Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2008), 22, 325-343. Printed in the USA.
Copyright © 2008 Cambridge University Press 0890-0604/08 $25.00
doi:10.1017/S089006040800022X

Constraint capture and maintenance in engineering design

SURAJ AJIT,! DEREK SLEEMAN,' DAVID W. FOWLER,' anxpo DAVID KNOTT?

'Department of Computing Science, University of Aberdeen, Aberdeen, Scotland
ZRolls-Royce plc, Derby, United Kingdom

(Recervep April 30, 2007; Acceptep May 9, 2008)

Abstract

The Designers’ Workbench is a system developed by the Advanced Knowledge Technologies Consortium to support
designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for
the particular design as well as with the company’s design rule book(s). In the principal application discussed here, the
evolving design is described using a jet engine ontology. Design rules are expressed as constraints over the domain ontol-
ogy. Currently, to capture the constraint information, a domain expert (design engineer) has to work with a knowledge en-
gineer to identify the constraints, and it is then the task of the knowledge engineer to encode these into the Workbench’s
knowledge base. This is an error-prone and time-consuming task. It is highly desirable to relieve the knowledge engineer of
this task, so we have developed a system, ConEditor+, that enables domain experts themselves to capture and maintain
these constraints. Further, we hypothesize that to appropriately apply, maintain, and reuse constraints, it is necessary to un-
derstand the underlying assumptions and context in which each constraint is applicable. We refer to them as “application
conditions,” and these form a part of the rationale associated with the constraint. We propose a methodology to capture the
application conditions associated with a constraint and demonstrate that an explicit representation (machine interpretable
format) of application conditions (rationales) together with the corresponding constraints and the domain ontology can
be used by a machine to support maintenance of constraints. Support for the maintenance of constraints includes detecting
inconsistencies, subsumption, redundancy, fusion between constraints, and suggesting appropriate refinements. The pro-
posed methodology provides immediate benefits to the designers, and hence, should encourage them to input the applica-
tion conditions (rationales).

Keywords: Application Conditions; Capture; Constraints; Design; Maintenance; Rationales

1. INTRODUCTION (KB). Knowledge acquisition is well known to be a “critical
bottleneck” in knowledge-based system (KBS) development.
The traditional approach to knowledge acquisition is mainly
an interactive process involving the domain expert and
knowledge engineer. This approach can be tedious, time con-
suming, and error prone, especially if the knowledge engineer
is unfamiliar with the domain. Knowledge maintenance is
concerned with making necessary changes to existing knowl-
edge bases so that redundant and inappropriate information is
removed. This normally involves the following activities:

“Knowledge management has been identified as one of the
key enabling technologies for distributed engineering enter-
prises in the 21st century. Central to the application and ex-
ploitation of knowledge in engineering is the engineering
design process” (McMahon et al., 2004). The Advanced
Knowledge Technologies' Project has identified six major
challenges involving the acquisition, modeling, reuse, re-
trieval, publishing, and maintenance of knowledge. The chal-
lenges relevant in the context of the work reported in this ar-
ticle are knowledge acquisition and maintenance, where the
knowledge here refers to the design rules and rationales in en-
gineering design, represented against the domain ontology.
Knowledge acquisition is about extracting knowledge from
sources of expertise and transferring it to a knowledge base

1. Verification and validation of knowledge based systems:
Verification and validation of the content of knowledge
repositories is at the heart of knowledge maintenance.
Verification is a process of ensuring that the knowledge
base is consistent and complete within itself. Validation
is the process of determining if a KBS meets its users’ req-

Reprint requests to: Suraj Ajit, Department of Computing Science, Uni- uirements (Meseguer & Preece, 1995).

versity of Aberdeen, Aberdeen, Scotland. E-mail: surajajit@yahoo.com
! Advanced Knowledge Technologies (AKT), accessed online at http:/ 2. Updatmg/ reﬁmng of knOWICdge bases: The Challenge 18

www.aktors.org on August 29, 2006. to keep the knowledge repository functional. This may

325

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

https://doi.org/10.1017/S089006040800022X

326

involve the regular updating/refining of content as it
changes (e.g., as price lists are revised). But it may
also involve a deeper analysis of the knowledge con-
tent. Some content has aconsiderable longevity, whereas
other knowledge dates very quickly. If a repository of
knowledge is to remain active over a period of time, it
is essential to know which parts of the knowledge
base must be discarded and under what conditions.

3. Dealing with the obsolescence of knowledge: Certain
sections of the knowledge may be based on assump-
tions/conditions that later become untrue. One has to
identify and shelve/remove such sections, when neces-
sary. When the knowledge base is updated, a lot of re-
dundant knowledge can be accumulated in the knowl-
edge base.

The issues faced in KB maintenance within engineering
were first raised by the XCON configuration system at Digital
Equipment Corporation (Soloway et al., 1987; Barker &
O’Connor, 1989). “Initially it was assumed that knowledge-
based systems could be maintained by simply adding new ele-
ments or replacing existing elements. However this simplicity
proved to be illusory as indicated by the experience of R1/
XCON” (Coenen, 1992).

Engineering design is constraint oriented, and much of the
design process involves the recognition, formulation, and
satisfaction of constraints (Serrano & Gossard, 1992; Lin &
Chen, 2002). The engineering design process has an evolu-
tionary and iterative nature as designed artifacts often develop
through a series of changes before a final solution is achieved.
A common problem encountered during the design process is
that of knowledge (e.g., constraint) evolution, which may in-
volve the identification of new constraints or the modification
ordeletion of existing constraints. The reasons for such changes
include development in the technology, changes to improve
performance, changes to reduce development time and
costs. Typically, maintenance involves various issues and
problems:

1. Original experts are unlikely to be available: The transi-
ent nature of modern organizations and workforces, the
rapid flow of knowledge, and experience out of compa-
nies because of staff leaving make it difficult for new
designers to properly use stored design knowledge and
subsequently to maintain it.

2. Insufficient documentation provided: Several con-
straints may be applicable only in particular contexts.
These contexts are often implicit to the designer formu-
lating them but are not documented. Also, many con-
straints are based on assumptions that have become
untrue subsequently. These assumptions are often not
made explicit.

3. Maintenance is time consuming and complex: Mainte-
nance of constraints in an engineering design environ-
ment is a complicated process that can be complicated
and time consuming to do manually. Thus, there is a

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

S. Ajit et al.

pressing need for tools to support maintenance of this
kind of knowledge.

4. The evolutionary nature of constraints establishes the
need to constantly update, revise, and maintain them.
One needs to identify all the constraints that require
modification. Also, one needs to make sure that the
knowledge base is consistent after making any changes.

In addition, verification in KBSs plays a very important
role. As we automate more and more processes, the need for
verification becomes even more critical. Many automated pro-
cesses perform incorrectly for a long time, as no person is re-
sponsible for checking the process (Hicks, 2003). As the KB
evolves, constant addition and revision of rules can result in
many redundancies. It is important to prevent or at least re-
duce the number of redundant rules in a KB. Removing or re-
ducing the redundancy in a KB will make it easier to maintain
the KB. Moreover, design often involves the reuse and mod-
ification of past designs. For example, research has identified
that up to 90% of all design activities are based on the variants
of existing designs (Fletcher & Gu, 2005). Knowing the con-
texts in which certain design rules are applicable becomes ex-
tremely important for design maintenance and reuse.

1.1. Constraints, assumptions, and contexts
as design rationales

Constraints are continually being added, deleted, and modi-
fied throughout the development of a new device. Design be-
gins with a functional specification of the desired product: a
description of properties and conditions that the product
should satisfy (i.e., constraints). Constraints themselves form
a rationale associated with the design decisions taken by de-
signers. A typical rationale is of the form: “A component X
exists in the design because of the need to satisfy constraint
Y.” The ability to capture and use this type of design rationale
in concurrent engineering has been referred to as design ratio-
nale management by Bahler and Bowen (1992), who describe
a constraint-based design advice system that generates ma-
chine-generated suggestions to support coordination among
multiple design engineers. The Designers’ Workbench
(Fowler et al., 2004) provides similar functionality by check-
ing if the design satisfies all the relevant constraints, pro-
viding details of the violated constraints and enabling the
designers to resolve them.

Constraints themselves may be formulated based on a num-
ber of assumptions, and may be relevant only in certain con-
texts. Designers often tend to assume ‘“normal” situations
(Brown, 2006). They tend to make assumptions about the
match between the current design situation and one where
their chosen technique worked well before by assuming that
some key detail is relevant or irrelevant. These assumptions
are not deliberate, but form the tacit knowledge underlying
expert skill. To support maintenance of designs it is important
to make these assumptions visible. We need to find ways to
capture the assumptions and contexts as part of the rationale

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

associated with a constraint. We refer to this type of rationale
as the application conditions associated with a constraint. A
recent article (Hooey & Foyle, 2007) reported on the require-
ments for design rationale capture tool to support all the de-
sign phases of NASA’s complex systems. They stressed the
need to capture the assumptions and constraints as the ratio-
nale for a given design element, particularly in the conceptual
design phase. This article describes how this information is
rarely captured in a systematic and usable format because
there are no tools that adequately facilitate and support the
capture and use of this critical information. An example
quoted in the article is: “The minimum volume for the
Crew Exploration Vehicle cockpit is based on an assumption
of a specific crew size.” The above example is clearly a con-
straint (minimum volume for the Crew Exploration Vehicle),
together with its application condition (specific crew size).
Also, if a design element or a constraint is modified, there is
no easy way to propagate that change to understand the impli-
cations and consequences of those changes. Thus, it is im-
portant to capture information pertaining to when a particular
section of the design knowledge is applicable and also enable
machines to use this information to support maintenance. The
following section describes the research aims and hypothesis of
the work reported in this article.

1.2. Research aims and hypothesis

Enabling domain experts to maintain knowledge in a KB sys-
tem has long been an ideal for the knowledge engineering
community (Bultman et al., 2000). This article identifies a sit-
uation where it is highly desirable to eliminate the knowledge
engineer from doing a laborious, error-prone and time-con-
suming task. The article reports on a system ConEditor+
that we have developed to enable domain experts themselves
to capture and maintain constraints. Further, we hypothesize
that it is important to capture the assumptions and context in
which a constraint is applicable in a machine-interpretable
format, and that this rationale information (referred to as ap-
plication conditions) together with the constraints and the do-
main ontology can be used by a machine to support the main-
tenance of constraints. By supporting the maintenance of the
constraints we mean that an explicit representation of appli-
cation conditions together with the constraints and the do-
main ontology could help a machine in reducing the number
of inconsistencies and also in performing appropriate refine-
ments of subsumption, redundancy, and fusion between pairs
of constraints. Design rationale systems usually capture the
information in a human readable format. Although the infor-
mation may have some structure, the information cannot be
understood, interpreted, and used by machines to provide im-
mediate benefits to the designers. Design rationales are also
often difficult to retrieve and, hence, rarely used. We aim to
capture application conditions as rationales together with
the constraints and enable the system to use this information
together with the domain ontology to detect inconsistencies
and suggest appropriate refinements between constraints.

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

327

The main research question we plan to address is as follows:
“Could an explicit representation of application conditions to-
gether with the constraints and the domain ontology help a
machine in: a) reducing the number of inconsistencies and
b) detecting subsumption, redundancy, fusion and suggesting
appropriate refinements between pairs of constraints? In other
words, could an explicit representation of application condi-
tions together with the constraint and the domain ontology be
used by a machine to support the maintenance of con-
straints?” The following section describes the layout of this
article.

1.3. Layout

The context for the principal system reported here,
ConEditor+ (Ajit et al., 2005), is the Designers’ Workbench
that has been developed to enable a group of designers to pro-
duce cooperatively a component that conforms to the compo-
nent’s overall specifications and the company’s design rule
book(s). Section 2.1 provides an introduction to the Design-
ers’ Workbench and the motivation for the development of
ConEditor+. Section 2.2 gives an overview of the system
ConEditor+. Section 2.3 summarizes our proposed approach.
Section 3 describes the conceptual design by considering the
kite design domain. Section 4 describes the implementation
of our proposed approach. We discuss the evaluation and re-
sults in Section 5, followed by a review of relevant work in
Section 6. The conclusions and plans for future work follow
in Section 7.

2. CONSTRAINT CAPTURE AND
MAINTENANCE IN ENGINEERING
DESIGN: A PROPOSAL

2.1. Introduction to the Designers’ Workbench

Designers in Rolls-Royce, as in many large organizations,
work in teams. Thus, it is important when a group of design-
ers are working on aspects of a common project, that the sub-
component designed by one engineer is consistent with the
overall specification, and with those designed by other mem-
bers of the team. In addition, all designs have to be consistent
with the company’s design rule book(s). Making sure that
these various constraints are complied with is a complicated
process, so we have developed the Designers’ Workbench
which seeks to support these activities.

The Designers’ Workbench (Fig. 1) uses an ontology (Gru-
ber, 1995) to describe the element to be designed. Design
rules are expressed as constraints over the domain ontology.
The system supports human designers by checking that their
configurations satisfy both physical and organizational con-
straints. Configurations are composed of features, which can
be geometric or nongeometric, physical or abstract. A graphi-
cal user interface (GUI) enables the designer to easily add
new features, assign property values, and perform constraint
checks. If a constraint is violated, the affected features are

https://doi.org/10.1017/S089006040800022X

ssaid Asianun abpriqued Aq auljuo paysiiand Xzz00080709006805/£101°0L/B1010p//:sd1y

B Dosignors' Warkhench [test]
File View Tools

EEEEIRDIO0

(AT

G
back_lgmiwidth fro
~

'

puging

&

] Faatura
@ [Anstract Featze
3 Hale
[matenal
[Trmeraarn Lrin
[Measuremant
| % E3 Concrete Feature
* [sem
] Hut
[Sealing Ring

& X Flange
& [Farmuin
[potted saint

(e

[miametral Ring Seal Housing

inne_diametar
has_maserial
source_doc
has_tosting
name

rwmer
“operatin_ismp
drawing_markes

|nousing D
[EAK Jommete

nousing

| Operating Tempersture

Walug.

digwlin

Fig. 1. Screenshot of the Designers’ Workbench. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

8C¢

w12 nly s

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

highlighted and a report is generated. The report gives the de-
signer a short description of the constraint that is violated, the
features affected by that violation, and a link to the source
document. The designer can resolve the violations by adjust-
ing the property values of the affected features. On selecting
the affected feature from the ontology, a table is displayed
with the corresponding properties and values. These property
values can then be adjusted, and this usually resolves the con-
straint violations. More details about this system can be found
in (Fowler et al., 2004).

2.1.1. Capturing the knowledge in the design rule books

As noted above, the Designers’ Workbench needs access to
the various constraints, including those inherent in the com-
pany’s design rule books. Currently, to capture this informa-
tion, a design engineer (domain expert) works with a knowl-
edge engineer to identify the constraints, and it is then the task
of the knowledge engineer to encode these into the Work-
bench’s KB. This is an error-prone and time-consuming
task. As the constraints are explained succinctly in the design
rule books, a nonexpert in the field can find it very difficult to
understand the context and formulate constraints directly
from the design rule books, so a design engineer has to
help the knowledge engineer in this process. Most design
rules are specified using technical drawings. Adding a new
constraint into the Designers’ Workbench’s KB requires cod-
ing a query in RDQL language (Seaborne, 2004) and a predi-
cate in SICStus? Prolog.

It would be useful if a new constraint could be formulated
in an intuitive way, by selecting classes and properties from
the ontology, and somehow combining them using a pre-
defined set of operators. This would help engineers to formu-
late constraints themselves and relieve the programmer of that
task. This would also enable designers to have greater control
over the definition and refinement of constraints, and presum-
ably, to have greater trust in the results of the constraint
checking process. This led to the development of a system,
called ConEditor+, which enables a domain expert to capture
and maintain constraints. ConEditor+ is explained further in
the next section.

2.2. ConEditor+

ConEditor+ has been designed to enable domain experts to
capture and maintain constraints. ConEditor+’s GUI is
shown in Figure 2. A constraint expression can be created
by selecting entities from a domain ontology and combining
them with a predefined set of keywords and operators from
the high level constraint language, CoLan (Bassiliades &
Gray, 1995; Gray et al., 2001). CoLan has features of both
first-order logic and functional programming. CoLan is de-
signed to enable scientists and engineers to express
constraints.

2 Swedish Institute of Computer Science, version 3.10, accessed online at
http:/www.sics.se/sicstus/ on August 29, 2006.

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

329

An example of a simple constraint expressed in CoLan,
against a domain ontology (a jet engine ontology) used by
the Designers’ Workbench is as follows>:

constrain each f in ConcreteFeature to have

max__operating_temp(has_material(f)) >= operating_temp(f)

This constraint states that for every instance of the class
ConcreteFeature, the value of the maximum operating tem-
perature of its material must be greater than or equal to the
environmental operating temperature. We now look at how
the example constraint can be formulated using ConEditor+-.

ConEditor+’s GUI (Fig. 2) essentially consists of six com-
ponents:

1. Keywords panel: The keywords panel consists of a list
of keywords from the CoLan language. In the example
considered, the keywords constrain each, in, to have are
selected from this panel. A single mouse click on a key-
word appends it to the text area in the result panel. Al-
ternatively, clicking the “Add” button, after selecting
the keyword from the panel, appends the keyword to
the text area in the result panel.

2. Menu bar: The menu bar contains a list of menus and
submenus with operations for loading, editing, deleting,
searching, saving constraints, and performing syntax
checks.

3. Functions panel: The functions panel consists of six
buttons (Erase, Create Table, Submit, Query, Open,
Save) that can be clicked to perform some of the fre-
quently used operations from the menu bar.

4. Taxonomy panel: The taxonomy panel lists all the top
level classes (i.e., classes having its parent as Thing in
OWL ontology) in the domain ontology together with
their subclasses, properties (both object and datatype),
and properties of the range classes as a taxonomy. Each
class or object property can be expanded by a double
mouse click to list all the subclasses and properties below
it in the taxonomy. Nodes represented by letter “P” de-
note properties, whereas the remaining nodes denote
classes. Selecting a node using the mouse and clicking
the Add button appends the entity represented by the
node to the constraint expression being formed in the
result panel. In the example considered, the entities Con-
creteFeature, max_operating_temp, has_material, and
operating_temp are selected from this panel.

5. Tool bar: The tool bar displays the operators (arith-
metic, relational, and logical) and delimiters. In the
example considered, the operator > and the delimiters
(°,)) are selected from the tool bar. Again, a single

3 The naming convention of the properties defined in the domain ontology
could be changed appropriately to make the constraint more readable. As an ex-
ample, the constraint above could be expressed alternatively as constrain each
f in ConcreteFeature to have max_operating_temp_of(material_of(f)) >
operating_temp_of(f).

https://doi.org/10.1017/S089006040800022X

ssald Assanun abpuquied Ag auluo paysiiand Xzz0008070900680S//L0L°01/B10°10p//:sd1y

constrain each In ConcreleFesture

to have max_operating_lemp(has_material) >= operating_temp(l) @

Fig. 2. A screenshot of ConEditor+. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

0¢e

12 1l g

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

mouse click on the selected operator appends the opera-
tor to the text area in the result panel.

6. Result panel: The result panel consists of a text area, dis-
playing the constraint expression formulated by the user
and any output messages (e.g., syntax error message)
from ConEditor+. This panel consists of two tabs,
namely, the Edit Area and the Console, that display the
constraint expression formulated by the user and the out-
put messages from the system, respectively.

ConEditor+ provides a mechanism to input constraints in
the form of tables also. When a constraint is modified and
saved, ConEditor+ normally stores the modified constraint
as a new version along with the original constraint. The ratio-
nale for storing different versions of a constraint is to enable
designers to study the constraint evolution (Goonetillake &
Wikramanayake, 2004). Each constraint is allocated a unique
identification number (ID) that includes its version number.
The system provides facilities to retrieve constraints using
keyword-based searches, for example, search and retrieve
all the constraints containing the specified keywords or the
constraint associated with a specified ID.

2.3. Proposed approach

Because of the restricted availability of Rolls-Royce design-
ers and because it is a simpler domain, we used the kite do-
main for our initial study (Yolen, 1976; Streeter, 1980;
Eden, 1998; AKA, 2006; CEKS, 2006; Leigh, 2006; Lords,
2006; Wardley, 2006). For a successful kite design, one has
to make sure that the design complies with all the appropriate
rules/constraints.

Figure 3 shows the diagram of a flat diamond kite with all
its basic parts. Consider the following constraint and its appli-
cation condition:

Constraint: “The density of the cover material of the kite
must be greater than 0.5 ounce per square inch.”

Application condition: “This is applicable only when there
is a requirement to produce low cost kites for beginners.
Kites for experts have lighter materials that are of higher
quality and hence costlier.”

This example shows the application condition specifies the
context in which the constraint is applicable. We believe that
it is important to make the application conditions explicit SO
that it can be used to apply constraints appropriately and
also be used in the reuse and maintenance of constraints. Of-
ten, the information of application conditions is implicit to the
person who formulates the constraint. The assumptions/con-
ditions on which a constraint is based may no longer be true,
and in such cases it becomes necessary to deactivate or re-
move those constraints from the KB.

Although design rationales can provide a lot of informa-
tion about the reasoning involved in making a design deci-

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

331

sion, rationales are extremely hard to collect mainly because
the process is very intrusive and requires a lot of the design-
ers’ time. If rationales are useful to the designers, there is a
greater incentive for designers to assist in the capture of the
information, particularly if the designer who is recording it
can immediately use the rationale. As Grudin (1996) and
Brown (2006) have pointed out, there cannot be a disparity
between who invests effort in a groupware system and who
benefits. No designer can be expected to altruistically enter
quality design rationale solely for the possible benefit of a
possibly unknown person at an unknown point in the future
for an unknown task. There must be immediate value. In
addition, knowing how the information will be used pro-
vides guidance about what information should be captured
and how it should be represented. Thus, it is important to
concentrate on the immediate use of such information
(Burge & Brown, 2003). Representation of the rationales
in a machine-interpretable form would enable systems to
use them together with the constraints and the domain on-
tology to detect inconsistencies, redundancy, subsumption,
and fusion and to suggest appropriate refinements between
constraints.

Our proposed approach is to capture the application condi-
tions together with the constraint and use that information to-
gether with the domain ontology to support the maintenance
of constraints. To tackle the various maintenance issues/prob-
lems effectively, our proposed solution is summarized as
follows:

1. Capture the assumptions and context of each constraint,
in a machine-interpretable form, as an application con-
dition (rationale).

2. Use the application condition together with the con-
straint and the corresponding domain ontology to detect
inconsistencies, redundancies, subsumptions, and fu-
sions between constraints and suggest appropriate re-
finements (described in greater detail in Section 3).

The next two sections describe the conceptual design and
implementation of our proposed approach with examples.

3. CONCEPTUAL DESIGN

ConEditor+ captures both the constraints and the application
conditions in the same language, CoLan. Representation of a
sample constraint with its application condition in CoLan is
shown below:

constrain each k in Kite such that has_type(k)
= “Flat” and has_shape(k) = “Diamond” to have
tail_length(has_tail(k)) = 7 * spine_length(has_spine(k))

In this constraint, the application condition (in italics) is in-
troduced by the clause “such that.” This constraint states that
“For every instance of the class Kite, when the type of the

https://doi.org/10.1017/S089006040800022X

332

S. Ajit et al.

Spine

Bridle

Cross-Spar

Bridle Point

—

" - ITH’

Kite Line

\‘_Taﬂ

Fig. 3. The basic parts of a flat diamond Kkite.

kite is flat and shape of the kite is diamond, the length of the tail
of the kite needs to be seven times the length of the spine of the
kite.” To make it clearer, we divide a constraint represented in
CoLan into three parts: antecedent, application condition, and
consequent. Thus, a constraint is represented by the following
general structure:

constrain each x; in C,
each x, in C, (Antecedent)

such that P;(x)
P>(x2) (Application Condition)

to have R;(x;)
Ry (x2) (Consequent)

The representation of the CoLan constraint described
above, in first-order logic, is as follows:

Vk[(Kite(k)" (has_type(k)
= “Flat”)"(has_shape(k) = “Diamond”)) — (tail_length
(has_tail(k)) = 7 * spine_length(has_spine(k)))]

A constraint in CoLan, in general, can be represented by a
first order-logic sentence as

S=Vxi, ..., xl(CiGaeD™. ... ACaGe) " Pr(xr, ot X)L
Py, -oe X)) — R(xp, «.n X))
where S is a sentence; xy, . . ., x, are variables; Cy, ..., C, are
classes; and P(xy, . . ., xn), Pn(x1, . . ., x0), R(xp, ..., xp)

represent predicates/properties.
There are a number of ways in which we can use the
information inherent in application conditions together with

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

the constraint and the associated ontology to enable the
maintenance of constraints. We propose four main types of
knowledge refinement rules, namely, redundancy, sub-
sumption, contradiction, and fusion between pairs of con-
straints. These rules are applied between all possible pairs
of constraints. The knowledge refinement rules are described
below with examples from the kite domain. A formal
notation in first-order logic for each knowledge refinement
rule together with the logical proof can be found in Ajit
(2008).

3.1. Redundancy
3.1.1. Duplication

(i) constrain each c in ConventionalSledKite such that
has_level(c) = “beginner” to have density
(has_material) (has_cover(c))) < 0.5

(ii) constrain each c in ConventionalSledKite such that
has_level(c) = “beginner” to have
density(has_material) (has_cover (c))) < 0.5

By comparing these two constraints, one can infer that con-
straints (i) and (ii) are identical.

3.1.2. Class equivalence

(iii) constrain each c in ConventionalSledKite such that
has_level (c) = “beginner” to have
density(has_material(has_cover(c))) < 0.5

(iv) constrain each t in TraditionalSledKite such that
has_level(t) = “beginner” to have
density(has_material(has_cover(t))) < 0.5

As ConventionalSledKite is an equivalent class to Tradition-
alSledKite in the domain ontology, one can infer that the con-
straint (iii) is equivalent to constraint (iv).

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

3.1.3. Property equivalence

(v) constrain each c in ConventionalSledKite such that
has_level(c) = “beginner” to have
density(has_material(has_cover(c))) < 0.5

(vi) constrain each c in ConventionalSledKite such that
has_class(c) = “beginner” to have
density(has_material(has_cover(c))) < 0.5

As has_level is an equivalent property to has_class in the do-
main ontology, one can infer that the constraint (v) is equiva-
lent to constraint (vi).

ConEditor+ reports all such redundancies to the domain
expert and suggests that they be removed.

3.2. Subsumption

3.2.1. Subsumption via subclass

(vii) constrain each s in SledKite such that has_size(s)
= “standard” to have kite_line_strength(has_kite_line(s))
>=15

(viii) constrain each c in ConventionalSledKite
such that has_size(c) = “standard” to have
kite_line_strength(has_kite_line(c)) >= 15

As ConventionalSledKite is a subclass of SledKite in the do-
main ontology, one can infer that the constraint (vii) sub-
sumes constraint (viii). The domain expert is notified of
this fact and ConEditor+ suggests that the domain expert
considers removing or deactivating constraint (viii).

3.2.2. Subsumption via application condition

(ix) constrain each s in SledKite such that has_size(s)
= “standard” or has_size(s) = “large” to have
kite_line_strength(has_kite_line(s)) >= 15

(x) constrain each s in SledKite such that has_size(s)
= “standard” to have kite_line_strength(has_kite_line(s))
>=15

By comparing the two constraints above, one can infer that the
constraint (ix) subsumes constraint (x). The domain expert is
notified of this fact and ConEditor+ suggests that the domain
expert considers removing or deactivating constraint (X).

3.2.3. Subsumption via conjunction

(xi) constrain each s in SledKite such that has_size(s)
= “standard” to have kite_line_strength(has_kite_line(s))
>= 15 and has_cord_length(s) > 21

(xii) constrain each s in SledKite such that has_size(s)
= “standard” to have kite_line_strength
(has_kite_line(s)) >= 15

Again, one can infer that the constraint (xi) subsumes con-
straint (xii). The domain expert is notified of this fact and

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

333

ConEditor+ suggests that the domain expert considers re-
moving or deactivating constraint (xii).

3.3. Contradiction

(xiii) constrain each k in Kite such that has_type(k)

= “stunt” to have kite_line_strength(has_kite_line(k)) > 30
(xiv) constrain each k in Kite such that has_type(k)

= “stunt” to have kite_line_strength(has_kite_line(k)) < 25

By comparing the two constraints above, one can infer that the
constraint (xiii) contradicts constraint (xiv). The domain ex-
pert is notified of this fact and ConEditor+ suggests that the
domain expert takes an appropriate action (modify/delete).

3.4. Fusion

3.4.1. Fusion via class

(xv) constrain each c in ConventionalSledKite
such that has_wind_condition(c) = “moderate”
to have has_bridle_attachment_angle(c) < 40
(xvi) constrain each m in ModernSledKite
such that has_wind_condition(m) = “moderate”
to have has_bridle_attachment_angle(m) < 40

If ConventionalSledKite and ModernSledKite are the only
two subclasses of SledKite in the domain ontology and
if every instance of SledKite is an instance of either
ConventionalSledKite or ModernSledKite then the con-
straints (xv) and (xvi) can be fused together and replaced
by the constraint (xvii) as follows:

(xvii) constrain each s in SledKite
such that has_wind_condition(s) = “moderate”
to have has_bridle_attachment_angle(s) < 40

3.4.2. Fusion via application condition

(xviii) constrain each j in JapaneseKite
such that has_wind_condition(j) = “strong” to have
has_bridle_point_distance(j) > 3 * surface_area(has_
cover(j))

(xix) constrain each j in JapaneseKite
such that has_type(j)="stunt” to have
has_bridle_point_distance(j) > 3 * surface_area(has_cover(j))

The constraints above can be fused together by using “or”
between the application conditions, that is, the constraints
(xviii) and (xix) can be fused together and replaced by
the constraint (xx) as follows:

(xx) constrain each j in JapaneseKite such that
has_wind_condition(j)
= “strong” or has_type(j) = “stunt” to have
has_bridle_point_distance(j) > 3 * surface_area(has_cover(}))

https://doi.org/10.1017/S089006040800022X

334

3.4.3. Fusion via conjunction

(xxi) constrain each j in JapaneseKite such that
has_wind_condition(j) = “strong” to have
has_bridle_point_distance(j) > 3 * surface_area(has_
cover(j))

(xxii) constrain each j in JapaneseKite such that
has_wind_condition(j) = “strong” to have
kite_line_strength(has_kite_line(j)) >= 15

The constraints above can be fused together by using “and,”
that is, the constraints (xxi) and (xxii) can be fused together
and replaced by the constraint (xxiii) as follows:

(xxiii) constrain each j in JapaneseKite such that
has_wind_condition(j) = “strong” to have
has_bridle_point_distance(j) > 3 * surface_area(has_
cover(j))
and kite_line_strength(has_kite_line(j)) >= 15

In all cases, ConEditor+ makes suggestions but allows the
domain expert to decide on what action, if any, to take. In
all the examples above, we have considered universally quan-
tified constraints involving a single variable; these types of
expressions are common in our KB. However, more complex
first-order logic expressions involving existential quantifiers
and many variables or a combination of both existential and
universal quantifiers can also be expressed in CoLan using
ConEditor+.

Thus, we have described four main types of knowledge re-
finement rules among constraint pairs with all the refinements
(except contradiction) having subtypes:

1. Redundancy: (a) duplication, (b) class equivalence, (c)
property equivalence

2. Subsumption: (a) via subclass, (b) via application con-

dition, (c) via conjunction

Contradiction

4. Fusion: (a) via class, (b) via application condition, (c)
conjunction

hed

Knowledge refinement rules can be combined and applied
together to a pair of constraints. For an example, consider the
following constraints:

(E1) constrain each s in SledKite such that has_type(s)
= “stunt” or has_wind_condition(s) = “strong” to have
kite_line_strength(has_kite_line(s)) > 30

(E2) constrain each c in ConventionalSledKite such that
has_type(c) = “stunt” to have kite_line_strength
(has_kite_line(c)) < 25

By comparing the constraints (E1) and (E2), we have the
following:

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

S. Ajit et al.

a. ConventionalSledKite is a subclass of SledKite in the
domain ontology.

b. The application condition of constraint (E2) is sub-
sumed by the application condition of constraint (E1).

c. The consequent of constraint (E1) contradicts the con-
sequent of constraint (E2).

Hence, one can infer that the constraint (E1) contradicts
constraint (E2) and makes the KB inconsistent. The domain
expert is notified of this fact and ConEditor+ suggests that
the domain expert takes an appropriate action (modify/
delete). In the example above, we have applied a combination
of the following knowledge refinement rules: subsumption
via subclass, subsumption via application condition, contra-
diction. ConEditor+ applies such combinations of knowl-
edge refinement rules to detect inconsistencies and suggest
appropriate refinements among constraint pairs. ConEditor+’
s algorithm to determine the order in which refinement rules
are applied is outlined next.

Consider a pair of constraints A and B. Let the antecedents
be represented by AN, and ANy, application conditions by
AC, and ACy, and consequents by C, and Cy, for constraints
A and B, respectively.

Step 1: Check for redundancy (whether A is identical to B):
If AN, not equal/equivalent to AN}, then go to step 2a.
If AC, not equal/equivalent to AC,, then go to step 2a.
If C, equal/equivalent to C;, then conclude redundancy,
notify user (domain expert), suggest refinement action(s)
and exit.

Step 2a: Check for subsumption (whether A subsumes B):
If AN, not equal/equivalent/subsumes AN, then go to
step 2b.
If AC, not equal/equivalent/subsumes AC, then go to
step 2b.
If C, equal/equivalent/subsumes Cy then conclude sub-
sumption, notify user (domain expert), suggest refine-
ment action(s) and exit.

Step 2b: Check for subsumption (whether B subsumes A):
If AN, not equal/equivalent/subsumes AN, then go to
step 3a.
If AC, not equal/equivalent/subsumes AC, then go to
step 3a.
It Cy, equal/equivalent/subsumes C, then conclude sub-
sumption, notify user (domain expert), suggest refine-
ment action(s) and exit.

Step 3a: Check for contradiction (whether A contradicts B):
If AN, not equal/equivalent/subsumes ANy then go to
step 3b.
If AC, not equal/equivalent/subsumes AC,, then go to
step 3b.
If C, contradicts C,, then conclude contradiction, notify
user (domain expert), suggest refinement action(s) and
exit.

Step 3b: Check for contradiction (continued):
If AN, not equal/equivalent/subsumes AN, then go to
step 4a.

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

If AC, not equal/equivalent/subsumes AC, then go to
step 4a.
If C, contradicts C, then conclude contradiction, notify
user (domain expert), suggest refinement action(s) and
exit.

Step 4a: Check for fusion (whether A and B can be fused):
If AN, not equal/equivalent to ANy, then go to step 4c.
If AC, not equal/equivalent to AC, then go to step 4b.
Conclude that fusion is possible, notify user (domain ex-
pert), suggest refinement action(s) and exit.

Step 4b: Check for fusion (continued):
If C, not equal/equivalent to C, then exit.
Conclude that fusion is possible, notify user (domain ex-
pert), suggest refinement action(s) and exit.

Step 4c: Check for fusion (continued):
If AC, not equal/equivalent to AC;, then exit.
If C, not equal/equivalent to C, then exit.
If AN, can be fused with AN}, [using Rule 4 (a)] then
conclude that fusion is possible, notify user (domain ex-
pert), suggest refinement action(s) and exit.

4. IMPLEMENTATION

ConEditor+ is implemented in the Java programming lan-
guage. The domain ontology in the Web Ontology Language
(OWL; McGuinness & Harmelen, 2004) was developed
using Protégé (Noy et al., 2000) and parsed using Jena (Sea-
borne, 2004). Figure 4 shows the domain ontology developed
for the kite domain using the Protégé editor. ConEditor+ con-
verts the ontology in OWL into an equivalent P/FDM Daplex
schema using a transformation program developed in Java.
This conversion is currently required as we have used an al-
ready existing constraint language (CoLan) that was devel-
oped for databases (Bassiliades & Gray, 1995; Gray et al.,
2001). A transformation program to convert a XML DTD
specification into Daplex schema has been implemented pre-
viously in Selpi (2004). The Daplex schema is used by the
Daplex compiler within ConEditor+ to compile constraints
in CoLan and detect any syntactic errors. The Daplex Schema
is also used by a translator developed in Prolog to convert the
constraints in CoLan into a semantic web* enabled XML con-
straint interchange format (CIF; Gray et al., 2001).
ConEditor+ uses this machine-interpretable format (CIF) to
detect inconsistencies (contradictions) and to suggest various
ways to refine (fuse constraints, eliminate redundancies and
subsumptions) the knowledge base prior to constraint solv-
ing. ConEditor+ performs a static comparison of all possible
pairs of constraint expressions, that is, ConEditor+ compares
constraints at the syntactical level, rather than comparing the
solution sets. Thus, ConEditor+ is comparing pairs of con-
straints of the form, for example, P(x1, x2) and Q(x1, x3, a)
and P(x1, x2) and Q(x1, x3, b), and by looking at the values

4 The semantic Web is an evolving extension of the World Wide Web in
which Web content can be expressed in a form that can be understood, inter-
preted, and used by computers to find, share, and integrate information more
easily (Berners-Lee et al., 2001).

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

335

of the constants (a, b), and the structure of the predicates (P, Q),
working out that there is an inconsistency, subsumption,
redundancy, or fusion. Comparison of all possible pairs of
constraints results in time complexity of O(n?). Further, in
each comparison, all the terms in one constraint are compared
with all the corresponding terms in another constraint. Hence,
the complexity of each comparison is O(n?). Comparison of
all possible pairs of constraints is sufficient (or complete)
for detecting redundancy and subsumption.

4.1. Redundancy

Consider n constraints, namely, S1, S», . . ., S,. Let us assume
S| =8, =---=5,, thatis, redundancy exists between all the
n constraints. By comparing all possible pairs of constraints,
ConEditor+ detects the following "C, cases: S| = S, S|
ES3,...,Sl ESn,SQES3,...,525S,1,...,S”71 ES,,.
One can infer from the above " C; cases that redundancy exists
between all n constraints. Moreover, when the domain expert
eliminates redundancy in each of the "C, cases, redundancy
between all the n constraints are eliminated.

4.2. Subsumption

The principles described in Section 4.1 also apply in 4.2.
Consider n constraints, namely, S1, S, . . ., S,. Let us assume
Sy subsumes {S,, S3, . . ., S,}, that is, one constraint sub-
sumes all the other n — 1 constraints (n > 2). By comparing
all possible pairs of constraints, ConEditor+ detects the fol-
lowing "C, cases: S| subsumes S,, S| subsumes S3, . . ., S|
subsumes S,. One can infer from the above "C, cases that
Sy subsumes {S5, S3, . . ., S, }. Moreover, when the domain
expert eliminates subsumption in each of the "C, cases, all
cases of subsumption are eliminated.

However, comparison of all possible pairs of constraints is
insufficient (or incomplete) for detecting Inconsistency and
Fusion.

4.3. Inconsistency

Consider n constraints, namely, S1, S», . . ., S,. Let us assume
Vx {S1: P(x) < Q(x), S2: O(x) < R(x), . .., Sy: R(x) < P(x)},
where x € C, Cis aclass in the domain ontology, Q and R are
properties in the domain ontology. By comparing S, S>, and
S,, one can infer that there exists an inconsistency between
them. This kind of inconsistency cannot be detected by com-
paring all pairs of constraints.

4.4. Fusion

Consider n constraints, namely, S1, S, . . ., S,. Let us assume
S1, 8, ..., S, could be fused into a single constraint S by ap-
plying the rule of fusion via class to n constraints, where n
> 2. This kind of fusion cannot be detected by comparing
all pairs of constraints.

The reasons/justification for comparing only pairs of con-
straints in ConEditor+ are as follows:

https://doi.org/10.1017/S089006040800022X

ssaud Ausianun abprqguied Aq auijuo paysiiqnd Xzz00080709006805/2 L0L°01/610'10p//:5dny

9¢e

(file:\C:\Aberdeen\Transfer)\
Eile Edit PEroject OWL Code Tools \Aindow Help

@ oWl Classes

SUBCLASS EXPLORER I

For Project: @ kite_onto3
Asserted Hierarchy = @ Q{

" owl:Thing
w) Kite
@ Airfoil_kite
@) Bowed_kite
@ Box_kite
@) Detta_kite
@ Flat_kite
@) Japanese_kite
v @ Sled_kite
© Conventional_sled_kite = Traditional_sled_kite
@ Modern_sled_kite
e Tracitional_sled_kite = Convertional_sled_kite
) Kite_Material
w @) Kite_Parts
@ Bridle
@ cover
@ Cross_Spar
@) Kite_Line
@ spine
® T=i
@ wWing

OEEH 4B B tcd ¥ % HE]lE <9

CLASS EDITOR
For Class: @ |Kite

T . ® [E

Property

=3 radfs:comment

ol oo & @

Wl has_angle_of_attack (single float)

W has_aspect_ratio (single float)

Hl has_atm_pressure (single float)

Il has_atm_temperature (single float)

[has_bridle (single Bridle)

Il has_bridle_attachment_angle (single float)
Bl has_bridle_point_base_distance (single float)
Bl has_certre_of_gravity (single float)

W has_centre_of_pressure (single float)

Hl has_chord_length (single float)

Hl has_class (single string)

Il has_cost (single string)

[l has_cover (single Cover)

W has_cross_spar (single Cross_Spar)

Bl has_drag (single float)

4

& e & [] superciass

¢ owlThing

=8 3 3« B R

Fig. 4. The domain ontology of kites developed in Protégé. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

& =* ©® O @

w12 1ly s

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

1. Comparison of all constraints (more than pairs) is more
complex and substantially increases the complexity of
the algorithm, especially when we consider an arbitrary
number of first-order logic expressions. We plan to in-
vestigate this issue as part of the future work.

2. Moreover, the main aim of our research work is to dem-
onstrate the usefulness of an explicit (machine-interpret-
able format) representation of design rationales (appli-
cation conditions) in supporting the maintenance of
constraints. The research aims and hypothesis have
been specified in Section 1.2 in more detail. Details
of the experiments conducted to evaluate our research
work are provided in the following section.

5. EVALUATION

This section is divided into three parts: Section 5.1 describes
apreliminary evaluation done at Rolls-Royce, Derby; Section
5.2 describes two experiments: Experiment 1 to address the
main research question of our work and Experiment 2 to
test the usability of ConEditor+; Section 5.3 describes an
evaluation done to strengthen our claims by applying our
proposed approach to an additional domain, consisting of a
more demanding KB.

5.1. Preliminary evaluation

We performed a preliminary evaluation of ConEditor+ at
Rolls-Royce, Derby. The main aim of this experiment was
to determine whether the designers at Rolls-Royce would con-
sider using ConEditor+ to capture design rules as constraints.
A demonstration by one of the investigators (Suraj Ajit) was
given to a group of five design engineers at Rolls-Royce.
The demonstration involved the following phases:

Phase 1: Presenting the constraint as in the rule book, that
is, as a mixture of textual and graphical information

The English rendering of the constraint is
Bolted joints must conform to the formula

Niin = PCD + 2 * M + Max. Nut Width

where N, is the trap diameter of the flange, PCD is the pitch
circle diameter of the flange, 150.0 < PCD < 180.0, and M =
gap in the flange = 0.5.

Phase 2: Expressing the constraint in CoLan

This constraint was expressed in CoLan by the investigator
and discussed with the Rolls-Royce designers:

constrain each j in BoltedJoint

such that has_nut_type(j) = “Captive Nut” and
dimension(pitch_circle_diameter(has_flange(j))) > 150.0

and dimension(pitch_circle_diameter(has_flange(j))) < 180.0

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

337

and is_internal(has_flange(j))

to have gap(has_flange(j)) = 0.5

and dimension(trap_diameter(has_flange(j)))
= dimension(pitch_circle_diameter(has_flange(j)))
+ 2 x gap(has_flange(j))+dimension(nut_width(has_nut(j)))
+ tolerance(nut_width(has_nut(j)))

Phase 3: Formulating the constraint using ConEditor+

In the final stage of the demonstration, the CoLan expres-
sion was input to ConEditor+ by the investigator together
with a description of the usage of ConEditor+’s GUIL

The design engineers were then asked to comment on
ConEditor+ and, in particular, whether they would consider
using ConEditor+ to capture design rules. The design en-
gineers reported that they found ConEditor+ simple, user-
friendly and intuitive to use. However, they reported that
they would need some training before they could actually per-
form phases 2 and 3 unsupported. They also made the general
point that the company has a Design Standards group that has
the responsibility for creating and maintaining the company-
wide rule book(s). They would expect this group to use systems
such as ConEditor+ to formulate constraints. The designers
would then subsequently use the information either in the cur-
rent form or in a Designers’ Workbench-like environment.

5.2. Experiments

Following the preliminary evaluation, two experiments were
conducted and the details of these experiments are given below.

5.2.1. Experiment 1

The aim of this experiment was to address the following re-
search question: Could an explicit representation of application
conditions together with the constraints and the domain ontol-
ogy help a machine in: reducing the number of inconsistencies
and detecting subsumption, redundancy, fusion, and suggest-
ing appropriate refinements between pairs of constraints?

We studied the kite design domain and captured constraints
together with the corresponding application conditions (ratio-
nales). We ran an experiment with ConEditor+ using: KB
containing 15 constraints together with their application
conditions, KB, containing the same constraints without any
application conditions. The reader is encouraged to refer
Ajit (2008) for the complete list of constraints and the corre-
sponding application conditions that have been captured from
the kite design domain.

Results. For KB, ConEditor+ detected three subsump-
tions, zero contradictions, three redundancies, and two cases
of fusion between pairs of constraints. For KB,, ConEditor+
detected two subsumptions, five contradictions, three redun-
dancies, and four cases of fusion between pairs of constraints.
For KB,, it is evident that the absence of application
conditions caused a number of inconsistencies (five

https://doi.org/10.1017/S089006040800022X

338

contradictions), and also, ConEditor+ suggested a number of
inappropriate refinements. This is explained further below.

For example, let us consider two KBs, namely, A and B,
containing the following constraints:

KB A (with application conditions):

(i) constrain each k in Kite such that has_level(k)
= “beginner” to have density(has_material(has_cover(k)))
<0.5

(ii) constrain each k in Kite such that has_level(k)
= “advanced” to have density(has_material(has_cover(k)))
> 1.0

KB B (without application conditions):

(iii) constrain each k in Kite to have
density(has_material(has_cover(k))) < 0.5

(iv) constrain each k in Kite to have
density(has_material(has_cover(k))) > 1.0

As shown above, the KB A contains two constraints, (i)
and (ii), with the corresponding application conditions. The
KB B contains the same pair of constraints, (iii) and (iv),
without the corresponding application conditions. For KB
A, ConEditor+ does not detect any inconsistency. For KB
B, ConEditor+ detects a contradiction between the two con-
straints, (iii) and (iv). Hence, it can be concluded that the ab-
sence of application conditions could cause inconsistencies
between constraints. In addition, this can cause ConEditor+
to suggest inappropriate refinements as shown below.

For example, let us consider two KBs, namely, C and D,
containing the following constraints:

KB C (with application conditions):

(v) constrain each d in Delta_kite such that has_level(d)
= “beginner”’to have bridle_length(has_bridle(d))
> 3 x has_height(d)

(vi) constrain each d in Delta kite such that
has_wind_condition(d) = “strong” to have
kite_line_strength(has_kite_line(d)) > 90
KB D (without application conditions):

(vii) constrain each d in Delta kite to have
bridle_length(has_bridle(d)) > 3 * has_height(d)

(viii) constrain each d in Delta_kite to have
kite_line_strength(has_kite_line(d)) > 90

Again, we have considered two KBs C and D, with and
without application conditions, respectively. For KB C,
ConEditor+ does not suggest any refinement. For KB D,
ConEditor+ inappropriately suggests that the two constraints,
(vii) and (viii), be fused and replaced by the constraint (ix):

(ix) constrain each d in Delta kite to have bridle_length
(has_bridle(d)) > 3 * has_height(d) and
kite_line_strength(has_kite_line(d)) > 90

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

S. Ajit et al.

Conclusion. One can infer from the results of Experiment 1
and the examples described above that an explicit representa-
tion of the application conditions together with the constraint
reduced the number of inconsistencies and also prevented
ConEditor+ from suggesting inappropriate refinements.

5.2.2. Experiment 2

The aim of this experiment was to determine the usability
of ConEditor+. In particular, we aimed to seek answers
for the following main questions (Rubin, 1994; Dumas &
Redish, 1999; Barnum, 2002):

a. Could the subjects successfully perform the allocated
tasks within the time benchmark?

b. Did the subjects perform the tasks accurately? What kind
of mistakes did the subjects make (if any)? Could the GUI
be modified to eliminate or minimize these errors?

c. How easy and intuitive did the subjects find the system
to use?

A demonstration was given by the developer of ConEditor+
to each of the five subjects (two mechanical engineering re-
search students, two computer science research students, and
one computer science research fellow) individually. The de-
monstration was given using instructions from a script to main-
tain consistency and consisted of the following main tasks: de-
scription of all the features of ConEditor+; a walkthrough of
the process of converting a sample constraint in English to Co-
Lan, inputting the CoLan constraint using ConEditor+, elimi-
nating syntactic errors and performing appropriate refinements
(redundancy, subsumption, contradiction, fusion). Each sub-
ject was then asked to perform the following tasks.

Task 1: The following constraint was presented in English
and CoLan.

English: “Every standard sized or stunt type Sled Kite must
have a kite line with strength greater than or equal to 15
units.”
CoLan:

constrain each s in SledKite such that has_size(c)
=*“standard” or has_type(s) = “stunt” to have
kites_line_strength(has_kite_line(c)) >= 15

The subject was asked to input the above constraint in CoLan
using ConEditor+.

Task 2: ConEditor+ already consisted of a constraint
(shown below) in its KB that was subsumed by the constraint
the subject input in Task 1. After successfully inputting the
constraint in Task 1, ConEditor+ detects subsumption and
suggests the user to consider deleting the following constraint:

constrain each c in ConventionalSledKite such that has_size(c)
=*“standard” to have kites_line_strength (has_kite_line(c)) >= 15

Each subject was asked to follow ConEditor+’s sugges-
tion and delete the above constraint.

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

Task 3: Each subject was asked to answer a questionnaire
and also provide oral feedback on the usability of ConEditor+
to its developer. The questionnaire contained various ques-
tions regarding the usability and usefulness of various features
of ConEditor+. The subjects were asked to use a five-point
rating scale (1 = poor, 5 = excellent). More details about
the experiment and the questionnaire used can be found in
Ajit (2008). The developer observed all the actions performed
by each subject and took notes. A pilot experiment was con-
ducted before the actual experiment using a computer science
research student as the subject and that helped rectify some
elementary errors in the script and GUIL

Results. All the subjects ultimately completed the allo-
cated tasks accurately within the corresponding time bench-
marks. Tasks 1 and 2 were allocated a time benchmark of 5
and 3 min each, respectively. The subjects were not aware of
this time benchmark. All the errors committed by subjects
can be summarized as follows: two subjects double clicked
on the keywords panel instead of a single click. This re-
sulted in the selected keyword being appended twice to
the constraint expression. The GUI has now been changed
to support a double mouse click instead of a single click.
Two subjects reported that they would like to see the con-
sole tab in the display panel activated automatically after in-
putting a constraint rather than manually activating the con-
sole tab. The GUI was modified to support this feature. Two
subjects also suggested that they would like a search facility
being provided in the taxonomy panel to be able to easily
locate entities in a large taxonomy. We plan to incorporate
this feature as part of the future work. All the subjects re-
ported that they found ConEditor+ easy to use and helpful
for the maintenance of constraints. The overall rating given
by the subjects, for the usability (including capture and
maintenance facilities) of ConEditor+ was 3.8 (see graph
in Figure 5). Thus, the results of Experiment 2 indicate
that ConEditor+ is easy to use and it aids the capture and
maintenance of constraints.

5.3. Extension/evaluation of jet engine ontology and
maintenance of a more complex set of constraints

After successful application and evaluation of ConEditor+ in
the domain of kite design, we decided to apply our proposed
approach to part of the considerably more demanding Rolls-
Royce domain. We initially reviewed the ontology used to
support Designers’ Workbench, and then analyzed a consid-
erable number of additional Rolls-Royce’s design standard
documents (72) that contain rules/standards for the design
of various parts and processes involved in civil aeroengines.
Interviews were held with a design engineer at Rolls-Royce,
Derby. We then extended the jet engine ontology to incorpo-
rate the additional information (e.g., classes, properties) ob-
tained from these analyses. The jet engine ontology was
then evaluated by a domain expert in Rolls-Royce. Following
several discussions with the domain expert and modifications
to the ontology, the ontology was approved by the domain

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

339

ConEditor+ Usability

I

Fig. 5. A graph showing the results of an experiment to evaluate the usability
of ConEditor+. [A color version of this figure can be viewed online at
journals.cambridge.org/aie]

Rating
O = N W A O

expert. A confidential technical report (Ajit et al., 2007)
describes the list of all constraints and application conditions
obtained from the analysis of design rule books for part of the
Rolls-Royce domain, together with their corresponding rep-
resentations in CoLan.

6. RELEVANT WORK

In product development and design, constraints arise in many
forms. Constraints can either be represented as rules or ob-
jects (Sriram & Maher, 1986). One of the first attempts to
manage constraints for automation of computation in engi-
neering applications was the work done by Harary (1962)
and Steward (1962). Since then, there has been considerable
amount of work done on the representation, use, and manage-
ment of constraints including the development of rule-based
systems (Frayman & Mittal, 1987; Wielinga & Schreiber,
1997; Junker, 2001), and also in the field of diagnosis (Felfer-
nig et al., 2004). Constraint management done in systems
above mainly refers to the detection of redundant and
contradictory constraints during constraint solving, whereas
ConEditor+ detects redundant, subsumed, contradictory, and
fusible constraints prior to constraint solving. ConEditor+
compares pairs of constraints by looking at the values of
the constants, and the structure of the predicates rather than
by computing the solution sets of constraints.

It became important to represent the defaults and prefer-
ences declaratively as constraints, rather than encoding
them in the procedural parts of the program (Borning et al.,
1989). In most cases, domain-oriented or method-oriented
tools (in the form of templates) were provided to capture con-
straints/rules from the domain experts. The cost of developing
such tools is high, especially when their restricted scope is
taken into account (Eriksson et al., 1995). In comparison to
the above tools, ConEditor+ is a domain-independent tool
that can be used by domain experts to capture constraints
using the appropriate domain ontology. These constraints
are converted into a standard format (in CIF) for use by other
systems. A similar tool for capturing constraints has been de-
veloped by Gray and Kemp (2006). This tool uses a diagram-
matic representation in the form of a relationship graph to

https://doi.org/10.1017/S089006040800022X

340

capture constraints. The drawback of this tool is that the dia-
gram can become cumbersome for large domain ontologies.

There has been a lot of work done on the verification of
knowledge-based systems. Suwa et al. (1982) are credited
with one of the earliest works in automated verification. Other
notable works include Nguyen et al. (1985), Preece et al.
(1992), Zlatareva (1998), Hicks (2003), and Qian et al.
(2005). In comparison to the above-cited work, the focus of
our research is to prevent errors in the KB as much as possi-
ble. We believe that it is important to explicitly represent the
assumptions and contexts in which each constraint is applic-
able, and that this would prevent a substantial number of er-
rors from occurring in the KB. Subsequently, we use the pro-
posed knowledge refinement rules to detect errors (or
anomalies), and also suggest ways to refine (simplify/opti-
mize) the KB.

CoLan is close to the constraint language Galileo proposed
by Bowen et al. (1990) that has been used to support concep-
tual design and design knowledge representation. Both CoLan
and Galileo are based on first-order logic, and can be used to
express both existentially and universally quantified con-
straints. However, we believe CoLan provides better readabil-
ity for domain experts compared to Galileo and other con-
straint programming languages such as ILOG OPL language
(Junker & Mailharro, 2003). Moreover, CoLan was developed
by one of our colleagues, and we have the software to convert
Colan into standard XML CIF format that makes it portable.
Also, Colan is mainly used in ConEditor+ as a declarative lan-
guage for expressing constraints and not used for constraint
programming. CoLan is converted into CIF, which in turn, is
converted into a query in RDQL and a predicate in Prolog
by the Designers’ Workbench for constraint processing.

Design rationale systems capture a lot more information re-
garding the reasoning of design decisions. However, design
rationale systems (Regli et al., 2000; Bracewell & Wallace,
2003) usually capture the information in a human readable
format. Although the information may have some structure,
the information cannot be understood, interpreted, and used
by machines to provide benefits to the designers immediately.
Design rationales are difficult to retrieve, and hence rarely
used. ConEditor+ captures application conditions as ratio-
nales together with the constraints and uses the information
(including domain ontology) to detect inconsistency, sub-
sumption, redundancy, fusion, and suggest appropriate re-
finements between pairs of constraints to designers. This
should encourage designers to input application conditions
associated with the constraints because it provides immediate
benefits.

7. CONCLUSIONS AND FUTURE WORK

This article describes a methodology together with a system
that has been developed to enable domain experts to capture
and maintain constraints in an engineering design environ-
ment. The context is a system known as the Designers” Work-
bench, developed to support engineering designers by check-

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

S. Ajit et al.

ing that their configurations satisfy all the constraints. The
Designers’ Workbench is faced with the task of accumulating
the constraints. This requires a knowledge engineer to study
the design rule book(s), consult the design engineer (domain
expert), and encode all the constraints into the Designers’
Workbench’s KB. This is a tedious, time-consuming, and er-
ror-prone task. Hence, we have developed a system,
ConEditor+, to enable domain experts themselves to capture
and maintain engineering design constraints.

We believe that to apply constraints appropriately, it is
necessary to capture the contexts and assumptions associated
with constraints and an explicit representation of this infor-
mation (rationales) referred to as application conditions
would be extremely beneficial to both humans and machines
to support the maintenance of constraints. We have proposed
four main types of knowledge refinement rules that use the
application conditions together with the constraints and the
domain ontology to detect inconsistencies, subsumption, re-
dundancy, and fusion. We implemented these rules in
ConEditor+, and demonstrated with the help of an experi-
ment that an explicit representation of application conditions
together with the constraints and the domain ontology could
help the machine in reducing the number of inconsistencies
and detecting subsumption, redundancy, fusion, and suggest-
ing appropriate refinements between pairs of constraints. We
also believe that ConEditor+ is a useful tool for domain ex-
perts to capture and maintain constraints. The evaluation of
ConEditor+’s usability has given us encouraging results.
Further, we applied our proposed methodology and tool to
part of the more demanding Rolls-Royce domain to
strengthen our claims.

The proposed architecture (Fig. 6) shows how ConEditor+
fits into a much broader framework. A Design Standards
author initially inputs all the design rules (constraints) in
CoLan together with the associated application conditions
into ConEditor+. The design constraints and application
conditions are then converted from CoLan into CIF. CIF is
further converted into Prolog predicates and RDQL queries
and processed by the Designers’ Workbench. ConEditor+
uses the constraints and application conditions represented
in CIF together with the domain ontology in OWL to detect
inconsistencies, subsumption, redundancy, fusion, and
suggest appropriate refinements between pairs of constraints
to support maintenance. It is planned to interface the Design-
ers’ Workbench to a more sophisticated CAD/KBE system as
part of the future work. We also have plans to make
ConEditor+ into a Protege (Noy et al., 2000) plug-in that
would involve converting the constraints into CIF/SWRL
(McKenzie et al., 2004).

ACKNOWLEDGMENTS

We acknowledge the financial support provided by the EPSRC
Sponsored Advanced Knowledge Technologies project, GR/
N15764, which is an Interdisciplinary Research Collaboration in-
volving the University of Aberdeen, the University of Edinburgh,

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

341

| CEEEEE I G FeatwreOntology [T~~~ — ~ — 7 7| | Q
| (OWL) | (
| ! e
| I _
' |
| |
| | CAD/KBE
| system Designer
ConEditor+ [% T
Designers'
Workbench
Design Standards Author
L 4
Design Rules
(CoLan) Sicstus Constraints
pradicates {OWL)
K A
. |l,
g Design Rules CIF -> RDQL
» {CIF) » Sicstus Prolog
convarter

Fig. 6. The proposed system architecture. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

the Open University, the University of Sheffield, and the University
of Southampton. We also acknowledge the substantial contributions
of Mr. Stephen Docherty from the Transmissions and Structures di-
vision and Mr. Colin Cadas of Rolls-Royce plc, Derby, UK. We are
extremely grateful to Dr. Kit Hui and Professor Peter Gray for
providing us with the software to convert constraints in CoLan to
CIF.

REFERENCES

Ajit, S. (2008). Capture and maintenance of constraints in engineering de-
sign. PhD thesis, Department of Computing Science, University of
Aberdeen, Aberdeen, UK.

Ajit, S., Sleeman, D., Fowler, D.W., Knott, D., & Hui, K. (2005). Acquisition
and maintenance of constraints in engineering design. Proc. 3rd Int.
Conf. Knowledge Capture, KCAP 2005, pp. 173—174, Banft, Canada.

Ajit, S., Sleeman, D., & Knott, D. (2007). Analysis of Design Rule Books of
Part of the Rolls-Royce Domain, Technical Report. Department of Com-
puting Science, University of Aberdeen, Aberdeen, UK.

AKA. (2006). American Kite Association. Accessed at http:/www.aka.org.
au/kites_in_the_classroom/index.htm on June 28, 2006.

Bahler, D., & Bowen, J. (1992). Design rationale management in concurrent
engineering. Workshop on Design Rationale Capture and Use, 10th Na-
tional Conf. Artificial Intelligence (AAAI-92), San Jose, CA.

Barker, V.E., & O’Connor, D.E. (1989). Expert systems for configuration at
digital: XCON and beyond. Communications of the ACM 32(3), 298-318.

Barnum, C.M. (2002). Usability Testing and Research. Upper Saddle River,
NJ: Allyn & Bacon.

Bassiliades, N., & Gray, P. (1995). CoLan: a functional constraint language
and its implementation. Data & Knowledge Engineering 14(3), 203-249.

Borning, A., Maher, M., Martindale, A., & Wilson, M. (1989). Constraint
hierarchies and logic programming. Int. Conf. Logic Programming
(ICLP), PP. 149-164, Lisbon, Portugal.

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

Bowen, J., O’Grady, P., & Smith, L. (1990). A constraint programming lan-
guage for life-cycle engineering. Artificial Intelligence in Engineering
5(4), 206-220.

Bracewell, R.H., & Wallace, K.M. (2003). A tool for capturing design ratio-
nale. Proc. Int. Conf. Engineering Design (ICED 03), Stockholm.

Brown, D.C. (2006). Assumptions in design and design rationale. Design
Rationale Workshop, DCC’06, Eindhoven, The Netherlands.

Bultman, A., Kuipers, J., & Harmelen, F.V. (2000). Maintenance of KBS’s
by domain experts: the Holy Grail in practice. Thirteenth Int. Conf.
Industrial & Engineering Applications of Artificial Intelligence & Expert
Systems [EA/AIE’00.

Burge, J., & Brown, D.C. (2003). Rationale support for maintenance of large
scale systems. Workshop on Evolution of Large-Scale Industrial Software
Applications (ELISA), ICSM ‘03, Amsterdam.

CEKS. (2006). Cutting Edge Kite Shop. Accessed at http:/www.cuttingedge
kites.com/faq.htm on June 28, 2006.

Coenen, F.P. (1992). A methodology for the maintenance of knowledge based
systems. EXPERSYS-92 (Proc.), IITT-Int. (Niku-Lari, A., Ed.), pp. 171-176.

Dumas, J.S., & Redish, J.C. (1999). A Practical Guide to Usability Testing.
Bristol: Intellect Books.

Eden, M. (1998). The Magnificient Book of Kites: Explorations in
Design, Construction, Enjoyment and Flight. New York: Black Dog &
Levanthal Publishers.

Eriksson, H., Puerta, A., Gennari, J., Rothenfluh, T., Tu, S., & Musen, M.
(1995). Custom-tailored development tools for knowledge-based sys-
tems. Proc. Ninth Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada.

Felfernig, A., Friedrich, G., Jannach, D., & Stumptner, M. (2004). Consis-
tency-based diagnosis of configuration knowledge bases. Artificial Intel-
ligence 152, 213-234.

Fletcher, D., & Gu, P. (2005). Adaptable design for design reuse. Second
CDEN Int. Conf. Design Education, Innovation, and Practice.

Fowler, D.W., Sleeman, D., Wills, G., Lyon, T., & Knott, D. (2004).
Designers’ Workbench. Proc. 24th SGAI Int. Conf. Innovative Tech-
niques and Applications of Artificial Intelligence, pp. 209-221,
Cambridge.

https://doi.org/10.1017/S089006040800022X

342

Frayman, F., & Mittal, S. (1987). COSSACK: a constraints-based expert sys-
tem for configuration tasks. Knowledge Based Expert Systems in Engi-
neering: Planning and Design (Sriram, D., & Adey, R.A., Eds.),
pp. 143-166. Southampton: Computational Mechanics Publications.

Goonetillake, J.S., & Wikramanayake, G.N. (2004). Management of evol-
ving constraints in a computerised engineering design environment.
Proc. 23rd National IT Conf., Colombo, Sri Lanka.

Gray, P., Hui, K., & Preece, A. (2001). An expressive constraint language for
semantic web applications. E-Business and the Intelligent Web: Papers
From the IJCAI-01 Workshop, pp. 4653, Seattle, WA.

Gray, P., & Kemp, G. (2006). Capturing quantified constraints in FOL,
through interaction with a relationship graph. /5th Int. Conf. Knowledge
Engineering and Knowledge Management (EKAW 2006), Podebrady,
Czech Republic.

Gruber, T.R. (1995). Towards principles for the design of ontologies used for
for knowledge sharing. International Journal of Human—Computer Stud-
ies 43(5-6), 907-928.

Grudin, J. (1996). Evaluating opportunities for design rationale capture. In
Design Rationale: Concepts, Techniques, and Use (Carroll, J.M., Ed.).
Mahwah, NJ: Erlbaum.

Harary, F. (1962). A graph theoretic approach to matrix inversion by parti-
tioning. Numerische Mathematik 4, 128—135.

Hicks, R.C. (2003). Knowledge base management systems—tools for
creating verified intelligent systems. Knowledge-Based Systems 16,
165-171.

Hooey, B.L., & Foyle, D.C. (2007). Requirements for a design rationale cap-
ture tool to support NASA’s complex systems. In Int. Workshop on Man-
aging Knowledge for Space Missions, Pasadena, CA.

Junker, U. (2001). Quickxplain: conflict detection for arbitrary constraint
propagation algorithms. IJCAI’01 Workshop on Modelling and Solving
Problems with Constraints (CONS-1), Seattle, WA.

Junker, U., & Mailharro, D. (2003). The logic of ilog(j) configurator: com-
bining constraint programming with a description logic. Proc. IJCAI’03
Workshop on Configuration, Acapulco, Mexico.

Leigh, D. (2006). Delta kite designs. Accessed at http:/www.deltas.freeserve.
co.uk/home.html on June 28, 2006.

Lin, L., & Chen, L.C. (2002). Constraints modelling in product design. Jour-
nal of Engineering Design 13(3), 205-214.

Lords, D. (2006). Kite, kite buggy and land yacht page. Accessed at http:/
users.techline.com/lord/index.html on June 28, 2006.

McGuinness, D.L., & Harmelen, F.v. (2004). OWL Web Ontology Language
overview, W3C recommendation February 10, 2004. Accessed at http:/
www.w3.org/ TR/owl-features/ on August 29, 2006.

McKenzie, C., Gray, P., & Preece, A. (2004). Extending SWRL to express
fully-quantified constraints. Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web (RuleML 2004), Int. Semantic Web Conf.,
pp- 139-154, Hiroshima, Japan.

McMahon, C., Lowe, A., & Culley, S. (2004). Knowledge management in
engineering design: personalization and codification. Journal of Engi-
neering Design 15(4), 307-325.

Meseguer, P., & Preece, A.D. (1995). Verification and validation of knowl-
edge-based systems with formal specifications. Knowledge Engineering
Review 10, 331-343.

Nguyen, T.A., Perkins, W.A., Laffey, T.J., & Pecora, D. (1985). Checking an
expert systems knowledge base for consistency and completeness. IJCAI
‘85, Vol. 1, pp. 375-378, Los Angeles.

Noy, N.F,, Fergerson, R.W., & Musen, M.A. (2000). The knowledge model
of Protege-2000: combining interoperability and flexibility. Int. Conf. on
Knowledge Engineering and Knowledge Management (EKAW 2000),
Juan-les-Pins, France.

Preece, A.D., Shinghal, R., & Batarekh, A. (1992). Verifying expert systems:
a logical framework and a practical tool. Expert Systems with Applica-
tions 5(3/4), 421-436.

Qian, Y., Zheng, M., Li, X., & Lin, L. (2005). Implementation of knowledge
maintenance modules in an expert system for fault diagnosis of chemical
process operation. Expert Systems with Applications 28, 249-257.

Regli, W.C., Hu, X., Atwood, M., & Sun, W. (2000). A survey of design ra-
tionale systems: approaches, representation, capture and retrieval. Engi-
neering with Computers: An International Journal for Simulation-Based
Engineering 16, 209-235.

Rubin, J. (1994). Handbook of Usability Testing. New York: Wiley Technical
Communication Library.

Seaborne, A. (2004). RDQL—a query language for RDF. Accessed at http:/
www.w3.org/Submission/RDQL/ on August 29, 2006.

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

S. Ajit et al.

Selpi. (2004). An FDM prototype for pathway and protein interaction data.
Master’s Thesis, Chalmers University of Technology, Goteborg, Sweden.

Serrano, D., & Gossard, D. (1992). Tools and techniques for conceptual de-
sign. In Artificial Intelligence in Engineering Design (Tong, C. & Sriram,
D., Eds.), Vol. 1, pp. 71-116. San Diego, CA: Academic.

Soloway, E., Bachant, J., & Jensen, K. (1987). Assessing the maintainability
of XCON-in-RIME: coping with problems of a very large rule-base. In
Proc. AAAI-87, pp. 824-829, Seattle, WA.

Sriram, D., & Maher, M.L. (1986). The representation and use of constraints
in structural design. In Applications of Artificial Intelligence in Engineer-
ing Problems, Vol. 1, pp. 355-368. Southampton: Computational
Mechanics Publications.

Steward, D.V. (1962). On an approach to techniques for the analysis of the
structure of large systems of equations. SIAM Review 4.

Streeter, T. (1980). The Art of the Japanese Kite. Tokyo: Charles E. Tuttle
Company.

Suwa, M., Scott, A.C., & Shortliffe, E.H. (1982). An approach to verifying
completeness and consistency in a rule-based system. Al Magazine
3(4), 16-21.

Wardley, A. (2006). Basics of stunt kite design. Accessed at http:/www kfs.
org/~abw/kite/rec.kites/skdesign1.html on June 28, 2006.

Wielinga, B., & Schreiber, G. (1997). Configuration-design problem solving.
IEEE Expert 12(2), 49-57.

Yolen, W. (1976). The Complete Book of Kites and Kite Flying. New York:
Simon and Schuster Trade.

Zlatareva, N.P. (1998). A refinement framework to support validation and
maintenance of knowledge-based systems. Expert Systems with Applica-
tions 15, 245-252.

Suraj Ajit is a doctoral student in the Department of Comput-
ing Science at the University of Aberdeen. He is currently em-
ployed by the University of Dundee to work with Calico Jack
Ltd. on industrial applications of ontologies. From 2002 to
2006 he worked as a Research Assistant for the Advanced
Knowledge Technologies Project. He received a BE (first
class) degree in computer science from Bangalore University
in 2001 and will graduate with a PhD in computing science
from the University of Aberdeen in 2008. Suraj’s main re-
search interests are in knowledge management, constraints,
engineering design, and ontologies.

Derek Sleeman is a Professor of Computing Science at the
University of Aberdeen. He was one of the Principal Inves-
tigators of the EPSRC-sponsored IRC in Advanced Knowl-
edge Technologies (2000-2007). Derek’s research activities
have remained at the intersection of artificial intelligence
and cognitive science, but his focus has moved from
intelligent tutoring systems to cooperative knowledge acqui-
sition, knowledge refinement systems, and KB reuse. He
was a program committee member for the International, Eu-
ropean, and National conferences in machine learning and
knowledge acquisition and capture and Conference Chair
for K-CAP 2007. Dr. Sleeman also served on various editor-
ial boards, including the Machine Learning Journal and the
International Journal of Human—Computer Sciences. He
was made a Fellow of the European Al Societies in 2004.

David W. Fowler is currently a Research Fellow at the Uni-
versity of Aberdeen. He received his BSc in computer science
from Heriot—Watt University, Edinburgh, and his MSc in ar-
tificial intelligence and automated reasoning from Queen
Mary College, University of London. David received his
PhD from the University of Aberdeen in 2002. Dr. Fowler’s

https://doi.org/10.1017/S089006040800022X

Capture and maintenance of constraints

main research interests are in knowledge representation and
ontologies applied to engineering domains and in constraint
satisfaction under uncertainty.

David Knott joined Rolls-Royce in 1977 as an undergraduate
apprentice. He graduated from Loughborough University in
1981 with a first class degree in mechanical engineering. In
2000 he was appointed Company Specialist—Design Technol-

https://doi.org/10.1017/5089006040800022X Published online by Cambridge University Press

343

ogy, with responsibility for improving the design process across
Rolls-Royce by acquiring appropriate technology and support-
ing its application to the company’s products and processes. He
is currently leading two DTI funded research projects involving
multidisciplinary academic and cross-sector industrial collabo-
ration. David is a Chartered Mechanical Engineer and Fellow of
the Institute of Mechanical Engineers.

https://doi.org/10.1017/S089006040800022X

