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Three-dimensional flow past a rotating cylinder
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Three-dimensional computations are carried out for a spinning cylinder placed in a
uniform flow. The non-dimensional rotation rate is varied in the range 0.0 6 α 6
5.0. A stabilized finite element method is utilized to solve the incompressible Navier–
Stokes equations in primitive variables formulation. Linear stability analysis of the
steady state shows the existence of several new unstable three-dimensional modes for
2006 Re6 350 and 4.06 α6 5.0. The curves of neutral stability of these modes are
presented in the Re–α parameter space. For the flow at Re= 200 and rotation rate in
the ranges 0.0 6 α 6 1.91 and 4.34 6 α 6 4.7, the vortex shedding, earlier reported
in two dimensions and commonly referred to as parallel shedding, can also exist as
oblique shedding. In this mode of shedding, the vortices are inclined to the axis of
the cylinder. In fact, parallel shedding is a special case of oblique shedding. It is
found that the span of the cylinder plays a significant role in the time evolution of the
flow. Of all the unstable eigenmodes, with varied spanwise wavenumber, only the ones
whose integral number of wavelengths fit the span length of the cylinder are selected
to grow. For the flow at Re= 200, two steady states exist for 4.86α6 5.0. While one
of them is associated with unstable eigenmodes, the other is stable to all infinitesimal
perturbations. In this regime, irrespective of the initial conditions, the fully developed
flow is steady and devoid of any instabilities.

Key words: parametric instability, vortex shedding, wakes/jets

1. Introduction

Imparting rotation to a circular cylinder significantly alters the flow around it.
There have been several studies in the past (Ingham 1983; Hu et al. 1996; Kang,
Choi & Lee 1999; Stojković, Breuer & Durst 2002; Mittal & Kumar 2003; Stojković
et al. 2003; Padrino & Joseph 2006; El Akoury et al. 2008; Pralits, Brandt &
Giannetti 2010; Pralits, Giannetti & Brandt 2013; Rao et al. 2013a,b, 2014) to
classify the different flow regimes based on Reynolds number, Re, and rate of
rotation. The non-dimensional rotation rate, α, is defined as the ratio of the speed
of the cylinder surface to the free-stream velocity. For a non-rotating cylinder, the
steady two-dimensional (2D) flow becomes unstable via Hopf bifurcation, leading
to the formation of a von Kármán vortex street beyond Re ∼ 47. With rotation, the
spatial symmetry of the flow along the centreline is broken. This affects the flow
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transitions via different mechanisms. For low α, the flow still loses stability via Hopf
bifurcation. However, for relatively large α, other instabilities are observed. Hu et al.
(1996) studied bifurcations, describing the transition from steady to a time-periodic
solution. They found that imparting rotation delays the onset of vortex shedding with
respect to Re. Kang et al. (1999) investigated the flow past a cylinder for Re6 160
and 0.0 6 α 6 2.5. They reported that vortex shedding is completely suppressed
for α > αL, where αL has logarithmic dependence on Reynolds number. Similar
observations were also made by Barnes (2000) via experiments at lower Reynolds
number (506 Re6 75).

Stojković et al. (2002, 2003) carried out 2D numerical simulations and reported
that vortex shedding reappears for 4.856 α 6 5.15 at Re= 100. This mode of vortex
shedding has a frequency that is lower than that of the Kármán shedding and is
referred to as mode II shedding. They presented a stability diagram demarcating
boundaries of the two modes of shedding for 606 Re6 200 and 0.06 α 6 6.0. The
region between the boundaries of the two shedding regimes is associated with a
steady flow. Mittal & Kumar (2003) carried out a global linear stability analysis of
the 2D steady flow for Re= 200 and 0.06 α6 5.0. Their results from linear stability
analysis are in very good agreement with results from direct time integration of the
governing equations. They presented arguments based on generation of vorticity near
the cylinder to explain the appearance of mode II shedding. Beyond the higher-α end
of mode II shedding, the flow again becomes steady. The steady solutions, before
and after the mode II shedding regime, are associated with different flow structures
(Mittal & Kumar 2003; Rao et al. 2013b, 2014). Mittal & Kumar (2003) reported
the existence of hysteresis in achieving a steady state for 4.86 α 6 5.0 at Re= 200.
Solutions corresponding to increasing α (steady state I) in this regime were found
to be unstable, while solutions for decreasing α (steady state II) were reported to be
stable to small disturbances. El Akoury et al. (2008) carried out numerical simulations
for Re6 500 and 0.06 α 6 6.0. They found that the regime of α for which mode II
occurs increases with increasing Re.

Despite a significant amount of research in identifying the shedding regimes
encountered in flow past a rotating cylinder, very few studies have addressed the
existence of three-dimensionality in these flows. For a non-rotating cylinder, spanwise
instability develops in the wake beyond Re ∼ 190. This is referred to as mode A
instability (Barkley & Henderson 1996; Williamson 1996) and has a spanwise
wavelength of approximately 4D. El Akoury et al. (2008) performed three-dimensional
(3D) numerical simulations to study the effect of rotation for α 6 1.5. They reported
that rotation attenuates the onset of 3D instabilities. For Re = 200 and α = 1.5, the
flow field was observed to be 2D. Mittal (2004) reported the presence of centrifugal
instabilities along the entire span of the cylinder for α = 5.0 and Re = 200. Rao
et al. (2013a,b, 2014) studied transition from the 2D to the 3D state using Floquet
analysis for Re 6 400 and α 6 7.0. They presented curves of marginal stability of
various modes (A, B, C, D, E, E′, F, F′, G) associated with steady states I and II
on the Re–α parameter space. The eigenvalues of modes A, B, C, D, E, E′ and
G are real, while modes F and F′ are associated with complex eigenvalues. Using
Bayly’s (1988) criteria, Rao et al. (2013a,b) proposed that modes F and F′ may
be responsible for centrifugal instabilities. Meena (2011) and Meena et al. (2011)
presented results from linear stability analysis at Re = 200. They found that the
eigenmodes associated with centrifugal instabilities beyond α = 3.0 are real. Later,
Rao et al. (2013b) demonstrated that mode E, for α > 3.0, may be associated with
centrifugal instability. Both modes E and F are characterized by multiple turning
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points on the Re–α parameter space. Recently, Radi et al. (2013) have presented
experimental evidence of the 3D modes. A detailed review of various 3D modes for
06 Re6 350 and 0.06 α 6 7.0 has been presented by Rao et al. (2014).

In this work, we first present results for linear stability analysis of flow past a
rotating cylinder. Several new modes of instability are found for 2006 Re6 350 and
4.0 6 α 6 5.0. Direct numerical simulations (DNS) are then carried out at Re = 200
to understand the evolution of 3D disturbances. The interaction between disturbances
of different spanwise wavelengths is investigated by carrying out computations with
different spanwise extent of the cylinder.

2. Formulation
2.1. Incompressible flow equations

Let Ω ⊂Rnsd and (0, T) be the spatial and temporal domains, respectively, where nsd
is the number of space dimensions. Let Γ denote the boundary of Ω . The spatial and
temporal coordinates are denoted by x and t. The Navier–Stokes equations governing
incompressible fluid flow are

ρ

(
∂u
∂t
+ u · ∇u

)
−∇ · σ = 0 on Ω × (0, T), (2.1)

∇ · u= 0 on Ω × (0, T). (2.2)

Here ρ, u and σ are the density, velocity and the stress tensor, respectively. The stress
tensor is the sum of its isotropic and deviatoric parts,

σ =−pI + T , T = 2µε(u), ε(u)= 1
2((∇u)+ (∇u)T), (2.3a−c)

where p and µ are the pressure and coefficient of dynamic viscosity, respectively. The
associated boundary conditions and initial conditions used for the computations are
described in §§ 3–5.

2.2. Linear stability flow equations
The unsteady flow is represented as a combination of the steady state and disturbance:
u=U + u′ and p= P+ p′. Here u′ and p′ are the perturbation fields of the velocity
and pressure, respectively. The steady-state solution (U, P) is obtained by dropping
the unsteady term in (2.1) and (2.2). It is further assumed that the disturbances are
small. This permits one to linearize the equations to obtain

ρ

(
∂u′

∂t
+ u′ · ∇U+U · ∇u′

)
−∇ · σ ′ = 0 on Ω × (0, T), (2.4)

∇ · u′ = 0 on Ω × (0, T). (2.5)

Here σ ′ is the stress tensor for the disturbance field (u′, p′). More details on the
linearized equations of the disturbance field can be found in Mittal & Kumar (2003).
The disturbances are assumed to be of the following form:

u′(x, y, z, t)= û(x, y)eiβzeλt, p′(x, y, z, t)= p̂(x, y)eiβzeλt. (2.6a,b)

Here β is the spanwise wavenumber of the disturbance and λz (=2π/β) its
wavelength. The eigenvalue λ governs the stability of the base flow. In general,
λ is complex and can be represented as λ = λr + iλi where λr and λi are the real
and imaginary parts, respectively. Here λi represents the (circular) frequency, while
λr represents the growth rate; a positive λr leads to instability.
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2.3. Solution method
The flow equations in primitive variable form are solved via a stabilized finite element
method. The numerical stabilizations are based on the streamline-upwind/Petrov–
Galerkin (SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG) stabilization
techniques (Tezduyar et al. 1992). The nonlinear equations resulting from finite
element discretization are solved using the generalized minimal residual (GMRES)
technique (Saad & Schultz 1986) in conjunction with diagonal preconditioners.
Details of the numerical method can be found in our earlier work (Mittal & Kumar
2003; Mittal 2004; Behara & Mittal 2009). The finite element formulation of the
linear stability problem leads to a generalized eigenvalue problem of the form
AX − λBX = 0, where A and B are non-symmetric matrices. The subspace iteration
method (Stewart 1975) in conjunction with the shift-inverse transformation is used to
solve the eigenvalue problem and to locate the eigenvalue with largest real part for
different β.

3. Problem set-up, boundary conditions and finite element mesh
For the 2D computations, the cylinder of diameter D is placed symmetrically

between the two lateral walls of a rectangular domain with a blockage of B = 2 %.
The origin of the coordinate system coincides with the centre of the cylinder. The
upstream and downstream boundaries are located at a distance of Lu/D = 50 and
Ld/D= 150, respectively, with respect to the origin. The finite element mesh consists
of quadrilateral elements. Bilinear interpolation functions are used for both velocity
and pressure. The density of elements is high near the cylinder to accurately resolve
the boundary layer, and decreases radially outwards. Three meshes of different
spatial resolution have been utilized in various regimes. These meshes are termed
M1, M2 and M3, and consist of 16 310, 33 795 and 50 440 nodes, respectively. A
detailed description of the performance of the three meshes in various flow regimes is
described in appendix A. In each regime the mesh that has the lowest resolution but
is adequate to resolve the corresponding flow structures is utilized. The mesh for 3D
computations is generated by stacking several slices of the 2D mesh along the span
of the cylinder. A parallel implementation of the stabilized finite element formulation
is used for computations involving large-sized problems (Behara & Mittal 2009). For
brevity, we introduce the notation (Re, α) to refer to any point in the Re–α plane.

The following boundary conditions are employed for the DNS. A flow velocity
corresponding to the rotation rate, α, is specified on the surface of the cylinder.
Free-stream values are assigned to the velocity at the upstream boundary. At the
downstream boundary the stress vector is set to zero. On the upper and lower
boundaries, the component of velocity normal to and the component of the stress
vector along these boundaries are prescribed a zero value. Two kinds of boundary
conditions on the sidewall have been used for the computations: periodic or symmetry.
The symmetry condition is imposed by prescribing the component of velocity normal
to and the component of the stress vector along the boundaries a zero value. For the
linear stability analysis, the boundary conditions are homogeneous versions of those
used for direct time integration.

4. Overview of the various modes of instability
4.1. Neutral stability curves

Rao et al. (2013b, 2014) reported the existence of two steady states: steady state I
(SSI) and steady state II (SSII), for Re 6 400 and 0.0 6 α 6 7.0. They carried out
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FIGURE 1. (Colour online) Flow past a rotating cylinder: curves of neutral stability of
various modes associated with SSI for the parameter space investigated. The symbols
used for marking the neutral curves for different modes: (a) E, mode F; q, mode I; u,
mode J; �, mode K; (b) �, mode H. Mode E is unstable over the entire parameter space
considered in this work.

linear stability analysis to show that the two steady states can become unstable via
several 3D modes (A, B, C, D, E, E′, F, F′ and G). The linear stability analysis in
the present effort brings out additional modes of instability associated with SSI. We
denote these as modes H, I, J and K. Modes I, J and K are 3D modes in the sense
that they are unstable only for non-zero β. Mode H, on the other hand, is unstable
for β = 0 as well. For β 6= 0.0, the vortices are inclined to the axis of the cylinder,
rendering the flow field 3D. Mode H is, therefore, a 2D mode. This will be discussed
in detail in § 5.

Figure 1(a) shows the curves of neutral stability of modes I, J and K for 200 6
Re 6 350. The spanwise wavenumber of disturbance is varied over 0.0 6 β 6 30.0,
where β = 0.0 corresponds to a 2D disturbance. In this flow regime, modes E and F
are also unstable (Rao et al. 2013a,b, 2014). Hence, we have included the region of
instability of modes E and F in figure 1(a). In general, the flow becomes richer in
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FIGURE 2. (Colour online) Flow past a rotating cylinder for (Re, α)= (350, 4.7): variation
of (a) growth rate and (b) frequency with wavenumber for different modes associated with
SSI. For clarity, a close-up view near the bifurcation is shown. B represents the bifurcation
point.

terms of the number of unstable modes with increasing α. The regime of instability
of mode H is shown in figure 1(b).

4.2. Mode characteristics
Figure 2 shows the variation of growth rate, λr, and frequency, λi, with wavenumber,
β, of various modes associated with SSI for (Re, α) = (350, 4.7). All modes other
than mode J are unstable for these parameters. The characteristic wavenumber, βc, of a
mode for a set of (Re, α) is defined as the spanwise wavenumber for which maximum
growth rate is attained. The characteristic wavelength is inversely proportional to βc. In
general, the spectrum of wavenumbers over which a mode exists varies with Re and/or
α. Consequently, the characteristic wavenumber of the various modes may vary with
Re and α. Among all modes, the characteristic wavenumber of mode F is the largest.
We now describe in detail each of the new modes that have been discovered for SSI.

4.2.1. Mode H
The mode H instability occurs beyond α ∼ 4.1 (figure 1b). The eigenvalues

associated with this mode are complex. Hence, the instability is expected to lead
the flow away from SSI via disturbances that are oscillatory in time. This mode
occurs for a narrow range of wavenumbers (0.0 6 β 6 0.3 for (Re, α) = (350, 4.7)
as shown in figure 2). The highest growth rate is attained for β = 0.0. As such, the
characteristic wavenumber of mode H is βc= 0.0. With increase in β, the growth rate
of mode H decreases till a bifurcation point is reached. We denote the bifurcation
point by B. This point marks the termination of mode H and initiation of modes E
and I. The location of the bifurcation point depends on (Re, α). For a fixed Re, with
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FIGURE 3. Flow past a rotating cylinder for Re = 325: schematic of the variation of
growth rate and frequency with wavenumber to show the bifurcations at (a) α = 4.7 and
(b) α = 5.1. B represents the bifurcation point.

increase in rotation rate, the bifurcation occurs for lower values of β. Figure 3 shows
schematically the location of B for α = 4.7 and 5.1 at Re = 325. The bifurcation
point is indicated on curves showing the variation of growth rate and frequency with
wavenumber. For α = 4.7, the bifurcation occurs for a positive β = 0.3. It shifts
towards the left on the β axis with increase in α. For α= 5.1, mode H does not exist
for β > 0 and it appears as if B is located on the negative β axis. The frequency of
mode H decreases with increase in β and is equal to zero at B. For 2006 Re6 350,
mode H does not exist beyond α ' 5. Figure 4(a) shows the spanwise vorticity
field and isosurfaces of spanwise vorticity of mode H for (Re, α) = (325, 4.8). The
instability is dominant in the wake as well as near the shoulder of the cylinder on
the advancing side.

4.2.2. Mode I
The mode I instability is associated with real eigenvalues. The growth rate of

mode I is highest at the bifurcation point, B. With increase in β, the growth rate
of mode I decreases. Figure 5 shows the variation of characteristic wavenumber,
βc, of mode I with α for Re = 325. The characteristic wavenumber decreases with
increase in α. This is attributed to the movement of the bifurcation point towards
lower values of β with increase in α. Beyond α ' 5, mode H ceases to exist and
the characteristic wavenumber of mode I is zero. Figure 4(b) shows the spanwise
vorticity field and isosurfaces of spanwise vorticity of mode I. The region of large
perturbation associated with mode I is similar to mode H.

4.2.3. Mode J
The mode J instability occurs in a narrow region of the parameter space for high

rotation rate and Re 6 250. The eigenvalues associated with the mode are complex.
As shown in figure 1(a), the neutral stability curve of mode J has a turning point at
(Re, α)= (250, 4.8). The frequency of the eigenmode associated with the characteristic
wavenumber does not vary with Re or α. Figure 4(c) shows the spanwise vorticity
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(a) (b) (c) (d)

FIGURE 4. (Colour online) Flow past a rotating cylinder for (Re, α)= (325,4.8): spanwise
vorticity field (ωz =±0.2) of different modes associated with SSI. (a) Mode H (β = 0.0).
(b) Mode I (β = 0.4). (c) Mode J (β = 8.6). (d) Mode K (β = 11.0). For complex modes,
the vorticity field corresponding to the real part of the eigenmode is shown. Among them,
modes I, J and K are prominent in the vicinity of the cylinder and/or the hyperbolic point
of SSI. The regions of large perturbation associated with mode H extend into the wake
as well. The flow is from left to right. The hyperbolic point is indicated by a solid dot.
Also shown is the 3D construction of the modes.
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FIGURE 5. (Colour online) Flow past a rotating cylinder for Re = 325: variation of the
characteristic wavenumber of the various unstable modes with rotation rate.

field of mode J for (Re, α)= (325, 4.8). The mode grows near the cylinder as well
as near the hyperbolic point. The region of large perturbation away from the cylinder
appears to emanate from the hyperbolic point. This mode, therefore, may be associated
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FIGURE 6. (Colour online) Flow past a rotating cylinder for (Re, α) = (350, 4.7): time
history of spanwise component of disturbance velocity (w/D = ±0.002) at the mid-span
and near the surface of the cylinder, (x/D, y/D)= (0.0, 0.75), for one time period of the
flow. The disturbance field corresponds to the growth of mode K instability with β =
11.0. Also shown is the spanwise component of the disturbance velocity at different time
instants marked in the time history.

with centrifugal as well as hyperbolic instability mechanisms. More analysis needs to
be carried out to ascertain this.

4.2.4. Mode K
Mode K becomes unstable for large Reynolds numbers, Re> 315. The eigenvalues

associated with the mode are complex. The neutral stability curve has a turning
point at (Re, α) = (320, 4.6) (figure 1a). The characteristic wavenumber of mode K
decreases with α (figure 5). Similar to modes F and F′, this mode grows primarily
in the boundary layer over the rotating cylinder and adjacent regions of the wake
(figure 4d). Using Bayly’s (1988) criteria, Rao et al. (2013a,b) proposed that modes F
and F′ may be associated with centrifugal instability. It is assumed that the presence
of viscosity does not change the nature of the instability, but only dampens or
strengthens its effect. Since modes F and K share the same base flow SSI, mode K
is also expected to be associated with a centrifugal instability.

We carried out direct time integration of the governing equations to study the
time evolution of mode K instability for (Re, α) = (350, 4.7). Periodic boundary
conditions are prescribed on the sidewalls. The computations are initiated with the
eigenmode corresponding to β = 11.0 superimposed on SSI. This eigenmode has the
largest growth rate for mode K at (Re, α)= (350, 4.7) (figure 2). Figure 6 shows the
variation of spanwise component of velocity at the mid-span location for one cycle
of the time-periodic solution. It can be noted that the disturbance remains localized
to regions near the surface of the cylinder. This further suggests that mode K is
associated with centrifugal instability.

5. Detailed analysis of the Re= 200 flow
The results from linear stability analysis presented in § 4 and earlier studies

(Rao et al. 2013b, 2014) show that the two steady states are associated with
several unstable modes. As the disturbances evolve with time, nonlinear effects
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FIGURE 7. (Colour online) Flow past a rotating cylinder for Re = 200: variation of
maximum growth rate, λrmax , with rotation rate, α, of different modes for 0.0 6 α 6 5.0.
Maximum growth rate is the growth rate associated with the characteristic wavenumber,
βc. For clarity, only the unstable modes are shown.

may become significant, and their evolution may depart from that predicted by linear
stability analysis. In this section we present results from direct time integration
of the governing equations in three dimensions to study the time evolution of the
disturbances corresponding to different modes of instability. These simulations are
preceded by linear stability analysis of the flow past a rotating cylinder for Re= 200
and 0.06 α 6 5.0.

5.1. The unstable eigenmodes
For the flow past a rotating cylinder at Re = 200, SSII exists for 4.8 6 α 6 5.0
(Mittal & Kumar 2003). Meena (2011), Meena et al. (2011) and Rao et al. (2013b,
2014) demonstrated by linear stability analysis that SSII is stable for the entire regime.
Therefore, the instability of the flow, if any, is completely determined by SSI. In
this section, the linear stability of SSI is investigated for Re = 200 and 0.0 6 α 6
5.0. Figure 7 shows the variation of maximum growth rate, λrmax , of different modes
with α. For a non-rotating cylinder (α = 0.0), three modes of instability are found:
mode E (Rao et al. 2014), primary wake (PW) mode and secondary wake (SW) mode.
The nomenclature for the latter two has been adopted from Verma & Mittal (2011).
The PW and SW modes are associated with complex eigenvalues. The PW mode has
the largest growth rate. This instability exists for 0.0 6 α 6 1.91. The instabilities
associated with the SW mode exist for α61.1. Figure 8 shows the variation of growth
rate of modes PW, SW and E with β for α= 1.0. The growth rate of the PW and SW
modes is highest for 2D perturbations (β = 0.0). With increase in β, the growth rates
of both modes decrease. It should be pointed out that the mode A instability, which
exists for 0.06 α 6 0.5 (Rao et al. 2013a), is obtained from Floquet analysis of the
unsteady base flow. Therefore, it does not show up in the present stability analysis.
The isosurfaces of spanwise vorticity of modes PW, SW and E for β = 0.2 are shown
in figure 9. The span of the cylinder is chosen to display exactly one wavelength of
the eigenmode. All three modes are dominant in the downstream wake of the cylinder.
The PW and SW modes consist of a train of vortices of alternate signs. As shown in
figure 7, SSI is stable to all infinitesimal perturbations for 1.91 < α < 3.01. Mode
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FIGURE 8. Flow past a rotating cylinder for (Re, α)= (200, 1.0): variation of (a) growth
rate and (b) frequency with wavenumber of modes PW, SW and E. Among them, the PW
and SW modes are complex, while mode E is a real mode.

E becomes unstable for 0.0 6 α 6 1.91 and 3.01 6 α 6 5.0 (Meena 2011; Meena
et al. 2011; Rao et al. 2013b, 2014). For Re = 200, mode H instability exists for
4.35 6 α 6 5.0. Figure 10 shows isosurfaces of the spanwise component of vorticity
for α = 4.5 of eigenmodes belonging to mode H. Modes I and J become unstable
beyond α = 4.8.

5.2. Oblique vortex shedding
Oblique shedding in flow past a non-rotating cylinder has been reported earlier
(Tritton 1971; Berger & Wille 1972; Gerich & Eckelmann 1982; Williamson 1989).
The obliqueness of the vortices to the axis of the cylinder has been attributed to the
end conditions. It is possible to manipulate the end conditions to promote parallel
shedding where vortices are aligned with the axis of the cylinder. Mittal & Sidharth
(2013) showed that both parallel and oblique vortex shedding are a consequence of
linearly unstable eigenmodes of SSI. They showed that parallel vortex shedding is a
special case of oblique vortex shedding with β = 0.0. They carried out computations
for a cylinder with finite span but periodic boundary conditions at the endwalls for
the flow at Re = 100. If the computations are initiated with an oblique eigenmode
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(a) (b) (c)

FIGURE 9. (Colour online) Flow past a rotating cylinder for (Re, α) = (200, 1.0):
isosurfaces of spanwise vorticity (ωz=±0.5) of eigenmodes corresponding to β = 0.2 for
modes (a) PW, (b) SW and (c) E. The span of the cylinder is chosen to display one
spanwise wavelength of the eigenmode. The spanwise vorticity field in the x–y plane is
shown at the bottom of each figure.

+0.5

–0.5

(a) (b) (c)

FIGURE 10. (Colour online) Flow past a rotating cylinder for (Re, α) = (200, 4.5):
spanwise component of the vorticity field for eigenmodes corresponding to (a) β = 0.0,
(b) β = 0.2 and (c) β = 0.4 for the mode H instability. The upper row shows the
isosurfaces (ωz = ±0.5) while the lower row shows ωz on the x–z plane located at y =
5.63D. The cylinder is out of plane. Its location is indicated in broken lines.

(β 6= 0.0), the flow achieves a state where oblique vortices are shed. On the other
hand, if the computations are initiated with the eigenmode corresponding to β = 0.0,
the flow settles into a state of parallel vortex shedding.

We carried out DNS at Re = 200 for α = 0.0 and α = 0.5. The computations are
initiated with SSI superimposed with perturbations corresponding to the PW mode
with β = 0.4. Periodic boundary conditions are employed on the endwalls enclosing
the span of the cylinder. It is observed that in both cases the vortices are shed at
an oblique angle. Figure 11 shows the spanwise vorticity of the initial and fully
developed disturbance field. It is found that the inclination of shed vortices increases,
while the vortex shedding frequency decreases when the computations are initiated
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(a)

(b)

FIGURE 11. (Colour online) DNS of the flow past a cylinder for Re= 200: initial (left
column) and the fully developed (right column) spanwise vorticity field (ωz = ±0.5) of
the disturbance for the unsteady flow for (a) α = 0.0 and (b) α = 0.5. The computations
are initiated with an oblique PW mode (β = 0.4). The span of the cylinder is chosen to
fit one spanwise wavelength of the oblique mode. The direction of the flow is indicated
by the arrow.

with eigenmode with increased β. This shows that for β 6= 0.0 the eigenmodes
belonging to the PW mode are oblique.

The spanwise vorticity field of mode H as shown in figure 12 consists of rows
of vortices of alternate signs. The wake structure is similar to that of the PW mode
except for an upward deflection caused by higher rotation rate. Hence, it is expected
that the growth of the mode H instability with non-zero β will also lead to oblique
shedding of vortices, at least in the early stages of flow development. To test this
hypothesis, we carried out DNS for (Re, α) = (200, 4.5). The computations are
initiated with SSI superimposed with eigenmodes for β = 0.0 and 0.2. Figure 12
shows the spanwise vorticity field of the disturbance field at two time instants. While
the β = 0.0 eigenmode leads to parallel vortex shedding, oblique vortex shedding is
observed for computations initiated with eigenmodes corresponding to non-zero β. As
has been shown earlier for non-rotating cylinder (Williamson 1989; Mittal & Sidharth
2013), the present work shows that, for the rotating cylinder as well, parallel shedding
is a special case of oblique shedding and both modes of shedding are intrinsic to
the flow. The eigenvalues associated with mode E are real. Hence, mode E instability
will lead the flow away from SSI to a 3D steady state. As such, the growth of mode
E instability alone will not result in either parallel or oblique shedding. However, in
the presence of other instabilities, the modes are expected to interact and modify the
fully developed flow. This is investigated in the next section.

5.3. Interaction between various unstable eigenmodes: effect of span
5.3.1. Rotation rate α = 3.5: unsteady flow due to co-operation of various real

eigenmodes
Figure 13(a) shows the variation of growth rate with λz/D of the mode E instability

for α = 3.5. As shown in figure 7, mode E is the only unstable mode for (Re, α)=
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(a)

(b)

FIGURE 12. (Colour online) DNS of the flow past a rotating cylinder for (Re, α) =
(200, 4.5): spanwise vorticity field (ωz = ±0.5) of the disturbance for the computations
initiated with mode H corresponding to (a) β = 0.0 (parallel mode) and (b) β = 0.2
(oblique mode). The direction of the flow is indicated by the arrow.

(200, 3.5). We carry out DNS for three span lengths of the cylinder: Lz= 0.7D, 1.4D
and 2.8D. The computations are initialized with steady state computed for α = 3.5
superimposed with the perturbation corresponding to β = 9.0 (λz/D= 0.7). We recall
that mode E corresponds to a real eigenvalue/eigenmode. The maximum growth rate
is for the eigenmode with β = 7.0 (λz/D = 0.9). For a cylinder with Lz/D = 0.7,
as seen from figure 13(a), the only unstable eigenmode that conforms to this span
is the one with β = 9.0 (λz/D = 0.7). Indeed, the fully developed solution for this
geometry achieves a steady state and exhibits instability with spanwise wavelength
of 0.7D. Figure 13(b) shows that CL is constant in time, confirming the attainment
of a steady state. The case of a cylinder with Lz/D = 1.4 is more interesting. The
eigenmodes corresponding to β = 9.0 (λz/D = 0.7) and β = 4.5 (λz/D = 1.4) are
the two possible unstable eigenmodes for this span. While two wavelengths of the
former can fit the span, only one wavelength of the eigenmode corresponding to β =
4.5 spans the length of the cylinder. Both eigenmodes are associated with identical
growth rates. The fully developed flow for this situation is a time-periodic flow, as
exhibited by the time history of the lift coefficient shown in figure 13(b). The flow
oscillates between the two states, with the spanwise wavelength of the instability as
0.7D and 1.4D. For Lz/D = 2.8, three unstable eigenmodes can fit the span, β =
9.0, 4.5 and 2.25 (λz/D = 0.7, 1.4 and 2.8). Their evolution leads to an aperiodic
flow, though the wavelength of the spanwise instabilities is still governed by the two
dominant eigenmodes. A larger span can accommodate more unstable wavelengths and
is expected to lead to an aperiodic solution as a result of the competition between
them. However, the most dominant mode is expected to be the one with the largest
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FIGURE 13. (Colour online) Flow past a rotating cylinder for (Re, α) = (200, 3.5).
(a) Variation of growth rate, with spanwise wavelength. Shown in the inset are isosurfaces
of spanwise vorticity (ωz = ±0.5) of mode E with β = 9.0, 4.5 and 2.25. (b) Time
histories of lift coefficient of the fully developed flow for a cylinder of three span lengths.
(c–e) The isosurfaces of spanwise vorticity (ωz=±0.5) for different spans at time instants
marked in (b) with solid black squares for (c) Lz= 0.7D, (d) Lz= 1.4D and (e) Lz= 2.8D.
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growth rate. These computations demonstrate the significant role of the span of the
cylinder in determining the state of the flow.

5.3.2. Rotation rate α = 4.5: interaction between modes E and H
Figure 14(a) shows the variation of the non-dimensional frequency and growth rate

with β of modes E and H for α = 4.5. For (Re, α)= (200, 4.5), modes E and H are
unstable (figure 7) for α= 4.5. While mode H is unstable for β 6 0.4 (λz/D> 15.71),
mode E is unstable for 0.66 β 6 7.5 (0.846 λz/D6 10.47). For a cylinder with span
Lz/D < 0.84, only the β = 0.0 eigenmode from mode H is expected to be active.
Indeed, for the 2D simulation, as well as for Lz/D = 0.8, a low-frequency vortex
shedding is observed. In the latter case, the flow is 2D and devoid of any spanwise
instabilities. The mode E instability achieves the highest growth rate for β = 2.4
(λz/D = 2.62). A simulation is carried out for a cylinder with span Lz/D = 2.62.
The computations are initiated with steady state for α = 4.5, superimposed with
the β = 2.4 eigenmode belonging to mode E. From figure 14(a) we infer that the
wavenumber of the unstable eigenmodes that can fit this span length are β = 0, 2.4,
4.8 and 7.2. The time history of the lift coefficient as well as the isosurfaces for
the spanwise component of the instantaneous vorticity are shown in figure 14(b,c).
The vortex shedding as well as the spanwise instabilities, which are speculated to be
centrifugal in nature, coexist. The spanwise wavelength of the centrifugal instability
is 2.62D, which is reminiscent of the β = 2.4 eigenmode. We note that mode II
shedding is also present despite the growth rate of mode H being lower than that
of the modes causing centrifugal instability. It is found that, as the span of the
spinning cylinder is increased, the flow becomes increasingly aperiodic and complex.
This is due to participation of many more unstable eigenmodes and their nonlinear
interactions. The flow at Lz/D = 12, as shown in figure 14, is one such example.
Recently, Radi et al. (2013) presented experimental results for (Re, α) = (100, 5.1).
Their preliminary investigations with a cylinder of large aspect ratio (Lz/D ∼ 137)
show that the one-sided shedding process is localized and does not occur uniformly
throughout the span of the cylinder. Our results from DNS carried out on a cylinder
of aspect ratio Lz/D= 12 (figure 14) agree with their observations. This is discussed
further in § 5.5.

5.4. Solution is stable for 4.86 α 6 5.0
For Re= 200 two steady states exist for 4.86 α 6 5.0 (Mittal & Kumar 2003). SSI
is linearly unstable via modes E, H, I and J. On the other hand, SSII is stable to
infinitesimal perturbations (Mittal & Kumar 2003; Rao et al. 2013b, 2014). Using 2D
computations, Mittal & Kumar (2003) reported that the direct time integration of the
flow at Re = 200 and 4.8 6 α 6 5.0 leads to SSII. In this work, we present results
from 3D DNS for α = 5.0. The computations are initiated with SSI superimposed
with the mode E perturbation corresponding to βc. The span of the cylinder is
chosen to fit exactly one wavelength of the eigenmode. The initial perturbation as
well as its evolution is shown in figure 15. Eventually, the flow settles to SSII.
Computations have been carried out with various other initial conditions. In all cases,
the flow achieves SSII. We therefore conclude that the flow for α > 4.8 is devoid of
instabilities and achieves a steady state. The effect of end conditions is expected to
be significant (Mittal 2004) and has not been investigated in the present study.
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FIGURE 14. (Colour online) Flow past a rotating cylinder for (Re, α) = (200, 4.5).
(a) Variation of the frequency and growth rate for mode H with β. (b) Time histories of
lift coefficient of the fully developed flow obtained from direct time integrations carried
out for three span lengths of the cylinder. For comparison, the result from a 2D simulation
is also shown. (c) The isosurfaces of spanwise vorticity (ωz =±0.5), close to the instant
when the lift coefficient reaches its peak value. These time instants are marked with solid
squares in (b). The direction of the free-stream flow is indicated by the arrow. For the
2D computations, ωz in the x–y plane is shown.
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FIGURE 15. (Colour online) Flow past a rotating cylinder for (Re, α) = (200, 5.0).
(a) Initial conditions; SSI is superimposed with the eigenmode belonging to mode E with
β = 0.8. (b) Time history of the lift coefficient during flow evolution. (c) Isosurfaces of
spanwise vorticity (ωz=±0.5) at different instants marked in time history (solid squares).
The direction of the free-stream flow is indicated by the arrow.

5.5. Direct numerical simulation (Lz/D= 12, 0.06 α 6 5.0)
Three-dimensional simulations are carried out for a cylinder of span Lz/D = 12
with no-slip condition on the side boundaries. Mittal & Kumar (2003), from 2D
computations, found that the flow at Re = 200 is steady for 1.91 6 α 6 4.34 and
4.8 6 α 6 5.0. Kármán shedding is observed for α < 1.91 while mode II shedding
occurs for 4.356α6 4.7. In accordance with earlier studies, the present computations
show a Kármán vortex street, along with the mode A instability for α < 0.5. The
2D and 3D computations yield identical results for 0.5 6 α 6 3.0. Figure 16 shows
the time histories of the lift coefficient for 3.0 6 α 6 5.0. For comparison, the lift
coefficient from 2D computations are shown as well. The isosurfaces of spanwise
vorticity and the variation of the spanwise component of velocity along the span,
for the fully developed flow, are shown in figure 17. The flow achieves SSI for
α = 3.0. This is consistent with the results from linear stability analysis, as shown
in figure 7. For α = 3.5, spanwise instabilities are observed in the near wake.
Their appearance is attributed to the mode E instability. The flow structures are
stationary and do not change significantly with time. The spanwise wavelength of
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FIGURE 16. Flow past a rotating cylinder for Re= 200: time histories of lift coefficient
for various rotation rates. Results from 3D computations are shown in solid lines. For
comparison, results from 2D simulation (Mittal & Kumar 2003) are also shown in broken
lines.

the instability is 1.2D approximately. This is estimated by counting the number
of cycles in the variation of spanwise component of velocity (figure 17) recorded at
(x/D, y/D)= (0, 0.75). Although there is no vortex shedding, small fluctuations in the
time histories of the force coefficients are observed. This is due to the interactions
among eigenmodes of different wavelengths. The flow at α = 4.0 is associated
with stronger spanwise instabilities. This is evident from larger variations in the
spanwise component of velocity along the span. The spanwise wavelength of the
instability is 2D, approximately. The downstream wake of the cylinder is unsteady.
The unsteadiness is due to the interaction among various unstable eigenmodes of
mode E. At α= 4.5, aperiodic vortex shedding with spanwise instabilities is observed.
In contrast, the 2D flow is periodic. Linear stability analysis predicts the existence of
mode H and E instability for α= 4.5. Both these modes are dominant in the vicinity
of the cylinder as well as the near wake. The spanwise wavelength of the instability
changes continuously along the span with time. This may be attributed to localized
shedding of vortices (Radi et al. 2013). It is observed that, for 3.0 6 α 6 4.7, the
complexity of the flow, at least in the near wake, increases with increasing α. This
is reflected in the difference in the time histories of the lift coefficient obtained from
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FIGURE 17. (Colour online) Flow past a rotating cylinder for Re= 200. Isosurfaces (left)
of the spanwise component of vorticity (ωz=±0.5) at instants marked by the filled square
in figure 16. Also shown (right) is the variation of the spanwise component of the velocity
at (x/D, y/D)= (0, 0.75) along the span. For α = 3.0 and 5.0, the fully developed flow
achieves a 2D state. The cylinder axis is along the broken line. The direction of the free-
stream flow is indicated by the arrow.
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Mode Steady state Nature of λ Characteristic wavenumber βc

H SSI Complex 0.0(2D)
I SSI Real 0.0(2D)–0.6
J SSI Complex 2.79
K SSI Complex 10.47

TABLE 1. Summary of the modes showing the nature of eigenvalue (λ) and characteristic
wavenumber for 2006Re6 350 and 0.06α6 5.0. The characteristic wavenumber of mode
I depends strongly on Reynolds number and rotation rate.

2D and 3D simulations. The flow at α = 5.0 is devoid of any instabilities and a
2D steady state is achieved. It corresponds to SSII. Simulations were carried out for
α = 5.0 with different initial conditions, including a case where computations are
initiated with SSI. In all cases the flow eventually settled to SSII.

6. Conclusions
The flow past a rotating cylinder is investigated via linear stability analysis and

DNS. Building upon existing knowledge (Mittal & Kumar 2003; Meena et al. 2011;
Rao et al. 2013a,b, 2014), several new modes of instability are found: H, I, J and
K. Modes H, J and K are complex, while mode I is a real mode. The frequency, λi,
of mode H decreases with increasing β till λi becomes equal to zero. Beyond this
value of β, mode H bifurcates into two real modes: mode E and mode I. The growth
rate of mode I decreases with further increase in β. The regions of large perturbation
associated with modes I and J indicate that these modes may be associated with
hyperbolic instability. The structure of mode K suggests that this mode is associated
with hyperbolic as well as centrifugal instability. A summary of the characteristics of
various modes is presented in table 1.

A detailed analysis is carried out for Re= 200 to understand the evolution of 3D
perturbations. Three modes of instability are reported for 0.06α6 1.91. The PW and
SW modes are associated with complex eigenvalues, while mode E is associated with
real eigenvalues. The growth rates of the PW and SW modes decrease with increasing
β. For β 6= 0.0, the eigenmodes belonging to PW and SW modes are oblique. It is
found that the rotation of the cylinder quenches the instabilities associated with the
modes PW, SW and E beyond α= 1.91. Mode E instability reappears for 3.016 α6
5.0. The instabilities associated with mode H exist for 4.8 6 α 6 5.0. The β = 0.0
eigenmode belonging to mode H is most unstable. DNS shows that the evolution of
unstable eigenmodes belonging to mode H with β 6= 0.0 leads to oblique shedding
of vortices in the early stages of flow development. It is found that the span of the
spinning cylinder plays a significant role in the selection of eigenmodes in the early
stages of the flow development, and subsequently on the fully developed flow. In
certain regimes, the span of the cylinder decides whether the flow achieves a steady,
temporally periodic or aperiodic state. For 4.8 6 α 6 5.0, two steady states exist:
SSI and SSII. SSI is associated with unstable eigenmodes, while SSII is stable to all
perturbations. It is found that, in this regime, irrespective of the initial perturbations,
the flow achieves the state SSII.
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FIGURE 18. (Colour online) Flow past a rotating cylinder for (Re, α)= (350, 4.7): effect
of mesh resolution on the variation of (a) growth rate and (b) frequency with wavenumber
for different modes. Meshes M1, M2 and M3 consist of 16 310, 33 795 and 50 440 nodes,
respectively.
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Appendix A. Mesh convergence
Computations have been carried out over a wide range of parameter space

(200 6 Re 6 350, 0.0 6 α 6 5.0, 0.0 6 β 6 30.0). Various flow regimes have been
identified. To adequately resolve the flow structures in different flow regimes, while
still keeping the computational expenses as low as possible, the performance of
various finite element meshes have been examined. We present the performance of
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Steady state Aerodynamic coefficient M1 M2 M3

SSI CD 0.2318 0.2276 0.2235
CL −25.0904 −25.2167 −25.2276

SSII CD 0.2879 0.2859 0.2823
CL −24.8226 −24.9340 −24.9831

TABLE 2. Steady flow past a rotating cylinder for (Re, α) = (350, 4.7): effect of mesh
resolution on aerodynamic coefficients. Meshes M1, M2 and M3 consist of 16 310, 33 795
and 50 440 nodes, respectively.

Mode β M1 M2 M3
λr λi λr λi λr λi

E 1.4 0.402 0.000 0.419 0.000 0.420 0.000
F 26.4 1.071 2.344 0.845 2.262 0.848 2.260
H 0.0 0.231 0.130 0.244 0.141 0.244 0.142
I 0.32 0.187 0.000 0.200 0.000 0.201 0.000
J 8.6 −0.133 0.096 −0.168 0.100 −0.170 0.102
K 11.0 0.122 0.752 0.061 0.622 0.060 0.622

TABLE 3. Flow past a rotating cylinder for (Re, α)= (350, 4.7): effect of mesh resolution
on the rightmost eigenvalue of different modes. Meshes M1, M2 and M3 consist of 16 310,
33 795 and 50 440 nodes, respectively.

Mode β M1 M2
λr λi λr λi

E 0.8 0.327 0.000 0.330 0.000
H 0.0 0.162 0.085 0.163 0.084
I 0.2 0.102 0.000 0.101 0.000
J 2.8 0.042 0.152 0.042 0.151

TABLE 4. Flow past a rotating cylinder for (Re, α)= (200, 4.9): effect of mesh resolution
on the rightmost eigenvalue of different modes. Only unstable modes are reported. Meshes
M1 and M2 consist of 16 310 and 33 795 nodes, respectively.

three meshes M1, M2 and M3. Mesh M1 is the coarsest among the three and consists
of 16 310 nodes. Meshes M2 and M3 contain 33 795 and 50 440 nodes, respectively.
The computational domain as well as the structure of the mesh is identical in all
cases. The difference is mostly in the density of grid points close to the cylinder.
Several values of (Re, α) were considered for the mesh convergence study. Table 2
shows the effect of spatial resolution on the aerodynamic coefficients computed for
the two steady states at (Re, α) = (350, 4.7). The results computed using all three
meshes are in very good agreement. Among all the quantities, the drag coefficient of
SSI is most sensitive to the mesh resolution. While the difference between the results
from M1 and M3 is 3.7 %, the difference between M2 and M3 is 1.8 %.

Figure 18 shows the effect of spatial resolution on the growth rate and frequency
from linear stability analysis for (Re, α)= (350,4.7). Table 3 presents a comparison of
the eigenvalues with largest real part for each of the modes that have been identified.
The results with meshes M2 and M3 are in very good agreement. The maximum
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FIGURE 19. (Colour online) Flow past a rotating cylinder for (Re, α)= (200, 4.9): effect
of mesh resolution on the variation of (a) growth rate and (b) frequency with wavenumber
for different modes. Meshes M1 and M2 consist of 16 310 and 33 795 nodes, respectively.

Mode β M1 M2
λr λi λr λi

PW 0.0 0.225 0.853 0.227 0.852
SW 0.0 0.057 0.915 0.058 0.915
E 1.0 0.046 0.000 0.045 0.000

TABLE 5. Flow past a rotating cylinder for (Re, α)= (200, 1.0): effect of mesh resolution
on the rightmost eigenvalue of different modes. Only unstable modes are reported. Meshes
M1 and M2 consist of 16 310 and 33 795 nodes, respectively.

difference (0.7 %) between the results from the two is for mode F. In view of the
difference being small enough, mesh M2 is employed for all the computations for
Re> 200.

For the flow at Re = 200, the mesh convergence study is carried out for various
values of rotation rates (0.0 6 α 6 5.0). The results are presented for computations
carried out on meshes M1 and M2. For α6 1.91, the various modes that are unstable
are PW, SW and E. Figure 20 shows the effect of spatial resolution on the growth
rate and frequency for (Re, α)= (200, 1.0). Table 4 compares the eigenvalues for the
modes with largest growth rate. Very good agreement is obtained in the two cases.
The error in the growth rate is within 2 %. For large rotation rates (2.06α6 5.0), the
steady state can become unstable via modes E, H, I and J. The variation of growth
rate and frequency with spanwise wavenumber of these modes is shown in figure 19.
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FIGURE 20. (Colour online) Flow past a rotating cylinder for (Re, α)= (200, 1.0): effect
of mesh resolution on the variation of (a) growth rate and (b) frequency with wavenumber
for different modes. Meshes M1 and M2 consist of 16 310 and 33 795 nodes, respectively.

The eigenvalues corresponding to the most unstable eigenmode is shown in table 5.
The results differ within 1 %. Therefore, mesh M1 is used for all the computations
for Re= 200.
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