffices to prove that s ∈ F . By Lemma 5.17, there exist t and stable

C∗
X such that 〈Y |E〉{q/X} ε

=⇒ C∗
X{q/X} ε

=⇒ |t� s and

〈Y |E〉{r/X} ε
=⇒ C∗

X{r/X} for any r. (7.2.1)

In particular, we have 〈Y |E〉{aX.0/X} ε
=⇒ C∗

X{aX.0/X} where aX is a fresh visible action.

For this transition, applying Lemma 5.6 finitely many times (notice that, in this procedure,

since aX.0 is stable, the clause (2) in Lemma 5.6 is always false), and by the clause (1) in

Lemma 5.6, we get the sequence

〈Y |E〉{aX.0/X} ≡ C0
X{aX.0/X} τ−→ C1

X{aX.0/X} τ−→

· · · τ−→ Cn
X{aX.0/X} ≡ C∗

X{aX.0/X}.

Here n � 0 and for each 1 � i � n, Ci
X satisfies (C-τ-1,2,3) in Lemma 5.6. Since X does

not occur in the scope of any conjunction in 〈Y |E〉, by (C-τ-3-iv), neither does X in Cn
X .

Moreover we have Cn
X ≡ C∗

X by Lemma 5.16. Hence X does not occur in the scope of

any conjunction in C∗
X .

If p is stable then so is C∗
X{p/X} by Lemma 5.6. Thus, by (7.2.1), C∗

X{p/X}F is one of

premises in the last inferring step in T . Hence C∗
X{q/X} ∈ F by applying IH. Then t ∈ F

by Lemma 4.2. Further, by Lemma 5.12, it follows from t� s that s ∈ F .

Next we consider the other case where p
τ−→. In this situation, due to p /∈ F , we have

p
τ

=⇒F |p∗ for some p∗. (7.2.2)

In the following, we distinguish two cases based on whether q is stable.

Case 1. q is stable.

Then, for the transition 〈Y |E〉{q/X} ε
=⇒ |s, by Lemma 5.14, we have s ≡ C ′

X{q/X}
for some stable C ′

X such that X does not occur in the scope of any conjunction and

CX{p/X} ε
=⇒ C ′

X{p/X}. Moreover, by Lemma 5.15, it follows from (7.2.2) that

C ′
X{p/X} ε

=⇒ |p′ for some p′.

For this transition, by Lemma 5.14, there exist a stable context C ′∗
X,Ỹ

and stable processes

p′
Y for Y ∈ Ỹ that realize (MS-τ-1) – (MS-τ-7). In particular, by (MS-τ-3-ii) it follows

from (7.2.2) that C ′
X{p/X} ε

=⇒ C ′∗
X,Ỹ

{p/X, p∗/Ỹ }. Then, since C ′∗
X,Ỹ

, p and p∗ are stable,

by Lemma 5.6, so is C ′∗
X,Ỹ

{p/X, p∗/Ỹ }. Thus, C ′∗
X,Ỹ

{p/X, p∗/Ỹ }F is one of premises of the

last inferring step in T . Moreover p′ ≡ C ′∗
X,Ỹ

{p/X, p̃′
Y /Ỹ } by (MS-τ-2). Then, by (MS-τ-6)

and IH, we obtain C ′∗
X,Ỹ

{q/X, p∗/Ỹ } ∈ F . Further, by (MS-τ-6) and Lemma 7.1, we get

C ′∗
X,Ỹ

{q/X, q/Ỹ } ∈ F . Finally, due to the stableness of C ′
X , by (MS-τ-4), we also have

C ′
X{q/X}� C ′∗

X,Ỹ
{q/X, q/Ỹ }. Hence s ≡ C ′

X{q/X} ∈ F by Lemma 5.12, as desired.

Case 2. q is not stable.

By Lemma 5.14, for the transition 〈Y |E〉{q/X} ε
=⇒ |s, there exist a stable context C ′

X,Z̃

and q′
Z for Z ∈ Z̃ that satisfy (MS-τ-1) – (MS-τ-7). Amongst them, by (MS-τ-2,7),

q
τ

=⇒ |q′
Z for each Z ∈ Z̃ and s ≡ C ′

X,Z̃
{q/X, q̃′

Z/Z̃}. (7.2.3)
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If q′
Z ∈ F for some Z ∈ Z̃ then by Lemma 5.5, we get s ∈ F (notice that each Z in Z̃ is

1-active), as desired. In the following, we handle the other case where

q′
Z /∈ F for each Z ∈ Z̃ . (7.2.4)

By (MS-τ-3-ii), it follows from (7.2.2) that CX{p/X} ε
=⇒ C ′

X,Z̃
{p/X, p∗/Z̃}. Since p

τ−→,

q
τ−→, p∗ 	 τ−→, q′

Z 	 τ−→ for each Z ∈ Z̃ and s ≡ C ′
X,Z̃

{q/X, q̃′
Z/Z̃} 	 τ−→, by Lemma 5.6,

C ′
X,Z̃

{p/X, p∗/Z̃} is stable. Hence T has a proper subtree with root C ′
X,Z̃

{p/X, p∗/Z̃}F .

Then C ′
X,Z̃

{q/X, p∗/Z̃} ∈ F by (MS-τ-6) and IH. Further, by Lemma 7.1, it follows from

(7.2.3) and (7.2.4) that s ≡ C ′
X,Z̃

{q/X, q̃′
Z/Z̃} ∈ F , as desired.

We shall use Dep(T ) to denote the depth of a given proof tree T . Given p, q and

α ∈ Actτ, for any proof tree T of Strip(PCLLR
,MCLLR

) � p
α−→ q, it is evident that T

involves only rules in Table 1. Moreover, since each rule in Table 1 has only finitely many

premises, it is not difficult to show that Dep(T ) < ω by induction on the depth of T . This

makes it legitimate to use arithmetical expressions with the form like
∑
T ∈Ω

Dep(T ) where

Ω is a finite set and each T ∈ Ω is a proof tree for some transition p
α−→ r.

Definition 7.1. Given p
ε

=⇒ q and a finite set Ω of proof trees, we say that Ω is a proof

forest for p
ε

=⇒ q if there exist pi(0 � i � n) such that

1. p ≡ p0
τ−→ p1

τ−→ · · · τ−→ pn ≡ q,

2. for each i < n, Ω contains exactly one proof tree for pi
τ−→ pi+1 and

3. for each T ∈ Ω, T is a proof tree for pi
τ−→ pi+1 for some i < n.

In this case, we also say that Ω is a proof forest for the sequence p0
τ−→ p1 . . . pn−1

τ−→ pn.

The depth of Ω is defined as Dep(Ω) �
∑
T ∈Ω

Dep(T ). Similarly, we may define the notion

of a proof forest for p
a

=⇒ q.

The following lemma will prove extremely useful in establishing the main result in this

section and its proof involves induction on the depths of proof forests.

Lemma 7.3. Let CX be any context where X is strongly guarded and does not occur in

the scope of any conjunction. For any processes p, q /∈ F with p 	
 q, if p =RS CX{p/X}
and q =RS CX{q/X} then p =RS q.

Proof. Suppose p, q /∈ F with p 	
 q, p =RS CX{p/X} and q =RS CX{q/X}. It is

sufficient to prove that p �RS q. Put

R � {(BX{p/X}, BX{q/X}) : X does not occur in the scope of any conjunction in BX}.

By Proposition 6.1 and Lemma 6.7, it suffices to prove that R is an alternative ready

simulation relation up to �
�RS

. Let (BX{p/X}, BX{q/X}) ∈ R.

(ALT-upto-1) Assume that BX{p/X} ε
=⇒F |p′. Hence BX{p/X} ≡ p0

τ−→F p1
τ−→

. . . pn−1
τ−→F |pn ≡ p′ for some pi(0 � i � n). Then, for each 0 � i < n, there exists a proof
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tree Ti for Strip(PCLLR
,MCLLR

) � pi
τ−→ pi+1. Let Ω be the set of all these proof trees Ti.

Clearly, it is a proof forest of p0
τ−→ · · · τ−→ pn. We intend to prove that there exists q′

such that BX{q/X} ε
=⇒F |q′ and p′ �

�RS
R �

�RS
q′ by induction on Dep(Ω). It is a routine

case analysis on BX . We treat only three cases as examples.

Case 1. BX ≡ X.

Then BX{p/X} ≡ p
ε

=⇒F |p′. Since p =RS CX{p/X}, it follows that CX{p/X} ε
=⇒F | s

and p′ �
�RS

s for some s. Since X is strongly guarded and does not occur in the scope

of any conjunction in CX , by Lemma 5.14, there exists a stable context C ′
X such that

(a.1) s ≡ C ′
X{p/X}, (a.2) X is strongly guarded and does not occur in the scope of

any conjunction in C ′
X , and (a.3) CX{q/X} ε

=⇒ C ′
X{q/X}. Since s ≡ C ′

X{p/X} 	 τ−→, we

have C ′
X{q/X} 	 τ−→ by (a.2) and Lemma 5.8. Moreover, by Lemma 7.2, C ′

X{q/X} /∈ F

follows from C ′
X{p/X} /∈ F and p, q /∈ F . Hence CX{q/X} ε

=⇒F |C ′
X{q/X} by (a.3) and

Lemma 4.2. Further, it follows from q =RS CX{q/X} that q
ε

=⇒F |q′ and C ′
X{q/X} �

�RS
q′

for some q′. Therefore BX{q/X} ≡ q
ε

=⇒F |q′ and p′ �
�RS

s ≡ C ′
X{p/X}RC ′

X{q/X} �
�RS

q′.

Case 2. BX ≡ 〈Y |E〉.
If 〈Y |E〉{p/X} is stable then so is 〈Y |E〉{q/X} by p 	
 q and Lemma 5.6. By Lemma 7.2,

〈Y |E〉{q/X} /∈ F because of 〈Y |E〉{p/X} /∈ F . Hence 〈Y |E〉{q/X} ε
=⇒F | 〈Y |E〉{q/X}

and (〈Y |E〉{p/X}, 〈Y |E〉{q/X}) ∈�
�RS

R �
�RS

due to the reflexivity of �
�RS

. Next we

handle the other case where 〈Y |E〉{p/X} is not stable. Clearly, the last rule applied in

T0 is 〈tY |E〉{p/X} τ−→p1

〈Y |E〉{p/X} τ−→p1

with Y = tY ∈ E. Thus, T0 contains a proper subtree, say T ′
0 , which

is a proof tree of Strip(PCLLR
,MCLLR

) � 〈tY |E〉{p/X} τ−→ p1 and Dep(T ′
0 ) < Dep(T0).

Thus Ω′ � {T ′
0 , Ti : 1 � i � n − 1} is a proof forest for 〈tY |E〉{p/X} τ−→ p1

τ−→
p2

τ−→ · · · τ−→ pn ≡ p′; moreover Dep(Ω′) < Dep(Ω). Then, by Lemma 5.2(5) and IH, we

have 〈tY |E〉{q/X} ε
=⇒F |q′ and p′ �

�RS
R �

�RS
q′ for some q′. Moreover we also have

BX{q/X} ≡ 〈Y |E〉{q/X} ε
=⇒F |q′.

Case 3. BX ≡ DX�D′
X .

If BX{p/X} is stable then we can proceed analogously to Case 2 with 〈Y |E〉{p/X} 	 τ−→.

In the following, we consider the case BX{p/X} τ−→.

For the transitions DX{p/X}�D′
X{p/X} ≡ p0

τ−→F · · · τ−→F |pn ≡ p′(n � 1), there exist

two sequences of processes t0(≡ DX{p/X}), . . . , tn and s0(≡ D′
X{p/X}), . . . , sn such that

tn, sn are consistent and stable, pn ≡ tn�sn, and for each 0 � i < n, pi ≡ ti�si and the last

rule applied in Ti is

either
ti

τ−→ ti+1

ti�si
τ−→ ti+1�si+1

or
si

τ−→ si+1

ti�si
τ−→ ti+1�si+1

.

For the former, si+1 ≡ si and Ti contains a proper subtree T ′
i which is a proof tree for

ti
τ−→ ti+1. We use Ω1 to denote the (finite) set of all these proof trees T ′

i . Similarly,

for the latter, ti+1 ≡ ti and Ti contains a proper subtree T ′′
i which is a proof tree for

si
τ−→ si+1. We use Ω2 to denote the (finite) set of all these proof trees T ′′

i . Clearly, Ω1
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is a proof forest for DX{p/X} ε
=⇒ tn; moreover Dep(Ω1) < Dep(Ω). Thus, by IH, we

have DX{q/X} ε
=⇒F |q′

1 and tn �
�RS

R �
�RS

q′
1 for some q′

1. Similarly, for the transition

D′
X{p/X} ε

=⇒F |sn, we also have D′
X{q/X} ε

=⇒F |q′
2 and sn �

�RS
R �

�RS
q′

2 for some q′
2.

Then, by Theorem 4.2, it is easy to check that p′ ≡ tn�sn �
�RS

R �
�RS

q′
1�q

′
2. Moreover

we also have BX{q/X} ≡ DX{q/X}�D′
X{q/X} ε

=⇒F |q′
1�q

′
2.

(ALT-upto-2) Suppose that BX{p/X} and BX{q/X} are stable. Let BX{p/X} a
=⇒F |

p′. So, there exist p0, . . . , pn(n � 1) such that BX{p/X} ≡ p0
a−→F p1

τ−→F · · · τ−→F |
pn ≡ p′. Then there exists a proof tree Ti for pi

αi−→ pi+1 for i < n, where α0 = a and

αj = τ(1 � j < n). Let Ω be the set of all these proof trees Ti. Clearly, it is a proof forest

for BX{p/X} ≡ p0
a−→ p1

τ−→ · · · τ−→ pn ≡ p′. In the following, we want to prove that

there exists q′ such that BX{q/X} a
=⇒F |q′ and p′ �

�RS
R �

�RS
q′ by induction on Dep(Ω).

Since BX{p/X} is stable and X does not occur in the scope of any conjunction in BX , the

topmost operator of BX is neither disjunction nor conjunction. Thus, we distinguish five

cases based on the form of BX .

Case 1. BX ≡ X.

Due to BX{p/X} ≡ p
a

=⇒F |p′, we have p /∈ F . Moreover, since p(≡ BX{p/X}) is stable,

we get p
ε

=⇒F |p. Hence it follows from p =RS CX{p/X} that CX{p/X} ε
=⇒F |s and p �

�RS
s

for some s. Further, since X is strongly guarded and does not occur in the scope of any

conjunction in CX , by Lemma 5.14, there exists a stable C ′
X such that (b.1) X is strongly

guarded and does not occur in the scope of any conjunction in C ′
X , (b.2) s ≡ C ′

X{p/X} and

(b.3) CX{q/X} ε
=⇒ C ′

X{q/X}. Then it follows from p �
�RS

s ≡ C ′
X{p/X} and p

a
=⇒F |p′

that C ′
X{p/X} a

=⇒F |s′ and p′ �
�RS

s′ for some s′. Since p 	 τ−→, by (b.1), Lemmas 5.8

and 5.14, there exists a stable context C ′′
X such that (c.1) s′ ≡ C ′′

X{p/X}, (c.2) X does

not occur in the scope of any conjunction in C ′′
X and (c.3) C ′

X{q/X} a−→ ε
=⇒ C ′′

X{q/X}.
Moreover, since q(≡ BX{q/X}) is stable, so is C ′′

X{q/X}. Then, by (b.3) and (c.3), we

have CX{q/X} ε
=⇒ |C ′

X{q/X} a
=⇒ |C ′′

X{q/X}. By Lemmas 7.2 and 4.2, it follows from

p, q, CX{p/X}, C ′
X{p/X}, C ′′

X{p/X} /∈ F that

CX{q/X} ε
=⇒F |C ′

X{q/X} a
=⇒F |C ′′

X{q/X}. (7.3.1)

Then, since CX{q/X} =RS q and q 	 τ−→, we get C ′
X{q/X} �

�RS
q. Further, due to (7.3.1),

it follows that BX{q/X}(≡ q)
a

=⇒F |q′ and C ′′
X{q/X} �

�RS
q′ for some q′. Moreover

p′ �
�RS

s′ ≡ C ′′
X{p/X}RC ′′

X{q/X} �
�RS

q′, as desired.

Case 2. BX ≡ α.DX .

So α = a and DX{p/X} ε
=⇒F |p′. Clearly, (DX{p/X}, DX{q/X}) ∈ R. By (ALT-upto-1),

there exists q′ such that DX{q/X} ε
=⇒F |q′ and p′ �

�RS
R �

�RS
q′. Moreover it is evident

that α.DX{q/X} a
=⇒F |q′.

Case 3. BX ≡ DX�D′
X .
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W.l.o.g, we assume that the last rule applied in T0 is DX{p/X} a−→p1

DX{p/X}�D′
X{p/X} a−→p1

with

D′
X{p/X} 	 τ−→. Then T0 has a proper subtree, say T ′

0 , which is a proof tree for the

transition DX{p/X} a−→ p1.Clearly, Ω′ � {T ′
0 , Ti : 1 � i � n − 1} is a proof forest for

DX{p/X} a
=⇒ p′ and Dep(Ω′) < Dep(Ω). Moreover, since BX{q/X} is stable, so are

DX{q/X} and D′
X{q/X}. Then, by IH, we have DX{q/X} a

=⇒F |q′ and p′ �
�RS

R �
�RS

q′

for some q′. Moreover, D′
X{p/X} /∈ F because of BX{p/X} /∈ F , which, by Lemma 7.2,

implies D′
X{q/X} /∈ F . Hence BX{q/X} ≡ DX{q/X}�D′

X{q/X} /∈ F , and BX{q/X} ≡
DX{q/X}�D′

X{q/X} a
=⇒F |q′, as desired.

Case 4. BX ≡ DX ‖A D′
X .

Then the last rule applied in T0 is one of the following three formats:

1.
DX{p/X} a−→t1 ,D

′
X{p/X} a−→s1

DX{p/X}‖AD′
X{p/X} a−→t1‖As1

with a ∈ A and p1 ≡ t1 ‖A s1;

2. DX{p/X} a−→t1

DX{p/X}‖AD′
X{p/X} a−→t1‖AD′

X{p/X}
with D′

X{p/X} 	 τ−→, p1 ≡ t1 ‖A D′
X{p/X} and a /∈ A;

3.
D′

X{p/X} a−→s1

DX{p/X}‖AD′
X{p/X} a−→DX{p/X}‖As1

with DX{p/X} 	 τ−→, p1 ≡ DX{p/X} ‖A s1 and a /∈ A.

We treat the first one, and the proof of the later two runs as in Case 3. Clearly, T0 has two

proper subtrees T ′
0 and T ′′

0 , which are proof trees for DX{p/X} a−→ t1 and D′
X{p/X} a−→ s1

respectively. Moreover, for the transitions p1
τ−→ · · · τ−→ |pn, there exist two processes

sequences t1, . . . , tn and s1, . . . , sn such that tn, sn are stable, pn ≡ tn ‖A sn, and for each

1 � i < n, pi ≡ ti ‖A si and the last rule applied in Ti is

either
ti

τ−→ ti+1

ti ‖A si
τ−→ ti+1 ‖A si+1

or
si

τ−→ si+1

ti ‖A si
τ−→ ti+1 ‖A si+1

.

For the former, si+1 ≡ si and Ti contains a proper subtree T ′
i which is a proof tree for

ti
τ−→ ti+1. We use Ω1 to denote the (finite) set of all these proof tree T ′

i . Similarly,

for the latter, ti+1 ≡ ti and Ti contains a proper subtree T ′′
i which is a proof tree for

si
τ−→ si+1. We use Ω2 to denote the (finite) set of all these proof tree T ′′

i . Clearly,

Ω′ � {T ′
0 } ∪ Ω1 is a proof forest for DX{p/X} a

=⇒ tn and Dep(Ω′) < Dep(Ω). Thus, by IH,

we have DX{q/X} a
=⇒F |q′

1 and tn �
�RS

R �
�RS

q′
1 for some q′

1. Similarly, for the transition

D′
X{p/X} a

=⇒F |sn, we also have D′
X{q/X} a

=⇒F |q′
2 and sn �

�RS
R �

�RS
q′

2 for some q′
2.

Therefore we obtain p′ ≡ tn ‖A sn �
�RS

R �
�RS

q′
1 ‖A q′

2 by Theorem 4.2. Moreover it is

not difficult to see that BX{q/X} ≡ DX{q/X} ‖A D′
X{q/X} a

=⇒F |q′
1 ‖A q′

2 because of

BX{q/X} 	 τ−→, DX{q/X} a
=⇒F |q′

1 and D′
X{q/X} a

=⇒F |q′
2.

Case 5. BX ≡ 〈Y |E〉.
Clearly, the last rule applied in T0 is 〈tY |E〉{p/X} a−→p1

〈Y |E〉{p/X} a−→p1

. Hence T0 contains a proper

subtree, say T ′
0 , which is a proof tree for Strip(PCLLR

,MCLLR
) � 〈tY |E〉{p/X} a−→ p1 and

Dep(T ′
0 ) < Dep(T0). So, Ω′ � {T ′

0 , Ti : 1 � i < n} is a proof forest for 〈tY |E〉{p/X} a
=⇒ p′

and Dep(Ω′) < Dep(Ω). Then, by IH, we have 〈tY |E〉{q/X} a
=⇒F |q′ and p′ �

�RS
R �

�RS
q′

for some q′; moreover BX{q/X} ≡ 〈Y |E〉{q/X} a
=⇒F |q′, as desired.
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(ALT-upto-3) Let BX{p/X} and BX{q/X} be stable and BX{p/X} /∈ F . We shall prove

I(BX{p/X}) ⊇ I(BX{q/X}), the converse inclusion may be proved in a similar manner

and is omitted. Assume that BX{q/X} a−→ q′. Then, for this transition, by Lemma 5.7,

there exist B′
X , B′

X,Ỹ
and B′′

X,Ỹ
with X /∈ Ỹ that satisfy (CP-a-1) – (CP-a-4). In case

Ỹ = �, it immediately follows from (CP-a-3-iii) that BX{p/X} a−→ B′′
X,Ỹ

{p/X}. Next we

handle the other case Ỹ 	= �. In this situation, by (CP-a-3-iii), to complete the proof, it

suffices to prove that I(p) = I(q). By (CP-a-1) and (CP-a-3-i), we have

BX{r/X}� B′
X,Ỹ

{r/X, r/Ỹ } for any r.

Then, since BX{p/X} and BX{q/X} are stable, by Ỹ 	= �, (CP-a-2) and Lemmas 5.10

and 5.4, it follows that both p and q are stable. Hence p
ε

=⇒F |p by p /∈ F . Then,

due to p =RS CX{p/X}, we have CX{p/X} ε
=⇒F |s and p �

�RS
s for some s. For this

transition, since X is strongly guarded in CX , by Lemma 5.14, there exists a stable

context DX such that (d.1) s ≡ DX{p/X} 	 τ−→, (d.2) X is strongly guarded and does

not occur in the scope of any conjunction in DX , and (d.3) CX{q/X} ε
=⇒ DX{q/X}.

Hence I(p) = I(DX{p/X}) by (d.1), p �
�RS

s and p /∈ F . Moreover, by (d.1), (d.2)

and Lemma 5.8, we have DX{q/X} 	 τ−→ and I(p) = I(DX{p/X}) = I(DX{q/X}). By

Lemma 7.2, we also get DX{q/X} /∈ F due to p /∈ F , q /∈ F and s ≡ DX{p/X} /∈ F .

So, CX{q/X} ε
=⇒F |DX{q/X} by Lemma 4.2. Further, it follows from q =RS CX{q/X}

and q 	 τ−→ that DX{q/X} �
�RS

q. Hence I(DX{q/X}) = I(q) because of DX{q/X} /∈ F .

Therefore I(p) = I(DX{p/X}) = I(DX{q/X}) = I(q), as desired.

The next lemma is the crucial step in the demonstrating the assertion that 〈X|X = tX〉
is a consistent solution of a given equation X =RS tX whenever consistent solutions exist.

Lemma 7.4. For any term tX where X is strongly guarded and does not occur in the

scope of any conjunction, if q =RS tX{q/X} for some q /∈ F then 〈X|X = tX〉 /∈ F .

Proof. Assume p =RS tX{p/X} for some p /∈ F . Then tX{p/X} /∈ F . Set

Ω =

{
BY {〈X|X = tX〉/Y } :

BY {p/Y } /∈ F and Y does not occur in the scope of

any conjunction in BY

}
.

It is obvious that 〈X|X = tX〉 ∈ Ω by taking BY � Y . Thus we intend to show

that Ω ∩ F = �. Assume CY {〈X|X = tX〉/Y } ∈ Ω. Let T be any proof tree for

Strip(PCLLR
,MCLLR

) � CY {〈X|X = tX〉/Y }F . Similar to Lemma 6.2, it is sufficient to

prove that T has a proper subtree with root sF for some s ∈ Ω, which is a routine case

analysis based on the last rule applied in T . Here we treat only two cases.

Case 1. CY ≡ Y .

Then CY {〈X|X = tX〉/Y } ≡ 〈X|X = tX〉. Clearly, the last rule applied in T is

either
〈tX |X = tX〉F
〈X|X = tX〉F or

{rF : 〈X|X = tX〉 ε
=⇒ |r}

〈X|X = tX〉F .
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For the former, T has a proper subtree with root 〈tX |X = tX〉F; moreover 〈tX |X = tX〉 ≡
tX{〈X|X = tX〉/X} ∈ Ω due to tX{p/X} /∈ F , as desired. For the latter, if 〈X|X = tX〉 	 τ−→,

then, in T , the unique node directly above the root is labelled with 〈X|X = tX〉F;

moreover 〈X|X = tX〉 ∈ Ω, as desired. In the following, we consider the nontrivial case

〈X|X = tX〉 τ−→. Since tX{p/X} /∈ F , by Theorem 4.1, we get tX{p/X} ε
=⇒F |p′ for some

p′. For this transition, since X is strongly guarded and does not occur in the scope of

any conjunction, by Lemma 5.14, there exists a stable context BX such that (a.1) X is

strongly guarded and does not occur in the scope of any conjunction, (a.2) p′ ≡ BX{p/X}
and (a.3) tX{〈X|X = tX〉/X} ε

=⇒ BX{〈X|X = tX〉/X}. Since p′ ≡ BX{p/X} 	 τ−→, by (a.1)

and Lemma 5.8, BX{〈X|X = tX〉/X} 	 τ−→. Then it follows from (a.3) and 〈X|X = tX〉 τ−→
that 〈X|X = tX〉 ε

=⇒ |BX{〈X|X = tX〉/X}. Hence T has a proper subtree with root

BX{〈X|X = tX〉/X}F; moreover BX{〈X|X = tX〉/X} ∈ Ω because of p′ /∈ F , (a.1) and (a.2).

Case 2. CY ≡ 〈Z |E〉.
Then CY {〈X|X = tX〉/Y } ≡ 〈Z |E{〈X|X = tX〉/Y }〉. The last rule applied in T is

either
〈tZ |E〉{〈X|X = tX〉/Y }F
〈Z |E〉{〈X|X = tX〉/Y }F (Z = tZ ∈ E) or

{rF : 〈Z |E〉{〈X|X = tX〉/Y } ε
=⇒ |r}

〈Z |E〉{〈X|X = tX〉/Y }F .

For the first alternative, by Lemma 4.1(8), it follows from 〈Z |E〉{p/Y } /∈ F that

〈tZ |E〉{p/Y } /∈ F . Since Y does not occur in the scope of any conjunction in 〈Z |E〉, by

Lemma 5.2(5), neither does it in 〈tZ |E〉. Therefore 〈tZ |E〉{〈X|X = tX〉/Y } ∈ Ω.

For the second alternative, since 〈Z |E〉{p/Y } /∈ F and p =RS tX{p/X}, we get

〈Z |E〉{tX{p/X}/Y } /∈ F by Theorem 6.1. So 〈Z |E〉{tX{p/X}/Y } ε
=⇒F |p′ for some

p′. Then, for this transition, by Lemma 5.14, there exist processes qW for W ∈ W̃ and a

context DY ,W̃ with Y /∈ W̃ such that

b.1. tX{p/X} τ
=⇒ |qW for each W ∈ W̃ and p′ ≡ DY ,W̃ {tX{p/X}/Y , q̃W/W̃ },

b.2. none of Y and W̃ occur in the scope of any conjunction in DY ,W̃ and

b.3. 〈Z |E〉{r/Y } ε
=⇒ DY ,W̃ {r/Y , r̃W /W̃ } for any r and rW (W ∈ W̃ ) such that r

τ
=⇒ rW

for each W ∈ W̃ .

Then, since X is strongly guarded and does not occur in the scope of any conjunction in tX ,

by Lemmas 5.14 and 5.8, for each transition tX{p/X} τ
=⇒ |qW , there exists a stable context

tWX such that (c.1) X is strongly guarded and does not occur in the scope of any conjunction

in tWX , (c.2) qW ≡ tWX {p/X} and (c.3) tX{〈X|X = tX〉/X} τ
=⇒ |tWX {〈X|X = tX〉/X}. For the

simplicity of notation, we let QW stand for tWX {〈X|X = tX〉/X} for each W ∈ W̃ . So, by

(c.3), 〈X|X = tX〉 τ
=⇒ |QW for each W ∈ W̃ . Hence, by (b.3),

〈Z |E〉{〈X|X = tX〉/Y } ε
=⇒ DY ,W̃ {〈X|X = tX〉/Y , Q̃W/W̃ }. (7.4.1)

By (b.2) and (c.1), it is not difficult to see that X is strongly guarded and does not occur

in the scope of any conjunction in DY ,W̃ {tX/Y , t̃WX /W̃ }. So, by Lemma 5.8 and p′ ≡
DY ,W̃ {tX/Y , t̃WX /W̃ }{p/X} 	 τ−→, we get DY ,W̃ {tX/Y , t̃WX /W̃ }{〈X|X = tX〉/X} 	 τ−→. Hence

DY ,W̃ {〈X|X = tX〉/Y , Q̃W/W̃ } 	 τ−→ by Lemma 5.6 and I(〈X|X = tX〉) = I(tX{〈X|X =

tX〉/X}). So, by (7.4.1), T has a proper subtree with root DY ,W̃ {〈X|X = tX〉/Y , Q̃W/W̃ }F .
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Moreover, by Theorem 6.1 and p =RS tX{p/X}, it follows from p′ ≡ DY ,W̃ {tX{p/X}/Y ,˜tWX {p/X}/W̃ } /∈ F that DY ,W̃ {p/Y , ˜tWX {p/X}/W̃ } /∈ F . Therefore DY ,W̃ {〈X|X = tX〉/Y ,

Q̃W/W̃ } ≡ D′
Y {〈X|X = tX〉/Y } ∈ Ω by setting D′

Y � DY ,W̃ { ˜tWX {Y /X}/W̃ }.

Theorem 7.1 (unique solution). For any p, q /∈ F and tX where X is strongly guarded and

does not occur in the scope of any conjunction, if p =RS tX{p/X} and q =RS tX{q/X}
then p =RS q. Moreover 〈X|X = tX〉 is the unique consistent solution (modulo =RS ) of

the equation X =RS tX whenever consistent solutions exist.

Proof. If p 	
 q then p =RS q follows from Lemma 7.3, otherwise, w.l.o.g, we assume that

p is stable and q is not. By Theorem 6.1, τ.p =RS p =RS tX{p/X} =RS tX{τ.p/X}. Then,

by Lemma 7.3, it follows from τ.p, q /∈ F , τ.p 	
 q, τ.p =RS tX{τ.p/X} and q =RS tX{q/X}
that τ.p =RS q . Hence p =RS q.

Suppose that X =RS tX has consistent solutions. It is obvious that 〈X|X = tX〉 =RS

tX{〈X|X = tX〉/X} due to 〈X|X = tX〉 �1 〈tX |X = tX〉 ≡ tX{〈X|X = tX〉/X} and

Lemma 5.13. Further, by Lemma 7.4, 〈X|X = tX〉 is the unique consistent solution of the

equation X =RS tX .

Corollary 7.1. For any term tX where X is strongly guarded and does not occur in

the scope of any conjunction, then the equation X =RS tX has consistent solutions iff

〈X|X = tX〉 /∈ F .

We provide a brief discussion to end this section. For Theorem 7.1, the condition that X

is strongly guarded cannot be relaxed to that X is weakly guarded. For instance, consider

the equation X =RS τ.X, it has infinitely many consistent solutions. In fact, for any p, it

always holds that p =RS τ.p. Moreover the condition that p, q /∈ F is also necessary. For

example, both 〈X|X = a.X〉 and ⊥ are solutions of the equation X =RS a.X, but they are

not equivalent modulo =RS .

8. Conclusions and future work

This paper considers recursive operations over LLTSs in a pure process-algebraic style.

We show that the behavioural relation �RS is precongruent w.r.t all operations in CLLR ,

which reveals that this calculus supports compositional reasoning. Moreover, we also

provide a result on the uniqueness of consistent solution of a given equation X =RS tX
where X is required to be strongly guarded and does not occur in the scope of any

conjunction in tX .

We conclude this paper by giving several possible avenues for further work. First, it

would be desirable to relax the restriction of Theorem 7.1, that is, establish the uniqueness

of consistent solution without the hypothesis that X does not occur in the scope of any

conjunction. Second, it is well known that the operator hiding is useful in specifying

systems. In Lüttgen and Vogler (2010), such operator has been considered. To preserve

τ-purity, Lüttgen and Vogler give a complicated setting to introduce it in the framework

of LLTS. As a future work, we plan to enrich CLLR by adding this operator. Although it

is relatively easy to capture Lüttgen and Vogler’s setting in terms of SOS rules, it seems

https://doi.org/10.1017/S0960129514000073 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000073


Y. Zhang, Z. H. Zhu and J. J. Zhang 1430

nontrivial to reason about F-predicate in the presence of both recursion and hiding as

the operator hiding may lead to divergence and hence introduce inconsistency because of

Condition (LTS2), for instance, considering the process 〈X|X = a.X〉/a. Third, it would be

interesting to find a (ground) complete proof system for regular processes in CLLR along

lines adopted in Baeten and Bravetti (2008) and Milner (1989b). Here a process is regular

if its LTS has only finitely many states and transitions. To this end, it is necessary to

adopt the restriction that recursive variables do not occur in the scope of any conjunction

in recursive specifications. Otherwise, non-regular expressions would occur, for instance,

consider the process 〈X|X = a.X∧τ.a.X〉. Thus we think that Theorem 7.1 may be enough

for this aim.
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