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In this paper we assume that we have measurements of a first difference of a typical satellite
navigation carrier phase differential, which is a homogeneous quadratic function of the

components of the attitude quaternion. We illustrate the determination of large or sustained
attitudes using a dedicated unscented Kalman filter. The unscented Kalman filter structure
was chosen for the dedicated filter because of its derivative free nature and other advantages.
When a Gaussian distributed vector random variable is transformed to an equivalent quat-

ernion it does not continue to be Gaussian distributed. For this reason, a new predictor-
corrector form of the unscented Kalman filter is proposed to maintain the normalization of
the unscented mean quaternion estimate in the presence of additive disturbances. The results

from our realistic simulations indicate that the large attitude of a spacecraft can be estimated
to within 0.1% accuracy over large time frames. The filter is particularly useful for auton-
omous operations of spacecraft as well as in other applications where the process model is

bilinear or second order in the states.
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1. INTRODUCTION. Since the appearance of the classic paper by Wahba
(1965) a number of improvements to the attitude estimation method have been re-
ported in the literature. This problem was re-considered by Farrell (1970) who used
a Kalman filter along with a Sun sensor and magnetometer sensor data to achieve a
ten-fold increase in accuracy of the estimate over the accuracy of the measurement.
The problem of the attitude determination may be posed as a purely kinematic
problem if one uses a set of gyros to measure the components of the angular vel-
ocity vector and the problem reduces to the case of optimum mixing of rate and
attitude measurements. Potter and Vander Velde (1968) adopted such an approach
to achieve a hundred-fold increase in accuracy of the estimate over the accuracy of
the measurements. An alternate possibility is to determine the angular velocity com-
ponents from the spacecraft’s Eulerian dynamics, but such an approach no longer re-
mains a purely kinematic approach. Then there was the issue of the representation
of the attitudes either by the three-parameter varieties of Euler angles or equiva-
lently by the four-parameter representations such as quaternions. In spite of some
significant drawbacks due to the need for quaternion normalisation (Lefferts,

THE JOURNAL OF NAVIGATION (2010), 63, 89–104. f The Royal Institute of Navigation
doi:10.1017/S0373463309990075

https://doi.org/10.1017/S0373463309990075 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463309990075


Markley and Schuster, 1982), quaternions have emerged as the standard method
(Lerner, 1978) for representing the attitude of a space vehicle.

The problem of quaternion-based attitude estimation is patently nonlinear and
most early efforts focussed on the Extended Kalman Filter (EKF). The EKF-based
approaches are still exceptionally popular and some recent applications of it are
illustrated by Marins et. al. (2001) and de Ruiter et. al. (2002). However the need to
include higher order nonlinear effects in the quaternion prediction and the state up-
date phases as well as in the error covariance prediction and update was soon rec-
ognised and a number of extensions have appeared in the literature. The first class of
these extensions account for the second-order effects (see for example Vathsal, 1987)
and these employ the mean and covariance updating method outlined in Sage and
Melsa (1971) and Jazwinski (1970). The EKF employs the Jacobians of the nonlinear
transformations of the process states and this has spawned two other extensions to it.
The first of these, termed the nonlinear predictive filter, is based on including higher
order derivatives of the nonlinear transformations of the process states. Typical ap-
plications to the spacecraft attitude problem are outlined by Crassidis and Markley
(1997a, 1997b). The need to avoid the determination of the Jacobians has led to the
development of the Unscented Kalman Filter (UKF) based on the unscented trans-
formation by Julier and Uhlmann (2000). It must be emphasized though that the
UKF is accurate at best to third order and in most practical situations to second
order. A recent application of the method to the attitude estimation problem is dis-
cussed by Vandyke et. al. (2004).

While most of the early applications were based on using gyroscopes, star trackers,
magnetometers and gravity sensors, the recent availability of interferometry
measurements of carrier phase differences arising from navigation satellite trans-
missions has led to cheaper and more reliable alternative sensors for spacecraft
attitude determination. Because these sensors operate without the need to rely on the
pseudo-random number based codes, they are often referred to as the codeless
satellite navigation sensors. They operate by measuring the phase difference in the
carrier signals received at two antennas located at opposite ends of a baseline vector.
Given the baseline vector d and navigation satellite’s sight line unit vector r as well as
the carrier signal wavelength, l, the differential phase measurement is given by:

Dw=
2p

l
(d �r)x2pN (1)

where N is the number of integer wavelengths occurring between the two antennas.
Since the antenna’s baseline vector is a function of the spacecraft’s attitude, the dif-
ferential phase measurement Dw may also be construed to be a nonlinear function of
the spacecraft’s attitude. A number of studies of the spacecraft attitude determination
problem have appeared based on the differential measurement idea. The use of these
codeless satellite navigation sensors coupled with the quaternion representations of
the attitude, opens up the possibility of determining the large attitudes without any
restriction on their magnitudes, over a large time frame. However most of these (see
for example Fujikawa and Zimbelman, 1995 and Huang and Juang, 1997) have ad-
dressed the problem where the angular velocities are determined by the Eulerian
dynamics. Kingston and Beard (2004) have also employed the codeless satellite
navigation sensors for the attitude determination but their formulations are not ex-
clusively based on the quaternion. Thus the codeless satellite navigation sensors are

90 RANJAN VEPA VOL. 63

https://doi.org/10.1017/S0373463309990075 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463309990075


the only sensors used with no prospect of mixing and the attitudes are not estimated
purely from the kinematic considerations. A mixing-type attitude determination filter
purely from the kinematics is proposed by Creamer (1996) but experience with using
this approach did not indicate a long enough prediction window for long term
autonomous operations. This was identified to be due to the use of the EKF approach
which is known to diverge under certain conditions. Crassidis and Markley (2003)
have proposed a method of applying the UKF to the problem of spacecraft esti-
mation by extending the multiplicative EKF, using equivalent quaternion multi-
plications leading to rotation additions rather than component vector additions.
They transform the quaternion to modified Rodrigues parameters which need not be
explicitly constrained and define the mean and covariance in this space. The trans-
formation and inverse involve the application of trigonometric and inverse trigono-
metric functions which cannot be adequately approximated by second and third
order functions uniformly for all rotations. Although the method is novel, it is not
always applicable particularly when disturbance models are naturally additive. A
similar method was also proposed by Kraft (2003). With a view to improving the
accuracy and speed of estimation Cheon and Kim (2007) have proposed a novel
unscented filter in a unit quaternion space where the sigma vectors maintain nor-
malization during the update stage. However they implicitly assume that the entire
quaternion normalisation error is due to the magnitude of the rotation which could
be restrictive. Moreover in many satellite applications the speed of prediction is not as
important as the ability to accurately predict the attitude over a long time frame.

In this paper a new predictor-corrector form of the unscented Kalman filter is
proposed to maintain the normalization of the unscented mean quaternion estimate
in the presence of additive disturbances. The three-axis attitude of a spacecraft is
estimated by integrating the output of three rate gyros corrupted by drifts and zero
mean additive white Gaussian noise. An attitude sensor in the form of a satellite
navigation carrier phase differential sensor measures the spacecraft attitudes at reg-
ular time intervals, and this information is utilized by a nonlinear but optimal esti-
mator, i.e., an UKF, to update both the spacecraft attitude and the gyro drift. This
attitude measurement is also corrupted by zero mean noise. Attitude estimates be-
tween samples are provided by a kinematic model of the spacecraft’s angular motion,
relating the aircraft’s angular velocity rate vector to the attitude quaternion. The
estimator is shown to converge to steady-state operation, while the means and stan-
dard deviations or variances of the attitude and gyro drift estimation errors just prior
to, and also just after an attitude update are obtained recursively by applying the
unscented transformation twice; first to predict the updated estimate and then to
correct it to maintain its normalization. The application of the unscented trans-
formation a second time can be done by an almost trivial extension of the UKF
algorithm. Thus an attitude determination system that is based on three vector
measurements of non-zero, non-colinear vectors is demonstrated. The approach that
is taken involves a triad of rate gyros the outputs of which are fused with an ultra-
short baseline differential satellite navigation three-axis attitude determination sys-
tem, without the need to integrate the attitude dynamics. Even though the rate gyros
used exhibited poor long term bias stability, the satellite navigation attitude system
was used to update the estimate of the gyro biases continuously and obtain attitude
estimates over a relatively long term, immaterial of the attitude dynamics at the
expense of speed of prediction. Moreover the entire filter is defined in the quaternion
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space without any need for intermediate transformations to satisfy the quaternion
normalization constraint.

2. ATTITUDE KINEMATICS PROCESS MODELLING. The quat-
ernion vector update equation relating the quaternion rate to the angular velocity
vector v and the quaternion normalisation relation are given by well known differ-
ential equations. When the angular velocity vector is measured by rate gyros and
corrupted by biases and noise, the dynamics may be expressed in terms of the atti-
tude quaternion q as (Vathsal, 1987) :

_qq=
_qq
_bb

� �
=

1
2V(u) x 1

2C(q)
0 0

� �
q

b

� �
+ x 1

2C(q) 0
0 I

� �
g1
g2

� �
� A(q)x+B(q)g, (2)

where,

V(v)=

0 v3 xv2 v1

xv3 0 v1 v2

v2 xv1 0 v3

xv1 xv2 xv3 0

2
664

3
775, v=

v1

v2

v3

2
4

3
5, C(q)=

q4 xq3 q2
q3 q4 xq1

xq2 q1 q4
xq1 xq2 xq3

2
664

3
775, (3)

qT �q=1, (4)

and b is a rate-gyro drift rate bias, g1 is a Gaussian white noise process corrupting the
angular velocity measurements, while the bias rate is assumed to be driven by another
independent Gaussian white noise process, g2.

We also assume that the quaternion rate satisfies the constraint :

qT � _qq=0: (5)

To satisfy the constraints (4) and (5) we assume a time step equal to Dt and discretise
the Equation (2) as :

x(k+1) � Fx(k)+Gg(k), F= exp (ADt): G=BDt: (6)

The evaluation of F is done in accordance with the approach recommended by
Markley (1978) which is equivalent to Equation (6) and given by the pair of equations:

q(k+1)=F1(vk, bk+g(k))q(k) � F1(vk, bk)q(k)+G1(q(k))g(k), (7)

b(k+1)=b(k)+G2g(k), (8)

where,

F1(v, b)=
akI bk(v+b)

xbk(v+b)T ak

� �
, G1(q)=x

Dt

2
C(q) I 0½ �, G2=Dt 0 I½ �,

ak= cos
Dt

2
v+bk k

� �
, bk=sin

Dt

2
v+bk k

� ��
v+bk k:

The last column of the matrix F1 may be interpreted as change in the quaternion
components due to the angular velocity vector giving the updates to the quaternion
given an initial rotation magnitude or equivalently the last component of the
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quaternion. Thus if the quaternion normalization error is assumed to be entirely
due to the last component, as is done by Cheon and Kim (2007), the corrections to
the quaternion components due to an angular rate error correction or a multi-
plicative error quaternion qe

+, can be computed from the last column of the
matrix F1. The quaternion update can then be done by quaternion multiplication
defined by:

q+(k+1)=q+e � qx(k+1): (9)

The use of Equation (9) involves a nonlinear transformation of the random variable
representing the noise vector. The noise in the rate gyro measurements could have
also been transformed to the modified Rodrigues parameters, to maintain the post-
update quaternion normalization. This would lead to a filter similar to that ofCrassidis
and Markley (2003) provided the quaternion measurement error is also modelled as a
multiplicative quaternion. A Gaussian distributed vector random variable, when
transformed to an equivalent quaternion or a rotation need not remain Gaussian
distributed. Hence we choose to include the rate gyro noise vector as an additive
Gaussian distributed vector to demonstrate an alternate approach to unscented
filtering. An interesting feature of this formulation is that mean quaternion update
continues to be normalized if it is initially normalized. The matrices G1(q) and G2 are
only needed for purposes of updating the covariance and for evaluating the sigma
points. The mean quaternion at the sigma points therefore continues to be normal-
ized if the initial sigma point vector is normalized. However the state estimate does
not preserve the normalization as these are evaluated as weighted linear combinations
of the means at the sigma points. For this reason we propose a predictor-corrector
implementation of the filter (this is in addition to the already existing propagate and
update structure of the Kalman filter), which is based on a process and measurement
predictor model given by:

qx(k+1)=F1(vk, bk)q(k)+G1(q(k))g(k), b
x(k+1)=b(k)+G2g(k) (10)

zmi=hi(q
x(k))+vi, i=1, 2, 3: (11)

The post-estimate process and output corrector model is given by:

q*(k+1)=qx(k+1), n*(k+1)=(qx(k+1) �qx(k+1))1=2, (12)

q(k)=q*(k)=n*(k): (13)

Equations (10 and 11) are used to implement an UKF while Equations (12 and 13)
are used to define a second unscented transformation to renormalize the estimated
mean and modify the corresponding covariance of the estimates. The implementation
of the unscented transformation and the UKF are discussed in section 4.

3. CODELESS SATELLITE NAVIGATION CARRIER PHASE
MEASUREMENT MODEL. At the outset we assume we are able to con-
struct codeless satellite navigation receiver antenna pairs located at the two ends of
a graphite-epoxy bar which is less than the wavelength l of the carrier signal. When
this is not the case it is first required that the ambiguity in N is resolved. The pro-
cess of estimating the correct carrier phase integer ambiguity is called satellite
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navigation ambiguity resolution. In order to reach centimetre level positioning ac-
curacies, this ambiguity term must be determined correctly. When multiple satellites
are available, the residual sensitivity matrix approach proposed by Hatch and
Sharpe (2001) provides a method for estimating N. The most successful methods of
ambiguity resolution are based on using pseudo-satellite (pseudolite) carrier wave
transmitters (Pervan, Cohen and Parkinson, 1994) to complement measurements
from available satellites. When it can be assumed that we are able to construct
codeless satellite navigation receiver antenna pairs located at the two ends of a
graphite-epoxy bar which is less than the wavelength l of the carrier signal, it is
possible in principle to assume that N equals a known integer or zero in Equation
(1) which may be expressed as,

Dw=
2p

l
(d �r): (14)

The GPS signals are transmitted on two radio frequencies in the UHF band. These
frequencies are referred to as L1 and L2, with:

fL1=154 �f0=1575 �42 MHz, fL2=120 �f0=1227 �6 MHz (15)

where f0=10.23 MHz, is a common frequency. The GPS signal is a phase-modulated
signal using bi-phase shift keying (BPSK). The phase change rate is often referred as
the chip rate. For the case of the highest frequency carrier which is the L1 carrier
signal (1575.42 MHz), the distance between the two antennas located at the two ends
of the graphite-epoxy bar should be less than 0.19 m. The distance between the two
antennas would be sufficient to operate even at the L2 carrier (1227.6 MHz) fre-
quency. In practice these frequencies ought to be Doppler shifted. It is in fact feasible
to construct such an antenna by locating two micro-strip patch antennas at the two
ends of the bar although the field of view is considerably limited. Yet the two-channel
receiver can in principle be constructed and the differential phase angle extracted by
employing the fast Fourier Transform (FFT) algorithm implemented on suitable
digital signal processing hardware.

The GLONASS satellite navigation system offers many features in common with
the GPS satellite navigation system. It is also based on 24 orbiting satellites forming
the space segment (21 operational satellites with 3 in-orbit spares) but will use only 3
orbital planes separated by 120x of longitude and with equal spacing between sat-
ellites of 45x within the plane. The GLONASS orbits are roughly circular orbits with
an inclination of about 64.8x, a semi-major axis of 25440 Km and a period of 11h 15m
44s. Similar to GPS, GLONASS also transmits two spread-spectrum signals in the
L-band at around the same power levels (x160 dBW at L1, x163 dBW at L2).
However individual GLONASS satellites are distinguished by a dedicated radio fre-
quency channel rather than spread-spectrum code. In GLONASS a single code of
length 511 bits repeating every 1ms is used. Information is encoded differentially in an
RZ (return to zero) format with a final data rate of 50 baud.

Radio-frequency carriers used by GLONASS occupy channels within the L-band
ranging from 1240–1260 MHz and 1597–1617 MHz, the channel spacing being 9/16
(or 0.5625) MHz at the higher frequencies and 7/16 (or 0.4375) MHz at the lower
frequencies. The carrier frequencies themselves are also multiples of channel spacing
and the number of planned channels is 24. GLONASS L1 transmission carrier
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frequencies (fn, in megahertz) and channel numbers (Cn) are related by the
expression:

fn=1602+0 �5625Cn=0 �5625(2848+Cn): (16)

A similar formula relates the GLONASS L2 transmission carrier frequencies to the
channel numbers where the frequencies are in the ratio 7/9.

This is quite different from the GPS system which uses the same frequency for all
satellites and differentiates one satellite from another by individual Gold codes, a
form of code division multiplex (CDM); the GLONASS system uses frequency div-
ision multiple access (FDMA) to distinguish between satellites. This difference be-
tween the two systems has a major impact in designing codeless receivers capable of
joint operation. However receivers capable of measuring carrier phase differential
have been designed and built for both the GLONASS and GPS systems. In fact a
receiver with an antennas separation distance of 0.18m would be adequate for the
relation (14) to hold.

The change in attitude of the spacecraft over a period of time could be observed by
comparing the current measured phase differential with the initial phase differential
measured at some initial reference time. Thus this difference in the measured phase
differential could be expressed as:

Dwm=
2p

l
(d � (rBxr0)) (17)

where rB is the navigation satellite’s sight line vector at the current time and r0 is the
navigation satellite’s sight line vector at the initial reference time. The navigation
satellite’s sight line vector rB could be expressed in terms of the satellite’s body co-
ordinates. However since the body attitude may be defined in terms of the quatern-
ion, the transformation relating the estimate of current sight line vector r̂r in the
orbiting coordinates to the current sight line vector rB in body coordinates may be
expressed in terms of the quaternion components. Hence:

rB=T(q)̂rr, (18)

where,

T(q)=
q24+q21xq22xq23 2(q1q2+q3q4) 2(q1q3xq2q4)
2(q1q2xq3q4) q24xq21+q22xq23 2(q2q3+q1q4)
2(q1q3+q2q4) 2(q2q3xq1q4) q24xq21xq22+q23

2
4

3
5: (19)

An estimate of current sight line vector r̂r in the orbiting coordinates can generally
obtained by an independent Kalman filter or by employing an algorithm such as
NORAD’s SDP4, SDP8 or SGP4 methods (Hoots et. al. 2004). It therefore follows
that the difference in the measured phase differential could be expressed as:

Dwm=
2p

l
(d �(T(q)xI)̂rr)+

2p

l
(d � (̂rrxr0)), (20)

and using Equation (19) we may write, T(q)xI as:

T(q)xI � DT(q)=x2
(q22+q23) x(q1q2+q3q4) x(q1q3xq2q4)

x(q1q2xq3q4) (q21+q23) x(q2q3+q1q4)
x(q1q3+q2q4) x(q2q3xq1q4) (q21+q22)

2
4

3
5, (21)
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which is a homogeneous quadratic function of the components of the quaternion.
Thus a discrete measurement of the error in the difference of the phase differentials
due to changes in the attitude can be expressed as:

zm � Dwmx
2p

l
(d � (̂rrxr0))=

2p

l
(d �DT(q(k))̂rr)+v (22)

where v is an additive Gaussian random variable representing a white noise or delta-
correlated stochastic process. For three-axis measurement of the attitude one would
require three independent measurements which may be expressed as:

zmi � Dwmix
2p

l
(di � (̂rrxr0))=

2p

l
(di �DT(q(k))̂rr)+vi, i=1, 2, 3: (23)

We observe that the process model given by Equations (6) and the measurement
model given by Equation (23) are both nonlinear in the components of the quatern-
ion. Generally the measurements cannot be cast as multiplicative quaternion error
models. The estimation problem may now be stated: Given a sequence of noisy ob-
servations by Equation (21) we need to estimate the sequence of state vectors of the
non-linear system driven by noise, defined by Equations (6). This problem is now
dealt with by the using an UKF after briefly discussing the reasons for its choice in the
next section.

4. NONLINEAR AND UNSCENTED KALMAN FILTERS. Most
dynamic models employed for purposes of estimation or filtering of pseudo range
errors or orbit ephemeris errors are generally not linear. To extend and overcome
the limitations of linear models, a number of approaches such as the EKF have
been proposed in the literature for nonlinear estimation using a variety of ap-
proaches. Unlike the Kalman filter, the EKF may diverge, if the consecutive linear-
izations are not a good approximation of the linear model over the entire
uncertainty domain. Yet the EKF provides a simple and practical approach to deal-
ing with essential non-linear dynamics. The main difficulty in applying the algor-
ithm to problems related to the estimation of a spacecraft’s orbit and attitude is in
determining the proper Jacobian matrices. The UKF is a feasible alternative that
has been proposed to overcome this difficulty, by Julier, Uhlmann and Durrant-
Whyte (2000), as an effective way of applying the Kalman filter to nonlinear sys-
tems. It is based on the intuitive concept that it is easier to approximate a prob-
ability distribution than it is to approximate an arbitrary nonlinear function or
transformation, of a random variable.

The UKF gets its name from the unscented transformation, which is a method of
calculating the mean and covariance of a random variable undergoing nonlinear
transformation y=f(w). Although it is a derivative free approach, it does not really
address the divergence problem. In essence the method constructs a set of sigma
vectors and propagates them through the same non-linear function. The mean and
covariance of the transformed vector are approximated as a weighted sum of the
transformed sigma vectors and their covariance matrices.

Consider a random variable w with dimension L which is going through the non-
linear transformation, y=f(w). The initial conditions are that w has a mean w and a
covariance Pww. To calculate the statistics of y, a matrix x of 2L+1 sigma vectors is
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formed. We have chosen to use the scaled unscented transformation (Julier 2002) as
this transformation gives one the added flexibility of scaling the sigma points to
ensure that the covariance matrices are always positive definite.

Given a general discrete nonlinear dynamic system in the form,

xk+1=fk(xk, uk)+wk, yk=hk(xk)+vk (24)

where xksRn is the state vector, uksRr is the known input vector, yksRm is the
output vector at time k. wk and vk are, respectively, the disturbance or process noise
and sensor noise vectors, which are assumed to Gaussian white noise with zero mean.
Furthermore Qk and Rk are assumed to be the covariance matrices of the process
noise sequence, wk and the measurement noise sequence, vk respectively. The un-
scented transformations of the states are denoted as,

fUT
k =fUT

k (xk, uk), h
UT
k =hUT

k (xk) (25)

while the transformed covariance matrices and cross-covariance are respectively
denoted as:

P
ff
k=P

ff
k (x̂xk, uk), P

hhx
k =Phh

k (x̂x
x
k ) (26)

and

Pxhx
k =Pxhx

k (x̂x
x
k , uk): (27)

The UKF estimator can then be expressed in a compact form. The state time-update
equation, the propagated covariance, the Kalman gain, the state estimate and the
updated covariance are respectively given by:

x̂x
x
k =fUT

kx1(x̂xkx1) (28)

P̂P
x
k =P

ff
kx1+Qkx1 (29)

Kk=P̂P
xhx
k (P̂P

hhx
k +Rk)

x1 (30)

x̂xk=x̂x
x
k +Kk[zkxhUT

k (x̂x
x
k )] (31)

P̂Pk=P̂P
x
k xKk(P̂P

hhx
k +Rk)

x1KT
k : (32)

Equations 28–32 are in the same form as the traditional Kalman filter and the ex-
tended Kalman filter. Thus higher order non-linear models capturing significant as-
pects of the dynamics may be employed to ensure that the Kalman filter algorithm
can be implemented to effectively estimate the states in practice. For our purposes we
adopt both the UKF approach to estimate the attitude quaternion and other states in
the process model.

The UKF is based on approximating the probability distribution function rather
than approximating a nonlinear function as in the case of EKF. The state distri-
butions are approximated by a Gaussian probability density, which is represented by
a set of deterministically chosen sample points. The nonlinear filtering using the
Gaussian representation of the posterior probability density via a set of determini-
stically chosen sample points is the basis for the UKF. It is based on statistical line-
arization of the state dynamics rather than analytical linearization (as in the EKF).
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The statistical linearization is performed by employing linear regression using a set of
regression (sample) points. The sigma points are chosen as the regression points. The
mean and covariance at the sigma points then represent the true mean and covariance
of the random variable with the particular Gaussian probability density. Thus when
transformed to the nonlinear systems, they represent the true mean and covariance
accurately only to the second order of the nonlinearity. Thus this can be a severe
limitation of the UKF unless the nonlinearities can be limited to the first and second
order in the process model.

In the predictor-corrector formulation of the UKF (PCUKF) the estimate and the
covariance are corrected a second time. The post-estimate corrections are done by
employing a pair of unscented transformations and noise-free model of the form:

x̂xk=f̂f(x̂xkx1), x̂xk=ĥh(x̂xk): (33)

In our application Equations 33 correspond to Equations 12 and 13. The transformed
output mean and covariance now represent the final corrected estimate and its co-
variance. Although this process involves a second application of the unscented
transformation, it facilitates the use of the standard UKF without the need for con-
straining the sigma vectors in any way. The complete filter may be expressed in terms
of two nonlinear unscented transformations applied sequentially as :

x̂xk=f̂f(x̂xkx1), (34)

x̂xk=ĥh(x̂xk), (35)

x̂x
x
k =fUT

kx1(x̂xkx1) (36)

P̂P
x
k =P

ff
kx1+Qkx1 (37)

Kk=P̂P
xhx
k (P̂P

hhx
k +Rk)

x1 (38)

x̂xk=x̂x
x
k +Kk[zkxhUT

k (x̂x
x
k )] (39)

P̂Pk=P̂P
x
k xKk(P̂P

hhx
k +Rk)

x1KT
k : (40)

The state estimate x̂xk is given by the result of applying the first of the two unscented
transformations in the sequence. Thus the filter is equivalent to two stage propa-
gation accompanied by a single measurement update stage.

5. PCUKF BASED ATTITUDE ESTIMATION. The success of the ap-
plication of the UKF depends largely on the approximation to the covariance
which is estimated as a weighted linear sum of the covariance at the sigma points.
When this approximation is such that the covariance is not positive definite, the
UKF algorithm fails as the Cholesky decomposition is not possible. To ensure that
this covariance is positive definitive it is essential to adjust the scaling parameter
aus, if and when necessary. In the example below, aus was chosen to be a very small
positive number in the case of both the transformations. Alternately one could start
the first few steps by using an EKF and then switch to the UKF.
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In the first instance it was attempted to estimate the attitude of the spacecraft by
employing a single carrier phase sensor. As expected a single sensor was not able to
produce a meaningful estimate of all the components of the attitude quaternion over
a relatively large time frame (1440 minutes). This was due to the need for three vector
measurements of non-zero, non-colinear attitude vectors for purposes of the attitude
estimation from kinematic considerations.

The three receiver based carrier phase sensor was then simulated. The spacecraft, a
navigation satellite in a typical GLONASS orbit, was assumed to performing sus-
tained three axis rotations with a body axes angular velocity vector given by
v= 0 �1 0 �2 0 �3½ � rads=hr. These are measured by three rate gyros and the mea-
surements are assumed to be biased where the bias rate is driven by white noise. To
establish the parameters for implementing the PCUKF the standard deviations were
assumed to be the same order of magnitude as the rate gyros (0.002 arc-s/s) con-
sidered by Farrenkopf, 1978 where the single axis attitude estimation problem was
considered with attitude measurements provided by a star tracker (s=20 arc-s) and
an update rate of 0.1 per minute. The standard deviation of the carrier phase
measurements were assumed to be between s=50–70 arc-s. Independent simulations
of the process and the measurements, including the rate-gyros were performed and
standard deviations of the white noise sources were assumed to be 30 times larger
than those assumed for the design calculations. Figure 1 illustrates the simulated and
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Figure 1. Comparison of the simulated and the estimated attitude quaternion over a time frame

of 1440 minutes.
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estimated attitude quaternion plotted to the same scale. Figure 2 shows the corre-
sponding errors in the simulated quaternion and estimated quaternion over the same
time frame.

Figure 3 illustrates the errors in the corresponding 3, 2, 1 sequence Euler angles, y,
h and w. Attitude accuracies of the order of t1x–t2x may be obtained by using
antenna patches separated by distances of the order 0.2m. A tenfold decrease in the
order of the accuracies (errors) is possible if the antenna patch distance is increased
fivefold. In Figure 4 the growth of the simulated and estimated bias states, related to
the gyro drift rate with the PCUKF are shown. In Figure 5 are shown the growth of
the simulated and estimated bias states, related to the gyro drift rate without the
second unscented transformation. It is clear that in the long term the bias states
slowly tend to diverge from the corresponding simulated states.

Comparing the PCUKF with the standard UKF, although there were practically
no differences between the predicted mean and covariance of the estimate, it was
observed that the bias states slowly began to diverge from the simulations in the case
of the standard UKF. Thus the performance of the PCUKF was relatively more
stable over longer time frame.

Figure 6 shows the simulated measurement error of a typical carrier phase sensor.
The carrier frequency was assumed to be 1602 MHz. It was assumed that three pairs
of patch antennas are located along mutually perpendicular three-axes and that
each pair was separated by 18cms. Satellite navigation receiver based carrier phase
measurements are subject to additional measurement errors, such as tropospheric
and ionospheric errors, orbital ephemeris errors, multipath, frequent cycle slip
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Figure 2. Errors in the components of the simulated and the estimated attitude quaternion over a

time frame of 1440 minutes.
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Figure 3. Errors in the components of the simulated and the estimated attitude Euler angles w,

h and y over a time frame of 1440 minutes
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Figure 4. Growth and comparison of the simulated and estimated bias states in the gyros with the

PCUKF.
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occurrences, antenna phase centre variation and noise. In addition to measuring the
arrival time of the satellite navigation signal using the code modulation, receivers that
also measure the phase of the carrier frequency and the total phase change (both
whole and partial cycles) since the initial measurement are currently available. This
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Figure 5. Growth and comparison of the simulated and estimated bias states in the gyros without

the second unscented transformation.
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Figure 6. Simulated measured carrier phase error (in radians) of a typical carrier phase sensor.
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measure, referred to as the integrated carrier phase is statistically independent of the
code measurement and is also about two orders of magnitude less noisy. Yet these
error sources severely deteriorate attitude determination availability. Moreover
these errors to the carrier phase cannot be modelled as multiplicative quaternion
errors because of the nature of the probability density functions. To model these
errors adequately the covariance of the errors in the measurements were assumed to
be much higher than was assumed at the design stage. This fact is adequately reflected
in Figure 6.

Finally it must said that the filter was run over a much longer time frame (2882
minutes) and the performance of the filter did not deteriorate in spite of this long term
operation. Thus the implementation of an attitude determination system over a
relatively long time frame is successfully demonstrated.

6. CONCLUSIONS. In this paper a new predictor-corrector form of the un-
scented Kalman filter is presented and validated to maintain the normalization of
the unscented mean quaternion estimate in the presence of additive disturbances.
The method is a simple and straightforward extension of the UKF requiring no
transformations of the states. We have also demonstrated the feasibility of a long
term attitude determination system that is based on three vector measurements of
non-zero, non-colinear vectors. Long term estimation of the attitude was facilitated
by the use of the PCUKF. Comparisons with the results of several other studies, re-
ferenced in paper, clearly pointed to the superior performance of the PCUKF based
attitude determination system, particularly in terms of the long term stability and
operation of the filter.
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