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The influence of shear-dependent rheology on
turbulent pipe flow
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Direct numerical simulations of turbulent pipe flow of power-law fluids at Reτ = 323
are analysed in order to understand the way in which shear thinning or thickening
affects first- and second-order flow statistics including turbulent kinetic energy
production, transport and dissipation in such flows. The results show that with shear
thinning, near-wall streaks become weaker and the axial and azimuthal correlation
lengths of axial velocity fluctuations increase. Viscosity fluctuations give rise to
an additional shear stress term in the mean momentum equation which is negative
for shear-thinning fluids and which increases in magnitude as the fluid becomes
more shear thinning: for an equal mean wall shear stress, this term increases the
mean velocity gradient in shear-thinning fluids when compared to a Newtonian fluid.
Consequently, the mean velocity profile in power-law fluids deviates from the law of
the wall U+z = y+ in the viscous sublayer when traditional near-wall scaling is used.
Consideration is briefly given to an alternative scaling that allows the law of wall to
be recovered but which results in loss of a common mean stress profile. With shear
thinning, the mean viscosity increases slightly at the wall and its profile appears
to be approximately logarithmic in the velocity log layer. Through analysis of the
turbulent kinetic energy budget, undertaken here for the first time for generalised
Newtonian fluids, it is shown that shear thinning decreases the overall turbulent
kinetic energy production but widens the wall-normal region where it is generated.
Additional dissipation terms in the mean flow and turbulent kinetic energy budget
equations arise from viscosity fluctuations; with shear thinning, these result in a net
decrease in the total viscous dissipation. The overall effect of shear thinning on the
turbulent kinetic energy budget is found to be largely confined to the inner layers,
y+ . 60.

Key words: non-Newtonian flows, pipe flow boundary layer, turbulent flows

1. Introduction
Many fluids do not display constant viscosity and are known as non-Newtonian fluids.

They are important in many practical applications. Generalised Newtonian (GN) fluids
are a class of non-Newtonian fluids in which the fluid stress is proportional to the
local instantaneous strain rate via a non-uniform viscosity,

τ (r, t)= 2ρν(r, t)s(r, t). (1.1)

† Email address for correspondence: murray.rudman@monash.edu
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Here, τ is the stress tensor, ρ is density, ν is fluid kinematic viscosity and s is the
strain rate s = [∇v + (∇v)T]/2 where T represents the matrix transpose. In (1.1) r
is the position vector and t is time. For GN fluids, the fluid viscosity is typically
defined as being a function of the strain rate, ν = ν(γ̇ ) where γ̇ = (2s : s)1/2, the
second invariant of the strain-rate tensor. The GN assumption implies that flows are
free from elastic effects and that the response of the fluid to an applied shear stress
is instantaneous. Fine particle suspensions, paints and food products such as molten
chocolate, mayonnaise and tomato ketchup, are examples of GN fluids. GN fluids
can be broadly categorised based on whether or not they show a yield stress i.e. the
minimum shear stress required before the fluid starts to shear. In this study, we only
consider fluids which do not show a yield stress.

The rheology of a GN fluid is determined experimentally using a rheogram
(i.e. shear stress versus shear-rate data). Typically, a particular rheological model
is fitted to the rheogram via regression. Model parameters determined via such
regressions have no intrinsic physical meaning, but nevertheless are very useful in
predicting flow behaviour and are extensively used. There are many rheology models
available for GN fluids (see e.g. Chhabra & Richardson 2008) but for GN fluids which
do not show a yield stress, in particular for shear-thinning fluids, a power-law (PL)
rheology model is commonly used, despite having an infinite zero-shear viscosity that
is not observed in practice. Such fluids are the focus of the present work. The PL
rheology model defines the fluid viscosity as:

ν = ρ−1Kγ̇ n−1, (1.2)

where the consistency K and flow index n are model parameters. The PL rheology
model describes shear-thinning behaviour when 0 < n < 1, i.e. the viscosity of the
fluid decreases with increase in shear rate, and for n> 1 shear-thickening behaviour.

The non-uniform viscosity of PL fluids makes the choice of an appropriate viscosity
scale (and hence Reynolds number) unclear. Instead of defining a viscosity scale,
Metzner & Reed (1955) proposed the following definition of Reynolds number (now
known as the Metzner–Reed Reynolds number) for PL fluids by collapsing laminar
flow friction factor data on to the Newtonian curve:

ReMR =
8ρU2−n

b Dn

K(6+ 2/n)n
, (1.3)

where D is pipe diameter and Ub is the bulk velocity (flow rate per unit area). This
definition is widely used, although it may be argued that it is not appropriate for
turbulent flows because it is derived from a laminar flow analysis (Guzel, Frigaard
& Martinez 2009). Additionally, turbulent flow of PL fluids with different n but the
same ReMR can show significantly different turbulent flow behaviour (Rudman et al.
2004).

Another Reynolds number commonly used for GN fluids is based on the nominal
wall viscosity νw (Pinho & Whitelaw 1990; Ptasinski et al. 2001; Pinho 2003; Rudman
et al. 2004). For a PL fluid it is easily shown using the mean wall shear stress τw and
(1.2) that

νw = ρ
−1K1/nτ (1−1/n)

w , (1.4)

where τw is determined from the mean pressure gradient in the axial (z) direction
∂P/∂z as τw = (D/4)∂P/∂z. Using this viscosity scale, a generalised bulk Reynolds
number ReG and a friction Reynolds number Reτ are defined as

ReG =UbD/νw and Reτ = u∗R/νw, (1.5a,b)
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where R = D/2 is pipe radius and u∗ = (τw/ρ)
1/2 is the friction velocity. Other

definitions of Reynolds number have been proposed (Tomita 1959; Clapp 1961;
Slatter & Lazarus 1993; Chilton & Stainsby 1998; Madlener, Frey & Ciezki 2009;
Guzel et al. 2009), however there is no clear evidence to suggest that one definition
is more useful than others in describing and collapsing data from turbulent flows of
GN fluids. We adopt (1.4) and (1.5) in the present work.

Computational modelling of GN fluids, especially using direct numerical simulation
(DNS), shows promise in helping to understand transition and turbulence in these
fluids. The main benefit of using DNS is that once validated, it can be reliably used
to model flow behaviour and provide a detailed picture of turbulence structure that is
almost impossible to obtain in real GN fluids, which are usually opaque. DNS has
the added benefit that rheological effects such as viscoelasticity (often unintentionally
present, although small, in physical experiments using model GN fluids) can be
excluded and the effect of modifying individual rheological parameters can be readily
isolated. Additionally, the technique allows the validity of rheological models to be
assessed in different flow scenarios.

DNS of GN fluids was first presented by Rudman et al. (2004) and Rudman
& Blackburn (2006), results of which showed that in a turbulent pipe flow, shear
thinning reduced the friction factor (technically equivalent to drag reduction) at a
given ReG. Transition to turbulence, quantified by transition ReG, was also delayed
by shear thinning, which was also in agreement with experimental results of Pinho
& Whitelaw (1990) and Rudman et al. (2002). The maximum Reynolds number
in those studies was ReG ≈ 8000, however, the flow was weakly turbulent for the
moderately shear-thinning fluid (n = 0.69) considered there. Additionally there were
significant discrepancies between the results from DNS and experiments as discussed
in Rudman & Blackburn (2006). These discrepancies have recently been shown to
be caused by a lack of high shear-rate data used in rheology characterisation (Singh
et al. 2016). Local, instantaneous shear rates in turbulent pipe flow, especially near
the wall, can be much higher (by an order of magnitude) than the maximum shear
rate commonly used in rheology characterisation. Use of low-shear rheology in DNS
implicitly involves extrapolating the rheology far outside the shear-rate range over
which it is measured, leading to erroneous results. Hence, reliable high-shear rheology
data are essential in matching DNS and experimental studies of turbulent flows of
GN fluids. The other DNS study of PL fluids is by Gavrilov & Rudyak (2016) at
relatively higher ReG (10 000 and 20 000) which observed similar results as reported
by Rudman et al. (2004) and Rudman & Blackburn (2006). Gavrilov & Rudyak
(2016) proposed that shear thinning decreases the turbulent energy transfer from the
axial component to others which leads to an increased anisotropy compared to a
Newtonian fluid.

Other computational (though not DNS) studies of the turbulent flow of GN fluids
are represented by Malin (1997), Cruz & Pinho (2003), Ohta & Miyashita (2014) and
Gnambode et al. (2015). Gnambode et al. (2015) used large eddy simulation (LES)
to examine the effect of GN rheology on the turbulence flow whereas the others
developed Reynolds-averaged Navier–Stokes (RANS) or LES models for GN fluids.

There is a paucity of DNS results for even first-order flow statistics, which is
a gap that needs to be filled in order to understand and correctly model turbulent
transport of momentum in these fluids. To overcome the limited ReG in Rudman et al.
(2004) and Rudman & Blackburn (2006), the current study considers flow at a higher
Reynolds number (ReG ≈ 12 000, Reτ = 323). The effects of shear thinning and shear
thickening on turbulent pipe flow are considered and profiles of mean flow, turbulence
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intensities and budgets of mean shear stress and mean and turbulent kinetic energies
are investigated.

To our knowledge the present work is the first study of these budgets in turbulent
pipe flow of a GN fluid. The key finding is that the effect of PL rheology on turbulent
pipe flow is mainly significant in the inner, near-wall layers.

2. Mathematical formulation
2.1. Governing equations

Here, we briefly review the simulation methodology, and refer the reader to
Blackburn & Sherwin (2004) and Rudman & Blackburn (2006) for more detailed
descriptions. Since the instantaneous viscosity is spatially varying, the incompressible
Navier–Stokes equations must be written in stress-divergence form:

Dv/Dt= ρ−1(−∇p+∇ · τ + ρg), with ∇ · v = 0, (2.1)

where v is the velocity vector, p is the static pressure, τ is the stress tensor and
ρg is the body force. For ease of notation, we will divide p, τ and ρg in (2.1)
by the constant fluid density ρ, but refer to them as pressure, stress and body force
respectively. The stress tensor τ is modelled with the GN assumption as:

τ = 2ν(γ̇ )s, (2.2)

where s is the instantaneous strain-rate tensor and the kinematic viscosity ν is
calculated using the PL model (see (1.2)). The numerically singular viscosity of PL
rheology model at zero shear rate is avoided by using a ‘cutoff’ value below which
the shear rate is assumed constant for calculating the viscosity. A very low value
for the shear-rate cutoff (1× 10−6) is used to ensure that it does not affect the flow
predictions: no shear rate in the present work reaches such a low value.

For numerical robustness, the convective term in (2.1) is implemented in skew-
symmetric form, i.e. (v · ∇v +∇ · vv)/2. The axial pressure gradient is applied as a
body force term via g in (2.1). The form of the Navier–Stokes equations implemented
in the code is written as:

∂v/∂t+ (v · ∇v +∇ · vv)/2=−∇p+∇ · (2νs)+ g. (2.3)

The spatial discretisation uses two-dimensional spectral elements to cover the pipe
cross-section as shown in figure 1 and Fourier expansion in the axial (z) direction.
The spectral element representation uses standard tensor-product nodal basis with
Gauss–Lobatto–Legendre collocation points. The body force acts only in the axial
direction giving g= gz which is set to achieve a desired flow rate, g takes the place of
an axial pressure gradient and thus the pressure in (2.3) can be periodic as required
by the Fourier expansion used in this direction. Execution is parallel over planar
Fourier modes; product terms are computed pseudo-spectrally and not de-aliased.
Time integration is second order and uses backwards differencing for approximating
temporal derivatives in the velocity correction scheme (Karniadakis, Israeli & Orszag
1991; Guermond, Minev & Shen 2006). The time integration method as originally
proposed by Karniadakis et al. (1991) requires a spatially constant viscosity which is
accommodated here by adopting a technique introduced by Leslie & Gao (1988) in
the context of LES. The viscosity ν is split into a spatially constant component, νref ,
with variable remainder ν − νref to give the momentum equation

∂v/∂t+ (v · ∇v +∇ · vv)/2=−∇p+ νref∇
2v + 2∇ · {(ν − νref )s} + g. (2.4)
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FIGURE 1. Detail of a spectral element mesh used to discretise the pipe cross-section
for n = 0.4–1.2, illustrating the elements (left) and grid nodes for twelfth-order element
interpolation functions, Np = 12 (right). The mesh used for n= 1.2 was slightly finer and
had more elements near the pipe centre.

Following this decomposition, the term νref∇
2v is handled implicitly in time, while

the remaining viscous term is dealt with explicitly and grouped with the nonlinear
terms. One advantage of this method is that by appropriate choice of νref , it is possible
to integrate stably with time steps close to the Courant–Friedrichs–Lewy limit, rather
than at smaller values which would be determined by a fully explicit treatment of
viscous diffusion.

2.2. Reynolds-averaged Navier–Stokes equation for an incompressible GN fluid
Reynolds decomposition is used to separate variables into their ensemble mean and
the fluctuating components. Here, the velocity is decomposed as v=V+ v′; viscosity
ν = ν̄ + ν ′ and the rate of strain tensor as s = S + s′, where V, ν̄ and S are the
time-averaged quantities. Important to note for subsequent discussion is that ν̄w 6= νw,
as shown later in § 4.1. Thus the Reynolds-averaged mean momentum equation for an
incompressible non-Newtonian fluid is written as:

V · ∇V =−∇P+∇ · τ + g. (2.5)

In (2.5), the mean stress tensor is the sum of three stress components.

τ = 2ν̄S − v′v′ + 2ν ′s′

= τ v + τ R
+ τ fv. (2.6)

As in the mean momentum equation for a Newtonian fluid, there is a mean viscous
stress (τ v) and a Reynolds stress (τ R). For GN fluids a new stress term arises (τ fv)
which we call the turbulent viscous stress (τ fv). In the literature for viscoelastic fluids,
an equivalent term is referred to as the ‘polymer stress’ (Ptasinski et al. 2001). The
terminology is not appropriate here as its contribution to the mean stress is not related
to polymer addition to a carrier fluid and will be shown to have a different character
to the same term in viscoelastic fluids. Unlike other stress terms, τ fv can be positive
or negative depending on the rheology of the fluid and unlike τ R, it does not vanish
at the wall. This is because it is a correlation between the fluctuations in viscosity
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ν ′ = ν − ν̄ and shear rate s′ = s − S. Both mean and fluctuating shear rates are non-
zero at the wall because they are related to velocity gradients that do not vanish there.
Similarly, viscosity and its fluctuations are non-zero at the wall as they depend on
shear rate there. Therefore, we do not expect the correlation τ fv to vanish at the wall.
Using an order of magnitude analysis, Pinho (2003) showed that τ fv could only be
neglected in the mean flow of a non- or weakly shear-thinning fluid and for strongly
shear-thinning fluids, especially in the vicinity of the wall, this term can be large. The
other difference in (2.5) compared to its Newtonian version is that the mean viscous
stress is formed from a spatially varying viscosity, ν̄(r).

2.3. Non-dimensional variables
For most of the analysis below, wall units are defined in a similar manner to the
Newtonian analysis using the nominal wall viscosity νw (1.4) as the viscosity scale.
The friction velocity u∗ = (τw/ρ)

1/2 is used for the velocity scale and νw/u∗ for the
length scale. Hence, the distance from the wall is expressed as y+ = (R− r)/(νw/u∗),
where r is the radial distance from the centre of the pipe. The non-dimensional
mean axial velocity and mean viscosity are expressed as U+z =Uz/u∗ and ν+ = ν̄/νw.

Turbulence intensities are expressed in wall units as u′+i = (u′
2

i )
1/2/u∗. Shear rate is

normalised by u∗2/νw, stress terms by ρu∗2 and the energy budget terms by (u∗)4/νw.
The Fanning friction factor, f , which is the non-dimensional wall shear stress, is
defined as f = 2τw/(ρU2

b).
Although the mean wall shear stress, τw, and the nominal wall viscosity, νw, are

chosen here for scaling, it is shown later in § 4.3 that these scalings do not maintain
the fundamental U+z = y+ relation near the wall. Later we will develop a scaling that
gives U+z = y+, however, we choose to use νw and u∗ in the majority of the analysis
below because these can be determined a priori from the mean pressure gradient
which is easily measured in experiments. This allows a direct comparison to DNS
results.

2.4. Simulation parameters
In the present study, DNS are run for flow indices in the range n = 0.4–1.2. The
governing equation (2.4) is non-dimensionalised by the friction velocity and the pipe
radius R= 0.5. This non-dimensionalisation gives νw= 1/Reτ and the non-dimensional
body force gR/u∗2

= 2. We chose a friction Reynolds number Reτ = 323 in the current
simulations to attain a wider range of length scales in the flow than those previously
reported in Rudman et al. (2004). The consistency K for a given n is calculated
using the expression of the nominal wall viscosity νw (1.4). A summary of simulation
conditions is given in table 1 and the fluid viscosity normalised by νw is plotted
against shear rate (viscosity rheogram) in figure 2 for different n. It can be seen that
shear thinning affects the viscosity estimates significantly at all shear rates except for
γ̇ = τw/νw (γ̇ += 1) for which the nominal wall viscosity is forced to be the same for
all n. The predicted bulk velocity and therefore, generalised Reynolds number ReG
slightly decrease with increasing n.

2.5. Mesh design
Mesh design for these flows has been an iterative process, influenced by rules of
thumb for the resolution and domain size established in Newtonian DNS (Piomelli
1997); by our previous experience (Rudman et al. 2004; Rudman & Blackburn 2006);
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n K/(ρu∗2−nRn) Ub/u∗ ReG ReMR fDM × 103 f × 103 1f (%) DR (%)

0.4 9.9080× 10−2 18.34 11 862 4 291 5.60 5.94 5.0 24
0.6 3.1181× 10−2 17.23 11 093 5 498 6.64 6.70 0.9 14
0.8 9.8128× 10−3 16.49 10 630 7 401 7.29 7.34 0.6 6
1.0 3.0870× 10−3 15.93 10 322 10 322 7.66 7.87 2.0 0
1.2 9.7179× 10−4 15.56 10 117 14 786 7.84 8.21 4.0 −4

TABLE 1. Summary of simulation conditions for different flow indices n (n= 1 represents
the Newtonian case). DR (drag reduction) is defined as ( f − fNewt)/fNewt where f is a
Fanning friction factor. Friction Reynolds number Reτ , non-dimensional body force gR/u∗2

and therefore the nominal wall viscosity νw are fixed at 323, 2 and 1/323 respectively.

0.1 1.0 3.0
0.3

1.0

5.0

n

FIGURE 2. Non-dimensionalised viscosity plotted as a function of non-dimensional shear
rate for different n (see table 1) on a log–log scale. In this and subsequent figures, arrows
labelled n indicate sense of increasing flow index.

and results from preliminary investigations over the range of flow indices investigated.
Turbulence structures become finer with decreasing shear thinning (i.e. increasing n).
Therefore, DNS requires a higher mesh resolution as n is increased. In case of a shear-
thickening fluid, due to the lower viscosity in the core region (and hence turbulent
eddies with smaller length scales) a higher mesh resolution is required in the core
region compared to a Newtonian simulation at the same Reτ . In order to ensure mesh
convergence for all cases, a grid resolution study was performed for n= 1.0 and the
same mesh was used for n = 0.4–1.0 which implies a more finely resolved mesh
for these cases. A separate grid resolution study was conducted for n = 1.2. The
final meshes used in simulations had 300 spectral elements for n = 0.4 − 1.0 and
384 spectral elements for n= 1.2. All meshes used twelfth-order tensor-product shape
functions and 384 axial data planes giving the near-wall mesh spacing of y+w = 0.8
in the wall-normal direction, (r1θ)+w = 4.5 in the azimuthal direction and 1z+ = 21
in the axial direction for n = 0.4–1.0. The mesh resolution was slightly finer for
n = 1.2 in the azimuthal direction, (r1θ)+w = 3.5, and near the pipe centre. These
near-wall mesh spacings in the wall normal and the azimuthal direction agree with
typical values used for wall resolving DNS of Newtonian fluids (Piomelli 1997; Moser,
Kim & Mansour 1999; Chin, Monty & Ooi 2014). Although, the mesh in the axial
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FIGURE 3. Two point correlation coefficient of axial velocity fluctuations as a function
of streamwise separation 1z/D plotted for different n (see table 1) at two different y+
locations.

direction is coarser than that used in Newtonian studies (Moser et al. 1999; Chin et al.
2014), our mesh resolution study showed that further mesh refinement did not change
the results noticeably.

2.6. Domain length independence study
To ensure that the axial domain periodicity did not unduly influence results, a domain
length independence study was carried out. Since the range of length scales in the flow
decreases with decreasing n, n= 0.6 was chosen for this study. Results showed that
a minimum domain length of 11D is required in order that streamwise correlations
are sufficiently small and the turbulence statistics converge. In the final simulations, a
domain length of Lz= 4πD is used for n= 0.6–1.2 which is twice that used by Eggels
et al. (1994) in their DNS of a Newtonian fluid at Reτ = 180 and comparable to that
suggested by Chin et al. (2010) for DNS of a Newtonian fluid at Reτ = 170–500. A
slightly longer domain (Lz ≈ 16D) is used for n = 0.4 due to its transitional nature
(discussed later). These domain lengths are further checked for their adequacy via two
point axial correlations of axial velocity fluctuations ρu′zu′z defined as:

ρu′zu′z(1z)= 〈u′z(r, θ, z, t)u′z(r, θ, z+1z, t)〉/〈u′z(r, θ, z)2〉. (2.7)

Here, u′z represents the axial velocity fluctuations at time t and 〈 〉 denotes averaging.
As seen in figure 3 ρu′zu′z decays to zero for all n. Close to the centre of the pipe (not
shown) ρu′zu′z remains positive for much of the domain, although less than 0.1. Overall,
these results indicate adequate domain length. Negative values of ρu′zu′z in the profiles
of n= 0.4 and n= 0.6 indicate intermittent turbulent regions which are also seen in
near-wall streaks shown later (in figure 6). The larger negative values of ρu′zu′z for n=
0.4 indicate the transitional nature of this flow. Therefore we exclude the results of
n= 0.4 and present those only for n= 0.6–1.2.

2.7. Temporal averaging
Initial conditions were taken from earlier simulations on different meshes or from
simulations with different n. Simulations were run until the calculated instantaneous
total wall shear stress and the bulk velocity had reached a statistically steady value.
In most cases the wall shear stress and the bulk velocity fluctuated by approximately
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FIGURE 4. Wall scaled statistical profiles from DNS of Newtonian fluid at Reτ = 323
(solid line), compared to experimental results of den Toonder & Nieuwstadt (1997, circles:
Reτ = 314). (a) Mean axial velocity; (b) axial and radial turbulence intensities; (c)
Reynolds shear stress; (d) turbulent kinetic energy production.

2 % about the mean value. The time interval required to reach this state typically
corresponded to around ten to twenty domain wash-through times. Once this state had
been reached, time-averaged statistics were accumulated over another fifteen to twenty
transit times.

2.8. Validation of numerical method
To provide a baseline comparison of the numerical method, statistical data for
turbulent pipe flow of a Newtonian fluid at Reτ = 323 are compared in figure 4
to the experimental results of den Toonder & Nieuwstadt (1997) obtained by Laser
doppler anemometry (LDV) measurement at a similar Reτ of 314. As seen in the
figure, profiles of mean axial velocity, turbulence intensities, Reynolds shear stress
and turbulent kinetic energy production obtained from DNS agree well with the
experimental results except very close to the wall, where some of the experimental
results are acknowledged to be unreliable.

The DNS friction factor predictions for different flow indices are compared with
the Dodge and Metzner correlation (Dodge & Metzner 1959) which gives the best
agreement with experiments compared to others (Hartnett & Kostic 1990). As seen in
table 1, DNS predictions of the friction factor for different flow indices agree well
(within 5 %) with the Dodge and Metzner correlation suggesting the accuracy of the
current results. Note that the errors in predicting f compared to Dodge and Metzner’s
correlation is lower in the current study compared to our earlier studies (Rudman et al.
2004; Rudman & Blackburn 2006) where the flow was weakly turbulent. Since the
Dodge and Metzner correlation is a semi-empirical correlation with the parameters
determined using turbulent flow experiments, it is prone to give erroneous prediction
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 5. (a–d) Contours of instantaneous axial velocity normalised by the bulk velocity
Ub (0 is black, 1.4 is white). (e–h) Contours of instantaneous viscosity normalised by the
maximum viscosity (0.1 is black, 1.0 is light grey). From left to right, flow indices are
(a,e) n = 0.6, (b, f ) n = 0.8, (c,g) n = 1.0 and (d,h) n = 1.2. The velocity and viscosity
contours for a given fluid are plotted for the same time instant.

in weakly turbulent flows. Results presented in Singh et al. (2016) also support the
validity of the present simulation methodology for GN fluids.

3. Observations of instantaneous flow

The effect of flow index n on instantaneous flow structures is shown in figures 5
and 6. Finer-scale structure is observed with increasing n, which is seen clearly in the
contours of axial velocity and viscosity plotted on a pipe cross-section in figure 5 and
in the near-wall streaks shown in figure 6. The finer scales also correspond to higher
frequency motions, although later it will be seen they are also associated with lower
turbulent kinetic energy. The longer, wider low-speed streaks seen in figure 6 for lower
n are associated with reduced wall-normal turbulence intensities by shear thinning
which will be discussed in § 4.4. There are qualitative correlations evident between the
surface contours on adjacent surfaces indicating the radial extent of these structures,
which indicate the imprint of the outer flow on near-wall fluctuations (Hutchins &
Marusic 2007).

The information presented in figure 6 can be quantified using the velocity integral
length scale which is a measure of the characteristic correlation distance between the
velocity fluctuations at two points in the flow field. Here, the streamwise velocity
integral length scale, lz, is calculated by integrating the two point autocorrelation
function (2.7) to the point where it first crosses zero. As expected from the qualitative
information in figure 6, lz increases with decreasing n (figure 7a,b) from approximately
60 for n= 1 to around 100 for n= 0.6. This suggests that axial velocity fluctuations
are correlated for a longer distance for lower n. For all flow indices, the maximum
lz occurs at y+≈ 10 with the exact location slightly shifting away from the wall with
decreasing n (figure 7b). Azimuthal length scales near the pipe wall follow a similar
trend with n (figure 7c).
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(a) ( f )

(b) (g)

(c) (h)

(d) (i)

(e) (j)

FIGURE 6. Contours of instantaneous axial velocity fluctuations normalised by the local
mean axial velocity at y+ = 10, 30, 45, 70, 100 (from top to bottom) for (a–e) Newtonian
and ( f –j) n= 0.6 plotted on surfaces of constant y+. White represents positive fluctuation
and black negative. Contours have been stretched azimuthally to maintain the same vertical
extent.

(a) (b)

(c)
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FIGURE 7. (a,b) Streamwise integral length scales and (c) azimuthal integral length scale
plotted as functions of y+.
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(a) (b)

1 10 100 1 10 100
0
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1

2

FIGURE 8. Profiles of (a) mean axial velocity U+z and (b) difference between U+z for a
PL and Newtonian fluid plotted against y+.

4. Mean flow and turbulence statistics
4.1. Mean axial velocity and viscosity

The effect of n is seen when the mean axial velocity, U+z , is plotted in wall
coordinates (figure 8a), however, U+z profiles show little variation when plotted
in outer variables (not shown). For ease of discussion, the flow domain is nominally
divided into four regions – the viscous sublayer (y+ < 5), buffer layer (5< y+ < 30),
log layer (30 < y+ < 200) and core region (y+ > 200). Although this flow domain
subdivision is common for Newtonian fluids (Pope 2000), it will be seen that the
delineation is not as obvious for GN fluids. In all subsequent discussion, when a
trend is described as occurring with shear thinning (n< 1), it should be taken as read
that the opposite trend occurs with shear thickening (n> 1).

In Newtonian fluids it is well known that the mean axial velocity profile in the
viscous sublayer follows U+z = y+ which is the near-wall form of the law of the wall
(Pope 2000). For PL fluids a similar viscous sublayer was anticipated in the analyses
of Dodge & Metzner (1959) and Clapp (1961). For n 6= 1, a viscous sublayer appears
in the mean axial velocity profiles (figure 8a), however, a close examination shows
that the profiles for different n deviate slightly from the Newtonian case. This is more
clearly seen in figure 8(b) where the difference (1U+z ) between U+z of the PL and
Newtonian fluids is plotted against y+. For all y+, the U+z profiles for shear-thinning
GN fluids lie above the Newtonian profile (and vice versa for shear thickening).

Although the effect of flow index is seen at all y+, 1U+z profiles deviate
significantly from each other only beyond y+ ≈ 10. The maximum 1U+z occurs
somewhere in the log layer with the exact location depending on the value of n.
Note that the area integral of 1U+z at a cross-section represents the excess bulk flow
rate and therefore, higher values of 1U+z indicate higher bulk flow (hence higher Ub)
for lower n which was seen in table 1. Since τw is fixed in simulations, higher bulk
velocity gives lower friction factor f for a more shear-thinning fluid. These results are
consistent with those reported in previous studies (Dodge & Metzner 1959; Rudman
et al. 2004; Rudman & Blackburn 2006). It is noted that the relative decrease in f
compared to the Newtonian fluid (referred to as drag reduction, DR, in table 1) is
approximately 14 % for n= 0.6 (see table 1), which is much less than that seen for
viscoelastic fluids for which a drag reduction up to 70 % was observed in Ptasinski
et al. (2001) at a comparable Reynolds number (ReG = 10 000).

Profiles of the normalised mean viscosity, ν+ = ν̄/νw (ν̄ is the time-averaged
viscosity), show only minor dependence on n for y+ < 10 with slightly higher values
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1 10 100
0

2

4

6

n

1 3 5
0.9

1.0

1.1

FIGURE 9. Profiles of the normalised mean viscosity ν+ = ν̄/νw plotted as a function of
y+. Detail in the viscous sublayer is shown in the inset figure.

for lower n (figure 9). At y+ = 10, ν+ is 1.25 (25 % higher than the nominal wall
viscosity) for n= 0.6 and 1.10 for n= 1.2. Because viscosity of a shear-thinning fluid
increases with decreasing shear rate, we expect the mean viscosity, ν+, to increase
monotonically towards the centre of the pipe for a shear-thinning fluid. For n 6= 1,
mean viscosity profiles deviate rapidly from the wall value beyond y+ = 10. The
profiles of ν+ appear to display a log-like region over the range 20 . y+ . 200,
although the reasons for this are not yet understood.

4.2. Mean shear stress budget
Noting that the mean shear stress is zero at the pipe centre and τw at the wall,
integration of (2.5) leads to the following expression for the (r, z) component of the
mean non-dimensional shear stress:

τ+rz = τ
v+

rz + τ
R+
rz + τ

fv+
rz =

r
R
=

(
1−

y+

R+

)
. (4.1)

In a pipe flow, only the (r, z) component of the mean shear stress component remains,
therefore subscript rz is dropped in the following discussion for clarity.

The effect of flow index n on the mean shear stress budget is shown in figure 10
where similar profiles of τ v+ and τ R+ are seen for all n. As expected, the profile of
the total mean shear stress is same for all n and is a straight line in linear coordinates
with the maximum at the wall and zero at the pipe centre.

The mean viscous stress, τ v+ , is maximum at the wall and remains nearly constant
until y+ ≈ 3 and then decreases towards the centre of the pipe. For shear-thinning
fluids, τ v+ is higher than the Newtonian fluid across the entire radius. For the
Newtonian fluid τ v+ drops to 5 % by y+ = 50, however, for n= 0.6 it is still ≈15 %
at y+ = 50. It does not drop to 5 % until y+ ≈ 200, which indicates a significant
thickening of the region over which the viscous stress plays a role as first suggested
by Wilson & Thomas (1985). Note that τ v+ = 2ν+S+rz, thus the increase in τ v

+ with
shear thinning could be a result of either increased ν+ (see figure 9) or increased
S+rz = (∂U+z /∂y+)/2 (see figure 11). From these figures, the increase in τ v

+ in the
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1 10 100
–0.2

0

0.4

0.8

1.0

1.2

n

FIGURE 10. Profiles of the (r, z) component of the mean viscous stress, τ v+ , Reynolds
shear stress, τ R+ , and the turbulent viscous stress, τ fv+ , plotted for different n. The profile
of the total mean stress τ+ is linear and the same for all n and is given by (4.1).

1 10 100
0

0.4

0.8

1.0

1.2

n

FIGURE 11. Profiles of the mean velocity gradient plotted as a function of y+ for
different n.

viscous sublayer is seen to be due to small increases in both ν+ and S+rz. Beyond
y+> 10, the increase in τ v+ with shear thinning is primarily due to an increase in ν+.

Outside the viscous sublayer, the increase in τ v+ with shear thinning is compensated
for primarily by a decrease in the Reynolds shear stress, τ R+ . The maximum value
of τ R+ for the Newtonian fluid is approximately 80 % which occurs at y+ ≈ 40. In
contrast, for n = 0.6, the maximum τ R+ is approximately 70 % with the location of
maximum τ R+ moving away from the wall, y+≈50. These results are discussed further
in § 4.5.

Since the Reynolds shear stress, τ R+ , vanishes in the viscous sublayer, the increase
here in mean viscous stress, τ v+ , with shear thinning is compensated by a decrease
in the turbulent viscous stress, τ fv+ . Since τ fv+

= 0 for a Newtonian fluid, this results
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in increasingly negative values of τ fv+ for n< 1 as seen in figure 10. However, the
contribution of τ fv+ to the mean shear stress budget is small (approximately 5 % at
the wall for n= 0.6). Note that we expect negative values of τ fv+

= 2ν ′s′ij for a shear-
thinning fluid because viscosity decreases with increase in shear rate.

Overall, the effect of increased shear thinning (decreasing n) on the mean shear
stress budget is to increase the mean viscous stress and decrease the Reynolds shear
stress. The turbulent viscous stress which is zero for a Newtonian fluid, becomes
more negative with shear thinning, but is small compared to other components. It is
noted that the turbulent viscous stress is determined here using the predicted viscosity
and shear-rate fluctuations. It can also be determined as a deficit in the time-averaged
shear stress as τ fv+

= r/R− τ v
+

− τ R+ (see (4.1)). This can be done from experimental
measurements of the mean viscous stress and the Reynolds shear stress as done by
Ptasinski et al. (2001, 2003) for viscoelastic fluids. Thus, a comparison of τ fv+

between DNS and experiments is possible.

4.3. Mean velocity gradient and wall units
In the viscous sublayer, we observed a higher mean axial velocity at all y+ for more
shear-thinning fluids (see figure 8). This can be explained by considering (4.1) at
the wall. Noting that τ v+ = ν+(∂U+z /∂y+) and τ R+ and y+/R+ are zero at the wall,
equation (4.1) can be used to write the mean axial velocity gradient at the wall as:

∂U+z
∂y+
≈

1
ν+
(1− τ fv+

rz ). (4.2)

For a Newtonian fluid τ fv+
= 0, and hence (4.2) gives ∂U+z /∂y+ = 1 which is the

classical linear wall profile U+z = y+. However, τ fv+ is negative for a shear-thinning
fluid and its magnitude increases with shear thinning (figure 10). Although the mean
viscosity at the wall, ν̄w, increases slightly with shear thinning (figure 9), it does not
compensate for the increase in τ fv+ in (4.2). Thus higher ∂U+z /∂y+ with decreasing n
results in a non-unitary slope of the mean axial velocity at the wall.

We fare no better if we replace the nominal wall viscosity, νw, used in the non-
dimensionalisation by the mean wall viscosity ν̄w (ν̄w 6= νw). Doing this gives the
distance from the wall in wall coordinates as y	 = yu∗/ν̄w and allows (4.2) to be
written as:

∂U+z
∂y	
≈ (1− τ fv+

rz ). (4.3)

Profiles of the mean axial velocity gradient for different n are shown in figure 12(a)
using the above non-dimensionalisation. Because τ fv+ is non-zero at the wall for shear-
thinning fluids, it is clear from (4.3) that ∂U+z /∂y	 6= 1, thus using ν̄w as the viscosity
scale also does not provide the classical scaling. However, (4.3) suggests an alternative
velocity scaling. Instead of using ρu∗2 = τw, define a velocity scale via ρu#2

= (τw −

τ fv) and use ν̄w as the viscosity scale. This gives a non-dimensional distance from
the wall y⊕ = yu#/ν̄w and a non-dimensional velocity of U⊕z = Uz/u#. Finally, it is
straightforward to show that ∂U⊕z /∂y⊕= 1 and thus profiles of the mean axial velocity
and its gradient collapse for different n in the viscous sublayer (figures 12b and 13).

A mitigating factor against using these new scales is that they are less practical.
Neither u# or ν̄w can be determined a priori in experiment or simulation. The mean

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.296


The influence of shear-dependent rheology 863

(a) (b)
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FIGURE 12. Profiles of the mean axial velocity gradient for different n where the non-
dimensionalistion used (a) u∗ for the velocity scale and the mean wall viscosity ν̄w for
the viscosity scale, (b) u# for the velocity scale and ν̄w for the viscosity scale.
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10

15
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FIGURE 13. Mean axial velocity profiles plotted for different n using u# for the velocity
scale and ν̄w for the viscosity scale in non-dimensionalisation.

shear rate and axial velocity gradient required at the wall are difficult to measure
accurately in experiment. Although the new scaling collapses near wall profiles of the
mean axial velocity, its gradient and the mean viscous stress, profiles of other mean
flow variables and correlations do not collapse for different n in the viscous sublayer
(not shown). Finally, profiles of the total mean shear stress for different n no longer
lie on top of each other because the shear stress scale ρu#2 varies with n. Thus in
the process of recovering one fundamental Newtonian relation, another fundamental
relation is lost. As a consequence of these facts u∗ and νw as mentioned in § 2.3 are
used in the non-dimensionalisation.

4.4. Turbulence intensities
The results presented in § 4.1 show that the mean axial velocity, U+z , and the mean
viscosity, ν+, are only weakly dependent on n in the viscous sublayer. However, this
is not the case for the axial turbulence intensity u′+z as shown in figure 15(a). Here
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1 10 100
–0.2

0.2

0.6

1.0

1.2

n

n

n

FIGURE 14. Profiles of the viscous stresses, τ v and τ fv , plotted for different n using u#

for the velocity scale and (ν̄)w for the viscosity scale in non-dimensionalisation.

u′+z increases with decreasing n at all y+ and its peak moves further from the wall.
For n= 0.6 the increase in the viscous sublayer is of order 25 %.

Unlike u′+z which increased with shear thinning at all y+, the radial and the
azimuthal turbulence intensities (u′+r , u′+θ ) show dependence on n mainly outside
the viscous sublayer, where they decrease with decreasing n (figure 15b,c). The
location where profiles of u′+r , u′+θ for different n deviate significantly from each
other coincides with the location where the mean viscosity ν+ also deviates. This
suggests that u′+r , u′+θ strongly depend on the mean fluid viscosity and that increased
viscosity with decreasing n damps the velocity fluctuations normal to the mean flow
direction. Note that the turbulence intensity profiles plotted in outer units (normalised
by the bulk velocity Ub) also show similar trends (figure 15d–f ). Both of these
trends have been noted previously (Rudman et al. 2004; Rudman & Blackburn 2006;
Gavrilov & Rudyak 2016) and have been suggested as being due to decreased energy
transfer from axial velocity fluctuations to transverse velocity fluctuations via pressure
fluctuations (Gavrilov & Rudyak 2016).

For a power-law fluid, root mean square (r.m.s.) viscosity fluctuations ν ′+= ν ′rms/νw

are non-zero at all y+ and increase with shear thinning (figure 16a). Similar to the
mean viscosity, ν ′+ remains uniform in the viscous sublayer and increases with y+

outside the viscous sublayer, however, except for n= 0.6, the rate of increase in ν ′+
with y+ is small. Profiles of ν ′+ normalised by the local mean viscosity show that
ν ′+/ν+ increases only up to a certain y+, which increases with decreasing n, and then
starts decreasing (figure 16b). Higher ν ′+ suggests higher instantaneous viscosities for
a more shear-thinning fluid, which is also seen in figure 5.

4.5. Quadrant analysis of Reynolds stresses
We consider the quadrant analysis of Reynolds shear stress proposed by Wallace,
Eckelmann & Brodkey (1972) and define ṽr

′
=−v′r as the instantaneous wall-normal

velocity fluctuations (v′r has a different sign here because of the coordinate system
employed). The analysis classifies the v′zṽr

′ signal into four different categories:
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FIGURE 15. Profiles of turbulence intensities plotted in wall units (a–c) and in outer units
(d–f ) for different flow indices n.

(a) (b)
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0
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FIGURE 16. Profiles of root mean square viscosity fluctuations normalised by (a) the
nominal wall viscosity νw and (b) mean viscosity, ν̄(y+) plotted for different n.

Q1(+v′z, +ṽ
′

r), Q2(−v′z, +ṽ
′

r), Q3(−v′z, −ṽ
′

r) and Q4(+v′z, −ṽ
′

r). These quadrants are
associated with different physical events. For channel flows of Newtonian fluids, it
has been found that most of the Reynolds shear stress production is associated with
the ejection (Q2) and sweep (Q4) of low-speed fluid near the wall. Consequently
they are also termed the ejection and sweep quadrants (see Wallace 2016).
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FIGURE 17. Joint and marginal probability distributions of the axial and wall-normal
velocity fluctuations (v′z and −v′r) plotted at y+= 10, 30, 70, 100 (top to bottom) for (a–d)
Newtonian and (e–h) n= 0.6.

Figure 17 compares the joint probability distribution P(−v′r/u
∗, v′z/u

∗) of n = 1.0
and n= 0.6 for values of y+= 10, 30, 70 and 100. In the near-wall region, the major
axis of P(−v′r, v

′

z) is less inclined in the direction of Q2–Q4 for n= 0.6 (figure 17e–
h) compared to the Newtonian fluid (figure 17a–d), which suggests that the shear-
thinning rheology suppresses the contribution of ejection and sweep to Reynolds shear
stress generation. Compared to the Newtonian fluid, a narrower spread of the marginal
probability distribution P(−v′r) for n = 0.6 in the near-wall region (seen clearly for
y+ = 10 and 30) suggests that with shear thinning, axial velocity fluctuations become
larger than wall-normal fluctuations (as known from figure 15). Therefore, there is a
less momentum exchange via the Reynolds shear stress in the wall-normal direction.

4.6. Summary

The key results in this section are that the effect of shear thinning is to increase the
mean axial velocity, mean viscosity and axial turbulence intensity but, to decrease
the radial and azimuthal turbulence intensities. The mean viscous stress increases
slightly in the very-near-wall region and quite significantly in the buffer layer, and
the distance from the wall where it drops to of order 5 % of the total stress is
significantly increased. With shear thinning, the Reynolds shear stress decreases
across the pipe and the new term in the mean shear stress balance, the turbulent
viscous stress, is always negative, offsetting the increased mean viscous stress very
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near the wall. This results in an increase in the mean axial velocity gradient and the
bulk velocity (hence, the flow rate) with shear thinning.

5. Energy budgets
The total kinetic energy per unit mass is defined as q = uiui/2 and using the

Reynolds decomposition, the mean kinetic energy is written as q̄ = K + k where
K = UiUi/2 is the mean flow kinetic energy (MFKE) and k = u′iu′i/2 is the turbulent
kinetic energy (TKE). Non-uniform viscosity and viscosity fluctuations modify the
MFKE and TKE budget equations for a non-Newtonian fluid. Since MFKE and TKE
are scalar quantities, the choice of the coordinate system does not influence their
budget equations and a Cartesian system is chosen here for clarity.

5.1. Mean flow kinetic energy budget
An equation for the MFKE can be obtained by taking the divergence of (2.5). In
Cartesian coordinates this produces

Kt︷︸︸︷
∂K
∂t
+

Am︷ ︸︸ ︷
Uj
∂K
∂xj
=

Wdp/dz︷ ︸︸ ︷
−Uj

∂P
∂xj
+

T m︷ ︸︸ ︷(
−
∂Uiu′iu′j
∂xj

)
+

Dm︷ ︸︸ ︷
2
∂ν̄SijUi

∂xj
+

εm︷ ︸︸ ︷
(−2ν̄SijSij)+

−P︷ ︸︸ ︷
u′iu′jSij

+

Υ m
nn︷ ︸︸ ︷

2
∂Uiν ′s′ij
∂xj

+

χnn︷ ︸︸ ︷
(−2ν ′s′ijSij) . (5.1)

We use following terminology for different terms in (5.1):

Kt: local rate of change of K;
Am: mean flow advection;
W+dp/dz: the mean flow energy production;
T m: turbulent transport;
Dm: the mean viscous transport;
εm: the mean viscous dissipation;
−P : turbulent energy transfer or negative of turbulent kinetic energy production;
Υ m

nn: the turbulent viscous stress transport;
χnn: the mean shear turbulent viscous dissipation.

A subscript nn is used for terms which are non-zero only for a non-Newtonian
fluid. The first two terms in (5.1) i.e. Kt and Am, are the rate of change and the mean
advection of K both of which vanish for a pipe flow as the mean flow is temporally
stationary, one component and uniform in the axial direction. The mean flow energy
production, Wdp/dz, is the only source of energy in (5.1). The mean flow stresses
common for both Newtonian and a non-Newtonian fluid (τ v = 2ν̄Sij and τ R

=−u′iu′j)
appear at four places in (5.1) and play two roles; first, they redistribute the energy
within the domain via the transport terms Dm and T m. Second, they act as a sink
(εm and −P). The transport terms cannot affect the global MFKE budget because the
volume integral of each transport term is zero (Pope 2000). As we will see later, −P
is the negative of the only source term in the TKE budget (see (5.2)) and therefore
represents the energy transfer from the mean flow to the turbulence.
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FIGURE 18. Profiles of the mean flow kinetic energy terms from (5.1) plotted in wall
units for a Newtonian fluid (top) and n = 0.6 (bottom). Vertical lines show the location
where Dm+ , −P+ and εm+ intersect.

The last two terms in (5.1), Υ m
nn and χnn, appear only for a non-Newtonian fluid.

They arise from the interaction between the turbulent viscous stress, τ fv
= 2ν ′s′ij,

and the mean flow. The turbulent viscous transport, Υ m
nn, is a transport term whereas

the mean shear turbulent viscous dissipation, χnn, modifies the mean flow energy
dissipation εm. This non-Newtonian dissipation term, χnn, also appears in the TKE
budget (see (5.2)). Note that χnn can be positive or negative depending on the rheology
of the fluid. However, positive values of χnn do not imply MFKE production. The
mean flow can receive energy only through the action of pressure gradient against
the mean flow and positive values of χnn instead correspond to a reduced mean flow
kinetic energy dissipation.

To set the scene for subsequent discussion, we briefly describe the MFKE budget
for a Newtonian fluid and plot the profiles of each term in figure 18. As the mean
axial pressure gradient, dP/dz, is independent of r, profiles of the mean flow energy
production, W+dp/dz, follow a similar trend as seen for U+z in figure 8(a) and W+dp/dz
increases with the distance from the wall. Very near the wall (y+ < 3), the MFKE
budget is purely a balance between the two viscous terms, Dm+ and εm+ , because the
Reynolds shear stress, τ R+ vanishes here, as do the two terms that contain it (i.e. the
Reynolds stress transport, T m+ , and the turbulent energy transfer, −P+).

Over the range 3< y+<60, there is a more complex balance between the Newtonian
transport and dissipation terms, T m+ , Dm+ , εm+ and −P+. For y+ > 3, both T m+ and
−P+ grow in magnitude with T m+ adding energy in this region and −P+ dissipating
it , with both terms reaching their maximum effect at y+ ≈ 10. The mean viscous
transport, Dm+ , is a sink for y+ > 8 and source for y+ < 8, which means that it
transports energy to the viscous sublayer because its volume integral is zero. The
turbulent kinetic energy production, −P+, is significant only for 3 . y+ . 40 and it
reaches a maximum approximately at the same location where Dm+ and εm+ cross
each other as also noted in Thais, Gatski & Mompean (2013) for viscoelastic fluids.

The Reynolds shear stress transport, T m+ , continues acting as a source up to y+≈40
where it changes sign due to the change in the slope of the Reynolds shear stress (see
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FIGURE 19. Profiles of the mean flow kinetic energy budget terms from (5.1) plotted for
different flow indices n in wall variables. Note that the vertical scale changes in each plot.

figure 10). It then acts as a sink and therefore, transports energy from y+> 40 towards
the wall. For y+> 60, the MFKE budget is mainly a balance between T m+ and W+dP/dz
because the turbulent kinetic energy production, −P+, is very small and approaches
zero at the pipe centre.

The effect of changes in flow index on individual mean flow energy budget terms
is shown in figures 18 and 19. We first discuss the effect of shear thinning on those
terms that also appear for a Newtonian fluid before examining the modifications
resulting to the non-Newtonian terms. As mentioned earlier also, when a trend is
described as occurring with shear thinning, it should be taken as read that the opposite
trend occurs with shear thickening.

As already noted in § 4.1, the mean axial velocity profile for a shear-thinning fluid
lies above the Newtonian profile and consequently the mean flow energy production,
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W+dP/dz, must increase with shear thinning as seen in figure 19(a). However, with the
exception of W+dP/dz, most terms show little variation with n beyond y+≈ 60 although
there are sufficient differences to balance the increased production, these are not
obvious given the required figures axis scaling. The radial location where the two
viscous terms, Dm+ and εm+ , intersect each other is also shifted by shear thinning as
seen in figure 18.

The mean axial velocity gradient, ∂U+z /∂y+, and hence the mean viscous stress,
τ v
+ , increases with decreasing n (figure 10), therefore, more negative εv+m is observed

with decreasing n in figure 19(d). Since the gradient of τ v+ is also less negative for
a more shear-thinning fluid further from the wall, higher values of Dm+ result until
y+ ≈ 15–20 where this term becomes slightly less negative for a more shear-thinning
fluid (figure 19c). Similarly, lower Reynolds stress with decreasing n (figure 10)
results in less negative turbulent energy transfer, −P+, (figure 19e) and lower values
of the Reynolds stress transport, T m+ , up to approx y+ ≈ 20 at which point the latter
term becomes a little higher with shear thinning (figure 19b). As discussed later in
§ 5.2, −P+ appears with opposite sign in the turbulent kinetic energy budget as a
production term. Thus the decrease in magnitude of −P+ observed here with shear
thinning means there is a less energy transferred via this mechanism into turbulence.
The combination of higher MFKE production, W+dP/dz, and less energy transfer to
turbulence via −P+ suggests that there will be higher dissipation by the mean
viscous stress (εm+) in case of lower n – this may be observed in figure 19(d).

The two non-Newtonian terms, Υ m+
nn and χ+nn, vary most significantly for y+ < 60,

similarly to the Newtonian transport and dissipation terms. However, their magnitude
is approximately one order less than the Dm+ and εm+ and they play a smaller role
in the MFKE balance. The non-Newtonian dissipation, χ+nn, is negatively related to
τ fv+ which was seen to be negative for a shear-thinning fluid (figure 10). Thus we
expect χ+nn to be positive for shear-thinning fluids (as seen in figure 19f ) and this
reduces dissipation. However, the sum of εm+ and χ+nn (figure 20a) shows that the net
effect of these two viscous dissipation terms only slightly increases the magnitude of
dissipation in the very near wall and buffer layer. The non-Newtonian transport term,
Υ m+

nn , changes sign in y+ ≈ 15–20 (depending on n) and for shear thinning acts as a
sink of the mean flow energy for y+ . 15 and a source further away from the wall.
Overall, except in a narrow region near y+ ≈ 10, the non-Newtonian terms act as a
source for shear-thinning fluids and as a sink for the shear-thickening fluid (n= 1.2)
in the MFKE budget at all y+ (figure 19h).

In summary, the mean flow energy production increases with shear thinning outside
the buffer layer. For all other terms, the overall effect of decreasing flow index is to
modify the MFKE budget terms most significantly in the near-wall region y+ . 60.
The total viscous dissipation increases with shear thinning but the turbulent energy
transfer (which peaks at y+ ≈ 10) becomes less negative. The magnitude of the total
viscous transport is also increased with shear thinning. The turbulent transport which
is the mean flow energy transfer via the Reynolds shear stress which peaks at y+≈ 10
and decreases with shear thinning. The non-Newtonian terms largely act as a source
in the MFKE budget for shear-thinning fluids. In the total transport and dissipation
profiles the shear-thinning effect almost disappears in 4 . y+ . 10 (figure 20b).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.296


The influence of shear-dependent rheology 871

1 10 100
1.2

0

1.2(a) (b)

1 10 100
1.2

0

1.2

n

FIGURE 20. Profiles of the sum of Newtonian and non-Newtonian (a) viscous transport
and dissipation terms (b) total transport and dissipation in (5.1) plotted for different flow
indices n.

5.2. Turbulent kinetic energy budget

The equation for the ensemble-average turbulent kinetic energy (k= u′iu′i/2) is

kt︷︸︸︷
∂k
∂t
+

A︷ ︸︸ ︷
Uj
∂k
∂xj
=

P︷ ︸︸ ︷
−u′iu′jSij +


T︷ ︸︸ ︷

−
1
2
∂u′iu′iu′j
∂xj

Π︷ ︸︸ ︷
−
∂p′u′j
∂xj

D︷ ︸︸ ︷
+
∂(2ν̄s′iju′i)
∂xj


ε︷ ︸︸ ︷

−2ν̄s′ijs′ij

+


ξnn︷ ︸︸ ︷

∂(2ν ′u′iSij)

∂xj
+

Dnn︷ ︸︸ ︷
∂(2ν ′s′iju′i)

∂xj


χnn︷ ︸︸ ︷

−2ν ′s′ijSij

εnn︷ ︸︸ ︷
−2ν ′s′ijs′ij . (5.2)

Here, the terms in the first row appear for both Newtonian and non-Newtonian fluids
and the following is the standard terminology:

kt: rate of change of turbulence kinetic energy;
A: mean flow advection;
P : turbulent kinetic energy production;
T : turbulent velocity transport;
Π : pressure related transport;
D: mean viscous transport;
ε: mean viscous dissipation.

The remaining terms i.e. the terms in the second row in (5.2) are zero for a
Newtonian fluid and appear only for a fluid with non-uniform viscosity. We adopt
the following terminology for these terms:

ξnn: mean shear turbulent viscous transport;
Dnn: turbulent viscous transport;
χnn: mean shear turbulent viscous dissipation;
εnn: turbulent viscous dissipation.
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When the terms of similar nature are summed together TKE budget equation can
be written as:

Dk
Dt
=P + Tk

− εk. (5.3)

Here, Tk
= T + Π + D + Dnn + ξnn is the total transport and εk

= ε + χnn + εnn is
the total dissipation. As with the MFKE budget (5.1), the first two terms in (5.2), kt

and A vanish for a pipe flow and the local TKE budget is maintained by a balance
between the remaining terms. As already mentioned in § 5.1, the turbulent kinetic
energy production P , is the only source term in (5.2) and it couples the MFKE and
the TKE budget equations. The mean viscous dissipation, ε, is negative definite and
as the name says, is the dissipation of TKE due to the mean viscosity. The gradient
terms, T , Π , D, only redistribute TKE, k, within the domain. Although they cannot
produce or dissipate TKE, they can be local sources or sinks in (5.2).

Remaining terms, ξnn, Dnn, χnn and εnn are zero for a Newtonian fluid as they
depend on viscosity fluctuations. We refer these as non-Newtonian TKE budget terms.
The gradient terms, the mean shear turbulent viscous transport, ξnn, and the turbulent
viscous transport, Dnn either enhance or diminish the transport by the Newtonian
transport terms. The mean shear turbulent viscous dissipation, χnn appears in both the
MFKE and the TKE budgets with the same sign, meaning that it affects both energy
budgets in a similar manner. Both χnn and εnn appear as source/sink terms in TKE
budget, although neither is obviously positive (or negative) definite for shear-thinning
fluids. As mentioned in § 5.1 for χnn, positive values of either of these terms does
not mean that they are true sources of turbulent energy. Turbulence can only source
energy from the mean flow and although χnn involves the mean flow via Sij, its
genesis is in the total viscous dissipation and as such it is clearly part of the total
turbulent dissipation. The turbulent viscous dissipation, εnn, has a similar genesis and
is more clearly associated with dissipation.

The effect of flow index n on the individual terms in (5.2) is shown in figure 21.
Turbulence kinetic energy production, P+, decreases with shear thinning over
3 < y+ < 20 with the peak shifting slightly away from the wall (figure 21a).
Production is the product −u′iu′jSij and for a pipe flow, only the Srz component
survives, which gives P+ = τ R+(∂U+z /∂y+)/2. Since S+rz is little affected by shear
thinning for 3< y+< 20 (figure 11), the observed decrease in P+ with shear thinning
is primarily due to the decrease in Reynolds shear stress (figure 10).

As n decreases, turbulent kinetic energy dissipation, ε+ = 2ν+s′ijs
′
ij
+

, increases in
magnitude for all y+, although most noticeably for y+< 5 and then less so over 20<
y+ < 100 (figure 21a). The increased dissipation over 20 < y+ < 100 is due to the
increase in mean viscosity with shear thinning (figure 9) since s′ijs

′
ij
+

decreases here
for all n (figure 22a). However, the increase in ε+ with decreasing n close to the wall
is due to increased strain-rate fluctuations s′ijs

′
ij with decreasing n as the mean viscosity

is only weakly dependant on n (figure 9).
Profiles of the three Newtonian transport terms, D+, T + and Π+, are shown in

figure 21(a–c). The mean viscous transport, D+, is the largest in magnitude and
shows flow index dependence mostly in the viscous sublayer where it increases with
shear thinning (figure 21a), partly countering the more negative dissipation for lower
n. Recalling that (i) D+ is the gradient of 2ν+s′+ij u′+i (see (5.2)), (ii) that only the
radial derivative survives and (iii) that the mean viscosity, ν+, is almost constant in
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FIGURE 21. Profiles of the turbulent kinetic energy budget terms (see (5.2)) plotted for
different flow indices n in wall variables. Note that the vertical scale changes in each plot.

the viscous sublayer (figure 9), we draw the conclusion that larger D+ for lower n
is due to more rapid increase in s′riu′i

+

in the viscous sublayer with shear thinning.
The main effect of decreasing n on the turbulent velocity transport, T +, is flattening

and broadening of the profile in 8 < y+ < 50 (figure 21b). The contribution of
the pressure related transport, Π+, is small compared to the other transport terms
(figure 21c) and although its magnitude is reduced in the viscous sublayer and buffer
layer with shear thinning, this has a little effect on the total turbulent energy transport.

Overall, the effect of reducing flow index on the Newtonian terms in TKE budget
is to elevate the mean viscous transport, D+ and turbulent dissipation, ε+, close to the
wall (y+ < 3), and to decrease turbulent kinetic energy production, P+, near y+ = 10.
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FIGURE 22. Profiles of (a) s′ijs
′
ij
+

(b) turbulent kinetic energy production (P+), total
dissipation (εk+

= ε+ + χ+nn + ε
+

nn) and transport (Tk+
= T + +Π+ +D+ +D+nn + ξ

+

nn) plotted
in wall units.

The non-Newtonian transport terms, the mean shear turbulent viscous transport, ξ+nn,
and the turbulent viscous transport, D+nn, are significant only for y+ . 40 and the
magnitude of both increases with shear thinning (figure 21d,e). The contribution of
ξ+nn to the turbulent kinetic energy budget at the wall is significant. It is approximately
25 % of the total Newtonian transport (T ++Π++D+) for n= 0.6 and approximately
13 % for n=0.8 there. For y+<5, ξ+nn acts opposite to the Newtonian viscous transport,
D+. At y+ ≈ 5, ξ+nn changes sign (as does D+) and continues to act in an opposite
sense to D+ for 5 . y+ . 30. This opposition is expected from the opposite signs
of the mean viscous stress, τ v+ , and the turbulent viscous stress, τ fv+ (see figure 10).
The contribution of D+nn to the turbulent kinetic energy budget is small (< 10 % of
the Newtonian transport for n = 0.8). It changes sign several times and acts both
against and with D+ over different regions of y+. The sum of all transport terms
(T + +Π+ +D+ +D+nn + ξ

+

nn) is shown in figure 22b where it is seen that the effect
of shear thinning is to reduce the transport by the Newtonian terms for y+ . 20 and
to increase it marginally over 20 . y+ . 70.

The other two non-Newtonian terms, the mean shear turbulent viscous dissipation,
χ+nn, and the turbulent viscous dissipation, ε+nn, are positive for shear-thinning fluids
and negative for shear thickening (figure 21f,g). As previously mentioned, they are
identified as dissipation terms that act to reduce the mean flow dissipation ε+ over the
entire pipe radius, but particularly for y+< 40. For n= 0.6 they reduce the dissipation
in the viscous sublayer close to the wall by approximately 40 %. Their net effect is
most clearly seen in figure 22(a) where the total dissipation is seen to reduce with
shear thinning for y+. 30 with the reduction balancing the reduction in net transport
for y+ < 5 and partially balancing the reduction in production observed around
y+ ≈ 10.

In the very near-wall region, ξ+nn and χ+nn almost cancel each other, as do D+nn and
ε+nn, resulting in no net effect of the non-Newtonian TKE budget terms at the wall. The
net effect of these terms increases through the viscous sublayer reaching a maximum
near y+ ≈ 7 before slowly decreasing again out to y+ & 100 (figure 21h). They thus
provide an additional source of energy in the TKE budget for shear-thinning fluids.

A summary of the effects of flow index modification is shown in figure 22(b) where
the turbulent kinetic energy production, total transport and dissipation are compared
for different n. They show flow index dependence only for y+. 70 and shear thinning
is seen to reduce the magnitude of each, albeit over different ranges of y+.
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FIGURE 23. Profiles of the ratio of turbulent kinetic energy production to total dissipation
(P+/εk+), total transport (Tk+) and the turbulent kinetic energy k+ plotted in wall units.
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FIGURE 24. Integrated budget of turbulent kinetic energy production (P+), transport
(T + + Π+ + D+ + D+nn + ξ

+

nn) and dissipation (ε+ + χ+nn + ε
+

nn), normalised by the total
Newtonian turbulent kinetic energy production (volume integral of P+ for n= 1) plotted
for different n. The primary axis on the left is for the turbulent transport budget and the
secondary axis on the right is for the turbulent kinetic energy production and dissipation.

Shear thinning widens the production region (where production exceeds the total
dissipation) by increasing its upper bound (figure 23) whereas the lower bound
remains fixed at y+ ≈ 6. In this region, the total transport becomes negative and thus
carries the excess energy (P+ − εk+) away from the production region. The ratio of
production to total dissipation (P+/εk+) is increased for 15 . y+ . 60 but decreased
for 6 . y+ . 15 and beyond y+ ≈ 60 with shear thinning.

Profiles of the turbulent production, total dissipation and transport when integrated
over the pipe cross-section show that shear thinning globally decreases the overall
turbulent kinetic energy production and hence the total dissipation (figure 24). Beyond
y+ = 150, profiles of the integrated production and total dissipation for all n are
almost flat showing that most of the turbulent production and dissipation occurs for
y+ & 150. Profiles of the integrated total turbulent transport (which also represents
negative of the extra energy available for turbulence i.e. −(P+ − εk+)) show that
there is more energy available (Tk+ is more negative for y+ & 25) for turbulence for
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a more shear-thinning fluid. This suggests that shear thinning decreases dissipation
more than it decreases the production.

Using the results of P+/εk+ shown in figure 23, the turbulent kinetic energy profiles
for different n can be explained. The turbulent kinetic energy k+ peaks at y+ ≈ 15
which is slightly higher than the location where P+/εk+ attains a maximum and
approximately the same location where P+/εk+ profiles for different n cross each
other. Over the region 15 . y+ . 60, higher production than dissipation results in
higher k+ for more shear-thinning fluids. A part of this higher k+ is transported away
from the wall and part towards the wall. For y+ > 60, there is more dissipation for
a lower n which dissipates the extra energy available for a more shear-thinning fluid
and the k+ profiles of different n collapse on top of each other for y+ & 90. For
y+ < 15, there is a narrow region (y+ = 6− 15) where P+/εk+ is clearly lower for a
more shear-thinning fluid and therefore, the turbulent kinetic energy profiles slowly
converge to a single curve towards the wall.

5.3. Summary of results of energy budgets
Results of the MFKE budget show that except the MFKE production, all other terms
show flow index dependence only near the wall for y+. 60. Shear thinning increases
the MFKE production and hence dissipation. The non-Newtonian terms are a source
in the MFKE budget for a shear-thinning fluid and sink for the shear thickening.
Similar to the MFKE budget terms, TKE budget terms are also dependent on n only
near the wall. Shear thinning decreases the turbulent kinetic energy production in
the buffer layer whereas it increases the turbulent transport and the mean viscous
dissipation primarily in the viscous sublayer. The non-Newtonian terms act as a source
in the TKE budget. The non-Newtonian dissipation terms in both MFKE and TKE are
positive for a shear-thinning fluid and therefore decrease the total viscous dissipation.

6. Conclusions
The present study investigates the effect of the flow index parameter n on the

turbulent pipe flow at a friction Reynolds number of 323. DNS results of the mean
flow and turbulent kinetic energy budgets are presented for turbulent pipe flow of a
GN fluid for the first time. Qualitative features of the flow for different n exhibits
quite different flow structures and the range of flow length scales increases with
increasing n. When the results are scaled with the nominal wall viscosity νw and the
traditional friction velocity u∗, the mean axial velocity profiles of a power-law fluid
do not strictly follow U+z = y+ in the viscous sublayer and the mean axial velocity
gradient increases as n is decreased. New velocity and viscosity scales are derived,
which collapse the mean axial velocity profiles in the viscous sublayer for different
n. However, these new scales are difficult to determine in experiments and result in
the total non-dimensional stress profiles no longer lying on top of each other for
different n. Mean axial velocity profiles for different n show large deviation in the
log layer and lie above the Newtonian profile for shear-thinning fluids. The mean
viscosity increases with decreasing n however, the effect is seen clearly only outside
the viscous sublayer. The cause of a log-like region seen in the mean viscosity
profiles remains unknown. Turbulence intensities when expressed in wall units are
found to increase in the axial direction but decrease in the radial and the azimuthal
direction with decreasing n. This is likely due to the decrease in the turbulent energy
transfer from the axial component to others as suggested by Gavrilov & Rudyak
(2016).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.296


The influence of shear-dependent rheology 877

The Reynolds shear stress is also found to decrease with decreasing n. Due to
viscosity fluctuations a new term is introduced in the mean momentum balance: the
turbulent viscous stress which is negative for a shear-thinning fluid and positive for
the shear-thickening fluid. The magnitude of the turbulent viscous stress is maximum
at the wall, however, there is no obvious reason why this should be the case. For
unreported results of other rheologies, we observed it to be maximum away from the
wall. Due to increased viscosity and mean shear rate, the mean viscous stress increase
with decreasing n and the range of y+ where its effect can be ignored increases with
decreasing n, which suggests the thickening of the viscous sublayer by shear thinning.

Except for the mean flow energy production, the effect of n is seen on the mean
flow energy budgets mostly for y+ < 60. The mean flow energy production and
dissipation increase with decreasing n and the non-Newtonian terms act as a source
in the mean flow kinetic energy budget for shear-thinning fluids. Similar to the mean
flow kinetic energy, the turbulent kinetic energy budget terms also show flow index
dependence largely for y+ < 60. The flow index n has a notable effect on turbulent
kinetic energy production in the buffer layer, whereas it affects the mean viscous
dissipation and turbulent transport largely in the viscous sublayer. The new terms
introduced in the turbulent kinetic energy budget from the non-Newtonian rheology
are found to add a source for a shear-thinning fluid and sink for a shear-thickening
fluid. The current results for shear-thinning fluids are qualitatively similar to those
for viscoelastic fluids, however, further investigation is required for the quantitative
comparison between these two types of fluids.

In the current simulations, the mean axial velocity profiles shift away from the
Newtonian profile with shear thinning. This kind of shift has been observed even
for Newtonian fluids at lower Reynolds number. Contours of the instantaneous axial
velocity showed less developed turbulence in the flow for lower n. Therefore, the
question remains whether the observed shifting of the mean axial velocity profiles
in current simulations is a Reynolds number effect or a rheology effect. Simulations
at higher Reynolds numbers will answer this question. High Reynolds number
simulations are also needed to show if log layer in the mean viscosity profiles
is real or not. The current simulations have shown that the turbulent kinetic energy
budget is affected by shear thinning only in the near-wall region (y+< 60). A question
arises as to whether generalised Newtonian rheology is important only in y+< 60 and
the deviation in the mean axial velocity and turbulence intensity profiles with shear
thinning in the log layer is due to only to what happens close to the wall. This is
the focus of ongoing research.
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