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Constraints on the Equations of State of stiff anisotropic minerals:
rutile, and the implications for rutile elastic barometry
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Abstract

We present an assessment of the thermo-elastic behaviour of rutile based on X-ray diffraction data and direct elastic measurements
available in the literature. The data confirms that the quasi-harmonic approximation is not valid for rutile because rutile exhibits sub-
stantial anisotropic thermal pressure, meaning that the unit-cell parameters change significantly along isochors. Simultaneous fitting of
both the diffraction and elasticity data yields parameters of KTR0= 205.14(15) GPa, KSR0= 207.30(14) GPa, K ′

TR0= 6.9(4) in a 3rd-order
Birch-Murnaghan Equation of State for compression, αV0= 2.526(16) × 10–5 K–1, Einstein temperature θE = 328(12) K, Anderson-
Grüneisen parameter δT = 7.6(6), with a fixed thermal Grüneisen parameter γ = 1.4 to describe the thermal expansion and variation
of bulk modulus with temperature at room pressure. This Equation of State fits all of the available data up to 7.3 GPa at room tempera-
ture, and up to 1100 K at room pressure within its uncertainties. We also present a series of formulations and a simple protocol to obtain
thermodynamically consistent Equations of State for the volume and the unit-cell parameters for stiff materials, such as rutile. In com-
bination with published data for garnets, the Equation of State for rutile indicates that rutile inclusions trapped inside garnets in meta-
morphic rocks should exhibit negative residual pressures when measured at room conditions.
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Introduction

Rutile (tetragonal, space group P42/mnm) is one of the poly-
morphs of TiO2. It is a common accessory mineral in meta-
morphic rocks such as gneisses and schists and it is the
primary titanium-bearing phase in eclogites (e.g. Meinhold,
2010). Mei et al. (2014) summarised all of the density functional
theory (DFT) studies of the TiO2 polymorphs and provided an
equilibrium phase diagram that appears to be fairly consistent
with experimental data available in the literature. This suggests
that anatase is the thermodynamically stable phase at room con-
ditions, whereas rutile becomes the thermodynamically stable
phase above 1200 K and therefore it is metastable up to 1200 K
at atmospheric pressure. The occurrence of rutile inclusions in
metamorphic rocks indicates that rutile is the thermodynamically
stable phase at metamorphic conditions. The high-pressure poly-
morphs of rutile were studied extensively with X-ray diffraction
(XRD) experiments in diamond-anvil cells (e.g. Dubrovinskaia
et al., 2001; Al-Khatatbeh et al., 2009). The first transition of rutile
upon compression is to a phase with an α-PbO2 type structure
called TiO2 II. The pressure for this transition ranges from 2.6
GPa to 34 GPa (McQueen et al., 1967; Nicol and Fong, 1971;
Al’tshuler et al., 1973; Mammone et al., 1980; Syono et al.,
1987; Arashi, 1992). XRD experiments (Sato, 1977; Ming and
Manghnani, 1979; Hazen and Finger, 1981; Kudoh and Takeda,

1986; Gerward and Staun Olsen, 1997) are however in agreement
with each other in demonstrating that rutile shows no transition
below 12 GPa at room temperature. However, Kojitani et al.
(2018) calculated from thermodynamic properties that the equi-
librium phase boundary between rutile and TiO2 II passes
through room conditions, which implies that rutile is metastable
at any pressure at room temperature. Therefore, the thermo-
dynamic stability of rutile remains unclear and we restrict our
analysis to pressures of less than 7.3 GPa, and temperatures less
than 1100 K, under which conditions rutile at least appears to
be kinetically stable and does not normally transform to other
TiO2 polymorphs.

Rutile is commonly formed during prograde metamorphism
by reactions that also generate garnet, for example (e.g.
Meinhold, 2010; Zack and Kooijman, 2017):

anorthite+ quartz+ 2 ilmenite = garnet(Gr1Alm2)+ 2 rutile

Al2SiO5 + 2 quartz+ 3 ilmenite = almandine+ 3 rutile

When rutile is formed together with garnet, or when it is already
present in the protolith, it can be trapped as inclusions in garnet.
Whereas the distribution of Ti between rutile and other minerals,
such as quartz, is commonly used as a geothermometer for meta-
morphic rocks (e.g. Zack and Kooijman, 2017), the potential for
using rutile inclusions in garnets as an elastic geobarometer has
not yet been evaluated. Elastic geobarometry is based on the evi-
dence that minerals trapped as inclusions within other host miner-
als can develop non-lithostatic pressures on exhumation as a result
of the differences between the thermo-elastic properties of the host
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and inclusion phases (e.g. Angel et al., 2015). With modern
Equations of State (EoS) and elasticity data of the mineral phases,
the entrapment conditions of host-inclusion systems can be derived
from the residual pressure measured in the inclusions at room con-
ditions (e.g. Zhang, 1998; Kohn, 2014; Angel et al., 2017). In this
study, we evaluate for the first time whether rutile inclusions in gar-
nets can be used for host-inclusion geobarometry by critically
examining its EoS. The difficulty is that rutile is a very stiff material
and the changes in its unit-cell volume and cell parameters are
small over its P–T range of stability. Thus, it is not possible to
determine reliable EoS parameters simply by performing conven-
tional refinements to individual P–V or P–V–T datasets.
Therefore, we make use of the fact that the variation with P and
T of the bulk modulus of a crystal is determined by the same
EoS parameters that define the variation of the unit-cell volume.
We re-analyse all of the available literature for the variation of
unit-cell parameters and elastic moduli of rutile with P and T, to
obtain an internally-consistent dataset. We then determine the
EoS parameters by a simultaneous fit to the compression, expan-
sion and elasticity data. In doing so we discuss the criteria for
obtaining self-consistency between the fits to the volumes and
the cell parameters, which provide further constraints on the EoS
parameters and also a ‘recipe book’ for the refinement of the EoS
of other anisotropic stiff materials.

Data

The elastic properties of rutile have been studied extensively as a
function of both pressure and temperature by means of different
experimental techniques and computational studies. Mei et al.
(2014) demonstrated that the elastic properties of rutile from
DFT simulations are strongly dependent upon the choice of
exchange–correlation functional used, with their own calculations
showing a total spread of 60 GPa in the value of the isothermal

Reuss bulk modulus, KTR = −V
∂P
∂V

( )
T

. Given the difficulties

of extending computer simulations to finite temperatures, in part
because of the limitations of the quasi-harmonic approximation
that we discuss below, we therefore only include experimental
data in this analysis. Compressional data available in the literature
obtained by various diffraction methods at room temperature
extend to 10.6 GPa but exhibit considerable data scatter in the vol-
ume measurements above 7.3 GPa (Fig. 1), and similar behaviour in
the values of the unit-cell parameters. We therefore restricted our
dataset to the more consistent studies below 7.3 GPa (Table 1).
Because the excluded data are not inconsistent (within their large
uncertainties) with the data used in the reported EoS fits, their
inclusion in the fits makes no significant difference to the refined
parameters but only increases their estimated uncertainties.

The available data for volume (and cell parameter) variation
with temperature at room pressure is much more consistent
(Fig. 2a), with the exception of the data of Wang et al. (2013)
and the data point of Meagher and Lager (1979) at 1173 K
which were excluded from the current analysis because they are
inconsistent with the remaining data (Fig 2a). The reasons for
these inconsistencies are not obvious from the published informa-
tion. Of special importance for constraining both the appropriate
thermal expansion model and its coefficients are the precise data
collected below room temperature by optical interferometry
(Kirby, 1967) and by neutron powder diffraction (Burdett et al.,
1987). To the best of our knowledge there are no measurements
of the volume of rutile at simultaneous high P and T.

The full elastic tensor of rutile as a function of temperature up
to 1800 K was determined by Isaak et al. (1998) using the rect-
angular parallelepiped resonance (RPR) method, from which

the variation of the adiabatic Reuss bulk KSR = −V
∂P
∂V

( )
S

and

linear moduli M1SR = M2SR = −a
∂P
∂a

( )
S

and M3SR = −c
∂P
∂c

( )
S

can be obtained. Unfortunately, the low-temperature determina-
tions of the elastic tensor of rutile by Manghnani et al. (1972)
are incomplete and no moduli can be obtained from them, and
the results of Fritz (1974) are only reported as pressure and tem-
perature derivatives. We are therefore only able to use the interpo-
lated values for the elastic tensor components up to 0.75 GPa that
are reported in Manghnani (1969) in addition to data from Isaak
et al. (1998). Fritz (1974) shows that all of these earlier studies are
in reasonable agreement with each other with the exception of the
first derivative ofM3S. We use the pressure derivatives reported by
Fritz (1974), as an additional constraint when fitting the unit-cell
parameters because his values for the pressure derivatives of the
linear moduli are in better agreement with the XRD data reported
in the literature than the linear moduli that can be obtained from
the elastic moduli reported by Manghnani (1969).

In most solids, the thermal expansion coefficient increases or
remains constant at high temperatures (e.g. Anderson, 1995).
However, at high temperatures above ∼1100 K, the measured
unit-cell volumes of rutile deviate towards smaller values than
would be expected by extrapolation from lower temperatures,
implying that rutile is denser than expected (Fig. 2a). In agree-

ment with this observation,
∂KSR

∂T

( )
P=0

becomes less negative

above 1100 K than at lower temperatures (Fig. 2b and Isaak
et al., 1998) meaning that rutile is stiffer than expected at high
temperatures. This behaviour is in part due to the anomalous stif-
fening of the acoustic phonons driven by hybridisation of elec-
trons between the Ti and O atoms (Lan et al., 2015) and causes
a change in the atomic-scale expansion mechanism within the
rutile structure at high temperatures (see Sugiyama and
Takeuchi, 1991). The effects of partial oxidation in some

Fig. 1. P–V data of rutile taken from the literature. The open symbols are the data
excluded from the current analysis. The full symbols are the selected data fitted
with the final EoS (solid line) with the parameters given in Table 2.
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experiments cannot be excluded. This deviation of properties can-
not be described by a simple EoS, and therefore we only used data
up to 1100 K in our analysis. The dataset used to determine the
elastic parameters of rutile therefore consists of 111 data
(Table 1), made up of 17 direct measurements of elastic moduli,
12 direct measurements of dimensional changes with temperature
by interferometry and 82 determinations of unit-cell parameters
by diffraction.

Equation of State analysis

All fits of elastic parameters were performed with the EosFit7c
program (Angel et al., 2014) following the approach of Milani
et al. (2017) to perform simultaneous fits of elastic moduli and
cell parameters. Initial fits of the cell parameters with
temperature yield values of the linear thermal expansion coeffi-
cients of a1 = a2 � 0.77× 10−5K−1 and a3 � 0.99× 10−5K−1.
The room-temperature elastic moduli (e.g. Isaak et al., 1998) give
values of the adiabatic linear moduli of M1SR = M2SR � 506 GPa
and M3SR � 1149 GPa. The c axis is therefore more than twice
as stiff as the a axis, but it also has a significantly higher thermal
expansion coefficient. This has an important consequence for the
types of EoS that can be used to fit the data for rutile. The gradient
of a line of constant unit-cell parameter a in P–T space is defined

by
∂P
∂T

( )
a

= a1M1TR. An equivalent expression applies for c. We

do not have direct measurements of the isothermal moduli M1TR

and M3TR but they do not differ by more than 2% from the adia-
batic values, as we confirm in our analysis described later.
Therefore, for initial analysis we can determine the approximate
slopes of lines of constant a and c cell parameters at room condi-

tions from the adiabatic moduli as
∂P
∂T

( )
a

� 3.9 MPa K−1 and

∂P
∂T

( )
c

� 11.3 MPa K−1. These values differ by a factor of 3,

implying that lines of constant a and c diverge rapidly in P–T
space (Fig. 3a). Neither do these lines follow the isochor through
room conditions, whose slope is given by the product of the vol-
ume thermal expansion coefficient and the isothermal Reuss bulk

modulus,
∂P
∂T

( )
V

= aVKTR. Therefore, while along an isochor of

rutile the volume does not change, the a and c cell parameters

change significantly (Fig. 3b), generating significant unit cell strains
(in Voigt notation) 11 = Da

a = 12 = Db
b and 13 = Dc

c . Along an iso-
chor the linear strains sum to zero because:

1V = DV
V

= 11 + 12 + 13 (1)

The frequencies of vibrational modes are primarily dependent
upon the strains applied to the unit cell (e.g. Grüneisen, 1926;
Barron et al., 1980; Angel et al., 2019). Therefore, in rutile the pho-
non mode frequencies must change along isochors. This violates
the fundamental assumption of the quasi-harmonic approximation
(QHA) to the thermodynamics of solids (e.g. Anderson, 1995)
which underlies the derivation of thermal-pressure EoS such as
Mie-Grüneisen-Debye (MGD) or the simplified thermal-pressure
model of Holland and Powell (2011).

A simple consequence is that such QHA-based EoS cannot
simultaneously fit all of the volume and elasticity data of rutile.
For example, if the pressure derivative of the bulk modulus
∂K
∂P

( )
T=298K

= K ′
0 is held to the value of 6.92 (average of values

from Manghnani, 1969; Fritz, 1974) determined by direct mea-
surements of the elasticity of rutile, then refinement of the
other parameters of an MGD EoS to the selected data for rutile
do not allow the measured variation of KSR with temperature
(Isaak et al., 1998) to be fit (Fig. 4). Instead, a value of K ′

0 ≈ 9
is required to fit the variation of KSR with temperature, but
such a high value is incompatible with the high-pressure measure-
ments of the volume and elasticity (Manghnani, 1969; Fritz,
1974). This confirms the conclusion of Lan et al. (2015) that the
QHA does not apply to rutile. Therefore, to fit the data of rutile
we have used an ‘isothermal’ type of EoS in which there are no
underlying assumptions of quasi-harmonic behaviour (Angel
et al., 2018). In an ‘isothermal’ EoS, the volume at P and T is
obtained by first calculating the volume thermal expansion at
room pressure to the T of interest. Then an isothermal EoS is
used to calculate the isothermal compression at the temperature
T from room pressure to the final pressure. This requires that
the temperature variation of KTR and K ′

TR must be described by
additional parameters (Angel et al., 2018). The disadvantage of
this approach compared to thermal-pressure EoS based on QHA
is that it requires more parameters, and therefore other constraints

Table 1. Data used to determine elastic parameters for rutile.

Source Data type P range (GPa) T range (K) Ndata

Sato (1977) Powder XRD 0–7.24 Ambient 20
Ming and Manghnani (1979) Powder XRD 0–5.9 Ambient 9
Hazen and Finger (1981) Single-crystal XRD 0–4.84 Ambient 4
Kudoh and Takeda (1986) Single-crystal XRD 0–5.0 Ambient 2
Manghnani (1969) Elastic moduli from ultrasonic wave velocities 0–0.75 Ambient 4
Kirby (1967) Length measurements by interferometry Ambient 100–700 12
Rao et al. (1970) Powder XRD Ambient 298–918 14
Meagher and Lager (1979) Single-crystal XRD Ambient 298–873 2
Burdett et al. (1987) Neutron powder diffraction Ambient 15 1
Sugiyama and Takeuchi (1991) Single-crystal XRD Ambient 298–943 3
Hummer et al. (2007) Powder XRD Ambient 298–563 15
Henderson et al. (2009) Neutron powder diffraction Ambient 298–1065 12
Isaak et al. (1998) Elastic moduli from rectangular parallelepiped resonance Ambient 300–1100

300–700
13 (for a, V)
9 (for c)

‘Ndata’ is the number of data from each source used in the refinement of EoS parameters. This data is available in the Supplementary materials and at http://www.rossangel.net as .dat text
files that can be read by the EosFit suite of programs.
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or restraints on the EoS parameters must be introduced when, as is
the case for rutile, the available data are insufficient to determine
all of the parameter values independently. We discuss the appro-
priate constraints as we present the results of our analysis below.

Volume Equation of State

As noted above, the direct measurements of the elastic moduli of
rutile at high pressures show that K ′

0 is significantly higher than 4,
so we use a Birch-Murnaghan 3rd-order EoS (Birch, 1947) to
describe the compressional behaviour in which KTR0 and K ′

TR0
are the parameters to be determined. For thermal expansion at
room pressure we use the equation developed by Kroll et al.
(2012) as a version of the Holland and Powell (2011) model,
which describes the thermal expansion in terms of an Einstein

oscillator. But we explicitly use the Anderson-Grüneisen param-
eter δT (Anderson 1995) in place of (1+ K ′

T ). This approach
separates the thermal and baric parts of the EoS (Angel et al.,
2018) while maintaining a reasonable physical basis in the
Einstein oscillator model behind the thermal expansion model.
The separation of variables (Angel et al., 2018) allows both the
room-T high-pressure data and the variation of the bulk modulus
with temperature to be fitted. We also use δT to define the tem-
perature variation of the bulk modulus in a way (Anderson,
1995; Hellfrich and Connolly, 2009; Angel et al., 2018) that is
thermodynamically valid:

KTR(T, P = 0) = KTR0
V0

V(T)

( )dT

(2)

There are no data available for rutile to constrain the temperature
variation of K

′
, so we have to assume that (∂K ′

TR/∂T)P = 0. The
thermal effects in the EoS are therefore described by the thermal
expansion coefficient at room conditions αV0, the Einstein tem-
perature θE (Holland and Powell, 2011) and the Anderson-
Grüneisen parameter δT. The isotropic thermal Grüneisen

Fig. 2. (a) T–V data of rutile taken from the literature; (b) the variation of the adia-
batic Reuss bulk modulus determined by Isaak et al. (1998), showing the decrease
in the temperature variation of the bulk modulus above 1100 K. The open symbols
are the data excluded from the current analysis. The full symbols are the selected
data fitted with the final EoS (solid lines) with the parameters given in Table 2.

Fig. 3. (a) The lines of constant a and c of rutile in P–T space calculated from the final
refined elastic parameters (Table 2) deviate significantly from the isochor that passes
through room conditions; (b) as a consequence, the unit cell parameters of rutile
change significantly along the isochor.
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parameter γV (Anderson, 1995) is needed to relate the isothermal
bulk moduli used to describe the volume variation with pressure,
to the adiabatic bulk moduli measured in ultrasonic resonance
(Isaak et al., 1998) and wave velocity experiments (Manghnani,
1969):

KS = (1+ aVgVT)KT (3)

The value of γV for rutile is not known exactly but appears to lie
in the range of 1.2 to 1.6 at room conditions, and to either
increase or decrease to 1.6 or 1.4 at 1100 K (see Isaak et al.,
1998, fig. 9). Test fits of isothermal-type EoS to the selected
data for rutile indicate that the particular value chosen for γV
within this range has no significant influence on the refined para-
meters of the EoS or the quality of fit to the data. We therefore
used an average value of γV = 1.4 and assumed that it does not

vary over the temperature interval 0–1100 K. Because rutile is
so stiff, it is also necessary to over-weight (by artificially reducing
its uncertainty) the experimental datum for KSR at room condi-
tions in order to stabilise the refinement. With these constraints
the final refined EoS parameters reported in Table 2 are obtained,
which clearly fit all of the selected experimental data within the
experimental uncertainties (Figs 1, 2). But whether these EoS
parameters correctly predict the volume of rutile outside the
range of the underlying data (to 7.3 GPa and 1100 K) is not
known. The values of δT and K ′

TR are significantly different
from one another, which indicates that the bulk modulus

variation along an isochor,
∂KTR

∂T

( )
V

= aVKTR(K ′
TR − dT ), is

–0.004(3) GPa K–1, a value similar to that estimated for olivine
(e.g. Anderson et al., 1992; Angel et al., 2018).

Cell parameters

As for the volume, the values of the anisotropic thermal
Grüneisen parameters cannot be refined and must be fixed to
values determined independently. For the principal axes of com-
pression the thermodynamically-correct expression that relates
the corresponding adiabatic and isothermal linear moduli MiS

and MiT can be derived (Nye, 1957; Barron et al., 1980; Milani
et al., 2017) from the relationship between the adiabatic and iso-
thermal elastic compliance tensors as:

MiS = 1+ aigVT
MiS

KS

( )
MiT (4)

However, the bulk modulus KS required for this conversion of the
linear moduli is not always available when fits of unit-cell para-
meters are performed. Within the EosFit7c program anisotropic
thermal Grüneisen parameters γi are therefore used in an equa-
tion analogous to (3):

MiS = (1+ 3aigiT)MiT (5)

The values of the anisotropic thermal Grüneisen parameters used
in EosFit7c are then given by:

gi =
1
3
MiS

KS
gV (6)

Note that for materials such as rutile with significant elastic
anisotropy, γi≠ γV. The other EoS parameters are not especially
sensitive to the values of γi, which were therefore obtained
(Table 2) from γV by using the values of the elastic moduli deter-
mined at room temperature (Isaak et al., 1998).

The variation of the unit-cell parameters of a crystal with pres-
sure is always proportionally smaller than that of the volume. For
a stiff material such as rutile there is too little variation of the a
and c unit-cell parameters over the accessible pressure range to
allow simultaneous refinement of both the linear moduli MiTR

and their pressure derivatives M′
iTR. We therefore constrained

some of these parameters to values that are consistent with both
the data for the a and c axes and the corresponding parameters
for the volume, and we confirmed after fitting that the remaining
refined parameters for the a and c unit-cell parameters were con-
sistent with the volume parameters. Because the volume strain of
the crystal induced by a change in T or P is given by the sum of

Fig. 4. The variation with temperature of (a) volume and (b) adiabatic Reuss bulk
modulus of rutile. The volume variation is well-reproduced by an MGD thermal-
pressure EoS with a wide range of K′

TR0. The bulk modulus data can only be modelled
with K′

TR0 ≈ 9 , a value that is incompatible with the high-pressure volume and elas-
ticity data.
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the linear strains of the unit-cell parameters (equation 1), it fol-
lows that the axial thermal expansion and compressibilities sum
to the corresponding quantities for the volume:

aV = 1
V

∂V
∂T

( )
P

= a1 + a2 + a3

bV = 1
V

∂V
∂P

( )
T

= b1 + b2 + b3.

(7)

Because the volume compressibility is the inverse of the isother-

mal Reuss bulk modulus, KTR = −V
∂P
∂V

( )
T

, and the linear com-

pressibilities are the inverse of the corresponding isothermal

Reuss linear moduli, MiTR = −li
∂P
∂li

( )
T

, the relationship between
these moduli must always be:

KTR = (M−1
1TR +M−1

2TR +M−1
3TR)

−1 (8)

Differentiation of (8) gives the relationship between the first pres-
sure derivatives of the moduli:

K ′
TR = K2

TR

∑3
i=1

M′
iTR

M2
iTR

(9)

In the fits to the data, the values of M′
iTR (Table 2) were taken

from Fritz (1974) with a slight adjustment within the reported
experimental uncertainties to ensure that they conform to equa-
tion 9. In addition, the linear modulus of the c axis,M3TR0, cannot
be refined simultaneously with the value of δT and it was therefore
fixed to a value consistent with the experimental determinations
of M3SR at room temperature (Isaak et al., 1998) and the calcu-
lated value of γ3. The values of the remaining parameters obtained
by refinement are reported in Table 2. They fulfil the consistency
requirements given in equations 7, 8, and 9, and reproduce the
experimental data within their uncertainties.

Conclusions

We have demonstrated that for stiff minerals it is possible to
obtain more reliable EoS parameters by fitting experimental elas-
tic moduli and cell parameter data simultaneously. Of particular
importance, in the absence of data collected at simultaneous

high T and P, is the use of high-temperature measurements of
the elastic moduli to constrain the P–T ‘cross-terms’ in the EoS.
Without such data, it is not possible to determine whether the
quasi-harmonic approximation is valid or not for the mineral,
as we have done in Fig. 4. For materials such as rutile in which
αiMiTR varies strongly with direction in the crystal, EoS based
on QHA are not only theoretically invalid but also cannot fit all
of the available experimental data. The isothermal types of EoS
do not suffer from this theoretical problem, but they involve
more parameters than can be determined independently from
the experimental data for stiff materials such as rutile. Applying
the requirements for consistency between linear and volume para-
meters of the EoS can help overcome this issue in a
thermodynamically-consistent manner. The resulting elastic para-
meters for the volume and unit-cell parameters of rutile (Table 2)
are also available as .eos files in the Supplementary materials (see
below) for this paper and from the website http://www.rossangel.
net for use in the EosFit7 suite of programs.

As noted above, rutile is a very common inclusion in meta-
morphic garnets. Minerals trapped as inclusions within other
host minerals can exhibit residual pressures when measured at
room conditions because of the differences between the thermo-
elastic properties of the host and inclusion phases. This residual
or remnant pressure can be measured by a variety of techniques
such as diffraction or spectroscopy (e.g. Kohn, 2014; Murri
et al., 2018; Angel et al., 2019), and with knowledge of the EoS
of both the host and inclusion phases the P and T of inclusion
entrapment can be inferred (Rosenfeld and Chase, 1961). To
understand the development of inclusion pressures Rosenfeld
and Chase (1961) introduced the thermodynamic concept of an
‘isomeke’ (first named as such by Adams et al., 1975). The iso-
meke is the only path in P–T space along which no residual pres-
sures would be developed in the inclusion after entrapment. The

slope of an isomeke is
∂P
∂T

( )
VI−VH

= aI − aH

bI − bH
where the sub-

script ‘I’ indicates the inclusion and the subscript ‘H’ the host
mineral, α is the volume thermal expansion coefficient and β is
the volume compressibility (e.g. Rosenfeld and Chase, 1961;
Angel et al., 2015). Rutile (Table 2) is stiffer than pyrope and
has a similar thermal expansion coefficient to that of pyrope
(Milani et al. 2015), which means that βI < βH and αI ≃ αH.
Therefore, the isomekes of rutile trapped in pyrope are almost
flat, as shown in Fig. 5a; in particular, the isomeke passing
through room conditions has ∂P/∂T ≃ 0 at temperatures below
∼600 K and a negative ∂P/∂T at higher temperatures. In fact,

Table 2. Best-fit elastic parameters for rutile.

Volume a axis c axis

KTR0: GPa 205.14(15) MiTR0: GPa 502.3(4) 1123.0 fixed
KSR0: GPa 207.30(14) MiSR0: GPa 506.1(4) 1149.1
K′
TR0 6.9(4) M′

iTR0 18.8 fixed 19.4 fixed
K′′
TR0: GPa

–1 –0.075 implied value M′′
iTR0: GPa

–1 –0.202 implied value –0.100 implied value
αV0: K

–1 2.526(16) x 10–5 αi0: K
–1 0.769(4) x 10–5 0.998(7) x 10–5

θE: K 328(12) θE: K 307(7) 391(9)
δT 7.6(6) δT 9.0(4) 5.8(6)
δ
′

0.0 fixed δ
′

0.0 fixed 0.0 fixed
γ0 1.4 fixed γi0 1.1 fixed 2.6 fixed
q 0.0 fixed q 0.0 fixed 0.0 fixed
Ndata 111 107 103

Parameters for a Birch–Murnaghan 3rd-order EoS, combined with the Holland and Powell (2011) thermal expansion model as modified following Kroll et al. (2012) and the temperature
variation of bulk modulus after Hellfrich and Connolly (2009). For a full definition of these parameters, see Angel et al. (2018). ‘Ndata’ is the number of data used in the refinement of EoS
parameters. These parameters are available in the Supplementary materials and at http://www.rossangel.net as .eos files that can be used in the EosFit suite of programs.

344 Gabriele Zaffiro et al.

https://doi.org/10.1180/mgm.2019.24 Published online by Cambridge University Press

http://www.rossangel.net
http://www.rossangel.net
http://www.rossangel.net
http://www.rossangel.net
http://www.rossangel.net
https://doi.org/10.1180/mgm.2019.24


βI – βH is always negative over the P–T range shown in Fig. 5 but
αI becomes larger than αH at higher temperatures leading to a
negative ∂P/∂T.

When the host-inclusion system leaves the isomeke, a residual
pressure is developed in the inclusion. This can be most easily
understood for a small isothermal change in the external pressure,
Pext, applied to the host. By definition of the isothermal bulk
modulus of the host, the change in volume of the inclusion cavity

will be
DV
V

= −DPext
KH

. This volume change applied to the inclu-

sion changes its pressure by DPinc = KI

KH
DPext (Angel et al., 2017;

Ferrero and Angel, 2018). For a stiff inclusion trapped in a softer
host mineral, like the case of rutile trapped in pyrope, the change
in the inclusion pressure ΔPinc will always be greater than the
change in external pressure ΔPext. Therefore, when the system is
taken to a P and T above the entrapment isomeke, the residual
pressure (Pinc) will be higher than the external pressure (Pext).

On the contrary, when the system is taken to lower external P
than the entrapment isomeke, Pinc will be less than Pext
(Fig. 5a). Therefore, rutile inclusions will exhibit positive Pinc at
room conditions only if room conditions lie above the entrapment
isomeke. The isomeke through room conditions (Fig. 5a) thus
divides P–T space in two areas: rutile inclusions trapped below
this isomeke will exhibit positive Pinc when measured at room
conditions, whereas rutile inclusions trapped above this isomeke
will exhibit negative Pinc. This means that rutile inclusions trapped
in pyrope from ultra-high-pressure metamorphic rocks should
always exhibit negative residual pressures. The calculated Pinc as
a function of entrapment conditions are shown as contours in
Fig. 5b. A negative value of Pinc represents an expansion of the
inclusion crystal relative to a free crystal of rutile at room condi-
tions. Such expansion could only occur if rutile inclusion crystals
are strongly bonded to the garnet host at the host/inclusion inter-
face. If such bonding does not occur, then rutile inclusions will be
free to contract back to the volume of a free crystal at room con-
ditions, leaving a void space between the inclusion crystal and the
host crystal. If that occurs, the inclusions will exhibit a pressure
equal to ambient P, independent of the conditions of entrapment.
Rutile inclusions in pyrope garnets from Dora Maira massif mea-
sured with Raman spectroscopy (N. Campomenosi, 2018, pers.
comm.) exhibit zero residual pressure (within the measurement
uncertainties), thus confirming this analysis and that the rutile
inclusion crystals become mechanically detached from the garnet
host. The same conclusion is obtained even if the EoS for rutile of
Holland and Powell (2011) is used. It has a much lower volume
thermal expansion coefficient and a stiffer bulk modulus that
do not reproduce the experimental data (Tables 1) as well as
the EoS given in Table 2. The rutile-pyrope isomekes calculated
with it therefore have slopes more positive than those shown in
Fig. 5a, but the bulk modulus contrast between rutile and garnet
ensures that it still predicts that the final Pinc will be negative for
rutile inclusions entrapped at metamorphic conditions. Rutile
trapped in other garnet compositions should also show negative
or zero residual pressures because all garnets in metamorphic
rocks are significantly less stiff than rutile (Milani et al., 2015;
Milani et al., 2017).

The determination of the variation of the unit-cell parameters
of rutile (Table 2) also allows us to calculate the residual unit-cell
strains expected for rutile inclusions in garnets. These calculations
show that at room conditions the c axis of a rutile inclusion will be
stretched compared to the c axis of a free crystal of rutile (i.e. posi-
tive strain) whereas the a axis will exhibit a compressive strain
(i.e. negative strain) but these strains always result in a positive
volume strain and thus negative Pinc. All of these observations
lead to the conclusion that rutile is not suitable for elastic geo-
barometry when it is trapped in garnet. This contrasts with the
behaviour of zircon inclusions trapped in garnet which exhibit
positive Pinc when measured at room conditions (Campomenosi
et al., 2018; Stangarone et al., 2019) even though zircon (e.g.
Van Westrenen et al., 2004; Zaffiro et al., 2018), like rutile, is stif-
fer than garnet. In the case of zircon however, the contrast in bulk
modulus with the garnets is compensated by the substantially
lower thermal expansion coefficient of zircon. Therefore, stiff
inclusions trapped in softer host minerals are suitable for elastic
geobarometry only when αV of the inclusion is significantly
lower than the αV of the host, which is not the case of rutile inclu-
sions trapped in garnet hosts.

Author ORCIDs. Ross J. Angel, 0000-0003-0861-398X

Fig. 5. (a) Isomekes for rutile and pyrope. Consider a rutile inclusion trapped in pyr-
ope at 700 K and 2.95 GPa (blue spot). If the external pressure is raised above the
entrapment isomeke (blue line) the inclusion will have a higher pressure than the
external pressure. At external pressures below the entrapment isomeke, the inclusion
pressure is lower than the external pressure. The red line is the isomeke passing
through room conditions; in order for an inclusion measured at room conditions
to exhibit a positive residual inclusion pressure it must be trapped below the red iso-
meke; (b) Entrapment isomekes showing the residual pressures Pinc (GPa) in an inclu-
sion measured at room conditions as a function of the entrapment P and T.

Mineralogical Magazine 345

https://doi.org/10.1180/mgm.2019.24 Published online by Cambridge University Press

https://orcid.org/
https://orcid.org/0000-0003-0861-398X
https://doi.org/10.1180/mgm.2019.24


Acknowledgements. This work was supported by ERC starting grant
714936 ‘True Depths’ to Matteo Alvaro. We thank Mattia Mazzucchelli for
help with the calculations of remnant inclusion strains. We also thank our col-
leagues Kira Musiyachenko, Nicola Campomenosi and Hugo van
Schrojenstein Lantman for discussions, and two anonymous reviewers
whose comments helped improve the manuscript.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1180/mgm.2019.24

References

Adams H.G., Cohen L.H. and Rosenfeld J.L. (1975) Solid inclusion piezother-
mometry I: comparison dilatometry. American Mineralogist, 60, 574–583.

Al-Khatatbeh Y., Lee K.K. and Kiefer B. (2009) High-pressure behavior of TiO2

as determined by experiment and theory. Physical Review B, 79, 134114.
Al’tshuler L.V., Podurets M.A., Simakov G.V. and Trunin R.F. (1973) High-density

forms of fluorite and rutile. Soviet Physics Solid State, 15, 969–971.
Anderson O.L. (1995) Equations of State of Solids for Geophysics and Ceramic

Science. Oxford University Press, Oxford, UK, 432 pp.
Anderson O.L., Isaak D. and Oda H. (1992) High-temperature elastic constant

data on minerals relevant to geophysics. Reviews of Geophysics, 30, 57–90.
Angel R.J., Gonzalez-Platas J. and Alvaro M. (2014) EosFit7c and a Fortran

module (library) for equation of state calculations. Zeitschrift für
Kristallographie, 229, 405–419.

Angel R.J., Nimis P., Mazzucchelli M.L., Alvaro M. and Nestola F. (2015) How
large are departures from lithostatic pressure? Constraints from
host-inclusion elasticity. Journal of Metamorphic Geology, 33, 801–813.

Angel R.J., Mazzucchelli M.L., Alvaro M. and Nestola F. (2017) EosFit-Pinc:
A simple GUI for host-inclusion elastic thermobarometry. American
Mineralogist, 102, 1957–1960.

Angel R.J., Alvaro M. and Nestola F. (2018) 40 years of mineral elasticity:
a critical review and a new parameterisation of Equations of State for
mantle olivines and diamond inclusions. Physics and Chemistry of
Minerals, 45, 95–113.

Angel R.J., Murri M., Mihailova B. and Alvaro M. (2019) Stress, strain and
Raman shifts. Zeitschrift für Kristallographie, 234, 129–140.

Arashi H. (1992) Raman spectroscopic study of the pressure-induced phase
transition in TiO2. Journal of Physics and Chemistry of Solids, 53, 355–359.

Barron T.H.K., Collins J.G. and White G.K. (1980) Thermal expansion of
solids at low temperatures. Advances in Physics, 29, 609–730.

Birch F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71,
809–824.

Burdett J.K., Hughbanks T., Miller G.J., Richardson Jr J.W. and Smith J.V.
(1987) Structural-electronic relationships in inorganic solids: powder neu-
tron diffraction studies of the rutile and anatase polymorphs of titanium
dioxide at 15 and 295 K. Journal of the American Chemical Society, 109,
3639–3646.

Campomenosi N., Mazzucchelli M.L., Mihailova B., Scambelluri M.,
Angel R.J., Nestola F., Reali A. and Alvaro M. (2018) How geometry and
anisotropy affect residual strain in host inclusion system: coupling experi-
mental and numerical approaches. American Mineralogist, 103, 2032–2035.

Dubrovinskaia N.A., Dubrovinsky L.S., Ahuja R., Prokopenko V.B.,
Dmitriev V., Weber H.-P., Osorio-Guillen J.M. and Johansson B. (2001)
Experimental and theoretical identification of a new high-pressure TiO2

polymorph. Physical Review Letters, 87, 275501.
Ferrero S. and Angel R.J. (2018) Micropetrology: are inclusions grains of truth?

Journal of Petrology, 59, 1671–1700.
Fritz I.J. (1974) Pressure and temperature dependences of the elastic properties

of rutile (TiO2). Journal of the Physics and Chemistry of Solids, 35, 817–826.
Gerward L. and Staun Olsen J. (1997) Post-rutile high-pressure phases in TiO2.

Journal of Applied Crystallography, 30, 259–264.
Grüneisen E. (1926) Zustand des festen Körpers. Handbuch der Physik, 1,

1–52.
Hazen R.M. and Finger L.W. (1981) Bulk moduli and high-pressure crystal

structures of rutile-type compounds. Journal of Physics and Chemistry of
Solids, 42, 143–151.

Hellfrich G. and Connolly J.A.D. (2009) Physical contradictions and remedies
using simple polythermal equations of state. American Mineralogist, 94,
1616–1619.

Henderson C.M.B., Knight K.S. and Lennie A.R. (2009) Temperature depend-
ence of rutile (TiO2) and geikielite (MgTiO3) structures determined using
neutron powder diffraction. The Open Mineralogy Journal, 3, 1–11.

Holland T.J.B. and Powell R. (2011) An improved and extended internally con-
sistent thermodynamic dataset for phases of petrological interest, involving
a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.

Hummer D.R., Heaney P.J. and Post J.E. (2007) Thermal expansion of anatase
and rutile between 300 and 575 K using synchrotron powder X-ray diffrac-
tion. Powder Diffraction, 22, 352–357.

Isaak D.G., Carnes J.D., Anderson O.L., Cynn H. and Hake E. (1998) Elasticity
of TiO2 rutile to 1800 K. Physics and Chemistry of Minerals, 26, 31–43.

Kirby R.K. (1967) Thermal expansion of rutile from 100 to 700 K. Journal of
Research of the National Bureau of Standards – A. Physics and Chemistry,
71A, 363–369.

Kohn M.J. (2014) “Thermoba-Raman-try”: Calibration of spectroscopic bar-
ometers and thermometers for mineral inclusions. Earth and Planetary
Science Letters, 388, 187–196.

Kojitani H., Yamazaki M., Kojima M., Inaguma Y., Mori D. and Akaogi M.
(2018) Thermodynamic investigation of the phase equilibrium boundary
between TiO2 rutile and its α-PbO2-type high-pressure polymorph.
Physics and Chemistry of Minerals, 45, 963–980.

Kroll H., Kirfel A., Heinemann R. and Barbier B. (2012) Volume thermal
expansion and related thermophysical parameters in the Mg,Fe olivine
solid-solution series. European Journal of Mineralogy, 24, 935–956.

Kudoh Y. and Takeda H. (1986) Single crystal X-ray diffraction study on the
bond compressibility of fayalite, Fe2SiO4 and rutile, TiO2 under high pres-
sure. Physica B, 139 & 140, 333–336.

Lan T., Li C.W., Hellman O., Kim D.S., Munoz J.A., Smith H., Abernathy D.L.
and Fultz B. (2015) Phonon quarticity induced by changes in phonon-
tracked hybridization during lattice expansion and its stabilization of rutile
TiO2. Physical Review B, 92, 054304.

Mammone J.F., Sharma S.K. and Nicol M. (1980) Raman study of rutile (TiO2)
at high pressures. Solid State Communications, 34, 799–802.

Manghnani M.H. (1969) Elastic constants of single-crystal rutile under pres-
sures to 7.5 kilobars. Journal of Geophysical Research, 74, 4317–4328.

Manghnani M.H., Fisher E.S. and Brower Jr W.S. (1972) Temperature depend-
ence of the elastic constants of single-crystal rutile between 4 and 583 K.
Journal of Physics and Chemistry of Solids, 33, 2149–2159.

McQueen R.G., Jamieson J.C. and Marsh S.P. (1967) Shock-wave compression
and X-ray studies of titanium dioxide. Science, 155, 1401–1404.

Meagher E.P. and Lager G.A. (1979) Polyhedral thermal expansion in the TiO2

polymorphs; refinement of the crystal structures of rutile and brookite at
high temperature. The Canadian Mineralogist, 17, 77–85.

Mei Z.G., Wang Y., Shang S. and Liu Z.K. (2014) First-principles study of the
mechanical properties and phase stability of TiO2. Computational Materials
Science, 83, 114–119.

Meinhold G. (2010) Rutile and its applications in earth sciences. Earth-Science
Reviews, 102, 1–28.

Milani S., Nestola F., Alvaro M., Pasqual D., Mazzucchelli M.L.,
Domeneghetti M.C. and Geiger C. (2015) Diamond–garnet geobarometry:
The role of garnet compressibility and expansivity. Lithos, 227, 140–147.

Milani S., Angel R.J., Scandolo L., Mazzucchelli M.L., Boffa-Ballaran T.,
Klemme S., Domeneghetti M.C., Miletich R., Scheidl K.S., Derzsi M.,
Tokar K., Prencipe M., Alvaro M. and Nestola F. (2017) Thermo-elastic
behaviour of grossular garnets at high pressures and temperatures.
American Mineralogist, 102, 851–859.

Ming L.C. and Manghnani M.H. (1979) Isothermal compression of TiO2

(rutile) under hydrostatic pressure to 106 kbar. Journal of Geophysical
Research, 84, 4777–4779.

Murri M., Mazzucchelli M.L., Campomenosi N., Korsakov A.V., Prencipe M.,
Mihailova B., Scambelluri M., Angel R.J. and Alvaro M. (2018) Raman elas-
tic geobarometery for anisotropic mineral inclusions. American
Mineralogist, 103, 1869–1872.

Nicol M. and Fong M.Y. (1971) Raman spectrum and polymorphism of titan-
ium dioxide at high pressures. Journal of Chemical Physics, 54, 3167–3170.

346 Gabriele Zaffiro et al.

https://doi.org/10.1180/mgm.2019.24 Published online by Cambridge University Press

https://doi.org/10.1180/mgm.2019.24
https://doi.org/10.1180/mgm.2019.24
https://doi.org/10.1180/mgm.2019.24


Nye J.F. (1957) Physical Properties of Crystals. Oxford University Press,
Oxford, 329 pp.

Rao K.K., Naidu S.N. and Iyengar L. (1970) Thermal expansion of rutile and
anatase. Journal of the American Ceramic Society, 53, 124–126.

Rosenfeld J.L. and Chase A.B. (1961) Pressure and temperature of crystalliza-
tion from elastic effects around solid inclusion minerals? American Journal
of Science, 259, 519–541.

Sato Y. (1977) Equation of state of mantle minerals determined through high-
pressure X-ray study. Pp 307–323 in: High-Pressure Research: Applications
in Geophysics (M. H. Manghnani and S.-I. Akimoto, editors). American
Geophysical Union, Washington DC.

Stangarone C., Alvaro M., Angel R., Prencipe M. and Mihailova B.D. (2019)
Determination of the phonon-mode Grüneisen tensors of zircon by DFT
simulations. European Journal of Mineralogy, doi: 10.1127/ejm/2019/0031-
2851.

Sugiyama K. and Takeuchi Y. (1991) The crystal structure of rutile as a function
of temperature up to 1600°C. Zeitschrift für Kristallographie, 194, 305–313.

Syono Y., Kusaba K., Kikuchi M., Fukuoka K. and Goto T. (1987)
Shock-induced phase transitions in rutile single crystal. Pp 385–392

in: High-Pressure Research in Mineral Physics (M. H. Manghnani
and Y. Syono, editors). American Geophysical Union, Washington DC,
USA.

Van Westrenen W., Frank M.R., Hanchar J.M., Fei Y.W., Finch R.J. and
Zha C.S. (2004) In situ determination of the compressibility of synthetic
pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition.
American Mineralogist, 89, 197–203.

Wang L., Wang H.J. and Li T. (2013) In situ high temperature X-ray diffraction
study of anatase and rutile. Acta Physica Sinica, 62, 146402.

Zack T. and Kooijman E. (2017) Petrology and geochronology of rutile. pp.
433–467 in: Petrochronology: Methods and Applications (M. J. Kohn,
M. Engi and P. Lanari, editors). Reviews in Mineralogy and
Geochemistry, 83. Mineralogical Society of America and the Geochemical
Society, Chantilly, Virginia, USA.

Zaffiro G., Angel R.J., Alvaro M., Prencipe M. and Stangarone C. (2018)
P-V-T-Ks Equations of State for zircon and rutile. Geophysical Research
Abstract, 20, 6952.

Zhang Y. (1998) Mechanical and phase equilibria in inclusion–host systems.
Earth and Planetary Science Letters, 157, 209–222.

Mineralogical Magazine 347

https://doi.org/10.1180/mgm.2019.24 Published online by Cambridge University Press

https://doi.org/10.1180/mgm.2019.24

	Constraints on the Equations of State of stiff anisotropic minerals: rutile, and the implications for rutile elastic barometry
	Introduction
	Data
	Equation of State analysis
	Volume Equation of State
	Cell parameters

	Conclusions
	Acknowledgements
	References


