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We study an electrical conduction problem in biological tissues in the radiofrequency range,

which is governed by an elliptic equation with memory. We prove the time exponential

asymptotic stability of the solution. We provide in this way both a theoretical justification to

the complex elliptic problem currently used in electrical impedance tomography and additional

information on the structure of the complex coefficients appearing in the elliptic equation.

Our approach relies on the fact that the elliptic equation with memory is the homogenisation

limit of a sequence of problems for which we prove suitable uniform estimates.

1 Introduction

Electric impedance tomography (EIT) is the inverse problem of determining the impedance

in the interior of a body, given simultaneous measurements of direct or alternating

electric currents and voltages at the boundary [8]. This technique has a wide spectrum

of applications, in different fields. Especially important applications of EIT are found in

medicine, e.g. detection of pulmonary emboli, monitoring of heart function and blood

flow and breast cancer detection [7].

Experimental measurements in clinical applications are currently performed by assigning

time-harmonic boundary data and assuming that the resulting electric potential is time

harmonic, too. This assumption, which is often referred to as the limiting amplitude

principle, leads to the commonly accepted mathematical model based on the complex

elliptic problem (1.36)–(1.37) for the electric potential [8, 10].

In this paper we prove that this assumption is correct for sufficiently large times and that

the steady-state electric potential does satisfy the well-known equation (1.36). Moreover,

we show how the complex admittivity Aωk appearing in equation (1.36) depends on the

frequency ωk (equation (1.38)). The subject of coefficient reconstruction (i.e. the inverse

problem) for the complex elliptic problem (1.36)–(1.37) may significantly benefit of the

structure information provided by (1.38).

Our approach relies on a microscopic model of the electrical conduction in the radiofre-

quency range in biological tissues. The biological tissue is modelled as a composite with
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two finely mixed phases (intra- and extra-cellular spaces), separated by interfaces (cell

membranes). The microscopic structure is periodic, and its period is a small parameter ε,

which is assumed to be much smaller than the electromagnetic spatial scale governed by

the permittivity of the biological material and the temporal period of the external driv-

ing source. The mathematical scheme (problem (1.5)–(1.9)) is derived from the Maxwell

equations in the quasi-static approximation, by means of a concentration procedure [4].

The problem involves the unknown electric potential uε and consists of partial differential

equations of elliptic type prescribed in each phase, coupled with a dynamical boundary

condition at the interface.

A macroscopic model has been obtained in [1–3] by letting ε → 0, via homogenisation

theory. The resulting model is governed by an elliptic equation with memory for the

homogenised electric potential u0 (equation (1.1)).

In this paper we are interested in the asymptotic behaviour of the electric potentials uε
and u0 for large times. As far as the microscopic problem is concerned, this question is

investigated by applying abstract parabolic theory (e.g. [21]). In particular, an asymptotic

stability result (Theorem 4) is obtained: roughly speaking, it states that for every ε > 0,

uε exponentially approaches a time-periodic steady state u#
ε as time increases, provided

that a time-periodic Dirichlet boundary condition is assigned. However a non-standard

feature of this result is the behaviour with respect to ε of our estimates. Indeed, it appears

quite natural to investigate the interplay between the limit with respect to time t and the

one with respect to the microstructural parameter ε, i.e. to ask whether the asymptotic

behaviour in time of uε is uniform with respect to ε. Our main result (Theorem 5) states

that this is the case, so that the homogenised electric potential u0 exponentially approaches

a time-periodic steady state u#
0 as time increases, provided that a time-periodic Dirichlet

boundary condition is assigned.

We derive problem (1.21)–(1.22) which uniquely determines the asymptotic limit u#
0 ,

under time-periodic, not necessarily time-harmonic, boundary data. This result may en-

hance medical imaging based on EIT by allowing a wider choice of periodic boundary

data in experimental measurements. Indeed, under general time-periodic boundary data,

the inverse problem of EIT should be based on our problem (1.21)–(1.22) instead of the

usual problem (1.36)–(1.37).

From the point of view of mathematical interest, we note that the asymptotic behaviour

of evolutive equations with memory is a classical problem (see, e.g., [14,15,22]), currently

attracting much interest in the literature [6,16,18,20]. It is well known that the exponential

decay of the kernel alone, in general, does not imply the existence of bounded solutions

[14, 15]. In [12] (see also [11, 13]) an elliptic equation with memory, similar to (1.1), is

proved to admit a unique solution in a suitable Sobolev space, under special assumptions

of integrability and coercivity of the integral kernel (see (i)–(iii) in [12]), which state its

compatibility with thermodynamics.

Our equation (1.1) is the homogenisation limit of problem (1.5)–(1.9), which in turn

is derived from the Maxwell equations. Hence, it is natural to expect that it should be

compatible with thermodynamics. In fact, the cited coercivity assumptions on the integral

kernel are obtained as a by-product of our approach (see Proposition 10, Remark 17 and

Remark 18).

Though the required coercivity properties of the integral kernel in (1.1) might be derived

directly from the homogenisation limit, our approach has the advantage of yielding the
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uniformity with respect to ε of the time-asymptotic stability. Such a result is a useful

tool both when dealing with the physical case ε > 0 and when refining standard error

estimates in homogenisation.

1.1 Detailed exposition of the results

According to the macroscopic model for the electric conduction in biological tissues

derived in [1–3], the homogenised electric potential u0(x, t), obtained as the limit of the

solutions uε of (1.5)–(1.9), satisfies the equation

− div

(
A∇u0 +

∫ t

0

B(t− τ)∇u0(x, τ) dτ− F
)

= 0, in Ω × (0,+∞), (1.1)

where Ω is an open connected bounded subset of RN , N > 1, and the matrices A and B(t)

and the vector F(x, t) are given in equations (2.5).

Equation (1.1) is complemented here with a time-periodic Dirichlet boundary condition:

u0(x, t) = Ψ (x)Φ(t) , on ∂Ω × (0,+∞). (1.2)

We assume that

Φ(t) ∈ H1
#(R) . (1.3)

Here and in the following the subscript # denotes a space of T -periodic functions, for

some fixed T > 0. Moreover, we assume that Ψ is the trace on ∂Ω of a function, still

denoted by Ψ , such that

Ψ (x) ∈ H1(RN), ΔΨ = 0 in Ω. (1.4)

Problem (1.1)–(1.2) is the homogenisation limit as ε↘ 0 of the following microscopic

problem for uε(x, t) [2]:

− div(σ∇uε) = 0, in (Ωε
1 ∪ Ωε

2) × (0,+∞); (1.5)

[σ∇uε · ν] = 0, on Γε × (0,+∞); (1.6)

α

ε

∂

∂t
[uε] = (σ∇uε · ν)(out) , on Γε × (0,+∞); (1.7)

uε(x, t) = Ψ (x)Φ(t) , on ∂Ω × (0,+∞); (1.8)

[uε](x, 0) = Sε(x) , on Γε. (1.9)

The operators div and ∇ act with respect to the space variable x; Ω = Ωε
1 ∪Ωε

2 ∪Γε, where

Ωε
1 and Ωε

2 are two disjoint open subsets of Ω, and Γε = ∂Ωε
1 ∩ Ω = ∂Ωε

2 ∩ Ω, with ν as

normal unit vector pointing into Ωε
2; the typical geometry we have in mind is depicted in

Figure 1. We refer to Section 2 for a precise definition of the structure of Ωε
1, Ω

ε
2, Γ

ε.

Moreover, we assume that

σ = σ1 > 0 in Ωε
1, σ = σ2 > 0 in Ωε

2, α > 0, (1.10)

where σ1, σ2 and α are constant. From a physical point of view, Γε represents the cell

membranes, having capacitance α/ε per unit area, whereas Ωε
1 (respectively Ωε

2) is the

intra-cellular (respectively extra-cellular) space, whose conductivity is σ1 (respectively σ2).

https://doi.org/10.1017/S0956792509990052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792509990052


434 M. Amar et al.

Y

E1

E2

Γ
Ω

(a) (b)

Figure 1. (a) An example of admissible periodic unit cell Y = E1 ∪ E2 ∪ Γ in R2. Here E1 is the

shaded region and Γ is its boundary. The remaining part of Y (the white region) is E2. (b) The

corresponding domain Ω = Ωε
1 ∪ Ωε

2 ∪ Γε. Here Ωε
1 is the shaded region and Γε is its boundary.

The remaining part of Ω (the white region) is Ωε
2. Note that Ω contains a periodic array of ε-scaled

copies of Y .

Since uε is not in general continuous across Γε we have set

u(out)
ε := trace of uε|Ωε

2
on Γε , u(int)

ε := trace of uε|Ωε
1

on Γε and [uε] := u(out)
ε − u(int)

ε .

A similar convention is employed for the current flux density across the membrane σ∇uε ·ν.

Remark 1 The physical meaning of problem (1.5)–(1.9) is the following: (1.5) is the

standard equation for the Ohmic conduction in intra- and extra-cellular spaces; (1.6)

expresses the current density continuity across the cell membranes. Equation (1.7) describes

the capacitive behaviour of the cell membranes. Here, [uε] is the potential jump and

(σ∇uε · ν)(out) is the current flux across the membranes; moreover α/ε is the membrane

capacitance per unit area. Hence, (1.7) is the capacitor law, derived in [4] from the Maxwell

equations in the quasi-static approximation. The boundary data in (1.8) prescribes a time-

periodic boundary value for the electric potential. Finally, the initial datum (1.9) is required

by equation (1.7) and prescribes the initial value of the potential jump.

It is known [2] that for every T > 0, up to a subsequence, uε weakly converges in

L2(Ω × (0, T )) and strongly converges in L1
loc(0, T ;L1(Ω)) as ε → 0, provided that the

initial datum Sε(x) ∈ L2(Γε) satisfies

1

ε

∫
Γε

S2
ε (x) dσ � γ , (1.11)

for a constant γ independent of ε. If, moreover, Sε(x) satisfies (2.3) and (2.4), then any

limit u0(x, t) belongs to L2(0, T ;H1(Ω)) and satisfies problem (1.1)–(1.2). Therefore, by the

uniqueness theorem in [1], the limit is uniquely determined, thus implying the convergence

of all the sequence {uε}.
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In this paper we are interested in studying the asymptotic behaviour of uε(x, t) and

u0(x, t) for large times. To this end, after some preliminaries presented in Section 2,

we establish in Section 3 the following exponential time-decay estimate for uε when

homogeneous Dirichlet boundary data prevail on ∂Ω × (0,+∞):

Theorem 2 Let Ωε
1, Ω

ε
2, Γ

ε be as before. Assume that (1.10) holds and that the initial datum

Sε satisfies (1.11). Let uε be the solution of (1.5)–(1.9), with homogeneous Dirichlet boundary

data on ∂Ω × (0,+∞), i.e. Ψ ≡ 0. Then

‖uε(·, t)‖L2(Ω) � C(ε+ e−λt) a.e. in (1,+∞), (1.12)

where C and λ are independent of ε. Moreover, if Sε has null mean average over each

connected component of Γε, it follows that

‖uε(·, t)‖L2(Ω) � C e−λt a.e. in (1,+∞). (1.13)

This result easily yields the following exponential time-decay estimate for u0 under homo-

geneous Dirichlet boundary data.

Corollary 3 Under the assumptions of Theorem 2, if uε → u0 weakly in L2(Ω × (0, T )) for

every T > 0, then

‖u0(·, t)‖L2(Ω) � C e−λt a.e. in (1,+∞). (1.14)

Then, we apply Theorem 2 to the function

wε = uε − u#
ε ,

which satisfies a homogeneous Dirichlet boundary condition on ∂Ω × (0,+∞), where

u#
ε (x, t) solves a time-periodic version of the microscopic differential scheme introduced

above:

− div(σ∇u#
ε ) = 0, in (Ωε

1 ∪ Ωε
2) × R; (1.15)

[σ∇u#
ε · ν] = 0, on Γε × R; (1.16)

α

ε

∂

∂t
[u#
ε ] = (σ∇u#

ε · ν)(out), on Γε × R; (1.17)

u#
ε (x, t) = Ψ (x)Φ(t), on ∂Ω × R; (1.18)

u#
ε (x, ·) is T -periodic, ∀x ∈ Ω ; (1.19)

[u#
ε (·, t)] − Sε(·) has null average over each connected component of Γε . (1.20)

Indeed, this problem is derived from (1.5)–(1.9), replacing equation (1.9) with (1.19).

Equation (1.20) has been added in order to guarantee the uniqueness of the solution and

is suggested by the observation that [uε(·, t)] − Sε(·) has null average over each connected

component of Γε, as a consequence of (1.5)–(1.7) and (1.9).
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We show (see Theorem 7) that as ε → 0, the function u#
ε (x, t) approaches a time-periodic

function u#
0 ∈ H1

#(R;H1(Ω)) solving

− div

(
A∇u#

0 +

∫ +∞

0

B(τ)∇u#
0 (x, t− τ) dτ

)
= 0, in Ω × R, (1.21)

u
#
0 = Ψ (x)Φ(t), on ∂Ω × R. (1.22)

As a consequence, in Section 7 we get our main results.

Theorem 4 Let Ωε
1, Ω

ε
2, Γ

ε be as before. Assume that (1.3), (1.4), (1.10) and (1.11) hold. Let

{uε} and {u#
ε } be the sequences of the solutions of (1.5)–(1.9) and (1.15)–(1.20), respectively.

Then

‖uε(·, t) − u#
ε (·, t)‖L2(Ω) � C e−λt a.e. in (1,+∞), (1.23)

where C and λ are positive constants, independent of ε.

Theorem 5 Under the assumption of Theorem 4, if uε → u0 and u#
ε → u

#
0 weakly in L2(Ω×

(0, T )), for every T > 0, then the following estimate holds:

‖u0(·, t) − u
#
0 (·, t)‖L2(Ω) � C e−λt a.e. in (1,+∞), (1.24)

where C and λ are positive constants, independent of ε.

1.2 Investigation of the behaviour of u#
ε and u#

0

To solve problem (1.15)–(1.20), we express the function Φ by means of its Fourier series,

i.e.

Φ(t) =

+∞∑
k=−∞

ck eiωkt (1.25)

where ωk = 2kπ/T is the kth circular frequency, and we represent the solution u#
ε (x, t) as

follows:

u#
ε (x, t) =

+∞∑
k=−∞

vεk(x) eiωkt , (1.26)

where the complex-valued functions vεk(x) ∈ L2(Ω) are such that vεk|Ωε
i

∈ H1(Ωε
i ), i = 1, 2,

and for k� 0 satisfy the problem

− div(σ∇vεk) = 0, in Ωε
1 ∪ Ωε

2; (1.27)

[σ∇vεk · ν] = 0, on Γε; (1.28)

iωkα

ε
[vεk] = (σ∇vεk · ν)(out) , on Γε; (1.29)

vεk = ckΨ , on ∂Ω; (1.30)
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whereas for k = 0 they satisfy the problem

− div(σ∇vε0) = 0, in Ωε
1 ∪ Ωε

2; (1.31)

[σ∇vε0 · ν] = 0, on Γε; (1.32)

(σ∇vε0 · ν)(out) = 0, on Γε; (1.33)

vε0 = c0Ψ , on ∂Ω; (1.34)

[vε0] − Sε(·) has null average over each connected component of Γε . (1.35)

Note that any solution vεk of problem (1.27)–(1.30) is such that [vεk] has null average over

each connected component of Γε.

We prove the following homogenisation result.

Theorem 6 Let Ωε
1, Ω

ε
2, Γ

ε be as before and assume that (1.4) and (1.10) hold. Then, for

k ∈ Z \ {0} (respectively k = 0, under the further assumption (1.11)), the solution vεk of

problem (1.27)–(1.30) (respectively problem (1.31)–(1.35)) strongly converges in L2(Ω) to a

function v0k ∈ H1(Ω) which is the unique solution of the problem

− div(Aωk ∇v0k) = 0, in Ω, (1.36)

v0k = ckΨ , on ∂Ω; (1.37)

where

Aωk = A+

∫ +∞

0

B(t) e−iωkt dt , (1.38)

with A and B(t) defined in (2.5).

The case k � 0 is dealt with in Section 4, where the subscript k is dropped throughout

for the sake of simplicity, and an alternative expression for Aωk is given (equation (4.31)).

The case k = 0 is dealt with in Section 5.

In Section 6 we study problem (1.15)–(1.20) and establish the following.

Theorem 7 Let Ωε
1, Ω

ε
2, Γ

ε be as before and assume that (1.3), (1.4), (1.10) and (1.11) hold.

Then,

(i) the series at the right-hand side of equation (1.26) strongly converges, uniformly with

respect to ε, in H1
#(R;L2(Ω)) and in H1

#(R;H1(Ωε
i )), i = 1, 2, to the unique solution u#

ε (x, t)

of problem (1.15)–(1.20);

(ii) the sequence {u#
ε (x, t)} strongly converges in H1

#(R;L2(Ω)) as ε → 0 to a function

u
#
0 (x, t), T -periodic in time, which can be represented by means of the Fourier series

u
#
0 (x, t) =

+∞∑
k=−∞

v0k(x) eiωkt , (1.39)

strongly converging in H1
#(R;H1(Ω));
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(iii) the function u#
0 (x, t) is the unique solution T -periodic in time of the problem (1.21)–

(1.22).

Remark 8 We note that with a change of variables, equation (1.21) can be recast as

follows:

− div

(
A∇u#

0 +

∫ t

−∞
B(t− τ)∇u#

0 (x, τ) dτ

)
= 0, in Ω × R, (1.40)

which closely resembles equation (1.1). In fact, equation (1.1) involves a time integration

over (0, t) and contains an exponentially time-decaying source F accounting for the

initial data of the original problem (1.5)–(1.9) (see Proposition 10), whereas equation

(1.40) involves a time integration over (−∞, t) and is relevant to periodic functions, i.e. to

situations in which any transient phenomenon has elapsed.

2 Notation and preliminary results

Following [2], we introduce a periodic open subset E of RN , so that E + z = E for all

z ∈ ZN . For all ε > 0 we define Ωε
1 = Ω∩εE, Ωε

2 = Ω \εE, Γε = Ω∩∂(εE). We assume that

Ω, E have regular boundary, say of class C∞ for the sake of simplicity. We also employ

the notation Y = (0, 1)N , and E1 = E∩Y , E2 = Y \E, Γ = ∂E∩Y . We stipulate that E1 is

a connected smooth subset of Y such that dist(E1, ∂Y ) > 0. Some generalisations may be

possible, but we do not dwell on this point here. Finally, we assume that dist(Γε, ∂Ω) > γε

for some constant γ > 0 independent of ε, by dropping the inclusions contained in the

cells ε(Y + z), z ∈ ZN which intersect ∂Ω (see Figure 1). For later usage, we introduce the

set

ZN
ε := {z ∈ ZN : ε(Y + z) ⊆ Ω} . (2.1)

In [3] we prove the existence and uniqueness of a weak solution to (1.5)–(1.9), in the

class

uε|Ωε
i

∈ L2
(
0, T ;H1

(
Ωε
i

))
, i = 1 , 2 , T > 0 . (2.2)

As was recalled in the ‘Introduction’, if the initial datum Sε(x) satisfies (1.11), then for

every T > 0, up to a subsequence, as ε → 0, uε weakly converges in L2(Ω × (0, T )) and

strongly converges in L1
loc(0, T ;L1(Ω)). Under the more stringent assumption

Sε(x) = εS1

(
x,
x

ε

)
+ εRε(x) (2.3)

on Sε,where S1 : Ω × ∂E → R and

‖S1‖L∞(Ω×∂E) < ∞ , ‖Rε‖L∞(Ω) → 0 , as ε → 0,

S1(x, y) is continuous in x, uniformly over y ∈ ∂E,

and periodic in y, for each x ∈ Ω;

(2.4)

then all the sequence {uε} converges, and the limit u0(x, t) belongs to L2(0, T ;H1(Ω)) and

satisfies problem (1.1)–(1.2) [2]. The two matrices A, B and the vector F appearing there
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are defined by (see [2], equations (3.31), (4.16) and (4.18))

A = σ0I +
∫
Γ
[σ]ν ⊗ χ0(y) dσ,

B(t) = −α
∫
Γ
[χ1](y, 0) ⊗ [χ1](y, t) dσ =

∫
Γ
ν ⊗ [σχ1](y, t) dσ,

F(x, t) := −α
∫
Γ
S1(x, y)[χ

1](y, t) dσ =
∫
Γ
[σT(S1(x, ·))](y, t)ν dσ,

⎫⎪⎪⎬⎪⎪⎭ (2.5)

where

σ0 =

∫
Y

σ dx = σ1|E1| + σ2|E2| (2.6)

and two cell functions χ0(y) and χ1(y) and a transform T appear. They are defined as

follows. The components χ0
h, h = 1, . . . , N, of χ0 : Y → RN satisfy

−σ Δy χ
0
h = 0, in E1, E2; (2.7)[

σ
(
∇yχ

0
h − eh

)
· ν
]

= 0, on Γ ; (2.8)[
χ0
h

]
= 0, on Γ . (2.9)

Moreover, χ0
h is a periodic function with vanishing integral average over Y . The definition

of χ1 : Y × (0, T ) → RN involves the transform T, defined by

T(s)(y, t) = v(y, t) , y ∈ Y , t > 0, (2.10)

where s : Γ → R and v is a periodic null-average function in Y , solving the problem

−σ Δy v = 0, in (E1 ∪ E2) × (0,+∞);

[σ∇yv · ν] = 0, on Γ × (0,+∞);

α
∂

∂t
[v] = (σ∇yv · ν)(out) , on Γ × (0,+∞);

[v](y, 0) = s(y) , on Γ .

Finally, χ1
h is defined by

αχ1
h = T

((
σ
(
∇yχ

0
h − eh

)
· ν
)(out))

. (2.11)

Lemma 9 For s ∈ L2(Γ ) such that
∫
Γ
s dσ = 0, the function T(s)(y, t) defined in equation

(2.10) satisfies the following estimate, for some constants C, λ > 0:

‖[T(s)](·, t)‖L2(Γ ) � C e−λt . (2.12)

Proof The argument is similar to the one used in Section 3 below, so it is only sketched

here. It relies on the application of abstract parabolic theory (e.g. [21], Chapter 7) and

leads to the explicit solution

[T(s)](y, t) =

+∞∑
i=1

e−λit wi(y)

∫
Γ

swi dσ . (2.13)
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Here {(λi, wi)}i∈N are the eigenvalues and eigenvectors of the spectral problem

find f ∈ H1/2(Γ ) : a(f, g) = λ

∫
Γ

α fg dσ , ∀g ∈ H1/2(Γ ) , (2.14)

and the bilinear form a is defined as follows:

a(f, g) =

∫
Y

σ∇z(f) · ∇z(g) dx , f, g ∈ H1/2(Γ ) , (2.15)

where z(s) is the unique solution with vanishing integral average over Y of the problem

− div(σ∇z(s)) = 0, in E1 ∪ E2; (2.16)

[σ∇z(s) · ν] = 0 , on Γ ; (2.17)

[z(s)] = s , on Γ ; (2.18)

z(s) is Y -periodic. (2.19)

It is easy to show that a is symmetric and continuous, satisfying the coercivity estimate,

for every β > 0:

a(f, f) + β

∫
Γ

αf2 dσ � γ(β)
(
‖z(f)‖2

H1(E1)
+ ‖z(f)‖2

H1(E2)

)
� γ(β)‖f‖2

H1/2(Γ ) .

Hence, {λi} is an increasing diverging sequence of non-negative eigenvalues and {wεi }
constitutes a Hilbert orthonormal basis of L2(Γ ). In particular, it is easy to show that λ1 =

0, and the corresponding eigenspace is generated by the constant function w1 on Γ , so that

the first term of the sum in (2.13) disappears, since s has null average over Γ . Moreover,

λ2 > 0 and the assertion follows from (2.13), with C := ‖s‖L2(Γ ) and λ := λ2. �

Proposition 10 The constant matrix A is positive definite and symmetric. The function χ1

satisfies the estimate

‖[χ1
h(·, t)]‖L2(Γ ) � C e−λt , h = 1 . . . N ; (2.20)

the matrix B(t) belongs to L∞(0,+∞), is symmetric and satisfies the estimate

|Bhj(t)| � C e−λt , h, j = 1 . . . N ; (2.21)

the vector F(x, t), under the further assumption (2.4), belongs to L∞(Ω × (0,+∞)) and

satisfies the estimate

‖Fh(·, t)‖L∞(Ω) � C e−λt , h = 1 . . . N . (2.22)

In equations (2.20)–(2.22) C and λ are positive constants.

Proof The positive definiteness of A is proved in Proposition 4.1 of [2]. Equation (2.20)

follows from (2.11), Lemma 9 and Lemma 7.3 of [2]. Equations (2.21) and (2.22) follow

from (2.20) and (2.5), using the Cauchy–Schwarz inequality and, in the proof of (2.22),

also the regularity stipulated in (2.4). �
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3 Homogeneous Dirichlet boundary data

In this section we prove Theorem 2 and Corollary 3. We introduce the space H̃1/2(Γε) ⊂
H1/2(Γε) of the functions which have null average over each connected component of Γε,

i.e. on ε(Γ + z), for each z belonging to the set ZN
ε defined in (2.1).

We decompose the initial datum Sε(x) in (1.9) as Sε(x) = Sε(x) + S̃ε(x), where

Sε(x) =

∫
ε(Γ+z)

Sε dσ =: Cεz on each ε(Γ + z), z ∈ ZN
ε ;

S̃ε(x) ∈ H̃1/2(Γε) .

(3.1)

Accordingly, the solution uε of problem (1.5)–(1.9) with Ψ ≡ 0 is decomposed as uε + ũε.

Clearly,

uε(x, t) =

⎧⎨⎩0 for (x, t) ∈ Ωε
2 × (0,+∞) ,

−Cεz for (x, t) ∈ (ε(E1 + z)) × (0,+∞), z ∈ ZN
ε .

(3.2)

Using the previous equation, we compute

∫
Ω

|uε|2 dx =
∑
z∈ZN

ε

∫
ε(E1+z)

|uε|2 dx = εN |E1|
∑
z∈ZN

ε

∣∣∣∣∣∣
∫

ε(Γ+z)

Sε dσ

∣∣∣∣∣∣
2

.

On the other hand, by Hölder’s inequality, we estimate

∑
z∈ZN

ε

∣∣∣∣∣∣
∫

ε(Γ+z)

Sε dσ

∣∣∣∣∣∣
2

�
γ

εN−1

∫
Γε

S2
ε dσ .

Hence, as a consequence of (1.11), it follows that

‖uε(·, t)‖L2(Ω) � Cε , (3.3)

where C is a constant independent of ε.

An estimate for ũε follows from an application of abstract parabolic theory, as

summarised for example in Chapter 7 of [21]. We consider the two Hilbert spaces

H1/2(Γε) ⊂ L2(Γε) and the bilinear form on H1/2(Γε):

aε(f, g) =

∫
Ω

σ∇z(f)
ε · ∇z(g)

ε dx , f, g ∈ H1/2(Γε) , (3.4)

where z(s)
ε is the unique solution of the problem

− div
(
σ∇z(s)

ε

)
= 0, in Ωε

1 ∪ Ωε
2; (3.5)[

σ∇z(s)
ε · ν

]
= 0 , on Γε; (3.6)[

z(s)
ε

]
= s , on Γε; (3.7)

z(s)
ε = 0, on ∂Ω. (3.8)
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It is easy to show (e.g. [3, Theorem 6]) that aε is a symmetric and continuous bilinear

form. Moreover, we have the coercivity estimate, for every β > 0,

aε(f, f) + β

∫
Γε

α

ε
f2 dσ � γ(β)

(
‖z(f)

ε ‖H1(Ωε
1)

2
+ ‖z(f)

ε ‖2
H1(Ωε

2)

)
� γ(β, ε)‖f‖2

H1/2(Γε) ,

where we have used the Poincaré’s inequality in [2, 17] and classical trace inequalities.

Then we consider the spectral problem

find f ∈ H1/2(Γε) : aε(f, g) = λε
∫
Γε

α

ε
fg dσ , ∀g ∈ H1/2(Γε) (3.9)

and the associate evolution problem, for an arbitrary T > 0,

given f0 ∈ L2(Γε), find F ∈ L2(0, T ;H1/2(Γε)) ∩ C([0, T );L2(Γε)) :

F(0) = f0 ,
d

dt

∫
Γε

α

ε
F(t)g dσ + aε(F(t), g) = 0, ∀g ∈ H1/2(Γε) . (3.10)

Problem (3.9) admits an increasing diverging sequence {λεi} of non-negative eigenvalues,

and there exists a Hilbert orthonormal basis of L2(Γε) composed by eigenvectors wεi such

that [21, Theorem 6.2-1]

aε(w
ε
i , g) = λεi

∫
Γε

α

ε
wεi g dσ , ∀g ∈ H1/2(Γε) , i ∈ N .

Moreover, for every f0 ∈ L2(Γε), problem (3.10) admits a unique solution [21, Theorem 7.2-

1], which can be represented as follows [21, Lemma 7.2-1]:

F(x, t) =

+∞∑
i=1

e−λεi t wεi (x)

∫
Γε

f0w
ε
i dσ . (3.11)

Since problem (3.10) is a weak formulation of problem (1.5)–(1.9) with homogeneous

Dirichlet boundary conditions, i.e. Ψ ≡ 0, and initial data f0, we conclude that

[ũε(x, t)] =

+∞∑
i=1

e−λεi t wεi (x)

∫
Γε

S̃εw
ε
i dσ . (3.12)

Let Nε be the number of connected components of Γε. It is easy to show that

λεi = 0, i ∈ {1, . . . , Nε} ,

and the corresponding eigenspace is generated by the characteristic functions of ε(Γ + z),

z ∈ ZN
ε : indeed, by (3.4)–(3.8), aε(f, g) = 0 for all g ∈ H1/2(Γε) when f is piecewise

constant on Γε. However we can neglect those eigenvalues, since S̃ε ∈ H̃1/2(Γε), and hence

they disappear from equation (3.12).

Our aim is to prove that the next eigenvalue, i.e. λεNε+1, here denoted by λ̃ε, is bounded

below by a positive constant independent of ε. To this purpose, we introduce the space

H̃1(Ω) := {v ∈ L2(Ω) : v|Ωε
i

∈ H1(Ωε
i ), i = 1, 2, [v] ∈ H̃1/2(Γε)} , (3.13)
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and using Lemma 11 and Remark 12, we estimate, for any v ∈ H̃1(Ω),∫
Ω

σ|∇v|2 dx �
∑
z∈ZN

ε

∫
ε(Y+z)

σ|∇v|2 dx �
αλ̃

ε

∑
z∈ZN

ε

∫
ε(Γ+z)

[v]2 dσ =
αλ̃

ε

∫
Γε

[v]2 dσ , (3.14)

where λ̃ is defined in (3.18). Hence ( [21], equation (6.2-20)),

λ̃ε := min
s∈H̃1/2(Γε)\{0}

∫
Ω

σ|∇z(s)
ε |2 dx

α

ε

∫
Γε

s2 dσ

� λ̃, (3.15)

for λ̃ > 0 and independent of ε.

Estimating (3.15), together with (3.12), gives

‖ũε(·, t)‖L2(Ω) � C e−λ̃t/2 a.e. in (1,+∞). (3.16)

In order to prove (3.16), we reason in the following manner. For every t > 0 fixed, using

Poincar’s inequality in [2, 17], Lemma 13 and equation (3.23), equations (3.12) and (3.15),

the Parseval identity and equation (1.11), we have∫ t+h

t

∫
Ω

|ũε|2 dx dτ � C

(∫ t+h

t

∫
Ω

|∇uε|2 dx dτ+
1

ε

∫ t+h

t

∫
Γε

[ũε]
2 dσ dτ

)
�
Cf(h, t)

ε

∫
Γε

[ũε(x, t/2)]2 dσ �
Cf(h, t)

ε

+∞∑
i=1

e−2λεi t/2

(∫
Γε

S̃εw
ε
i dσ

)2

�
Cf(h, t)

ε
e−λ̃t‖Sε‖2

L2(Γε) � Cf(h, t) e−λ̃t , (3.17)

where f(h, t) = log(1 + h/t) + h. Dividing by h and letting h → 0, equation (3.16) follows.

Setting λ = λ̃/2, this equation gives (1.13), if Sε has null mean average over each connected

component of Γε (since in this case uε = 0 and uε = ũε). Moreover, together with (3.3) it

gives (1.12) and completes the proof of Theorem 2.

In order to prove Corollary 3, we use the L2-weak convergence of uε to u0 in Ω×(t, t+h),

for every fixed t > 1 and h > 0, and estimate (1.12) as follows:∫ t+h

t

∫
Ω

u2
0 dx dτ � lim inf

ε→0

∫ t+h

t

∫
Ω

u2
ε dx dτ � h(C e−λt)2 .

Dividing by h and letting h → 0, equation (1.14) follows.

Lemma 11 Set H̃1(Y ) := {v ∈ L2(Y ) : v|Ei ∈ H1(Ei), i = 1, 2, [v] ∈ H̃1/2(Γ )}, where

H̃1/2(Γ ) is comprised by the functions of H1/2(Γ ) with null integral average. Then, it results

that

λ̃ := min
v∈H̃1(Y ), [v]�0

∫
Y

σ|∇v|2 dy

α

∫
Γ

[v]2 dσ

> 0. (3.18)
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Proof We consider the bilinear form in (2.15), where now z(s) is the unique solution with

vanishing integral average over Y of the problem (2.16)–(2.18) complemented with a

homogeneous Neumann boundary condition on ∂Y .

Reasoning as in the proof of Lemma 9, it can be shown that the spectral problem (2.14)

admits an increasing diverging sequence of non-negative eigenvalues {λi}, with λ1 = 0

and the corresponding eigenspace composed by the constant functions on Γ . The space

orthogonal to the first eigenspace is H̃1/2(Γ ) and hence the second eigenvalue, denoted

by λ, satisfies ([21], equation (6.2-20))

λ = min
s∈H̃1/2(Γ )\{0}

∫
Y

σ|∇z(s)|2 dy

α

∫
Γ

s2 dσ

; (3.19)

thus we have that λ > 0, since otherwise the corresponding eigenvector would be constant

and hence zero.

Clearly, the infimum at the right-hand side of (3.18) is less than or equal to λ, since for

s ∈ H̃1/2(Γ ) \ {0}, it results that z(s) ∈ H̃1(Y ), and [z(s)] = s.

On the other hand, for every v ∈ H̃1(Y ) \ {0}, the function z([v]) ∈ H̃1(Y ) is such that∫
Y

σ|∇v|2 dy =

∫
Y

σ|∇z([v]) + ∇(v − z([v]))|2 dy �

∫
Y

σ|∇z([v])|2 dy , (3.20)

since by (2.16)–(2.18) and the homogeneous Neumann boundary condition on ∂Y we

have

∫
Y

σ∇z([v]) · ∇(v − z([v])) dy = −
∫
Y

(v − z([v])) div(σ∇z([v])) dy

−
∫
Γ

[v − z([v])](σ∇z([v]) · ν)(out) dσ +

∫
∂Y

(v − z([v]))(σ2∇z([v]) · n) dσ = 0,

where n is the outward unit normal to ∂Y . As a consequence of (3.20), we conclude that

the infimum at the right-hand side of (3.18) is attained and is equal to λ. �

Remark 12 The change of variables y = x/ε applied to equation (3.18) yields

min
v∈H̃1(εY ), [v]�0

∫
εY

σ|∇v|2 dx

α

ε

∫
εΓ

[v]2 dσ

= λ̃ > 0, (3.21)

where H̃1(εY ) := {v ∈ L2(εY ) : v|εEi ∈ H1(εEi), i = 1, 2, [v] ∈ H̃1/2(εΓ )}, and H̃1/2(εΓ )

comprises the functions of H1/2(εΓ ) with null integral average. In particular, we emphasise

that λ̃ is a positive constant independent of ε.
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Lemma 13 Under the assumptions of Theorem 2, there exists a constant γ > 0 independent

of ε, such that the following estimate holds for t > 0:

sup
τ�t

∫
Ω

σ|∇uε(x, τ)|2 dx �
γ

εt

∫
Γε

[uε(x, t/2)]2 dσ . (3.22)

Proof For 0 � t1 � t2, we multiply equation (1.5) by uε, integrate by parts over (Ωε
1 ∪

Ωε
2) × (t1, t2), use equations (1.6), (1.7) and the homogeneous Dirichlet boundary data on

∂Ω and obtain∫ t2

t1

∫
Ω

σ|∇uε|2 dx dτ+
α

2ε

∫
Γε

[uε(x, t2)]
2 dσ =

α

2ε

∫
Γε

[uε(x, t1)]
2 dσ . (3.23)

Then we fix t > 0 and choose a cutoff function ζ(τ) ∈ C1(0,+∞) such that

ζ(τ) =

{
0, τ � t/2 ;

1 , τ � t ;
0 � ζ ′ �

γ̃

t
. (3.24)

We multiply equation (1.5) by uεtζ and integrate by parts over (Ωε
1 ∪ Ωε

2) × (t/2, t). These

computations can be made rigorous using a Steklov averaging procedure. Using equations

(1.6), (1.7) and (3.24) and the homogeneous Dirichlet boundary data on ∂Ω, we obtain∫
Ω

σ

2
|∇uε(x, t)|2 dx+

α

ε

∫ t

t/2

∫
Γε

ζ[uεt]
2 dσ dτ =

∫ t

t/2

∫
Ω

σ

2
|∇uε|2ζ ′ dx dτ .

Hence,

sup
τ�t

∫
Ω

σ|∇uε(x, τ)|2 dx �

∫ +∞

t/2

∫
Ω

σ|∇uε|2ζ ′ dx dτ , (3.25)

and the assertion follows from equations (3.23), with t1 = t/2 and t2 = t, and (3.24). �

4 Homogenisation limit of time-harmonic solutions: Case k� 0

In this section we prove Theorem 6 in the case k� 0. For the sake of simplicity, we omit

here the subscript k and set

ψ(x) := ckΨ (x) . (4.1)

4.1 Energy estimate

We establish the following energy estimate:∫
Ω

σ|∇vε|2 dx+
ω

ε

∫
Γε

|[vε]|2 dσ � γ

∫
Ω

σ|∇ψ|2 dx , (4.2)
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where γ is independent of ε and ω. This estimate, together with Poincaré’s inequality

in [2, 17], implies the following L2 estimate:∫
Ω

v2ε dx � γ(1 + ω−1)

∫
Ω

σ|∇ψ|2 dx . (4.3)

In order to carry out the proof, we set

zε = vε − ψ . (4.4)

The complex-valued function zε(x, t) satisfies the equations

− div(σ∇zε) = 0, in Ωε
1 ∪ Ωε

2; (4.5)

[σ∇zε · ν] = −[σ]∇ψ · ν , on Γε; (4.6)

iωα

ε
[zε] = (σ∇zε · ν)(out) + σ2∇ψ · ν , on Γε; (4.7)

zε = 0, on ∂Ω. (4.8)

We multiply (4.5) by zε, integrate over Ωε
1 ∪ Ωε

2, use the Gauss–Green identity and

equation (4.8) and arrive at∫
Ω

σ|∇zε|2 dx+

∫
Γε

[zε σ∇zε · ν] dσ = 0 . (4.9)

Using equations (4.6)–(4.7) and then the Gauss–Green identity and equations (1.4) and

(4.8), we obtain∫
Ω

σ|∇zε|2 dx+
iωα

ε

∫
Γε

|[zε]|2 dσ =

∫
Γε

[zε σ∇ψ · ν] dσ = −
∫
Ω

σ∇zε · ∇ψ dx . (4.10)

Taking the real and imaginary parts of equation (4.10) and adding them, we get∫
Ω

σ|∇zε|2 dx+
ωα

ε

∫
Γε

|[zε]|2 dσ = −
∫
Ω

σ(�∇zε − �∇zε) · ∇ψ dx . (4.11)

Then, we estimate, using Young’s inequality,∫
Ω

σ|∇zε|2 dx+
ωα

ε

∫
Γε

|[zε]|2 dσ �
1

2

∫
Ω

σ|∇zε|2 dx+ 2

∫
Ω

σ|∇ψ|2 dx , (4.12)

from which equation (4.2) follows.

4.2 Existence

We prove existence of solution of problem (4.5)–(4.8), for the unknown zε defined in

equation (4.4), in the class

H = {zε ∈ L2(Ω) , zε|Ωε
i

∈ H1(Ωε
i ) , i = 1 , 2 , zε|∂Ω = 0} , (4.13)
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which is identified with the Hilbert space H1(Ωε
1) × H1

0 (Ωε
2). The weak formulation of

problem (4.5)–(4.8) is

a(zε, φ) :=

∫
Ω

σ∇zε · ∇φ dx+
iαω

ε

∫
Γε

[zε][φ] dσ =

∫
Γε

[φσ∇ψ · ν] dσ , ∀φ ∈ H . (4.14)

Existence of zε ∈ H satisfying (4.14) follows from the Lax–Milgram theorem [23,

Chapter 6, Theorem 1.4]: indeed, the continuity of the bilinear form a(·, ·) and of the

linear functional at the right-hand side of (4.14) follows from standard trace inequalities,

and the coercivity estimate |a(φ,φ)| � m‖φ‖2
H, for some m > 0, follows from Poincar’s

inequality in [2, 17].

4.3 Formal homogenisation asymptotics

Here we aim to identify the homogenised equation of problem (1.27)–(1.30), via the

two-scale method. The argument is standard, so we only sketch it.

Introduce the microscopic variables y ∈ Y , y = x/ε, assuming

vε = vε(x, y) = v0(x, y) + εv1(x, y) + ε2v2(x, y) + . . . . (4.15)

Note that v0, v1, v2 are periodic in y, and v1, v2 are assumed to have zero integral average

over Y .

Applying (4.15) to (1.27)–(1.29) we find, at the leading-order term,

−σ Δy v0 = 0, in E1, E2; (4.16)

[σ∇yv0 · ν] = 0 , on Γ ; (4.17)

iωα[v0] = (σ∇yv0 · ν)(out) , on Γ . (4.18)

Multiplying (4.16) by v0, integrating by parts over E1 ∪ E2 and taking into account

(4.17)–(4.18), it easily follows that

v0 = v0(x) . (4.19)

Proceeding as above, but taking into consideration the next-order terms in the ε-

expansion, we obtain

−σ Δy v1 = 0, in E1, E2; (4.20)

[σ∇yv1 · ν] = −[σ∇xv0 · ν] , on Γ ; (4.21)

iωα[v1] = (σ∇yv1 · ν)(out) + σ2∇xv0 · ν , on Γ . (4.22)

In (4.20) and in (4.22) we have made use of (4.19) and of its consequence [v0] = 0.

We represent v1 in the form

v1(x, y) = −χω(y) · ∇xv0(x) , (4.23)
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where the cell function χω : Y → CN is such that its components χωh , h = 1, . . . , N, satisfy

−σ Δy χ
ω
h = 0, in E1, E2, (4.24)[

σ
(
∇yχ

ω
h − eh

)
· ν
]

= 0, on Γ , (4.25)

iωα
[
χωh

]
=

(
σ
(
∇yχ

ω
h − eh

)
· ν
)(out)

, on Γ , (4.26)

and are periodic functions with vanishing integral average over Y . Existence and unique-

ness of the solution of problem (4.24)–(4.26) is proved in Lemma 14.

Finally, the next-order terms in the ε-expansion give

−σ Δy v2 = σ Δx v0 + 2σ
∂2v1

∂xj∂yj
, in E1,E2 (4.27)

[σ∇yv2 · ν] = −[σ∇xv1 · ν] , on Γ ; (4.28)

iωα[v2] = (σ∇yv2 · ν)(out) + (σ∇xv1 · ν)(out) , on Γ . (4.29)

Integrating equation (4.27) by parts both in E1 and in E2, using equation (4.28) and

adding the two contributions, we get

−σ0 Δx v0 = −2

∫
Γ

[σ∇xv1 · ν] dσ +

∫
Γ

[σ∇xv1 · ν] dσ = −
∫
Γ

[σ∇xv1 · ν] dσ ,

where σ0 is defined in equation (2.6).

Then, we use representation (4.23) and infer from the equality above the partial

differential equation for v0 as

− div(Aω ∇v0) = 0, in Ω , (4.30)

where the matrix Aω is given by (here the superscript t denotes transposition)

Aω = σ0I +

∫
Γ

ν ⊗ [σχω] dσ = σ0I −
∫
Y

σ∇tχω dy . (4.31)

Lemma 14 Under the assumptions on E1, E2, Γ reported in Section 2, problem (4.24)–(4.26)

admits a unique solution in the class

Ĥ1(Y ) := {f ∈ L2(RN) : f|Ei ∈ H1(Ei), i = 1, 2, f is Y -periodic

with vanishing integral average over Y } . (4.32)

Proof First, we prove the uniqueness result. Assuming, by contradiction, that two different

solutions χωh,1 and χωh,2 to problem (4.24)–(4.26) exist, the function zωh := χωh,2 − χωh,1 satisfies

−σ Δy z
ω
h = 0, in E1, E2; (4.33)[

σ∇yz
ω
h · ν

]
= 0 , on Γ ; (4.34)

iωα
[
zωh

]
=

(
σ∇yz

ω
h · ν

)(out)
, on Γ . (4.35)
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Multiplying (4.33) by zωh , integrating by parts and using (4.34) and (4.35), we obtain∫
Y

σ|∇zωh |2 dy + iωα

∫
Γ

∣∣[zωh ]∣∣2 dσ = 0. (4.36)

This estimate, recalling that zωh ∈ Ĥ1(Y ), implies that zωh ≡ 0.

As far as existence is concerned, we refer to equation (4.53), where a solution to problem

(4.24)–(4.26) is explicitly exhibited. Alternatively, one could appeal to the Lax–Milgram

theorem as in Section 4.2. �

4.4 Homogenisation limit

Introduce for i = 1, . . . , N the functions

qεi (x, t) = xi − εχωi

(
x

ε

)
, (4.37)

so that explicit calculations reveal

−σ Δ qεi = 0, in Ωε
1, Ω

ε
2; (4.38)[

σ∇qεi · ν
]

= 0, on Γε; (4.39)

iωα

ε

[
qεi
]

= (σ∇qεi · ν)(out) , on Γε. (4.40)

Let ϕ ∈ C∞
o (Ω), and select qεi ϕ as a test function in the weak formulation of (1.27)–(1.30)

and use equations (1.28) and (1.29). We obtain∫
Ω

σ∇vε · ∇qεi ϕ dx+

∫
Ω

σ∇vε · ∇ϕqεi dx+
iωα

ε

∫
Γε

[vε]
[
qεi
]
ϕ dσ = 0 . (4.41)

Next select vεϕ as a test function in the weak formulation of (4.38)–(4.40). We get∫
Ω

σ∇qεi · ∇vε ϕ dx+

∫
Ω

σ∇qεi · ∇ϕ vε dx+
iωα

ε

∫
Γε

[
qεi
][
vε
]
ϕ dσ = 0 . (4.42)

Subtracting (4.42) from (4.41), we find∫
Ω

σ∇vε · ∇ϕqεi dx =

∫
Ω

σ∇qεi · ∇ϕ vε dx . (4.43)

The energy inequality (4.2), the L2 estimate (4.3) and Corollary 3.5 in [17] imply that

extracting subsequences if needed, we may assume

−σ∇vε → ξω , weakly in L2(Ω), (4.44)

vε → v0 , strongly in L2(Ω), (4.45)

for some ξω ∈ L2(Ω)N , v0 ∈ L2(Ω). On the other hand, recalling (4.31) and (4.37), it is

easy to show that

qεi → xi , strongly in L2(Ω), (4.46)

σ∇qεi → Aωei , weakly in L2(Ω). (4.47)
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Thus, using [2, Lemma 7.5], it follows that

−
∫
Ω

ξω · ∇ϕxi dx =

∫
Ω

Aωei · ∇ϕ v0 dx . (4.48)

As usual, next we take ϕxi as a test function in the weak formulation of (1.27)–(1.30).

On letting ε → 0, we get

−
∫
Ω

ξω · ∇ϕxi dx−
∫
Ω

ξω · ei ϕ dx = 0 . (4.49)

We substitute (4.49) in (4.48), and recalling that Aω is symmetric (see Section 4.6), we

obtain ∫
Ω

v0A
ω∇ϕ dx =

∫
Ω

ξω ϕ dx .

By the arbitrariness of ϕ ∈ C∞
o (Ω), recalling also equation (4.49), it follows that

ξω = −Aω∇v0 and div ξω = 0 in the sense of distributions,

and hence equation (1.36) holds.

4.5 Dirichlet boundary condition for v0

Here we prove equation (1.37) using an argument similar to [2, Section 5.1]. We define

Vε(x) =

{
vε(x) in Ω,

ψ in RN \ Ω.

Since the jump of Vε across ∂Ω is zero, we infer that for each bounded open set G ⊂ RN ,

the variation |DVε|(G) is given by

|DVε|(G) =

∫
G

|∇Vε| dx+

∫
Γε∩G

|[Vε]| dσ � γ
(
|G|1/2 + (ε|Γε ∩ G|N−1)

1/2
)
, (4.50)

where we have made use of Hölder’s inequality and of equations (1.4), (4.1) and (4.2).

As a first consequence of this estimate, we may invoke classical compactness and semi-

continuity results to show that (extracting subsequences if needed)

Vε → V0 , in L1(RN), |DV0|(G) � lim inf
ε→0

|DVε|(G) , (4.51)

for every set G ⊂ RN as above. On the other hand, according to [5, Theorem 3.77],

|DV0|(∂Ω) =

∫
∂Ω

|V+
0 − V−

0 | dσ =

∫
∂Ω

|V+
0 − ψ| dσ , (4.52)

where the symbol V+
0 (respectively V−

0 ) denotes the trace on ∂Ω of V0|Ω (respectively of

V0|RN\Ω ≡ ψ).

Define for 0 < h < 1 the open set

Gh = {x ∈ RN | dist(x, ∂Ω) < h} .
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Combining (4.50)–(4.52), we obtain, as ∂Ω ⊂ Gh for all h,∫
∂Ω

|V+
0 − ψ| dσ � |DV0(Gh)| � γ lim inf

ε→0

(
|Gh|1/2 + (ε|Γε ∩ Gh|N−1)

1/2
)

� γh1/2 .

Indeed, it is readily seen that |Gh| � γh and that |Γε ∩ Gh|N−1 � γh/ε for all sufficiently

small h. Therefore, letting h → 0 above we obtain that V+
0 = ψ a.e. on ∂Ω. As a

consequence, v0 = ψ a.e. on ∂Ω.

4.6 Structure of the limit equation

First, we show that equations (1.38) and (4.31) yield the same matrix Aω . To this end, we set

θω = χ0 +

∫ +∞

0

χ1(·, t) e−iωt dt . (4.53)

Recalling (2.7), (2.8) and (2.11), it follows that θω satisfies equations (4.24) and (4.25).

Indeed, it satisfies also equation (4.26):

(
σ
(
∇yθ

ω
h − eh

)
· ν
)(out)

=
(
σ
(
∇yχ

0
h − eh

)
· ν
)(out)

+

∫ +∞

0

(
σ(∇yχ

1(·, t)) · ν
)(out)

e−iωt dt

= α
[
χ1
h(·, 0)

]
+

∫ +∞

0

α
∂

∂t

[
χ1
h(·, t)

]
e−iωt dt = iωα

[
θωh

]
, (4.54)

where we have used (2.9), (2.11) and Proposition 10. Thus θωh = χωh , since both of them

satisfy problem (4.24)–(4.26), which admits a unique solution in the class Ĥ1(Y ) (see

Lemma 14). In turn, recalling (2.5), this implies the equivalence between equation (1.38)

and equation (4.31).

Then we prove the following result, which, in particular, implies the well-posedness of

problem (1.36)–(1.37) for k > 0.

Proposition 15 Aω is symmetric; its real part and its imaginary part are positive definite;

|Aωhj |, h, j = 1, . . . , N, is uniformly bounded with respect to ω. Moreover, �(Aωζ, ζ) � γ|ζ|2 ,
for all ζ ∈ CN , where (·, ·) is the scalar product in CN and γ is a positive constant, inde-

pendent of ω.

Proof The symmetry of Aω follows from equation (1.38) and the fact that the matrices A

and B(t) therein are symmetric (see Proposition 10). The uniform upper bound on ‖Aω‖
follows from equation (1.38) and Proposition 10.

In order to prove the strict positivity of �(Aω) and �(Aω), we compute∫
Y

σ
(
∇χωj − ej

)
·
(
∇χωh − eh

)
dy = −

∫
Γ

(
σ
(
∇χωj − ej

)
· ν
)(out)[

χωh
]
dσ

−
∫
Y

σ
(
∇χωj − ej

)
· eh dy = −iωα

∫
Γ

[
χωj

][
χωh

]
dσ + Aωhj , (4.55)

where we have used the Gauss–Green theorem, equations (4.24)–(4.26) and (4.31) and the

fact that χω is Y -periodic. As a consequence,

�(Aω) = Sω +Wω and �(Aω) = Tω + Zω , (4.56)
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where, setting αω = �(χω) and βω = �(χω),

Sωhj =

∫
Y

σ
(
∇αωj − ej

)
·
(
∇αωh − eh) dy +

∫
Y

σ∇βωj · ∇βωh dy,

Wω
hj = −ωα

∫
Γ

([
αωj

][
− βωh

]
+
[
βωj

][
αωh

])
dσ ,

Tω
hj = ωα

∫
Γ

([
αωj

][
αωh

]
+
[
βωj

][
βωh

])
dσ and

Zω
hj =

∫
Y

σ∇βωj ·
(
∇αωh − eh

)
dy −

∫
Y

σ
(
∇αωj − ej

)
· ∇βωh dy . (4.57)

Clearly, the matrices Sω and Tω are symmetric, whereas the matrices Wω and Zω are

skew-symmetric: hence, Wω = Zω = 0, due to the symmetry of Aω . Exploiting the

Y -periodicity of αω , we have, for all η ∈ RN ,

(�(Aω)η, η) =
∑

j,hS
ω
jhηjηh

� σm

∫
Y

|∇
∑

j

(
αωj ηj − yjηj

)
|2 dy + σm

∫
Y

|∇
∑

j

(
βωj ηj

)
|2 dy � γ(ω)|η|2 , (4.58)

where σm = min(σ1, σ2) and γ(ω) is a positive constant depending on ω. In order to prove

the last inequality, first we fix η such that |η| = 1 and observe that

σm

∫
Y

|∇
∑

j

(
αωj ηj − yjηj

)
|2 dy = 0

implies that
∑

j(α
ω
j ηj − yjηj) is constant in E2, which is a contradiction, since the func-

tions αωj are Y -periodic, while yj are not. Then, the result follows by compactness and

homogeneity with respect to η.

Analogously, for all η ∈ RN we compute

(�(Aω)η, η) =
∑

j,hT
ω
jhηjηh = ωα

∫
Γ

[(∑
j

[
αωj ηj

])2

+
(∑

j

[
βωj ηj

])2]
dσ � γ(ω)|η|2 .

Indeed, reasoning as above, if a vector η ∈ RN exists, such that |η| = 1 and that∑
j[χ

ω
j ηj] = 0, by (4.24)–(4.26) it results that

∑
j(χ

ω
j − yj)ηj is constant, and this

contradicts the Y -periodicity of χω .

Finally, for ζ ∈ CN we set η = �(ζ), υ = �(ζ) and compute, by exploiting (4.58) and

the symmetry of �(Aω),

�(Aωζ, ζ) = (�(Aω)η, η) + (�(Aω)υ, υ) � γ(ω)|ζ|2 .

This estimate is uniform with respect to ω. Indeed, using (1.38) we have

(�(Aω)η, η) = (Aη, η) +

∫ +∞

0

(B(t)η, η) cos(ωt) dt . (4.59)

The constant matrix A is positive definite and the matrix B(t) belongs to L1(0,+∞) (see

Proposition 10). Hence, by the Riemann–Lebesgue lemma, a sufficiently large ω0 can be

found such that for ω > ω0 the right-hand side of the previous equation is minorised by
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γ|η|2, for a constant γ independent of ω. The assertion follows noting that finitely many

values of ω are less than ω0, since ω = 2πk/T , and using (4.58). �

Remark 16 Due to Proposition 15 and the Lax–Milgram theorem, the problem

− div(Aω ∇v) = 0, in Ω, (4.60)

v = ψ , on ∂Ω, (4.61)

is uniformly elliptic with respect to k and admits a unique solution v ∈ H1(Ω). As a

consequence, the function v0 = limε→0 vε, which was proved to satisfy the problem above,

coincides with v. Hence, v0 ∈ H1(Ω) and the following estimate holds:∫
Ω

(|v0|2 + |∇v0|2) dx � γ

∫
Ω

σ|∇ψ|2 dx , (4.62)

for a constant γ independent of k. We note that the uniqueness of v0 also implies that

actually the whole sequence {vε} converges to v0.

Remark 17 We emphasise that the condition of strict positivity of �(Aω) implies assump-

tion (iii) in [12]. This assumption was stipulated there as a consequence of the second law

of thermodynamics. In this paper, the same condition is proved to be a direct consequence

of the homogenisation of equations (1.5)–(1.9), which are derived from Maxwell equations.

5 Homogenisation limit of time-harmonic solutions: The case k = 0

Here we prove Theorem 6 in the case k = 0, so that we study problem (1.31)–(1.35).

It amounts to solving independent Neumann problems on Ωε
2 and on each connected

component ε(E1 + z), z ∈ ZN
ε , of Ωε

1. The first one was considered in [9, Chapter 1] in the

context of homogenisation in perforated media, where the authors obtained that there

exists a positive constant γ, independent of ε such that∫
Ωε

2

|∇vε0|2 dx � γ . (5.1)

Moreover, they proved that

Pεvε0 → v00 weakly in H1(Ω), as ε → 0 , (5.2)

where we have used the following notation. Setting Vε = {v ∈ H1(Ωε
2) : v = c0Ψ on ∂Ω},

Pε is any extension operator from L2(Ωε
2) to L2(Ω) and from Vε to H1(Ω) such that for

any v ∈ Vε,

‖Pεv‖L2(Ω) � C‖v‖L2(Ωε
2)

and ‖∇Pεv‖[L2(Ω)]N � C‖∇v‖[L2(Ωε
2)]

N (5.3)

for a constant C independent of ε. Moreover, v00 is the solution of (1.36) and (1.37) and

A0 = σ2|E2|I +

∫
Γ

σ2ν ⊗ χ00(y) dσ . (5.4)
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The components χ00
h , h = 1, . . . , N, of χ00 : E2 → RN satisfy

−σ2 Δy χ
00
h = 0, in E2; (5.5)

σ2(∇yχ
00
h − eh) · ν = 0, on Γ . (5.6)

In addition, χ00
h is a Y -periodic function with vanishing integral average over E2.

For every z ∈ ZN
ε , the Neumann problem in ε(E1 + z) can be explicitly solved,

giving

vε0(x) =

∫
ε(Γ+z)

v
(out)
ε0 dσ −

∫
ε(Γ+z)

Sε(x) dσ =: v(a)ε0 (x) + v
(b)
ε0 (x) , x ∈ ε(E1 + z) . (5.7)

By (5.2), it follows that vε0 → v00 strongly in L2(Ω), since

‖vε0 − v00‖L2(Ω) � ‖vε0 − Pεvε0‖L2(Ω) + ‖Pεvε0 − v00‖L2(Ω) , (5.8)

and the first term at the right-hand side of the previous inequality is estimated as follows:

‖vε0 − Pεvε0‖2
L2(Ω) � γε

∫
Γε

[vε0]
2 dσ + γε2

∫
Ωε

2

|∇vε0|2 dx � γε2 , (5.9)

where we have used [19, Lemma 6], the fact that Pεvε0 = vε0 on Ωε
2, estimate (5.1) and the

estimate∫
Γε

[vε0]
2 dσ � 2

∫
Γε

(
v
(out)
ε0 − v

(a)
ε0

)2
dσ + 2

∫
Γε

(
v
(b)
ε0

)2
dσ =: I1 + I2 � γε . (5.10)

Indeed, I1 is estimated as follows: the inequality

I1 � γε

∫
Ωε

2

|∇vε0|2 dx ,

is obtained reasoning as in (3.14), and using Lemma 11 and Remark 12 applied to the

function

wε(x) =

⎧⎨⎩v
(a)
ε0 (x) for x ∈ Ωε

1 ,

v
(out)
ε0 (x) for x ∈ Ωε

2 ,

whose jump across Γε, [wε] = v
(out)
ε0 −v(a)ε0 , has null average over each connected component

of Γε by (5.7). On the other hand, using (1.11), we compute

I2 � 2εN−1|Γ |
∑
z∈ZN

ε

∣∣∣∣∣∣
∫

ε(Γ+z)

Sε(x) dσ

∣∣∣∣∣∣
2

� 2
∑
z∈ZN

ε

∫
ε(Γ+z)

S2
ε (x) dσ = 2

∫
Γε

S2
ε (x) dσ � γε.

In particular, by (5.9), the classical Poincar’s inequality, (5.3) and (5.1) we obtain

‖vε0‖2
L2(Ω) � γ . (5.11)
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It remains to prove equation (1.38) in the present case k = 0. To this end, we set

θ0 = χ0 +

∫ +∞

0

χ1(·, t) dt . (5.12)

We remark that θ0 coincides with θω defined in (4.53) after setting ω = 0. Using equations

(2.7), (2.8) and (2.11) and Proposition 10, we note that the components θ0
h , h = 1, . . . , N,

of θ0 : Y → RN satisfy

−σ Δy θ
0
h = 0, in E1, E2; (5.13)

[σ(∇yθ
0
h − eh) · ν] = 0 , on Γ ; (5.14)

(σ2(∇yθ
0
h − eh) · ν)(out) = 0, on Γ . (5.15)

In addition, θ0
h is a Y -periodic function with vanishing integral average over Y . The above

problem is comprised of two independent Neumann problems in E1 and E2. Comparing

with problem (5.5)–(5.6), we obtain that

θ0
h(y) =

{
yh + d1 for y ∈ E1 ,

χ00
h (y) + d2 for y ∈ E2 ,

for some constants d1, d2. Hence, recalling (2.5) and (2.6), we get

A+

∫ +∞

0

B(t) dt = σ0I +

∫
Γ

ν ⊗ [σθ0](y) dσ = σ0I − σ1|E1|I +

∫
Γ

ν ⊗ σ2χ
00(y) dσ = A0

Remark 18 We note that our hypotheses on the geometry of Ωε
2 imply that A0 is a positive

definite real symmetric matrix [9, Chapter 1] and v00 ∈ H1(Ω).

6 Time-periodic solutions

In this section we prove Theorem 7.

6.1 Fourier representation of the time-periodic solution {u#
ε }

Here we prove Theorem 7, part (i). In order to show the convergence in H1
#(R;L2(Ω))

of the series at the right-hand side of equation (1.26), we use the Parseval identity and

equations (1.3), (4.1), (4.3) and (5.11), and we get

‖u#
ε ‖H1

#(R;L2(Ω)) =

∫ T

0

∫
Ω

⎡⎣∣∣∣∣∣
+∞∑
k=−∞

vεk(x) eiωkt

∣∣∣∣∣
2

+

∣∣∣∣∣
+∞∑
k=−∞

iωkvεk(x) eiωkt

∣∣∣∣∣
2
⎤⎦ dx dt

= T

∫
Ω

+∞∑
k=−∞

(
1 + ω2

k

)
|vεk(x)|2 dx � γ

+∞∑
k=−∞

(
1 + ω2

k

)
|ck|2 < +∞.

The convergence in H1
#(R;H1(Ωε

i )), i = 1, 2, can be shown analogously.
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It remains to show that the function u#
ε (x, t) defined in (1.26) solves problem (1.15)–

(1.20). Weak solutions to this problem are defined to be in the class

uε(x, ·) is T -periodic in time; uε|Ωε
i

∈ L2
#

(
R;H1

(
Ωε
i

))
, i = 1 , 2; (6.1)

and uε|∂Ω = ΨΦ in the sense of traces. The weak formulation is∫ T

0

∫
Ω

σ∇uε · ∇ψ dx dt− α

ε

∫ T

0

∫
Γε

[uε]
∂

∂t
[ψ] dσ dt = 0, (6.2)

for each ψ ∈ L2
#(R;L2(Ω)) such that ψ is in class (6.1), [ψ] ∈ H1

#(R;L2(Γε)) and ψ

vanishes on ∂Ω × (0, T ).

The left-hand side in equation (6.2), after substituting uε from the series at the right-hand

side of (1.26), becomes

+∞∑
k=−∞

∫ T

0

[∫
Ω

σ∇vεk · ∇ψ dx+
iαωk

ε

∫
Γε

[vεk][ψ] dσ

]
eiωkt dt ,

which vanishes, since vεk satisfies problem (1.27)–(1.29) for k� 0 and problem (1.31)–(1.33)

for k = 0. The series over k can be exchanged with the integrals, since using Hölder’s

inequality and equations (1.3), (4.1), (4.2) and (5.1) we obtain

+∞∑
k=−∞

∫ T

0

[∫
Ω

|σ∇vεk · ∇ψ| dx+
αωk

ε

∫
Γε

|[vεk][ψ]| dσ
]

dt � γ(ε)

+∞∑
k=−∞

|ck|2 < +∞ .

On the other hand, the boundary condition (1.8) is satisfied, as it is easily verified by

exchanging the trace operator on ∂Ω with the series and recalling equations (1.25), (1.30)

and (1.34), taking into account the linearity and continuity of the trace operator in the

space H1
#(R;H1(Ωε

2)).

The uniqueness of T -periodic solutions to problem (1.15)–(1.20) is easily proved. Indeed,

by linearity, the difference w#
ε (x, t) of two such solutions satisfies∫ T

0

∫
Ω

σ|∇w#
ε |2 dx = 0 ;

hence it is piecewise constant. This relation follows integrating (1.15) over Ω × (0, T ),

using the Gauss–Green identity, the homogeneous Dirichlet boundary data for w#
ε and

equations (1.16), (1.17) and (1.19). By equation (1.20), it follows that w#
ε has null average

over each connected component of Γε; hence it is constant over Ω× R, and so it vanishes,

due to the homogeneous Dirichlet boundary data.

6.2 Convergence of {u#
ε } to u#

0 as ε → 0

Here we prove Theorem 7, part (ii). The strong convergence in H1
#(R;H1(Ω)) of the series

at the right-hand side of (1.39) easily follows from the Parseval identity, equations (4.1)

and (4.62), Remark 18 and assumptions (1.3) and (1.4).
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In order to show that {u#
ε } strongly converges in H1

#(R;L2(Ω)) as ε → 0 to u
#
0 , we

compute, for k0 ∈ N fixed,∫ T

0

∫
Ω

[
|u#
ε (x, t) − u

#
0 (x, t)|2 + |u#

εt(x, t) − u
#
0t(x, t)|

2
]
dx dt

= T

∫
Ω

+∞∑
k=−∞

(
1 + ω2

k

)
|vεk(x) − v0k(x)|2 dx

= T
∑

|k|�k0

(
1 + ω2

k

)
‖vεk − v0k‖2

L2(Ω) + T
∑

|k|>k0

(
1 + ω2

k

)
‖vεk − v0k‖2

L2(Ω) =: I1 + I2,

where we have used the monotone convergence theorem. Using equations (4.1), (4.3) and

(4.62) we compute

|I2| � γ
∑

|k|>k0

(
1 + ω2

k

)(
‖vεk‖2

L2(Ω) + ‖v0k‖2
L2(Ω)

)
� γ

∑
|k|>k0

(
1 + ω2

k

)
|c2k|.

By hypothesis (1.3), the right-hand term of the above inequality can be made arbitrarily

small by choosing k0 sufficiently large. For such fixed k0, I1 can be made arbitrarily small

letting ε → 0, by virtue of the strong L2 convergence of vεk to v0k as ε → 0, and the

assertion follows.

6.3 Equation for the time-periodic asymptotic solution u#
0

Here we prove Theorem 7, part (iii). Equation (1.22) follows from equations (1.25) and

(1.37) and the H1
#(R;H1(Ω))-convergence of series (1.39). In order to prove equation

(1.21), we consider its weak formulation:∫ T

0

∫
Ω

∇φ · A∇u#
0 dx dt+

∫ T

0

∫
Ω

∇φ ·
∫ +∞

0

B(τ)∇u#
0 (x, t− τ) dτdx dt = 0,

∀φ ∈ L2
#(R;H1(Ω)) . (6.3)

A direct computation shows that any partial sum of the series (1.39), i.e.

ûN0 (x, t) =

N∑
k=−N

v0k(x) eiωkt , N ∈ N , (6.4)

satisfies equation (6.3), by virtue of equations (1.36) and (1.38). Then we let N → +∞:

to this regard, as far as the second integral in equation (6.3) is concerned, we proceed

as follows. We exchange the integration order and use Hölder’s inequality, the Parseval

identity, Beppo–Levi theorem, Proposition 10 and equations (4.1) and (4.62), thus obtaining

the following estimate:∣∣∣∣ ∫ +∞

0

B(τ) e−iωkτ dτ

∫ T

0

∫
Ω

∇φ ·
∑

|k|>N

∇v0k(x) eiωkt dx dt

∣∣∣∣ � γ‖φ‖L2
#(R;H1(Ω))

∑
|k|>N

|ck|2, (6.5)

which tends to zero by (1.25) and (1.3).

Remark 19 Theorem 7, part (iii) is related to the results in [12], where, however, the

setting is slightly different.
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7 Stability result

In this section we prove Theorems 4 and 5. Let uε and u#
ε be the solutions of problem

(1.5)–(1.9) and problem (1.15)–(1.20), respectively. We set

wε = uε − u#
ε . (7.1)

Since wε satisfies problem (1.5)–(1.9) with homogeneous Dirichlet boundary data on

∂Ω× (0,+∞), i.e. Ψ ≡ 0, and with Sε replaced by Sε−u#
ε (·, 0), which has null mean average

over each connected component of Γε, the assertion of Theorems 4 and 5 respectively

follows from Theorem 2 and Corollary 3, after proving that u#
ε (·, 0) satisfies (1.11).

To this end, we first observe that a classical trace inequality implies that

1

ε

∫
Γε

[
u#
ε (x, 0)

]2
dσ �

γ

ε

∫ T

0

∫
Γε

(
|
[
u#
ε

]
|2 + |

[
u

#
εt

]
|2
)

dσ dt. (7.2)

Then we use equation (1.26), the Parseval identity, (4.1), (4.2) and (5.10) and estimate

γ

ε

∫ T

0

∫
Γε

(
|
[
u#
ε

]
|2 + |

[
u

#
εt

]
|2
)

dσ dt=
γ

ε

+∞∑
k=−∞

∫
Γε

|
[
vεk

]
|2
(
1 + ω2

k

)
dσ

� γ

+∞∑
k=−∞

|ck|2(1 + k2). (7.3)

The assertion follows, since the right-hand term of (7.3) is estimated by a constant

independent of ε, by (1.25) and (1.3).

8 Conclusions

In this work we studied the electric conduction in biological tissues in the radiofrequency

range. Both a microscopic model and a homogenised macroscopic model have been

considered, for time-periodic Dirichlet boundary data. We proved that the solution to the

microscopic problem approaches a time-periodic steady state for large times. Further, this

limit is uniform with respect to the microstructural parameter ε.

As a consequence, the solution to the homogenised problem also approaches a time-

periodic steady state for large times. We derived the equation determining this steady

state and connected its coefficients to geometrical and material properties of the biological

structure.

These results are relevant from the point of view of applications, since we gave here

a theoretical justification for the complex elliptic problem (1.36)–(1.37) presently used in

electrical impedance tomography. Even more significantly, we provided an explicit connec-

tion between the coefficients in equation (1.36) and the properties of the biological tissue.

We think that the applications to electrical impedance tomography may significantly

benefit from further investigations on the subject of coefficient reconstruction (i.e. the

inverse problem) for the homogenised model introduced above ((1.21)–(1.22)).
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