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Suppose k is a positive integer and X is a k-fold packing of the plane by infinitely many

arc-connected compact sets, which means that every point of the plane belongs to at most

k sets. Suppose there is a function f(n) = o(n2) with the property that any n members of

X determine at most f(n) holes, which means that the complement of their union has at

most f(n) bounded connected components. We use tools from extremal graph theory and

the topological Helly theorem to prove that X can be decomposed into at most p (1-fold)

packings, where p is a constant depending only on k and f.
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1. Introduction

The notions of multiple packings and coverings were introduced in a geometric setting

independently by H. Davenport and L. Fejes Tóth [10]. In the present note, we will be

concerned only with packings. A k-fold packing is a family X of sets with the property

that the intersection of any k + 1 members of X is empty. A 1-fold packing is simply

called a packing. The problem of determining the maximum density of a k-fold packing

with congruent copies of a fixed convex body has been extensively studied: see [11] and

references therein. For small values of k, it was found that the densest k-fold lattice
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packings in the plane split into k packings [3, 6, 15]. The situation gets more complicated

for larger values of k, but in general a k-fold packing by convex bodies that are fat (that

is, the ratio of their circumradii to their inradii is bounded) can be decomposed into O(k)

packings, as was shown by Pach [22]. A simple but interesting corollary of this fact is that

any k-fold packing by homothets (uniformly scaled and translated copies) of a convex

body in R
d splits into at most cdk packings, where the constant cd depends only on the

dimension.

The problem of decomposing a family of sets into packings can be rephrased as a

colouring problem for intersection graphs. The intersection graph of a family X of sets

is a graph on the vertex set X in which two vertices are joined by an edge if and only

if the corresponding members of X have non-empty intersection. Thus, a decomposi-

tion of X into k packings is precisely a proper k-colouring of the intersection graph

of X .

If the intersection graph of X has clique number at most k, then X is a k-fold

packing, but not necessarily the other way around. For example, the set of the three

(closed) sides of a triangle forms a 2-fold packing, while its intersection graph is K3,

so it has clique number 3. However, for axis-parallel boxes in Euclidean space, the two

notions coincide: a family is a k-fold packing if and only if the clique number of its

intersection graph is at most k. Asplund and Grünbaum [1] proved that the intersection

graphs of axis-parallel rectangles in R
2 with clique number k have chromatic number

O(k2). Equivalently, every k-fold packing of the plane by axis-parallel rectangles can be

decomposed into O(k2) packings. On the other hand, Burling [4] constructed triangle-free

intersection graphs of axis-parallel boxes in R
3 with arbitrarily large chromatic number.

Pawlik, Kozik, Krawczyk, Lasoń, Micek, Trotter and Walczak [24, 23] provided similar

constructions for straight-line segments and other kinds of geometric sets in the plane

with the property that their intersection graphs are triangle-free but can have arbitrarily

large chromatic number. For a survey on colouring geometric intersection graphs,

see [18].

The aim of the present note is to show that for every family F of geometric objects

of ‘small complexity’ (in the sense described later), there exists a function p(k) such that

every k-fold packing of the plane by members of F can be split into p(k) packings.

There are some standard measures of complexity for families of geometric objects, used

in bounding the computational complexity of various algorithms in motion planning,

computer vision, and geometric transversal theory. A simple arc with respect to a finite

family X of sets is a Jordan arc whose interior is entirely contained in or disjoint from

every set in X . The union boundary complexity of X is the minimum number of simple

arcs whose union is the boundary of
⋃
X . A related measure of complexity is the number

of holes in
⋃
X , that is, bounded arc-connected components of R

2 \
⋃
X . The number

of holes is bounded from above by the union boundary complexity. However, for some

families of geometric objects, the number of holes in the union can be much smaller than

the union boundary complexity.

We prove that for any fixed k, every k-fold packing by arc-connected compact sets in

the plane, the union of any n of which determines a subquadratic number of holes, can

be decomposed into a bounded number of packings.
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Theorem 1.1. Let k ∈ N, let f : N → N be a function such that f(n) = o(n2), and let F be an

infinite family of arc-connected compact sets in the plane with the property that every finite

subfamily X of F determines at most f(|X |) holes. Then there exists a constant p = pf(k)

such that every k-fold packing by members of F can be decomposed into p packings.

It is enough to prove Theorem 1.1 for k-fold packings that are finite subfamilies of F ,

as then the general statement follows by a standard compactness argument. Therefore,

for the remainder of the paper, every k-fold packing that we consider is assumed to be

finite. With this assumption, we will prove the following stronger result.

Theorem 1.2. Let k, f, and F be the same as in the previous theorem. Then there exists a

constant p = pf(k) such that the intersection graph of any finite k-fold packing by members

of F has a vertex of degree smaller than pf(k).

One of the earliest results on the union boundary complexity and, hence, on the number

of holes was established by Kedem, Livne, Pach and Sharir [17]. They proved that the

union boundary complexity of every family of n pseudodiscs, that is, compact sets in the

plane whose boundaries are closed simple curves any two of which share at most two

points, is O(n). Therefore, our theorems imply that any k-fold packing by pseudodiscs can

be decomposed into a bounded number p(k) of packings.

Matoušek, Pach, Sharir, Sifrony and Welzl [20] showed that families of n fat triangles

in the plane determine O(n) holes. Efrat and Sharir [9] established a near-linear upper

bound on the union boundary complexity of families of fat convex sets any two of which

share at most a bounded number of boundary points. Therefore, our results also apply to

this case and generalize the planar version of the statement on fat convex sets mentioned

in the first paragraph. For further results on the complexity of various kinds of fat objects,

consult [2, 7, 8, 19].

Our proof of Theorem 1.2 is based on a result due to Fox and Pach [12], which

asserts that the intersection graphs of finite families of arc-connected sets in the plane

with no subgraph isomorphic to Kt,t have bounded minimum degree, for every t � 2.

The bound on pf(k) it gives for a fixed function f is very bad and certainly far from

optimal. For example, if f(n) = Θ(n), then the bound is more than double exponential

in k. Independently of the work in this paper, using the probabilistic sampling technique

due to Clarkson and Shor [5] (see also [25]), Micek and Pinchasi [21] proved that the

intersection graph of a k-fold packing by geometric objects with linear union boundary

complexity has a vertex of degree O(k).

The assumption that f(n) = o(n2) is crucial for Theorems 1.1 and 1.2 to hold. An n × n

grid of thin horizontal and vertical rectangles forms a 2-fold packing with Θ(n2) holes,

and all vertices in the intersection graph of these rectangles have degree n.

First, in Section 2, we establish our result in a simple special case – for k-fold packings

by pseudodiscs. For the proof of Theorem 1.2 in its full generality, we need a technical

lemma on the number of holes determined by 2-fold packings, which is formulated and

proved in Section 3. The proof in the general case is presented in Section 4.
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2. The case of pseudodiscs

The members of a family of compact sets in the plane are called pseudodiscs if the

boundary of each set is a simple closed curve and any two of these curves share at most

two points. We first give a short proof of the following assertion.

Proposition 2.1. For every positive integer k, there is a constant p = p(k) such that every

k-fold packing by pseudodiscs has a member that intersects fewer than p other members.

For the proof, we use two well-known results: a recent theorem of Fox and Pach [12, 13]

and the classical topological Helly theorem [14]. Let Kt,t denote a complete bipartite graph

with t vertices in each of its parts. The main idea of the proof of Proposition 2.1 is to

show that the intersection graph of any k-fold packing by pseudodiscs has no subgraph

isomorphic to Kt,t for t large enough, and then apply the following result.

Theorem 2.2 (Fox and Pach [12, 13]). For any t ∈ N, there is a constant c = c(t) with the

property that the intersection graph of any finite family of arc-connected sets in the plane

with no subgraph isomorphic to Kt,t has a vertex of degree smaller than c. Furthermore, this

holds with c(t) = t(log t)γ for some absolute constant γ > 0.

Theorem 2.3 (Helly [14]). For any family of pseudodiscs in which every triple has a point

in common, all members have a point in common.

Proof of Proposition 2.1. In view of Theorem 2.2, it is sufficient to prove that, for t large

enough, the intersection graph of the pseudodiscs contains no Kt,t. Suppose it does, and

consider the t pseudodiscs that form the first vertex class of Kt,t. Colour each triple of

them red if they have a point in common and blue otherwise. It follows from Theorem 2.3

that there are no k + 1 pseudodiscs all of whose triples are red. Otherwise, they would

share a point, contradicting the assumption that the pseudodiscs form a k-fold packing.

Thus, if t is large enough, then, by Ramsey’s theorem, the first vertex class of Kt,t has 9

pseudodiscs all of whose triples are blue, that is, which form a 2-fold packing.

To continue, we need the easy observation that the intersection graph G of any 2-fold

packing D of the plane by pseudodiscs is planar. To see this, first note that if there are

two nested pseudodiscs in D, then the inner one can be disregarded, as it has degree

1 in G. Thus, assume there are no two nested pseudodiscs in D. For each pseudodisc

A ∈ D, choose a point xA ∈ A that lies in no other pseudodisc in D. Then, for each

intersecting pair of pseudodiscs A,B ∈ D, connect the points xA and xB by an arc that

lies in A ∪ B but avoids all pseudodiscs in D \ {A,B}. This yields a drawing of G in which

every crossing pair of edges shares an endpoint. For each crossing point, considered one

by one, remove from the two crossing edges some very small parts around that point,

and reconnect the remaining parts of the edges appropriately in one of the two possible

non-crossing ways so as to obtain a new drawing of G with that crossing removed. After

removing all crossings, we are left with a plane drawing of G.
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It follows that the intersection graph of the 9 pseudodiscs from the first vertex class of

Kt,t is planar. Consequently, it is properly 4-colourable, so at least 3 of the 9 pseudodiscs

must be pairwise disjoint. In the same way, we can choose 3 pairwise disjoint pseudodiscs

from the second vertex class of Kt,t. Again, the 6 pseudodiscs thus chosen form a 2-fold

packing, so their intersection graph is planar, but that graph is K3,3. This is the desired

contradiction.

3. Lower bound on the number of holes

For a set X ⊆ R
2, let Γ (X) denote the family of arc-connected components of X, and let

h(X) stand for the number of holes in X, that is, bounded arc-connected components of

R
2 \ X.

Lemma 3.1. Let X1, . . . , Xn be (not necessarily distinct) compact sets in the plane that

form a 2-fold packing (the intersection of any three of them is empty). Let S be the set of

points that belong to exactly two sets from X1, . . . , Xn. Then

h

( n⋃
i=1

Xi

)
� |Γ (S)| −

n∑
i=1

|Γ (Xi)| + 1.

Proof. Let G be the bipartite graph with the following vertex and edge sets:

V (G) = Γ (S) ∪
n⋃

i=1

Γ (Xi \ S),

E(G) =

{
(A,B) ∈ Γ (S) ×

( n⋃
i=1

Γ (Xi \ S)

)
: A and B touch each other

}
.

That is, G is the contact graph of the sets in V (G). We have Γ (Xi ∩ S) ⊆ Γ (S) for every

i. Let Gi denote the subgraph of G induced by the vertex set Γ (Xi ∩ S) ∪ Γ (Xi \ S). The

number of connected components of Gi is exactly |Γ (Xi)|, and thus |E(Gi)| � |V (Gi)| −
|Γ (Xi)|. Since each edge of G belongs to exactly one of G1, . . . , Gn and each arc-connected

component of S belongs to exactly two of X1, . . . , Xn, we have

|E(G)| =

n∑
i=1

|E(Gi)| �
n∑

i=1

(
|V (Gi)| − |Γ (Xi)|

)
= |V (G)| + |Γ (S)| −

n∑
i=1

|Γ (Xi)|.

The graph G is planar – its representation as the contact graph of the sets in V (G) yields a

plane drawing of G in a way very similar to that described in the proof of Proposition 2.1

for pseudodiscs. Since each inner face of that drawing surrounds a hole of X1 ∪ · · · ∪ Xn,

the number of holes in X1 ∪ · · · ∪ Xn is at least the number of inner faces in the drawing.

Therefore, by Euler’s formula, we have

h

( n⋃
i=1

Xi

)
� |E(G)| − |V (G)| + 1 � |Γ (S)| −

n∑
i=1

|Γ (Xi)| + 1.
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Note that if X1, . . . , Xn and S are as in Lemma 3.1, then each intersecting pair of sets

from X1, . . . , Xn gives rise to at least one separate component of Γ (S).

4. Proof of Theorem 1.2

Like in the proof of Proposition 2.1, we will show that the intersection graph of any k-fold

packing by members of F has no subgraph isomorphic to Kt,t for t large enough, and

then apply Theorem 2.2.

Lemma 4.1. Let k � 2 be a positive integer, α be a positive real, and f : N → N be a

function such that f(n) = o(n2). Then there is an integer M = Mf(k, α) with the following

property: if

(i) X1, . . . , Xn are arc-connected compact sets in the plane that form a k-fold packing,

(ii) there are at least α
(
n
k

)
k-tuples of sets from X1, . . . , Xn with non-empty intersection,

(iii) h(Xi1 ∪ · · · ∪ Xit) � f(t) for any choice of i1, . . . , it ∈ {1, . . . , n},
then n < M.

Proof. By (ii) and by the pigeonhole principle, there is a (k − 2)-tuple of sets from

X1, . . . , Xn that belongs to at least

α
(
n
k

)(
k

k−2

)
/
(

n
k−2

)
= α

(
n−k+2

2

)
k-tuples of sets from X1, . . . , Xn with non-empty intersection. Assume without loss of

generality that this (k − 2)-tuple is X1, . . . , Xk−2. Let Yi = X1 ∩ · · · ∩ Xk−2 ∩ Xi for k − 1 �
i � n. It follows that there are at least α

(
n−k+2

2

)
intersecting pairs of sets from Yk−1, . . . , Yn.

Since X1, . . . , Xn form a k-fold packing, the n − k + 2 sets Yk−1, . . . , Yn form a 2-fold

packing. Therefore, by Lemma 3.1, we have

h

( n⋃
i=k−1

Yi

)
� α

(
n−k+2

2

)
−

n∑
i=k−1

|Γ (Yi)| + 1. (∗)

We claim that |Γ (Yi)| �
(
k−1
2

)
f(2) + 1 for k − 1 � i � n. To show this, we assume

without loss of generality that i = k − 1 (that is, Yi = X1 ∩ · · · ∩ Xk−1) and use induction

on r to prove that |Γ (X1 ∩ · · · ∩ Xr)| �
(
r
2

)
f(2) + 1 for 1 � r � k − 1. Since X1 is arc-

connected, we have |Γ (X1)| = 1. For r � 2, we apply Lemma 3.1 to the two sets X1 ∩
· · · ∩ Xr−1 and Xr to get

|Γ (X1 ∩ · · · ∩ Xr)| � h
(
(X1 ∩ · · · ∩ Xr−1) ∪ Xr

)
+ |Γ (X1 ∩ · · · ∩ Xr−1)| + |Γ (Xr)| − 1

� h
(
(X1 ∪ Xr) ∩ · · · ∩ (Xr−1 ∪ Xr)

)
+

(
r−1
2

)
f(2) + 1

� h(X1 ∪ Xr) + · · · + h(Xr−1 ∪ Xr) +
(
r−1
2

)
f(2) + 1

� (r − 1)f(2) +
(
r−1
2

)
f(2) + 1 =

(
r
2

)
f(2) + 1.

The second inequality above follows from the induction hypothesis and the assumption

that Xr is arc-connected, the third one follows from the fact that every hole in an
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intersection of sets contains a hole of one of those sets, and the last one follows from (iii).

This proves the claim.

The claim and the inequality (∗) imply that

h

( n⋃
i=k−1

Yi

)
� α

(
n−k+2

2

)
− (n − k + 2)

((
k−1
2

)
f(2) + 1

)
+ 1.

On the other hand, again by the fact that every hole in an intersection of sets contains a

hole of one of those sets and by (iii), we have

h

( n⋃
i=k−1

Yi

)
= h

(
X1 ∩ · · · ∩ Xk−2 ∩

( n⋃
i=k−1

Xi

))
� (k − 2)f(1) + f(n − k + 2).

The two inequalities yield

f(n − k + 2) � α
(
n−k+2

2

)
− (n − k + 2)

((
k−1
2

)
f(2) + 1

)
+ 1 − (k − 2)f(1),

which cannot hold for arbitrarily large n, as f(n) = o(n2). This completes the proof.

We will need an observation due to Katona, Nemetz and Simonovits [16] generalizing

Turán’s theorem to k-uniform hypergraphs. A k-uniform hypergraph H consists of a set of

vertices, denoted by V (H), and a set of edges, denoted by E(H), that are k-element subsets

of V (H). An independent set in H is a subset of V (H) that does not entirely contain any

edge of H .

Theorem 4.2 (Katona, Nemetz and Simonovits [16]). For any k, m ∈ N, every k-uniform

hypergraph with n � m vertices and fewer than
(
n
k

)
/
(
m
k

)
edges contains an independent set

of size m.

A bound sharper than that of Theorem 4.2 has been established by Spencer [26] using

a simple probabilistic argument, but we will not need it.

Lemma 4.3. Let k, � ∈ N, and let f : N → N be a function such that f(n) = o(n2). Then

there is an integer N = Nf(k, �) with the following property: if

(i) X1, . . . , Xn are arc-connected compact sets in the plane that form a k-fold packing,

(ii) no � sets from X1, . . . , Xn are pairwise disjoint,

(iii) h(Xi1 ∪ · · · ∪ Xit) � f(t) for any choice of i1, . . . , it ∈ {1, . . . , n},
then n < N.

Proof. We proceed by induction on k. For k = 1, we can set Nf(1, �) = � and the

assertion obviously holds. For k � 2, let H denote the k-uniform hypergraph with V (H) =

{X1, . . . , Xn} and E(H) consisting of the k-tuples of sets with non-empty intersection. Let

m = Nf(k − 1, �) and α = 1/
(
m
k

)
. Set Nf(k, �) = max{Mf(k, α), m} for Mf as claimed by

Lemma 4.1. If |E(H)| � α
(
n
k

)
, then we can apply Lemma 4.1 to conclude that n � Nf(k, �).

Thus, suppose |E(H)| < α
(
n
k

)
. Since n � m, it follows from Theorem 4.2 that H contains

an independent set I of size m. Such an independent set is a (k − 1)-fold packing, so we
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can apply the induction hypothesis to I and conclude that m < Nf(k − 1, �), which is a

contradiction.

Proof of Theorem 1.2. Let X be a finite subfamily of F that forms a k-fold packing, and

let G be the intersection graph of X . We show, for a suitable constant t ∈ N which depends

on k and f, that G contains no subgraph isomorphic to Kt,t. Then, by Theorem 2.2, G

contains a vertex of degree smaller than c(t), so that we can set pf(k) = c(t).

Suppose, for some � ∈ N, that G contains an induced subgraph isomorphic to K�,�,

and let Y ⊆ X be the set of vertices of this subgraph. Recall that f(2�) � h(
⋃

Y). By

Lemma 3.1, the fact that Y is a 2-fold packing, the remark after the proof of Lemma 3.1,

and the assumption that each set in F is arc-connected, we have h(
⋃

Y) � �2 − 2� + 1.

Hence we have f(2�) � �2 − 2� + 1, which contradicts the assumption that f(n) = o(n2) if

� is large enough. Therefore, we can assume that G contains no induced K�,�.

Let t = Nf(k, �) for Nf as claimed by Lemma 4.3. Suppose for a contradiction that G

contains a subgraph isomorphic to Kt,t. Let A and B denote its two vertex classes. At

least one of A,B, say A, contains no independent set (packing) of size �, as otherwise the

two independent sets, one in A and one in B, would induce a subgraph isomorphic to

K�,� in G. Therefore, the assumptions of Lemma 4.3 are satisfied for A, and we conclude

that |A| < t. This contradiction completes the proof of Theorem 1.2.
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