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al distribution in the southeastern Levantine Sea and its borderlands reveals a
complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the
Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and
southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A
high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all
these sources contributed during the late Quaternary and that the Nile River played a very important role in
the supply of clay. Nile influence was reduced during the glacial period but was higher during the African
Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West
African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River
discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-
surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian
Ocean climate system and the discharge of the Nile River.

© 2009 University of Washington. All rights reserved.
Introduction
As part of the Eastern Mediterranean Sea, the Levantine Sea is an
intercontinental basin, semi-enclosed by land. The main sources of
fluviatile sediments are permanent rivers draining southeastern
Europe, Turkey and the eastern part of Africa. Large amounts of
aeolian sediment are blown into the Levantine Sea, the Sahara being
the major source. These transport processes are tightly coupled to the
climate variability of the borderlands, particularly including changes
in precipitation and erosion potential of the Nile River catchment, and
wind strength and deflation potential of the Saharan desert. During
the late glacial and Holocene periods, central and northern Africa
experienced pronounced humidity changes linked to the African
monsoon system. Lake levels and various proxy records documented
the onset of humid conditions at around 15 ka (review in Gasse,
2000). This so-called African Humid Period (AHP) lasted until
approximately 5.5 ka (deMenocal et al., 2000a). Enhanced Nile River
runoff during this time has been associated with stratification of
surface water masses and reduced deep-water formation in the
Mediterranean Sea, leading to the formation of sapropel S1 (e.g.,
amann).
Sonnegstrasse 5, 8092 Zürich,

r Geologie und Paläontologie,

d'Etude des Bio-indicateurs
Cedex, France.

ashington. All rights reserved.

ridge University Press
Rossignol-Strick et al., 1982). Various studies have focused on the
understanding of these land–ocean linkages on orbital time-scales.
However, little is known about the impact of abrupt climate changes
on terrigenous input and sedimentation processes of the Levantine
Sea.

A variety of sedimentological and geochemical methods have been
applied to characterize source areas, transport processes and
distribution of terrigenous sediment in the marine environment.
Past variations in bottom current speed, wind strength, and the mode
of transport can been reconstructed by end-member modelling of
grain-size distributions (e.g., Stuut and Lamy, 2004). In the Mediter-
ranean Sea, Moreno et al. (2002) and Hamann et al. (2008) applied
this method to late glacial and Holocene sediments in order to
distinguish between fluviatile and wind-derived material. In addition,
Sr and Nd isotope analyses of terrigenous material have been used to
obtain information on sediment sources and to constrain transport
paths of detrital material (e.g., Tütken et al., 2002). Sr and Nd isotopic
ratios also provide useful information of changes in oceanic circulation
patterns and pathways in sediment transport. With this toolbox,
Weldeab et al. (2002a,b) were able to characterize the surface
sediments in the Eastern Mediterranean Sea and to distinguish
provenances and pathways of suspended matter. The type and the
proportions of individual clay minerals in sediments are linked to the
terrigenous sediment supply, the source rocks, weathering conditions
on land and transport mechanisms (e.g., Biscaye, 1965).

Clay mineral studies in the Mediterranean Sea focus mainly on the
clay mineral distribution in marine and terrestrial surface sediments
of the eastern basins and their hinterland (e.g., Venkatarathnam and
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Figure 1. (a) Map of the southeastern Levantine Sea and adjacent areas with location of sediment core GeoTü SL112. The distribution of the main clay mineral groups smectite (sm),
illite (ill), kaolinite (kao), chlorite (chl) and palygorskite (paly) in recent dust samples (arrows) is shown (various sources, Table 1). For exact location of samples II.7 and II.8 see Table
1. Present-day sea-surface circulation is represented by white elongated arrows (Pinardi and Masetti, 2000), 100-m depth contours are given. (b) Distribution of the main clay
mineral smectite (sm), groups illite (ill), kaolinite (kao) and chlorite (chl) in marine surface samples (asterisks) and recent river/wadi samples (arrows). The data have been
compiled from various sources (see Table 1).
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Ryan, 1971; Chester et al., 1977; Maldonado and Stanley, 1981; Aksu
et al., 1995; Sandler and Herut, 2000; Ehrmann et al., 2007a,b). These
studies highlight the Nile River as the dominant sediment source,
which provides large quantities of sediment to the southeastern part
of the basin. In contrast, aeolian input from the Sahara and the riverine
supply of smaller rivers and wadis are of minor importance when
compared to the suspended material derived by the Nile. The Nile
River originates in central-east Africa and incorporates up to 90% of its
clay-rich suspension load close to its source (Adamson et al., 1980).
During the flow from the catchment area to the delta, the river passes
through different climate zones, ranging from a cool and humid
oi.org/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
climate in the Ethiopian highlands to the desert climate in Egypt. Thus,
the Nile River is highly sensitive to changes in precipitation patterns in
central Africa. Hence, the clay mineral assemblage of the Nile load
appears to be a useful indicator for environmental changes and
weathering processes in the source area.

In the present study, we compile published clay mineral data from
the southeastern Levantine Sea and its borderlands. We give an
overview on recent clay mineral supply, source areas, transport and
sedimentation processes, and distribution patterns in marine surface
sediments. This knowledge is then applied to the palaeoclimatic
interpretation of a high-resolution clay mineral data set from the
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Figure 1 (continued).
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Israel continental margin. The investigated sediment core is located
downstream the Nile River outflow, ideally positioned to record the
orbital and suborbital climate variability in the Nile catchment area
over the last ca. 27 ka.

Environmental setting

Climatic conditions and oceanography

The Eastern Mediterranean Sea and the surrounding mainland are
controlled by different climate regimes. A temperate and humid to
semi-arid climate is characteristic for wide parts of southeast Europe
and Turkey, which is influenced by the North Atlantic Oscillation
(NAO; e.g., Hurrell et al., 2003). The Near East is located in the climatic
rg/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
transition zone between the temperate and humid conditions in the
north and arid conditions with deserts in the south. The northern part
of Africa is dominated by semiarid to arid tropics and subtropics, while
the central areas are characterized by semi-humid conditions and cold
tropics (e.g., Highland of Ethiopia). The precipitation and drought
patterns of the northern African continent are related to a complex
interplay between global climate patterns and regional phenomena.
Large-scale moisture availability is related to the annual migration of
the Intertropical Convergence Zone (ITCZ) and is influenced by the
African monsoon system, which is connected to the pan-tropical El
Niño–Southern Oscillation (ENSO; e.g., Janicot et al., 1997; Schott and
McCreary, 2001). The Indian Ocean and the adjacent regions are
affected by interannual Indian Ocean Dipole (IOD) events (e.g., Saji
et al., 1999; Webster et al., 1999; Abram et al., 2007). This coupled

https://doi.org/10.1016/j.yqres.2009.01.001
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ocean–atmosphere phenomenon displays periodic oscillations related
to changes in the sea-surface temperature (SST) that control the
availability of moisture. The relationship between the IOD, the
monsoon system and ENSO is still a matter of intense debate (Saji
and Yamagata, 2003).

Evaporation rates exceed the freshwater influx by precipitation
and river supply in the arid Eastern Mediterranean Sea. The salinity of
Table 1
Compilation of published clay mineral data from river channel and wadi surface sediments,
adjacent mainland

No. Investigation area n Smectite (%) Illite (%) Kaol

I. Northern Dust Assemblage
1 NW of Cyprus (group B) 6 22 45 24
2 N of Cyprus (group A) 4 33 41 23
3 SE of Cyprus (group C) 4 21 54 20

II. Saharan Dust Assemblage
4 SE Levantine Sea (group D) 10 b5 40 50
5 N Egypt, Libya 19 55 15 30

6 Cairo 2 29 29 42
7 Saharan dust sample (N Algeria) n.d. n.d. 36 15
8 Saharan dust sample (S of Hoggar) n.d. 43 10–25 20–2

III. Near East Assemblage
9 N Israeli coast (clay assemblage III) 11 40–69 Variable N30
10 N of Haifa 5 58 9 33
11 S of Haifa (clay assemblage II) 9 N70 b10–19 b20
12 N of Tel Aviv (clay assemblage I) 5 N70 b10 20–2
13 S of Tel Aviv (clay assemblage III) 10 40–69 Variable N30

IV. Sinai Assemblage
14 E of El Arish (JM 920–922) 3 29 29 42
15 El Arish (YN-3031) 1 28 19 53

V. Egyptian Wadi Assemblage
16 S of Cairo (Wadi-10) 1 37 18 45
17 N of El Minya (Wadi-12, 13) 2 40 7 53
18 NE of Qena (Wadi-49) 1 34 11 55
19 S of Qena (Wadi-58 to 60) 3 40 12 48
20 W of Luxor 1 45 14 41

VI. Nile Assemblage
21 Damietta branch (Dam-1-CH-1990) 1 69 6 25
22 Damietta branch 2 74 4 22
23 Damietta branch (Dam-3-CH, 1-CH) 2 76 5 19
24 Rosetta branch (Ros-1-CH) 1 66 10 24
25 Rosetta branch (Ros-3-CH, 4-CH) 2 81 6 13
26 Nile, 30° to 27° latitude (CH 1, 3, 6, 9) 4 73 9 18
27 N of Quena (Nile 1) 1 75–85⁎3 b5 10–1

VII. SE Levantine Sea Assemblage
28 NE of Cyprus (sample 296) 1 62 26 9
29 E of Cyprus 1 N70 b10 15–2
30 SE of Cyprus 1 60–70 b10 15–2
31 W of Cyprus (sample 236) 1 74 10 14
32 S of Cyprus (samples 217, 219) 2 76 6 10
33 S of Cyprus 1 60–70 b10 20–2
34 W of Haifa (sample 30) 1 N70 b10 20–2
35 W of Haifa (GeoTü SL112) 1 66 8 16
36 N of El Arish (sample 48) 1 N70 b10 20–2
37 Damietta Fan (sample 47) 1 N70 b10 20–2
38 Damietta Fan 1 60–70 b10 20–2
39 Central Levantine Sea (sample 33) 1 60–70 10–20 20–2
40 Central Levantine Sea 1 40–60 10–20 20–2
41 Central Nile Cone 1 60–70 10–20 20–2
42 Central Nile Cone (samples 7, 8) 2 60–70 b10 20–2
43 Rosetta Fan (sample 39) 1 60–70 b10 20–2
44 Rosetta Fan 1 40–60 10–20 25–3
45 Rosetta Fan 1 60–70 10–20 20–2

Values indicate mean concentrations and concentration ranges, respectively, of the individua
separately, low amounts within illite and ⁎2 kaolinite, respectively; ⁎3 termed as illite-smec
The locations of samples are shown in Figures 1 and 2.

oi.org/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
the surface water masses in the Levantine Sea is 38‰ to N39‰ (Wüst,
1960). The mean water temperature ranges between 16°C during
winter and up to 27°C during summer (Wüst, 1960, 1961).

The general circulation pattern exhibits a counterclockwise current
of the Eastern Mediterranean Surface Water (MSW) (e.g., Pickard and
Emery, 1982; Pinardi and Masetti, 2000; Fig. 1a). During winter, in
times of intensive evaporation, Levantine Intermediate Water (LIW)
dust samples and marine surface sediments in the southeastern Levantine Sea and the

inite (%) Chlorite (%) Palygorskite (%) References

b10 n.d. Chester et al. (1977)
b5 n.d. Chester et al. (1977)
b7 n.d. Chester et al. (1977)

b8 n.d. Chester et al. (1977)
n.d. ⁎1 Ganor and Mamane (1982)

after Ganor (1975)
n.d. n.d. Stanley and Wingerath (1996)
36 10–15 Paquet et al. (1984)

5 5 10–15 Paquet et al. (1984)

⁎2 n.d. Stanley et al. (1997)
n.d. n.d. Stanley and Galili (1996)
⁎2 n.d. Stanley et al. (1997)

9 ⁎2 n.d. Stanley et al. (1997)
⁎2 n.d. Stanley et al. (1997)

⁎2 n.d. Stanley et al. (1997)
⁎2 n.d. Stanley et al. (1997)

n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)

after Elgabaly and Khadr (1962)

n.d. n.d. Stanley and Wingerath (1996)
⁎2 n.d. Stanley et al. (1997)
n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)
n.d. n.d. Stanley and Wingerath (1996)

5 b5 0 Sandler and Herut (2000)

b5 n.d. Chester et al. (1977)
0 b3 n.d. Venkatarathnam and Ryan (1971)
0 b3 n.d. Venkatarathnam and Ryan (1971)

b5 n.d. Chester et al. (1977)
8 n.d. Chester et al. (1977)

5 3–5 n.d. Venkatarathnam and Ryan (1971)
5 b3 n.d. Maldonado and Stanley (1981)

9 n.d. This study
5 b3 n.d. Maldonado and Stanley (1981)
5 b3 n.d. Maldonado and Stanley (1981)
5 b3 n.d. Venkatarathnam and Ryan (1971)
5 3–5 n.d. Maldonado and Stanley (1981)
5 5–7 n.d. Venkatarathnam and Ryan (1971)
5 b3 n.d. Venkatarathnam and Ryan (1971)
5 b3 n.d. Maldonado and Stanley (1981)
5 b3 n.d. Maldonado and Stanley (1981)
0 3–5 n.d. Venkatarathnam and Ryan (1971)
5 b3 n.d. Venkatarathnam and Ryan (1971)

l clay minerals n number of samples; n.d. not determined; ⁎1 concentrations not shown
tite phase.
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Figure 2. Ternary diagram of the major clay mineral groups smectite, illite and kaolinite+chlorite+palygorskite. Distributions are grouped in clusters reflecting the individual clay
mineral assemblages.

Table 2
Data used for constructing the age model for the investigated core GeoTü SL112

Core depth cm Uncalibrated 14C yr BP
(laboratory number)

Calendar age
cal yr BP

Datum

0 0 0 Sediment surface
100 3035±30 (KIA 28348) 2765–2743 14C AMS dating
201 5505±30 (KIA 28349) 5880–5860 14C AMS dating
260 8365±70 (KIA 30176) 8970–8690 14C AMS dating
365 12,985±60 (KIA 28350) 14,920–14,690 14C AMS dating
498 20,930+130/−120 (KIA 28351) 24,660–24,290 14C AMS dating
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forms, sinks to a depth between 200 m and up to 600 m in the
northwestern part of the Levantine Sea, and flows towards the west
into the western Mediterranean Sea (Wüst, 1961; Pickard and Emery,
1982; Malanotte-Rizzoli and Hecht, 1988). Eastern Mediterranean
DeepWater (EMDW) forms duringwinter in the southern Adriatic Sea
and the southern Aegean Sea and fills the Ionian and Levantine basins
below 800 m (Wüst, 1961; Klein et al., 1999).

Sediment supply into the southeastern Levantine Sea

The Nile River is the dominant sediment source for the south-
eastern Levantine Sea (Fig. 1a; Venkatarathnam and Ryan, 1971;
Foucault and Meliérès, 2000). The majority of the silt- and sand-sized
sediment is deposited in the Nile Delta, on the Nile Cone and along the
shelf, whereas clay-sized sediments are dispersed in suspension by
the MSW. The annual suspension load of the Nile River was estimated
to 120–230×106 t/yr prior to the High Dam construction at Aswan in
1964 (Holeman, 1968; Milliman and Syvitski, 1992; Stanley and
Wingerath, 1996; Garzanti et al., 2006). The Blue Nile and the Atbara
are at present the most important sediment suppliers whereas the
suspension load of the White Nile is comparatively small (Adamson
et al., 1980; Williams et al., 2006). The sediment supplies from local
wadis, that drain into the Nile River are of minor importance (Stanley
et al., 1997). Wadi El-Arish drains the Sinai and provides sediments to
the southeastern Levantine Sea, mainly during winter floods (Sandler
and Herut, 2000). The Israeli Yarqon River is important for sediment
supply because of its perennial character (Stanley et al., 1997; Sandler
and Herut, 2000). Additional sediment comes from a number of
ephemeral rivers, that drain the Near East. However, their sediment
supply is only minor when compared to the supply by the Nile River.

Aeolian dust is a further sediment source for the Mediterranean
Sea (e.g., Venkatarathnam and Ryan, 1971; Pye, 1992; Goudie and
Middleton, 2001). Saharan dust is transported across the Mediterra-
nean Sea to Europe and to the Middle East, and decreases in
concentration with increasing distance from the source. Scirocco
winds are the most important dust-bearing winds affecting the
northern part of Africa. The Khamsin and the Simoom influence Egypt,
the Near East and surrounding areas (Camuffo, 1993; Goudie and
Middleton, 2001). These winds blow from the south and southwest
(Joseph et al., 1973; Ganor andMamane,1982; Stanley andWingerath,
1996) and transport large amounts of dust mainly during short events.
Modern studies estimate a Saharan dust influx of up to 100×106 t/yr
into the Eastern Mediterranean Sea (Goudie and Middleton, 2001). In
rg/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
particular, the northeasternmost sector of Egypt provides ca. 20×106

t/yr dust to the adjacent Levantine Sea (Ganor and Mamane, 1982).
Aeolian influx comes also from the Near East by the Sharqiya winds
(Saaroni et al., 1998). Winds from the northern and eastern
Mediterranean hinterland are of minor importance and contain little
(b10%) clay (Coudé-Gaussen, 1981).
Materials, methods and age model

In order tomap the modern distribution pattern of clayminerals in
the Levantine Sea and its surroundings, we compiled and generalized
published data of various sources (Table 1). The data come from
marine surface sediments retrieved by short gravity and box corers,
from samples taken in rivers and wadi channels, and from dust
samples. Bed load samples of the Nile River and the Nile Delta were
collected after the construction of the Aswan High Dam. All studies
were based on X-ray diffraction analyses of the clay fraction, and
almost all used the method of Biscaye (1965) to calculate percentages
of the individual clay minerals. We present the data in a generalized
way (Figs. 1a, b, 2; Table 1), focusing on the major distribution
patterns. In most cases we show mean concentrations of the clay
minerals illite, smectite, kaolinite and chlorite, which we calculated
from the original data sets (Table 1).

The analyzed gravity core GeoTü SL112 was recovered during RV
Meteor cruise M51/3 in 2001 from the continental slope off Israel in
the southeastern Levantine Sea at 32°44.52′N, 34°39.02′E in a water
depth of 892 m (Hemleben, 2002; Fig. 1a). The core has a total length
of 5.31 m and was sampled in intervals of 4 cm. The majority of the
core consists of soft, water-rich, reddish grey to reddish brown mud
and partly foraminifer-bearing mud with small amounts of sand. The
CaCO3 content fluctuates between 5% and 60%. The sediment is

https://doi.org/10.1016/j.yqres.2009.01.001
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moderately bioturbated. Faunal constituents are mainly foraminifera,
pteropods, and fewer echinoderm fragments, sponge spicules, frag-
ments of bivalves, radiolarians, ostracods, and fish remains. At a depth
of 220–275 cm, the core contains sapropel S1, which was formed
between approximately 9.6 and 6.5 ka (Kuhnt et al., 2008). It consists
Figure 3. Late Quaternary variations in the concentrations of smectite, illite, kaolinite, chlor
GeoTü SL112. Dark grey bar marks sapropel layer S1; light grey bars show Heinrich Events
matter in core 74KL from the western Arabian Sea (Sirocko et al., 1996; 14°19.26′N, 57°20.8
Channel, western Indian Ocean (Bard et al., 1997; 20°24′S, 36°29′E) are shown for compar
indicate 14C dates used for constructing the age model (Table 2), YD: Younger Dryas, B–A: B

oi.org/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
of dark reddish brown mud with moderate laminations and only
minor bioturbation. The core exhibits a 2-mm-thick tephra layer
within the sapropel at a depth of 260 cm.

The sample preparation and analyses for determining the clay
mineralogy in core SL112 followed Ehrmann et al. (2007b). We used
ite (3-point-running means) and the linear sedimentation rate (LSR, in cm/ka) in core
H1 and H2. The solar insolation in July at 15°N (W/m2), the abundance of terrigenous
2′E) and the sea-surface temperature record of core MD79257 from the Mozambique
ison. African Humid Period marked after deMenocal et al. (2000a). Arrows at the top
ølling–Allerød, LGM: last glacial maximum.

https://doi.org/10.1016/j.yqres.2009.01.001


Figure 4. Ternary diagram showing the clay mineral composition of the late Quaternary
sediments of core GeoTü SL112, subdivided into the glacial interval (41 samples), the
African Humid Period (44 samples) and the late Holocene (48 samples). The clusters of
the modern clay mineral assemblages in the southeastern Levantine Sea region are
reproduced from Figure 2 for comparison. II Saharan Dust Assemblage, III Near East
Assemblage, V Egyptian Wadi Assemblage, VI Nile Assemblage, VII SE Levantine Sea
Assemblage. The fields of the Northern Dust Assemblage (I) and the Sinai Assemblage
(IV) plot outside the chosen sector.
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the weighting factors of Biscaye (1965) to calculate percentages of the
clay minerals illite, smectite, kaolinite and chlorite. Palygorskite was
detected in SL112 but could not be quantified because of its low
concentrations.

The age model for core SL112 has been constructed based on five
14C accelerator mass spectrometry (AMS) dates, analyzed at the
Leibniz Laboratory for Age Determination and Isotope Research at the
University of Kiel (Table 2). The analyses were carried out on well-
preserved shells of mixed planktonic foraminifera (G. ruber white,
G. ruber pink, G. sacculifer, G. bulloides, G. siphonifera, O. universa,
N. incompta, T. quinqueloba). Reservoir ages were corrected after Siani
et al. (2001), and ages were converted to calendar years with the
radiocarbon calibration software of Fairbanks et al. (2005). According
to the age model, the core has a basal age of 26.95 cal ka BP.

The raw sedimentological data of core GeoTü SL112 are stored in
the Pangaea data base at the AlfredWegener Institute at Bremerhaven,
Germany (www.pangaea.de).

Modern clay mineral distribution

The compilation of published clay mineral data from the south-
eastern Levantine Sea and adjacent areas provides a general picture of
clay mineral supplies by dust-bearing winds, wadis and rivers (Figs.
1a, b, 2; Table 1). We distinguished two clay mineral assemblages for
dust and four fluvial assemblages, which can be attributed to river and
wadi systems draining the borderlands of the southeastern Levantine
Sea. The assemblage of the SE Levantine Sea results frommixing of the
other assemblages.

I. Northern Dust Assemblage

Aeolian dust samples collected in the vicinity of Cyprus during
northerly to northwesterly winds have up to 54% illite, N20% smectite,
N20% kaolinite and b10% chlorite (Figs. 1a, 2; Table 1). These
sediments have potential sources in the northern Mediterranean
hinterland, such as Turkey, Greece, and the Aegean islands (Chester et
al., 1977). Illite and chlorite are mainly provided by weathering of
metamorphic rocks, flysch, andmolasse sediments of the Balkans (see
compilation by Ehrmann et al., 2007a), and of metamorphic and
sedimentary outcrops in Turkey, such as the Menderes Massif
(Rimmelé et al., 2003). Smectite and kaolinite result from the
weathering of Quaternary volcanic and sedimentary units (Gevrek
and Kazanci, 2000; Karakas and Kadir, 2000; Innocenti et al., 2005).

II. Saharan Dust Assemblage

The samples of the Saharan Dust Assemblage collected over the
Levantine Sea and the north African continent are characterized
by variable dominance of kaolinite, illite and smectite (Figs. 1a, 2;
Table 1). Some samples possess 10–15% palygorskite, which is
commonly used as a tracer for aeolian dust derived from North Africa
(Coudé-Gaussen and Blanc, 1985; Guerzoni et al., 1999; Foucault and
Mélières, 2000; Goudie and Middleton, 2001). Kaolinite contributes
with up to 50% to dust from the south and central Sahara (Chester
et al., 1977; Foucault and Mélières, 2000; Goudie and Middleton,
2001). Kaolinite is an abundant clay mineral in the Cretaceous Nubian
sandstone, in lateritic soils and, in particular, in deposits of the Fayoum
depression south of Cairo (El-Sherbini and Issa, 1989; Stanley and
Wingerath, 1996). Widespread outcrops of Paleocene and Eocene
sediments in the northernmost part of Africa are additional sources
(Bolle et al., 2000). North African illite occurrences are reported by
Singer (1988) fromdesert loess deposits. Caquineau et al. (1998) point
out that illite dominates the dust sources in theNorth andWest Sahara,
whereas kaolinite occurs mainly in the dust sources of the southern
and central parts. Smectite is probably provided by weathering of
Tertiary volcanic rocks, which crop out in east and central Africa.
rg/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
III. Near East Assemblage

Suspended sediments transported by perennial and ephemeral
rivers draining Gaza and Israel contain abundant amounts of smectite
and kaolinite, which can reach concentrations of N70% and N30%,
respectively. Illite occurs in variable amounts of around 10%, and
contents of chlorite are lower (Figs. 1b, 2; Table 1).

Smectite may be derived from weathering of Miocene to recent
volcanic rocks of the intraplate volcanic field Harrat Ash Shaam in
Jordan and adjacent countries (Fig.1a; Ibrahim et al., 2003; Shaw et al.,
2003), tuff beds on Mt. Carmel near Haifa, and early Cretaceous
volcanic rocks and shales in north Israel (Stanley et al., 1997; Sandler
and Herut, 2000; Segev et al., 2005). Erosion of kaolinite-bearing soils
and sediments, mainly of the Mesozoic Nubian sandstone formation
(Stanley et al., 1997; Lado and Ben-Hur, 2004) may provide kaolinite.
In particular, in the coastal-plain red soils the kaolinite concentrations
may exceed those of smectite (Sandler and Herut, 2000). Small
metamorphic areas in the central and southern part of Israel (Gur et
al., 1995; Katz et al., 2004) may provide some illite and chlorite.
Further potential illite and chlorite sources are Cretaceous (Stanley et
al., 1997), Triassic (Heller-Kallai et al., 1973) and Palaeozoic sediments
in the Negev (Heller-Kallai and Kalman, 1972; Stanley et al., 1997).

IV. Sinai Assemblage

Compared to the Near East Assemblage, kaolinite and illite are
much more abundant in the Sinai Assemblage, with more than 40%
and 20–30%, respectively. Smectite, in contrast, shows significantly
lower concentrations of ca. 30%. Chlorite occurs in low amounts but
was not quantified (Figs. 1b, 2; Table 1).

The assemblage is dominated by the sediment supply of Wadi El-
Arish, which drains the Sinai and cuts mainly through Palaeozoic
sediments. The kaolinite dominance is attributed to the erosion of
Cambrian, Cretaceous, Tertiary and Quaternary sediments of the
central part of the Sinai (Grindy and Tamish, 1985; Stanley et al., 1997;
Wanas and Soliman, 2001). Smectite probably has its origin in small
outcrops of basalts in the eastern part of the Sinai (Segev et al., 2005)
and in weathered Cretaceous shales and marls (Stanley et al., 1997).
Illite is derived from Cretaceous and Eocene shales, from the Syrian
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Arc in the northern and central part of the Sinai (Rosenthal et al., 1998;
Cosca et al., 1999; Refaat and Imam, 1999; Kusky and El-Baz, 2000),
and from Triassic sediments in southern Israel (Heller-Kallai et al.,
1973). Minor occurrences of chlorite, as alteration product of
andesites, are documented by El-Sayed (2006) in the northwest of
the Sinai.

V. Egyptian Wadi Assemblage

The Egyptian Wadi Assemblage mirrors the sediment supply of
wadis, which discharge into the Nile River. Similar to the Sinai
Assemblage, kaolinite is most common with concentrations of 40–
55%, followed by smectite with 35–45% and illite with 7–18%. Chlorite
concentrations were not determined (Figs. 1b, 2; Table 1).

Thewadis drain Eocene andMesozoic sedimentary regions and the
Red Sea Hills, which are dominated by Precambrian crystalline base-
ment with volcanic rocks. Kaolinite is attributed to the erosion of
Eocene and Mesozoic shales, marls and calcarenites, which contain up
to 70% kaolinite (Bolle et al., 2000). The volcanic rocks of the Red Sea
Hills are potential sources for smectite (Babiker and Gudmundsson,
2004). Possible sources for illite are Precambrian basement rocks of
the Red Sea Hills and Eocene and Mesozoic sediments (Bolle et al.,
2000; Babiker and Gudmundsson, 2004).

VI. Nile Assemblage

Smectite is the most dominant clay mineral of the Nile Assem-
blage, with values up to 85%. Kaolinite shows concentrations of about
20%. Illite contents are b10% and are therefore lower than in all other
assemblages. Chlorite occurs in traces (Figs. 1b, 2; Table 1).

The Blue Nile and the Atbara River control the sediment load of the
Nile River, whereas the White Nile is of secondary importance. The
Blue Nile and the Atbara River cut through Cenozoic volcanic
provinces of the Highland of Ethiopia (Ukstins et al., 2002), where
smectite is provided in large quantities by chemical weathering
(Venkatarathnam and Ryan, 1971; Maldonado and Stanley, 1981;
Stanley and Wingerath, 1996; Foucault and Mélières, 2000). Kaolinite
is mainly provided by Egyptian wadis, by the erosion of Eocene and
Mesozoic sediments and lateritic soils, and by wind-borne supply
(Venkatarathnam and Ryan, 1971; Stanley and Wingerath, 1996; Bolle
et al., 2000). Illite and small amounts of chlorite come from nearby
Cenozoic and Mesozoic sediments and possibly of Proterozoic rocks in
the Red Sea Hills (Stanley and Wingerath, 1996; Bolle et al., 2000).

VII. SE Levantine Sea Assemblage

The sediment surface samples of the southeastern Levantine Sea
show a relatively homogeneous clay mineral composition with a clear
dominance of smectite, which can reach concentrations of N70%. The
second-most important clay mineral is kaolinite with concentrations
between ca. 10% and 30%, followed by illite with average values of 12%.
Chlorite occurs in minor amounts of b10% (Figs. 1b, 2; Table 1).

The SE Levantine Sea Assemblage exhibits a mixed signal,
influenced by the riverine influx from the North African continent
and the Near East, and various sources of aeolian dust. The high
concentrations of smectite document the dominant role of the
sediment input by the Nile River (e.g., Venkatarathnam and Ryan,
1971; Maldonado and Stanley, 1981; Stanley and Wingerath, 1996;
Stanley et al., 1997; Krom et al., 1999; Sandler and Herut, 2000). The
smectite concentrations are highest along the flow path of the MSW.
High concentrations of kaolinite and illite are found in the western
part of the study area rather than in the eastern part. Saharan dust is a
source delivering illite and kaolinite. However, the estimated modern
aeolian dust rates are only of secondary importance compared with
the sediment discharge by the Nile River (Ganor and Mamane, 1982;
Goudie and Middleton, 2001). Isotopic geochemical and grain-size
oi.org/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
analyses of sediments in the region of site SL112 showed that N70% of
the carbonate-free surface sediment is derived from the Nile River
(Krom et al., 1999; Schilman et al., 2001; Hamann et al., 2008).

Clay mineral distribution during the late Quaternary

The late Quaternary sediments recovered with core GeoTü SL112
from the continental slope off Israel show distinct changes in the clay
mineral composition through time (Figs. 3, 4). They obviously reflect
changes in the source area, weathering and transport processes,
which in turn were controlled by climate.

The glacial period

The glacial interval of core SL112 has the lowest sedimentation
rates (ca. 14 cm/ka) of the core. The clay mineral composition
distinctly differs from that of the Holocene sediments (Fig. 3). The
glacial samples plot into the field of the modern SE Levantine Sea
Assemblage and also overlap with the fields of the Saharan Dust
Assemblage and the Near East Assemblage (Fig. 4).

The relatively high concentrations of kaolinite and illite indicate an
intense influx of dust-bearing Saharan winds. Kaolinite theoretically
also could originate from the Egyptian wadis. This, however, is not
very likely because of the low activity of the wadis during the glacial
period (Adamson et al., 1980). The high proportion of the mainly
wind-transported clay minerals corresponds well with the dry and
cool climate, as documented in East African lake and terrestrial
climate records (e.g., Bonnefille and Charlié, 2000; Gasse, 2000;
Gvirtzman andWieder, 2001; Beuning et al., 2002). Although riverine
sediment input was still significant, aeolian sediment components in
the carbonate-free sediment fraction of SL112 compose 15–40% in the
glacial interval, compared to only ca. 5% in the late Holocene (Hamann
et al., 2008). Kohfeld and Harrison (2001) estimated that glacial dust
accumulation in the Sahara/Sahel region was two to five times higher
than in the late Holocene.

The low sedimentation rates and low smectite concentrations
indicate a reduced influx of Nile suspension load. Some smectite was
probably supplied from the Near East, especially during the LGM.
Evidence for high moisture availability has been suggested by lake-
level highstands of the Lake Lisan/Dead Sea system (Landmann et al.,
2002).

Chlorite was found in the present discharge of the Nile River in
only minor amounts, but was probably more important during the
glacial due to an enhanced chlorite formation by physical weathering
of metamorphosed Precambrian sequences (e.g., Beyth et al., 2003).

At the end of the glacial, an increase in the illite content to up to
18% is visible during the time of Heinrich Event 1 at ca. 16 cal ka BP
(Fig. 3). Heinrich Events (e.g., Bond et al., 1993; Vidal et al., 1997)
caused a strengthening of northwesterlies and increased northward
Saharan dust transport into the Western Mediterranean Sea (e.g.,
Cacho et al., 2000; Moreno et al., 2002) and the Eastern Mediterra-
nean Sea (Neev and Emery, 1995; Hamann et al., 2008). The observed
change in the clay mineral assemblage implies particularly dry
conditions in the source area and/or effective wind transport at the
time of Heinrich Event 1. Additional evidence for Heinrich Event 1-
related drought in the Eastern Mediterranean Sea comes from
speleothem data, significant lake level drops of Lake Lisan/Dead Sea
(Bar-Matthews et al., 1999; Bartov et al., 2003). Also, Lake Victoria and
Lake Tana, which feed the White and Blue Nile, respectively,
desiccated during this period (Talbot and Laerdal, 2000; Lamb et al.,
2007). Therefore, one can assume a strongly reduced discharge of the
Nile River.

The impact of Heinrich Event 2 at ca. 25 ka on the clay mineral
record of SL112 is much less evident (Fig. 3). Heinrich Event 2 is also
recorded by a modest coarsening of grain size (Hamann et al., 2008),
which suggests a slight increase in aeolian activity. A lower amplitude
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Heinrich Event 2 when compared to Heinrich Event 1 is consistent
with differences in lake level lowering in the Lake Lisan/Dead Sea
(Landmann et al., 2002).

The African Humid Period

After the glacial period, the climate of the North African continent
ameliorated at about 15 cal ka BP to persistently humid conditions, the
so-called African Humid Period, which lasted until ca. 5.5 cal ka BP
(deMenocal et al., 2000a). The onset of the AHPwas accompanied by a
distinct change in the clay mineral composition near the base of the
Bølling–Allerød (Fig. 3). Smectite concentrations increased, whereas
illite, kaolinite and chlorite concentrations decreased. The samples of
the AHP plot into the field of themodern SE Levantine Sea Assemblage
and the Near East Assemblage. In contrast to the samples of the glacial
period, they also overlap with the Nile Assemblage (Fig. 4). Thus, we
attribute the change in clay mineralogy mainly to an enhanced
influence of the Nile River and a concurrent decrease in Saharan dust.

Increased rainfall was the result of a strengthening of the African
monsoon and a more northerly position of the ITCZ, which influenced
wide areas across North Africa (e.g., deMenocal et al., 2000a; Renssen
et al., 2006) and led to increased delivery of smectite. A Near East
source may also have contributed to the smectite increase, because
climatic ameliorations in this region also started at ca. 15 ka (Bar-
Matthews et al., 1997; Landmann et al., 2002). However, this smectite
source certainly was much less important than the Nile River. Aeolian
sediment transport decreased by about 50%, due to an increased
vegetation cover as documented in several records in North Africa
(e.g., Adamson et al., 1980; Rossignol-Strick, 1999; deMenocal et al.,
2000b; Renssen et al., 2006). The lower chlorite contents possibly
indicate a change of the weathering regime to chemical rather than
physical weathering caused by warmer and more humid conditions.

A short-term and minor decrease of smectite and kaolinite and an
increase of illite concentrations centered at 12 cal ka BPmay be related
to a brief return to glacial-like conditions during the Younger Dryas
which is characterized by enhanced aridity and increased dust flux
rates, as also documented by several palynological, palaeosol, lake
level, and grain-size analyses in the Mediterranean region (e.g.,
Bottema, 1995; Rossignol-Strick, 1995; Gasse, 2000; Gvirtzman and
Wieder, 2001; Hamann et al., 2008). The dust influx, however, was
characterized by low kaolinite contents and thus differs from that
during the glacial and the late Holocene period, indicating a different
source. Kaolinite occurs mainly in the central part of the Saharan
desert, whereas illite dominates dust sources in its northern part
(Caquineau et al., 1998; Goudie and Middleton, 2001).

Kaolinite abundance increased again to higher values throughout
the early and mid-Holocene, but did not reach glacial concentrations.
In contrast to the glacial period, when kaolinite entered the south-
eastern Levantine Sea probably mainly by dust, wadis with kaolinite-
enriched discharge were activated during the AHP by enhanced
rainfall.

The smectite concentrations show no significant change during the
time of sapropel S1 formation (9.6–6.5 cal ka BP), which is best
explained by an overlap of the AHP signal with relatively constant and
high outflow of suspended material by the Nile River.

The late Holocene

The abrupt end of the AHP and switch to arid conditions at 5.5 cal
ka BP reported by various West African records (e.g., Claussen et al.,
1999; deMenocal et al., 2000a; Kuhlmann et al., 2004) is not visible in
SL112. In contrast, our data show amaximumNile discharge at 4 cal ka
BP with N70% smectite, the highest concentrations throughout the
core. The late Holocene interval generally has a very similar clay
mineral composition as the AHP interval, leading to a broad overlap
between the two groups in the ternary diagram (Fig. 4). The linear
rg/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
sedimentation rate increased to maximum values in the range
32–36 cm/ka (Fig. 3). Starting at 4 cal ka BP smectite concentrations
fell, reflecting a gradual reduction of smectite delivery by the Nile
River to a minimum of 60% at 2 cal ka BP. A similar pattern in the
smectite occurrence is documented in the southern Aegean Sea
(Ehrmann et al., 2007b). Kaolinite shows an increase of concentra-
tions from ca. 4 ka until ca. 1 ka to values of ca. 20%. This is attributed
to a gradual aridification of the source area with enhanced aeolian
transport of kaolinite-bearing dust rather than delivery of kaolinite by
Egyptian wadis, given the limited activity of wadis during more arid
conditions (Adamson et al., 1980; Stanley et al., 1997). Consequently,
our data suggest a persistent maximum of Nile River discharge with
humid conditions in East Africa until 4 cal ka BP. The climate transition
from humid into arid conditions occurs gradually and more than
1000 yr after the end of AHP as documented in the West African
climate records.

Our results are in line with results from Lake Yoa (northern Chad),
which show a gradual termination of the AHP and a strong reduction
of vegetation that allowed dust mobilization from ca. 4.3 cal ka BP
(Kröpelin et al., 2008). The comparison of West African versus East
African climate records reflects significant variations in their long-
itudinal and/or latitudinal patterns. This suggests a decoupling of the
involved climate drivers. Simulations of the climatic evolution in
Northern Africa during the Holocene clearly highlight regional
differences in rainfall patterns and the related vegetation cover
(Renssen et al., 2006). The West Sahara model defines distinct
intervals of a green state (up to ca. 7.5 ka), a zone of instability (7.5 to
5.5 ka) and a desert state (5.5 ka to the present). It also reproduces the
rapid climatic changes during onset and end of the AHP. In contrast,
the impact of enhanced African monsoonal activity on the eastern
Sahara is reflected by a more gradual response of the vegetation
(Renssen et al., 2006; Kröpelin et al., 2008). These geographic
differences may reflect the direct influence of oceanographic changes
in the Indian Ocean on East Africa, as discussed below.

Mechanisms of fluctuations in the Nile River discharge

The comparison of the clay mineral record of this study with other
palaeoclimatic data from the African continent and adjacent regions
highlights the complexity of the regional climate evolution and
history (e.g., reviews in Gasse, 2000; Mayewski et al., 2004; Robinson
et al., 2006).

The fluctuating smectite concentrations reflect the general pattern
of the Nile River discharge, which is to a large degree controlled by
East African climate conditions. The comparison of the smectite
concentrations of core SL112 with sea-surface temperatures (SST) in
the Mozambique Channel (Fig. 3; Bard et al., 1997) shows remarkable
similarities between both records. This relationship suggests a more-
or-less direct link between fluctuations in the Blue Nile River
discharge and sea-surface temperature evolution and climate oscilla-
tions in the tropical Indian Ocean, which is the keymoisture source for
the equatorial to northern East Africa (e.g., Giannini et al., 2005).
Intervals of lower SSTs in thewestern part of the Indian Ocean, e.g., the
glacial period, are probably associated with reduced rainfall and
drought events of the Nile catchment area, a situation as seen during
negative Indian Ocean Dipole events (IOD) (Saji and Yamagata, 2003).
The IOD is tightly linked to the African/Asian monsoonal activity (e.g.,
Ashok et al., 2001; Ashok et al., 2004; Tierney et al., 2008), which is
linked to the mean latitudinal position of the ITCZ (e.g., Haug et al.,
2001; Fleitmann et al., 2003), and related to the evolution of ENSO
patterns during past millennia (Ashok et al., 2004; Abram et al., 2007).
An analogue scenario of a positive IOD-like event occurs during
warmer SSTs in the western part of the Indian Ocean, for example
during the early to mid-Holocene. Increased SSTs require increased
convective activity with regard to an increase in rainfall in the
adjacent African mainland, which affects the catchment areas of the
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Nile tributaries (Abram et al., 2007). Modern studies of rainfall
anomalies in central Africa show an increase in precipitation during
positive IOD phases (Saji and Yamagata, 2003). Furthermore, our
smectite record shows a remarkable correlation with the abundance
of terrigenous matter in the western Arabian Sea, which consists
largely of wind-derived dust from the Arabian Desert (Sirocko et al.,
1996, Fig. 3). The similarities between the records underline the
teleconnection between the monsoon system and the precipitation in
East Africa.

In summary, our data suggest a tight coupling between Indian
Ocean SST as the main moisture source for rainfall in east and
northeast Africa (Fig. 3; Sirocko et al., 1996; Bard et al., 1997; Tierney
et al., 2008). They provide additional support for a direct connection
between the large-scale ocean atmosphere oscillatory modes IOD and
ENSO and the mean annual position of the ITCZ with rainfall patterns
in East Africa, which are ultimately responsible for the discharge of the
Nile River.

Hence, the differences of West versus East African climate signals
during the onset and end of the AHP may be related to different
oceanographic scenarios in the Atlantic and Indian oceans.We suggest
that the climate evolution in East Africa and the evolution of the Nile
River discharge are mainly influenced by the Indian Ocean.

Conclusions

Our review of the modern clay mineral distribution around the
southeastern Levantine Sea allows the identification of several source
areas. Dust samples can be grouped into two assemblages. The
Northern Dust Assemblage comprises aeolian sediments from the
northeastern hinterland, with N40% illite, N20% smectite and N20%
kaolinite. The Saharan Dust Assemblage shows a wide range of clay
mineral compositions with up to 50% kaolinite and 15% palygorskite.

River and wadi sediments allow the discrimination of four fluvial
assemblages. The Near East Assemblage consists of N40% smectite and
mean kaolinite concentrations of 30%. The Sinai Assemblage is
dominated by some 50% kaolinite, b30% smectite and b30% illite.
The Egyptian Wadi Assemblage has similar kaolinite contents but
higher smectite concentrations of ca. 40%. The Nile Assemblage is
characterized by a distinct smectite dominance of 65%–85%.

The marine SE Levantine Sea clay mineral assemblage reveals a
mixture of the other assemblages, with a dominance of smectite (40–
75%) over illite (5–25%) and kaolinite (10–30%).

Changes in the late Quaternary clay mineral distribution in the
southeastern Levantine Sea were caused by changes in the source
areas, weathering processes and transport regimes as a consequence
of changing climatic conditions. The sedimentation pattern of the
glacial period was mainly controlled by the general cold and dry
climate with enhanced aeolian transport of Saharan dust and reduced
fluviatile discharge, as indicated by high kaolinite and illite but low
smectite concentrations. Heinrich-equivalent signals are reflected in
higher illite concentrations at ca. 16 ka and 25 ka, which point to an
increased wind intensity. Heinrich Event 2 is much less pronounced
than Heinrich Event 1.

The high smectite concentrations during the AHP suggest an
increased discharge of the Nile River due to humid conditions. In
contrast to West African records, a more gradual onset of the AHP is
documented in the southeastern Levantine Sea. Also the end of the
AHP is transitional and occurs at about 4 cal ka BP. Hence, this climate
transition postdates the abrupt climate shift of West Africa by more
than 1000 yr. The general trend to modern arid conditions with broad
desert zones in Africa, reduced fluvial activity and high aeolian fluxes
is indicated by a decline of smectite concentrations, which suggests
slightly decreasing Nile River discharge rates during the past 4 ka.

The longer-term trend of the smectite concentration in core SL112
shows a relationship with the Indian Ocean sea-surface temperatures
record derived from the Mozambique Channel and a monsoon record
oi.org/10.1016/j.yqres.2009.01.001 Published online by Cambridge University Press
from the western Arabian Sea, and suggests a direct forcing of the
hydrological balance of the Nile River due to oceanographic changes in
the Indian Ocean.
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