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Abstract

This article investigates the long-time behavior of conservative affine processes on
the cone of symmetric positive semidefinite d × d matrices. In particular, for con-
servative and subcritical affine processes we show that a finite log-moment of the
state-independent jump measure is sufficient for the existence of a unique limit distri-
bution. Moreover, we study the convergence rate of the underlying transition kernel to
the limit distribution: first, in a specific metric induced by the Laplace transform, and
second, in the Wasserstein distance under a first moment assumption imposed on the
state-independent jump measure and an additional condition on the diffusion parameter.
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1. Introduction

An affine process on the cone of symmetric positive semidefinite d × d matrices S
+
d is

a stochastically continuous Markov process taking values in S
+
d , whose log-Laplace trans-

form depends in an affine way on the initial state of the process. Affine processes on the state
space S

+
d were first systematically studied in the seminal article of Cuchiero et al. [12]. In

their work, the S
+
d -valued affine process is constructed and completely characterized through

a set of admissible parameters, and the related generalized Riccati equations are investigated.
Subsequent developments complementing the results of [12] can be found in [33], [42], [43],
and [44]. Note that the notion of affine processes is not restricted to the state space S

+
d . For

affine processes on other finite-dimensional cones, particularly the canonical one R
m
≥0 ×R

n,
we refer the reader to [2], [5], [6], [15], [16], [17], [28], [33], and [35]. We remark that the
above list is far from complete.
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The importance of S+
d -valued affine processes has been demonstrated by the rapidly grow-

ing number of their applications in mathematical finance. In particular, they provide natural
models for the evolution of the covariance matrix of multi-asset prices that exhibit random
dependence, such as the Wishart process [10], the jump-type Wishart process [38], and a cer-
tain class of matrix-valued Ornstein–Uhlenbeck processes driven by Lévy subordinators [7].
Among these, the Wishart process is the most popular one, and it can be used as a multivariate
covariance model that extends the well-known Heston model [26]; see also [3], [9], [11], [14],
[21], [22], [23], [24], and [25]. The jump-type Wishart process was introduced by Leippold
and Trojani [38] to provide additional model flexibility. In [38] the jump-type Wishart process
is used in multivariate option pricing, fixed-income models, and dynamic portfolio choice. For
a more detailed review of financial applications of affine processes on S

+
d we refer the reader

to the introduction of [12]; see also the references therein.
In this article, we investigate the long-time behavior of affine processes on S

+
d ; i.e., we prove

the existence, uniqueness, and convergence towards the limiting distribution. Such a problem
was previously studied by Alfonsi et al. [1] for the case of Wishart processes, using a fine anal-
ysis of the Laplace transform. The case of matrix-valued Ornstein–Uhlenbeck processes driven
by Lévy subordinators was investigated by Barndorff-Nielsen and Stelzer [7], where also some
results on the support of the invariant distribution were obtained; see also [45] and [47]. Based
on stochastic stability criteria of Meyn and Tweedie, convergence to the unique invariant distri-
bution in total variation was then studied for a general class of Ornstein–Uhlenbeck processes
in [41], while generalized Ornstein–Uhlenbeck processes in dimension one have been inves-
tigated in [8] and [37]. First results on exponential ergodicity applicable to a class of affine
processes on finite-dimensional cones were recently obtained by Mayerhofer et al. [44].

In contrast, we study the existence of limit distributions for general conservative, subcritical
affine processes on S

+
d satisfying an additional first-moment condition for the state-dependent

jump measure and a log-moment condition for the state-independent jump measure, and there-
fore extend the aforementioned results of [1] and [7] to a general class of affine processes on
S

+
d . Our proofs are inspired by Sato and Yamazato [47] (for Ornstein–Uhlenbeck processes)

and rely on some technical ideas taken from [30], where affine processes on the canonical state
space Rm

≥0 ×R
n were considered. However, compared to the canonical state space, the bound-

ary of S+
d is quite complicated and prevents us from directly applying the arguments in [30].

Additional details are explained in the next section. We would like to mention that our method
to show stationarity could also be applied to affine processes on more general convex cones in
the spirit of [13] and [44]; however, this would require the introduction of additional notation
which would make our key arguments less transparent, so we postpone the detailed discussion
of this extension to Section 9.

Finally, let us mention that the long-time behavior of affine processes has previously been
studied in many different settings, either based on a detailed study of the characteristic function
(see e.g. [46], [39], [20], [47], [34], [32], [36], [30]), by stochastic stability criteria due to Meyn
and Tweedie ([4], [29], [44]), or by coupling techniques ([19], [18], [40]). One application of
such study is towards the estimation of parameters for affine models. In the case of the Wishart
process, the maximum-likelihood estimator for the drift parameter was recently studied by
Alfonsi et al. [1]. As demonstrated in their article, ergodicity helps to derive strong consistency
and asymptotic normality of the estimator.

This paper is organized as follows. In Section 2, we introduce S
+
d -valued affine processes,

then formulate and discuss our main results. Section 3 is dedicated to applications of our results
to specific affine models often used in finance. The proofs of the main results are then given
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in Sections 4–8. Finally, in Section 9 we provide an extension of our stationarity result to
conservative affine processes on general convex cones.

2. Main results

In terms of terminology, we mainly follow the coordinate-free notation used in Mayerhofer
[42] and Keller-Ressel and Mayerhofer [33].

Let d ≥ 2 and denote by Sd the space of symmetric d × d matrices equipped with the scalar
product 〈x, y〉 = tr(xy) and the Frobenius norm ‖x‖ := 〈x, x〉1/2, where tr(.) denotes the trace
of a matrix. We list in Appendix A some properties of the trace and its induced norm which
are repeatedly used in the remainder of the article. Denote by S

+
d (resp. S++

d ) the cone of
symmetric and positive semidefinite (resp. positive definite) real d × d matrices. We write x � y
if y − x ∈ S

+
d and x ≺ y if y − x ∈ S

++
d for the natural partial and strict order relations introduced

respectively by the cones S+
d and S

++
d . Let B(S+

d \{0}) be the Borel-σ -algebra on S
+
d \{0}. An

S
+
d -valued measure η on S

+
d \{0} is a d × d matrix of signed measures on S

+
d \{0} such that

η(A) ∈ S
+
d whenever A ∈B(S+

d \{0}) with 0 
∈ A.
In the following we present the notion of admissible parameters first introduced in Cuchiero

et al. [12, Definition 2.3]. Here we mainly follow the definition given in Mayerhofer [42,
Definition 3.1], with a slightly stronger condition on the linear jump coefficient.

Definition 2.1. Let d ≥ 2. An admissible parameter set (α, b, B,m, μ) consists of the
following:

(i) a linear diffusion coefficient α ∈ S
+
d ;

(ii) a constant drift b ∈ S
+
d satisfying b � (d − 1)α;

(iii) a constant jump term: a Borel measure m on S
+
d \{0} satisfying∫

S
+
d \{0}

(‖ξ‖ ∧ 1)m (dξ) <∞;

(iv) a linear jump coefficient μ which is an S
+
d -valued, sigma-finite measure on S

+
d \{0}

satisfying ∫
S

+
d \{0}

‖ξ‖ tr(μ) (dξ) <∞, (1)

where tr(μ) denotes the measure induced by the relation tr(μ)(A) := tr(μ(A)) for all
A ∈B(S+

d \{0}) with 0 /∈ Ā;

(v) a linear drift B, which is a linear map B : Sd → Sd satisfying

〈B(x), u〉 ≥ 0 for all x, u ∈ S
+
d with 〈x, u〉 = 0.

According to our definition, a set of admissible parameters does not contain parameters cor-
responding to killing. In addition, compared with [12, Definition 2.3], our definition involves
an additional first-moment assumption on the linear jump coefficient μ. Thanks to this stronger
assumption and [12, Remark 2.5], the affine process we consider here is conservative.
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Theorem 2.1. (Cuchiero et al. [12].) Let (α, b, B,m, μ) be admissible parameters in the
sense of Definition 2.1. Then there exists a unique stochastically continuous transition kernel
pt(x, dξ ) such that pt(x, S

+
d ) = 1 and∫

S
+
d

e−〈u,ξ〉pt(x, dξ ) = exp(−φ(t, u) − 〈ψ(t, u), x〉), t ≥ 0, x, u ∈ S
+
d , (2)

where φ(t, u) and ψ(t, u) in (2) are the unique solutions to the generalized Riccati differential
equations; that is, for u ∈ S

+
d ,

∂φ(t, u)

∂t
= F (ψ(t, u)), φ(0, u) = 0, (3)

∂ψ(t, u)

∂t
= R (ψ(t, u)), ψ(0, u) = u, (4)

where the functions F and R are given by

F(u) = 〈b, u〉 −
∫
S

+
d \{0}

(e−〈u,ξ〉 − 1)m (dξ),

R(u) = −2uαu + B� (u)−
∫
S

+
d \{0}

(e−〈u,ξ〉 − 1)μ (dξ).

Here, B� denotes the adjoint operator on Sd defined by the relation 〈u, B(ξ )〉 = 〈B�(u), ξ 〉
for u, ξ ∈ Sd. Under the additional moment condition (iv) of Definition 2.1, we will show in
Lemma 4.2 below that R(u) is continuously differentiable and thus locally Lipschitz continuous
on S

+
d . This fact, together with the absence of parameters according to killing, implies that the

affine process under consideration is indeed conservative (see [12, Remark 2.5]) and, moreover,
the Riccati equations have unique solutions for all u ∈ S

+
d . Also, following [42], each affine

process on S
+
d , when d ≥ 2, has jumps of finite variation, which is why we omitted, compared

with [12], additional compensation in the integral against μ.

2.1. First moment

Our first result provides existence and a precise formula for the first moment of conservative
affine processes on S

+
d . For this purpose, we define the effective drift

B̃(u) := B(u) +
∫
S

+
d \{0}

ξ 〈u, μ(dξ )〉, for u ∈ Sd. (5)

Then note that B̃ : Sd → Sd is a linear map. We define the corresponding semigroup
( exp (t̃B))t≥0 by its Taylor series exp (t̃B)(u) =∑∞

n=0 tn/n!̃B◦n(u), where B̃◦n denotes the
n-times composition of B̃. For the remainder of the article we write 1 without an index for
the d × d-identity matrix, while 1A denotes the standard indicator function of a set A.

Theorem 2.2. Let pt(x, dξ ) be the transition kernel of an affine process on S
+
d with admissible

parameters (α, b, B,m, μ) satisfying∫
{‖ξ‖>1}

‖ξ‖m (dξ) <∞. (6)
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Then for each t ≥ 0 and x ∈ S
+
d , the first moment of pt(x, dξ ) exists and equals∫

S
+
d

ξpt(x, dξ ) = et̃Bx +
∫ t

0
es̃B

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
ds. (7)

Although this result is not very surprising, the proof of our main result (Theorem 2.3) cru-
cially relies on (7). For the sake of completeness we therefore provide a full and detailed proof
of Theorem 2.2 in Section 4.

Based on methods of stochastic calculus, similar results were obtained for affine processes
with state-space R

m
≥0 in [5, Lemma 3.4] and on the canonical state space R

m
≥0 ×R

n in [19,
Lemma 5.2]. For affine processes on R≥0, i.e., continuous-state branching processes with
immigration, and also for the more general class of Dawson–Watanabe superprocesses, an
alternative approach based on a fine analysis of the Laplace transform is provided in [39]. The
latter approach clearly has the advantage that it is purely analytical and does not rely on the
use of stochastic equations and semimartingale representations for these processes. Our proof
provided in Section 4 is also purely analytical and uses some ideas taken from [39].

Remark 2.1. Note that the transition kernel pt(x, ·) with admissible parameters (α, b, B,m, μ)
is Feller by virtue of [12, Theorem 2.4]. Therefore, there exists a canonical realization
(X, (Px)x∈S+

d
) of the corresponding Markov process on the filtered space (	,F , (Ft)t≥0),

where 	=D(S+
d ) is the set of all càdlàg paths ω : R≥0 → S

+
d , and Xt(ω) =ω(t) for ω ∈	.

Here (Ft)t≥0 is the natural filtration generated by X, and F =∨
t≥0 Ft. For x ∈ S

+
d , the prob-

ability measure Px on 	 represents the law of the Markov process X given X0 = x. With this
notation, under the conditions of Theorem 2.2, the formula (7) reads

Ex
[
Xt
]= et̃Bx +

∫ t

0
es̃B

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
ds,

where Ex denotes the expectation with respect to Px.

2.2. Existence and convergence to the invariant distribution

In this subsection we formulate our main result. Let pt(x, ·) be the transition kernel of an
affine process on S

+
d . Motivated by Theorem 2.2 it is reasonable to relate the long-time behav-

ior of the process to the spectrum σ (̃B) of B̃. More precisely, an affine process on S
+
d with

admissible parameters (α, b, B,m, μ) is said to be subcritical if

sup
{
Re λ ∈C : λ ∈ σ (̃B)}< 0. (8)

Under the condition (8), it is well-known that there exist constants M ≥ 1 and δ > 0 such that∥∥∥et̃B
∥∥∥≤ Me−δt, t ≥ 0. (9)

The next remark provides a sufficient condition for (9).

Remark 2.2. According to [44, Theorem 2.7], (9) is satisfied if and only if there exists a v ∈
S

++
d such that −B̃�(v) ∈ S

++
d . However, in many application the linear drift is of the form

B̃(x) = βx + xβ�, where β is a real-valued d × d matrix; see Section 3. In this case, it follows
from [44, Corollary 5.1] that (9) is satisfied if and only if

sup {Re λ ∈C : λ ∈ σ (β)}< 0,

which in turn holds true if and only if there exists a v ∈ S
++
d such that −(β�v + vβ) ∈ S

++
d .
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Let P(S+
d ) be the space of all Borel probability measures on S

+
d . We call π ∈P(S+

d ) an
invariant distribution if ∫

S
+
d

pt(x, dξ )π (dx) = π (dξ ), t ≥ 0.

The following is our main result.

Theorem 2.3. Let pt(x, dξ ) be the transition kernel of a subcritical affine process on S
+
d with

admissible parameters (α, b, B,m, μ). Suppose that the measure m satisfies∫
{‖ξ‖>1}

log ‖ξ‖ m (dξ) <∞. (10)

Then there exists a unique invariant distribution π . Moreover, for each x ∈ S
+
d , one has

pt(x, ·) → π weakly as t → ∞, and π has Laplace transform∫
S

+
d

e−〈u,x〉π (dx)= exp

(
−
∫ ∞

0
F (ψ(s, u)) ds

)
, u ∈ S

+
d . (11)

The proof of Theorem 2.3 is postponed to Section 6. Let us make a few comments. Note that
in dimension d = 1 it holds that S+

1 =R≥0, and affine processes on this state space coincide
with the class of continuous-state branching processes with immigration introduced by Kawazu
and Watanabe [31]. In this case, the long-time behavior has been extensively studied in the
articles [36, Theorem 3.16] and [34, Theorem 2.6] and in the monograph [39, Theorem 3.20
and Corollary 3.21]. This is why we restrict ourselves to the case d ≥ 2.

Theorem 2.3 establishes sufficient conditions for the existence, uniqueness, and conver-
gence to the invariant distribution. For affine processes on the canonical state space R

m
≥0 ×R

n

a similar statement was recently shown in [30]. However, the method of [30] cannot be applied
to the state space S

+
d . The reason is as follows. To apply the arguments of [30] to S

+
d -valued

affine processes requires the decomposition

pt(x, ·) = rt(x, ·) ∗ pt(0, ·), (12)

where rt(x, ·) is the transition kernel of an affine process on S
+
d whose Laplace transform is

given by ∫
S

+
d

e−〈u,ξ〉rt(x, dξ ) = exp(−〈ψ(t, u), x〉) ; (13)

that is, rt(x, ·) should have admissible parameters (α, b = 0, B,m = 0, μ). Unfortunately, such
a transition kernel rt(x, ·) is well-defined if and only if (α, b = 0, B,m = 0, μ) are admissible
parameters in the sense of Definition 2.1. This in turn is true if and only if α= 0, which is
a consequence of the particular structure of the boundary ∂S+

d . To overcome this difficulty,
we use the cone structure to show that ψ(t, u) � exp{t̃B�}(u), which requires us to study the
first moment of the affine process with admissible parameters (α, b, B,m = 0, μ); see (29).
Note that the first moment of affine processes is already studied in Theorem 2.2, where the first
moment condition forμ is also explicitly used. Uniform exponential stability forψ(t, u) is then
an immediate consequence of the assumption that the affine process is subcritical, i.e. that (9)
holds. Compared with [30], our proof does not rely on stability results for ordinary differential
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equations; moreover, it has the advantage that it also applies to more general convex cones
other than S

+
d (see Section 9). On the other hand, since this argument is crucially based on the

proper closed convex cone structure, it cannot be applied to affine processes on the canonical
state space R

m
≥0 ×R

n.
Based on strong solutions to the stochastic equation and the construction of monotone cou-

plings, an alternative approach for the study of the long-time behavior of affine processes on
the canonical state space R

m
≥0 ×R

n was recently given in [19]. This approach certainly does

not apply here since it is still an open problem whether each affine process on S
+
d can be

obtained as a strong solution to a certain stochastic equation driven by Brownian motions and
Poisson random measures (it is actually not even known what such a stochastic equation in the
general case should look like). We refer the reader to [43] for some related results. In addition,
we do not know if a comparison principle for such processes would be available.

For dimension d = 1 it is known that (10) is not only sufficient, but also necessary for the
convergence to some limiting distribution; see, e.g., [39, Theorem 3.20 and Corollary 3.21]. To
our knowledge, extensions of this result to higher-dimensional state spaces have not yet been
obtained. In this context, we have the following partial result for subcritical affine processes
on S

+
d .

Proposition 2.1. Let pt(x, dξ ) be the transition kernel of a subcritical affine process on S
+
d with

admissible parameters (α, b, B,m, μ). Suppose that there exist x ∈ S
+
d and π ∈P(S+

d ) such
that pt(x, ·) → π weakly as t → ∞. If α = 0 and if there exists a constant K > 0 satisfying

Kξ + B(ξ ) � 0, ξ ∈ S
+
d , (14)

then (10) holds.

In order to prove Proposition 2.1 we first establish in Section 5 a precise lower bound
for ψ(t, u). Since in dimension d ≥ 2 different components of the process interact through
the drift B in a nontrivial manner on S

+
d , the proof of the lower bound is deduced from the

additional conditions α= 0 and (14), which guarantee that these components are coupled in
a well-behaved way. Let us remark that, in contrast to the proof of Theorem 2.3, the proof
of Proposition 2.1 does not explicitly use the first moment condition for μ. Indeed, it suffices
to assume that μ satisfies the condition

∫
S

+
d \{0} (1 ∧ ‖ξ‖)tr(μ)(dξ )<∞, which is weaker than

(1), and, in addition, that the affine process is conservative.
We note that any linear map B : Sd → Sd with B(S+

d ) ⊂ S
+
d satisfies the condition (14) for

each K > 0. As an example of such a map, let B(x) = βxβ� for x ∈ Sd, where β is a real-
valued d × d matrix. Obviously, B defined in this way is admissible in the sense of Definition
2, and B(S+

d ) ⊂ S
+
d . However, such an example will not lead to a subcritical affine process. Just

to understand this point, we can think of the simplest case when d = 1 (although we always
assume d ≥ 2 in the other parts of the paper): B(x) = β2x and it is impossible for B to fulfill the
subcritical condition (8).

The simplest example of an admissible B that produces subcriticality and at the same time
satisfies (14) is B(x) = −x, x ∈ Sd. However, there are also other examples like this one. For
instance, consider d = 2 and the linear map B on S2 defined by

B

((
x1 x2

x2 x3

))
=
(

−x1 −κx2

−κx2 −x3

)
,
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where κ > 1 is a constant. First, such a B is admissible in the sense of Definition 2.1, since for
u, x ∈ S+

2 with 〈x, u〉 = 0,

〈B(x), u〉 = −κ 〈x, u〉 + (κ − 1)

〈(
x1 0

0 x3

)
, u

〉
= (κ − 1)

〈(
x1 0

0 x3

)
, u

〉
≥ 0.

It is easy to see that the spectrum σ (B) = {−1,−κ}, so that we can choose a relatively small μ
to make B̃ defined in (5) subcritical; moreover, (14) holds for K = κ .

We close this section with a useful moment result regarding the invariant distribution.

Corollary 2.1. Let pt(x, dξ ) be the transition kernel of a subcritical affine process on S
+
d with

admissible parameters (α, b, B,m, μ) satisfying (6). Let π be the unique invariant distribution.
Then

lim
t→∞

∫
S

+
d

ypt(x, dy) =
∫
S

+
d

yπ (dy) = −B̃−1

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
.

2.3. Study of the convergence rate

Consider a subcritical affine process on S
+
d with admissible parameters (α, b, B,m, μ) and

let δ be defined by (9). In particular, δ is strictly positive, and we will see that it appears
naturally in the convergence rate towards the invariant distribution. In order to measure this
rate of convergence we introduce

dL(η, ν) := sup
u∈S+

d \{0}

1

‖u‖

∣∣∣∣∣
∫
S

+
d

e−〈u,x〉η(dx) −
∫
S

+
d

e−〈u,x〉ν(dx)

∣∣∣∣∣ , η, ν ∈P(S+
d ).

Note that this supremum is not necessarily finite. However, it is finite for elements from

P1(S+
d ) =

{
� ∈P(S+

d ) :
∫
S

+
d

‖x‖�(dx)<∞
}
,

which essentially follows from∣∣∣∣∣
∫
S

+
d

e−〈u,x〉η(dx) −
∫
S

+
d

e−〈u,x〉ν(dx)

∣∣∣∣∣=
∣∣∣∣∣
∫
S

+
d ×S

+
d

(
e−〈u,x〉 − e−〈u,y〉) η(dx)ν(dy)

∣∣∣∣∣ (15)

≤ ‖u‖
∫
S

+
d ×S

+
d

‖x − y‖η(dx)ν(dy)

≤ ‖u‖
(∫

S
+
d

‖x‖η(dx) +
∫
S

+
d

‖y‖ν(dy)

)
.

It is easy to see that dL is a metric on P1(S+
d ); moreover,

(P1(S+
d ), dL

)
is complete. Using

well-known properties of Laplace transforms, it can be shown that convergence with respect
to dL implies weak convergence. The next result provides an exponential rate in dL distance.

Theorem 2.4. Let pt(x, dξ ) be the transition kernel of a subcritical affine process on S
+
d with

admissible parameters (α, b, B,m, μ). Suppose that (10) holds and denote by π the unique
invariant distribution. Then there exists a constant C> 0 such that

dL (pt(x, ·), π)≤ C (1 + ‖x‖) e−δt, t ≥ 0, x ∈ S
+
d . (16)
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The proof of this result is given in Section 7. Although under the given conditions pt(x, ·)
and π do not necessarily belong to P1(S+

d ), the proof of (16) reveals that dL(pt(x, ·), π ) is well-
defined. Let us mention that the main purpose of this work is dedicated to Theorem 2.3. The
above convergence rate in the dL distance is a simple byproduct of the estimates derived in the
process of proving Theorem 2.3.

We turn to investigate the convergence rate from the affine transition kernel to the invariant
distribution in the Wasserstein-1-distance introduced below. Given �, �̃ ∈P1(S+

d ), a coupling
H of (�, �̃) is a Borel probability measure on S

+
d × S

+
d which has marginals � and �̃, respec-

tively. We denote by H(�, �̃) the collection of all such couplings. We define the Wasserstein
distance on P1(S+

d ) by

W1 (�, �̃)= inf

{∫
S

+
d ×S

+
d

‖x − y‖H (dx, dy) : H ∈H (�, �̃)

}
.

Since � and �̃ belong to P1(S+
d ), it holds that W1(�, �̃) is finite. According to [48, Theorem

6.16], we have that (P1(S+
d ),W1) is a complete separable metric space. Note that, by an

argument similar to (15), one easily finds that dL(η, ν) ≤ W1(η, ν) for all η, ν ∈P1(S+
d ).

Exponential ergodicity in different Wasserstein distances for affine processes on the canoni-
cal state space Rm

≥0 ×R
n was very recently studied in [19]. Below we provide a corresponding

result for affine processes on S
+
d .

Theorem 2.5. Let pt(x, dξ ) be the transition kernel of a subcritical affine process on S
+
d with

admissible parameters (α, b, B,m, μ) satisfying (6). If α= 0, then

W1 (pt(x, ·), π)≤
√

dMe−δt
(

‖x‖ +
∫
S

+
d

‖y‖π (dy)

)
, t ≥ 0, x ∈ S

+
d . (17)

The proof of Theorem 2.5, which is given in Section 8, largely follows some ideas of [19].
In contrast to the latter work, for the study of affine processes on S

+
d we encounter similar

difficulties as in the proof of Theorem 2.3. Namely, the affine property allows us only to use
the convolution argument (12) when α= 0. Moreover, since it is still an open problem whether
each affine process on S

+
d can be obtained as a strong solution to a certain stochastic equation

driven by Brownian motions and Poisson random measures, we are not able to improve our
Theorem 2.5 to other variants of Wasserstein distances as used in [19].

3. Applications and examples

Let (Wt)t≥0 be a d × d matrix of independent standard Brownian motions. Denote by (Jt)t≥0
an S

+
d -valued Lévy subordinator with Lévy measure m. Suppose that these two processes are

independent of each other. Following [43], the stochastic differential equation⎧⎨⎩dXt = (
b + βXt + Xtβ

�) dt + √
XtdWt� +��dW�

t
√

Xt + dJt, t ≥ 0,

X0 = x ∈ S
+
d ,

(18)

has a unique weak solution if b � (d − 1)��� and �, β are real-valued d × d matrices.
Moreover, according to [43, Corollary 3.2], if b � (d + 1)��� and x ∈ S

++
d , then there also
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exists an S
++
d -valued strong solution. The corresponding Markov process X = (Xt)t≥0 is a con-

servative affine process with admissible parameters (α, b, B,m, 0) with diffusion α =���
and linear drift B(x) = βx + xβ�. The functions F and R are given by

F(u) = 〈b, u〉 +
∫
S

+
d \{0}

(1 − e−〈u,ξ〉) m(dξ )

and
R(u) = −2uαu + uβ + β�u.

The generalized Riccati equations are now given by

∂tφ(t, u) = 〈b, ψ(t, u)〉 +
∫
S

+
d \{0}

(1 − e−〈ψ(t,u),ξ〉) m(dξ ),

∂tψ(t, u) = −2ψ(t, u)αψ(t, u) +ψ(t, u)β + β�ψ(t, u),

with initial conditions φ(0, u) = 0 and ψ(0, u) = u. Let σβt : S+
d → S

+
d be given by

σ
β
t (x) := 2

∫ t

0
eβsxeβ

�sds, t ≥ 0.

According to [42, Section 4.3], we have

φ(t, u) = 〈b,
∫ t

0
ψ(s, u)ds〉 +

∫ t

0

∫
S

+
d \{0}

(1 − e−〈ψ(s,u),ξ〉) m(dξ )ds,

ψ(t, u) = eβ
�t(u−1 + σ

β
t (α))−1eβt.

Since B̃(x) = B(x), Remark 2.2 implies that X is subcritical, provided β has only eigenvalues
with negative real parts. If the Lévy measure m satisfies (10), then Theorem 2.3 implies exis-
tence, uniqueness, and convergence to the invariant distribution π whose Laplace transform
satisfies∫ ∞

0
e−〈u,x〉π (dx)= 〈b,

∫ ∞

0
ψ(s, u)ds〉 exp

(
−
∫ ∞

0

∫
S

+
d \{0}

(1 − e−〈ψ(s,u),ξ〉) m(dξ )ds

)
.

Moreover, if in addition
∫
{‖ξ‖≥1} ‖ξ‖m(dξ )<∞, then we infer from Corollary 2.1 that

lim
t→∞ Ex[Xt] =

∫ ∞

0
esβ�

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
esβds =

∫
S

+
d

yπ (dy).

We end this section by considering the following examples.

Example 3.1. (The matrix-variate basic affine jump-diffusion and Wishart process.) Take b =
2k��� with k ≥ d − 1 in (18). This process is called matrix-variate basic affine jump-diffusion
on S

+
d (MBAJD for short); see [42, Section 4]. Following [42, Section 4.3], φ(t, u) is precisely

given by

φ(t, u) = k log det
(
1+ uσβt (α)

) ∫ t

0

∫
S

+
d \{0}

(
1 − e−〈ψ(s,u),ξ〉)m(dξ )ds,
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and Theorem 2.3 implies that the unique invariant distribution is given by∫ ∞

0
e−〈u,x〉π (dx)=

(
det

(
1+ σ

β∞(α)u
))−k

exp

(
−
∫ ∞

0

∫
S

+
d \{0}

(1 − e−〈ψ(s,u),ξ〉) m(dξ )ds

)
,

where σβ∞(α) = ∫∞
0 exp (sβ)α exp (sβ�)ds.

The well-known Wishart process, introduced by Bru [10], is a special case of the MBAJD
with m = 0. Existence of a unique distribution was then obtained in [1, Lemma C.1]. In this
case π is a Wishart distribution with shape parameter k and scale parameter σβ∞(α).

Example 3.2. (Matrix-variate Ornstein–Uhlenbeck-type processes.) For b = 0 and � = 0,
we call the solutions to the stochastic differential equation (18) matrix-variate Ornstein–
Uhlenbeck-type (OU-type) processes; see [7]. Properties of the stationary matrix-variate
OU-type processes were investigated in [45]. Provided that∫

{‖ξ‖≥1}
‖ξ‖m(dξ )<∞,

Theorem 2.5 implies that the matrix-variate OU-type process is also exponentially ergodic in
the Wasserstein-1-distance.

Note that in [41] ergodicity in total variation was studied for matrix-variate OU-type pro-
cesses. The proof crucially relies on particular properties of Ornstein–Uhlenbeck processes
and hence cannot be extended to cases where the parameter μ for state-dependent jumps does
not vanish. In contrast, our method would also apply for non-vanishing μ.

4. Proof of Theorem 2.2

In this section we study the first moment of a conservative affine process on S
+
d . In particu-

lar, we prove Theorem 2.2. Essential to the proof is the space-differentiability of the functions
F and R as well as of φ and ψ . To simplify the notation we introduce L(Sd, Sd) as the space
of all linear operators Sd → Sd, and similarly L(Sd,R) stands for the space of all linear func-
tionals Sd →R. For a function G : Sd → Sd we denote its derivative at u ∈ Sd, if it exists, by
DG(u) ∈ L(Sd, Sd). Similarly, we denote the derivative of H : Sd →R by DH(u) ∈ L(Sd,R).
We equip L(Sd, Sd) and L(Sd,R) with the corresponding norms

‖DG(u)‖ = sup
‖x‖=1

‖DG(u)(x)‖ and ‖DH(u)‖ = sup
‖x‖=1

‖DH(u)(x)‖ .

Let F and R be as in Theorem 2.1 According to [12, Lemma 5.1] the function R is analytic
on S

++
d . Below we study the differentiability of F and R on the entire cone S

+
d .

We first give a lemma that slightly extends [42, Lemma 3.3].

Lemma 4.1. Let g be a measurable function on S
+
d with

∫
S

+
d \{0} |g(ξ )| tr(μ)(dξ )<∞. Then∫

S
+
d \{0} g(ξ )μ(dξ ) is finite and∥∥∥∥∥

∫
S

+
d \{0}

g(ξ )μ(dξ )

∥∥∥∥∥≤
∫
S

+
d \{0}

|g(ξ )| tr(μ)(dξ ).
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Proof. Let μ= (μij) and μij =μ+
ij −μ−

ij be the Jordan decomposition of μij. Suppose∫
S

+
d \{0} |g(ξ )| tr(μ)(dξ )<∞. Then [42, Lemma 3.3] implies that

∫
S

+
d \{0} |g(ξ )|μ(dξ ) is finite

and ∥∥∥∥∥
∫
S

+
d \{0}

|g(ξ )|μ(dξ )

∥∥∥∥∥≤
∫
S

+
d \{0}

|g(ξ )| tr(μ)(dξ ).

Since the ijth entry of
∫
S

+
d \{0} |g(ξ )|μ(dξ ) is given by∫
S

+
d \{0}

|g(ξ )|μ+
ij (dξ ) −

∫
S

+
d \{0}

|g(ξ )|μ−
ij (dξ ),

which is finite, we must have∫
S

+
d \{0}

|g(ξ )|μ+
ij (dξ )<∞ and

∫
S

+
d \{0}

|g(ξ )|μ−
ij (dξ )<∞, ∀i, j ∈ {1, . . . d} .

So
∫
S

+
d \{0} g(ξ )μ(dξ ) is finite. Again by [42, Lemma 3.3],∥∥∥∥∥

∫
S

+
d \{0}

g(ξ )μ(dξ )

∥∥∥∥∥=
∥∥∥∥∥
∫
S

+
d \{0}

g+(ξ )μ(dξ ) −
∫
S

+
d \{0}

g−(ξ )μ(dξ )

∥∥∥∥∥
≤
∥∥∥∥∥
∫
S

+
d \{0}

g+(ξ )μ(dξ )

∥∥∥∥∥+
∥∥∥∥∥
∫
S

+
d \{0}

g−(ξ )μ(dξ )

∥∥∥∥∥
≤
∫
S

+
d \{0}

g+(ξ )tr(μ)(dξ ) +
∫
S

+
d \{0}

g−(ξ )tr(μ)(dξ )

≤
∫
S

+
d \{0}

|g(ξ )| tr(μ)(dξ ).

The lemma is proved.

Lemma 4.2. The following statements hold:

(a) For u ∈ S
++
d , h ∈ Sd, we have

DR(u)(h) = −2 (uαh + hαu)+ B�(h) +
∫
S

+
d \{0}

〈h, ξ 〉e−〈u,ξ〉μ(dξ ). (19)

Moreover, through (19), DR(u) is continuously extended to u ∈ S
+
d . In particular, R ∈

C1(S+
d ) and (19) holds true for all u ∈ S

+
d , h ∈ Sd.

(b) If (6) is satisfied, then for u ∈ S
++
d , h ∈ Sd,

DF(u)(h) = 〈b, h〉 +
∫
S

+
d \{0}

〈h, ξ 〉e−〈u,ξ〉m(dξ ). (20)

Moreover, through (20), DF(u) is continuously extended to u ∈ S
+
d . In particular, F ∈

C1(S+
d ) and (20) holds true for all u ∈ S

+
d , h ∈ Sd.
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Proof. (a) Let u ∈ S
++
d . Consider h ∈ Sd with sufficiently small ‖h‖ such that u + h ∈ S

+
d .

An easy calculation shows that

R(u + h) − R(u) = DR(u)(h) + r(u, h),

where

r(u, h) := −2hαh +
∫
S

+
d \{0}

e−〈u,ξ〉 (1 − e−〈h,ξ〉 − 〈h, ξ 〉
)
μ(dξ ).

Let us prove that lim0 
=‖h‖→0 ‖r(u, h)‖/‖h‖ = 0. Assume ‖h‖ 
= 0. First, note that

‖2hαh‖
‖h‖ ≤ 2‖α‖‖h‖2

‖h‖ ≤ 2‖α‖‖h‖.

Let M> 0. For ‖ξ‖ ≤ M, we have

∣∣∣e−〈u,ξ〉 (1 − e−〈h,ξ〉 − 〈h, ξ 〉
)∣∣∣= ∣∣∣∣∣〈h, ξ 〉

(∫ 1

0
e−〈u+sh,ξ〉ds − e−〈u,ξ〉

)∣∣∣∣∣
= |〈h, ξ 〉| ·

∣∣∣∣∣
∫ 1

0

(
e−〈u+sh,ξ〉 − e−〈u,ξ〉) ds

∣∣∣∣∣
≤ |〈h, ξ 〉|2 , (21)

where we used the fact that 〈u + sh, ξ 〉 ≥ 0 and the Lipschitz continuity of [0,∞) ∈ x �→
exp (−x) to get the last inequality. Similarly, for ‖ξ‖>M,∣∣∣e−〈u,ξ〉 (1 − e−〈h,ξ〉 − 〈h, ξ 〉

)∣∣∣≤ ∣∣∣e−〈u,ξ〉 − e−〈u+h,ξ〉
∣∣∣+ ∣∣∣e−〈u,ξ〉〈h, ξ 〉

∣∣∣≤ 2 |〈h, ξ 〉| . (22)

Combining (21) and (22) and applying Lemma 4.1, we get

1

‖h‖

∥∥∥∥∥
∫
S

+
d \{0}

e−〈u,ξ〉 (1 − e−〈h,ξ〉 − 〈h, ξ 〉
)
μ(dξ )

∥∥∥∥∥
≤ 1

‖h‖
∫
S

+
d \{0}

∣∣∣e−〈u,ξ〉 (1 − e−〈h,ξ〉 − 〈h, ξ 〉
)∣∣∣ tr(μ)(dξ )

≤ ‖h‖
∫

{‖ξ‖≤M}
‖ξ‖2tr(μ)(dξ ) + 2

∫
{‖ξ‖>M}

‖ξ‖tr(μ)(dξ ).

So

‖r(u, h)‖
‖h‖ ≤

(
2‖α‖ +

∫
{‖ξ‖≤M}

‖ξ‖2tr(μ)(dξ )

)
‖h‖ + 2

∫
{‖ξ‖>M}

‖ξ‖tr(μ)(dξ ).

Note that
∫
S

+
d \{0} ‖ξ‖tr(μ)(dξ )<∞ by virtue of Definition 2.1(iv). Let ε > 0 be arbitrary and

fix some M = M(ε)> 0 large enough so that
∫
{‖ξ‖>M} ‖ξ‖tr(μ)(dξ )< ε/4. Define

δ = δ(ε) :=
(

1 + 2‖α‖ +
∫

{‖ξ‖≤M}
‖ξ‖2tr(μ)(dξ )

)−1
ε

2
.
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Then, for ‖h‖ ≤ δ, we see that

‖r(u, h)‖
‖h‖ ≤

(
2‖α‖ +

∫
{‖ξ‖≤M}

‖ξ‖2tr(μ)(dξ )

)
δ + ε

2
≤ ε.

This proves (19) for u ∈ S
++
d . Finally, the continuity of u �→ DR(u) in S

+
d can be easily obtained

from the dominated convergence theorem.
(b) Similarly as before, we derive F(u + h) − F(u) = DF(u)(h) + r(u, h) with

r(u, h) :=
∫
S

+
d \{0}

exp (−〈u, ξ 〉)(1 − exp (〈h, ξ 〉) − 〈h, ξ 〉)m(dξ ).

Let ‖h‖ 
= 0. By essentially the same reasoning as in (a), we obtain that

‖r(u, h)‖
‖h‖ ≤ ‖h‖

∫
{‖ξ‖≤M}

‖ξ‖2m(dξ ) + 2
∫

{‖ξ‖>M}
‖ξ‖m(dξ ),

and the second integral on the right-hand side is now finite by (6). Hence, we may follow the
same steps as in (a) to see that ‖r(u, h)‖/‖h‖ → 0 as ‖h‖ → 0 and to obtain the continuity of
DF(u) in S

+
d .

Let φ and ψ be as in Theorem 2.1. We know from [12, Lemma 3.2 (iii)] that φ(t, u) and
ψ(t, u) are jointly continuous on R≥0 × S

+
d and, moreover, u �→ φ(t, u) and u �→ψ(t, u) are

analytic on S
++
d for t ≥ 0.

Proposition 4.1. The following statements hold:

(a) Dψ has a jointly continuous extension on R≥0 × S
+
d .

(b) If (6) is satisfied, then Dφ has a jointly continuous extension on R≥0 × S
+
d .

Proof. (a) Noting that s �→ DR(ψ(s, u)) ∈ L(Sd, Sd) is continuous, we may define fu(t) as the
unique solution in L(Sd, Sd) to

fu(t) = 1+
∫ t

0
DR (ψ(s, u)) fu(s)ds.

Further, we then define the extension of Dψ onto R≥0 × ∂S+
d simply by

Dψ(t, u) = fu(t), (t, u) ∈R≥0 × ∂S+
d .

It remains to verify the joint continuity of Dψ(t, u) on R≥0 × S
+
d extended in this way. By the

Riccati differential equation (4) we have

Dψ(t, u) = 1+
∫ t

0
DR (ψ(s, u))Dψ(s, u)ds, t ≥ 0, u ∈ S

+
d .

Using that u �→ R(u) is continuous on S
+
d and ψ is jointly continuous on R≥0 × S

+
d , we have

that for all T > 0 and M > 0, there exists a constant C(T,M)> 0 such that

sup
s∈[0,T], u∈S+

d , ‖u‖≤M

‖DR (ψ(s, u))‖ =: C(T,M)<∞.
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Hence, for each u ∈ S
+
d with ‖u‖ ≤ M, we obtain

‖Dψ(t, u)‖ ≤ 1 + C(T,M)
∫ t

0
‖Dψ(s, u)‖ds.

Applying Gronwall’s inequality yields

‖Dψ(t, u)‖ ≤ eC(T,M)T =: K(T,M)<∞
for all t ∈ [0, T] and u ∈ S

+
d with ‖u‖ ≤ M. Because Dψ is jointly continuous in R≥0 × S

++
d , it

is enough to prove continuity at some fixed point (t, u) ∈R≥0 × ∂S+
d , where ∂S+

d : = S
+
d \S++

d .
Without loss of generality we assume t ∈ [0, T] and u ∈ ∂S+

d with ‖u‖ ≤ M. Let s ∈R≥0 and
v ∈ S

+
d with s ∈ [0, T] and ‖v‖ ≤ M. We have

‖Dψ(t, u) − Dψ(s, v)‖ ≤ ‖Dψ(t, u) − Dψ(s, u)‖ + ‖Dψ(s, u) − Dψ(s, v)‖ . (23)

We estimate the first term on the right-hand side of (23) by

‖Dψ(t, u) − Dψ(s, u)‖ ≤
∥∥∥∥∫ t

0
DR (ψ(r, u))Dψ(r, u)dr −

∫ s

0
DR (ψ(r, u))Dψ(r, u)dr

∥∥∥∥
≤ C(T,M)

∫
[s,t]∪[t,s]

‖Dψ(r, u)‖ dr

≤ C(T,M)K(T,M)|t − s|. (24)

Turning to the second term, for v ∈ S
++
d with ‖v‖ ≤ M, Dψ(s, u) = fu(s), and Dψ(r, u) = fu(r),

we obtain

‖Dψ(s, u) − Dψ(s, v)‖ ≤
∫ s

0
‖DR (ψ(r, u))Dψ(r, u) − DR (ψ(r, v))Dψ(r, v)‖ dr

≤
∫ s

0
‖DR(ψ(r, u)) − DR (ψ(r, v))‖ ‖Dψ(r, v)‖ dr

+
∫ s

0
‖DR (ψ(r, u))‖ ‖Dψ(r, u) − Dψ(r, v)‖ dr

≤ K(T,M)
∫ T

0
‖DR(ψ(r, u)) − DR (ψ(r, v))‖ dr

+ C(T,M)
∫ s

0
‖Dψ(r, u) − Dψ(r, v)‖ dr

= K(T,M)aT (v, u) + C(T,M)
∫ s

0
‖Dψ(r, u) − Dψ(r, v)‖ dr,

where aT (v, u) := ∫ T
0 ‖DR(ψ(r, u)) − DR(ψ(r, v))‖dr. Using once again Gronwall’s inequal-

ity, we deduce

‖Dψ(s, u) − Dψ(s, v)‖ ≤ K(T,M)aT (v, u)eC(T,M)T . (25)

Noting that R ∈ C1(S+
d ) and ψ(r, 0) = 0 by [12, Remark 2.5], by the dominated convergence

theorem we see that aT (v, u) tends to zero as v → u. Consequently, the right-hand side of (25)
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tends to zero as v → u. Combining (23) with (24) and (25), we conclude that Dψ extended in
this way is jointly continuous in (t, u) ∈R≥0 × S

+
d .

(b) We know from the generalized Riccati equation (3) that φ(t, u) = ∫ t
0 F(ψ(s, u))ds.

Noting that F ∈ C1(S+
d ) thanks to (6), the chain rule combined with the dominated convergence

theorem implies the assertion.
We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let ε > 0. We have

∂

∂ε

∫
S

+
d

e−〈εu,ξ〉pt(x, dξ ) = ∂

∂ε
e−φ(t,εu)−〈x,ψ(t,εu)〉

= − (Dφ(t, εu)(u) + 〈x,Dψ(t, εu)(u)〉) e−φ(t,εu)−〈x,ψ(t,εu)〉

→ − (Dφ(t, 0)(u) + 〈x,Dψ(t, 0)(u)〉) as ε→ 0,

where we used that the functions Dφ and Dψ have a jointly continuous extension on R≥0 × S
+
d

in accordance with Proposition 4.1. On the other hand, noting that

|〈u, ξ 〉 exp (−〈εu, ξ 〉)| ≤ ε−1e−1

and applying the dominated convergence theorem, we get

∂

∂ε

∫
S

+
d

e−〈εu,ξ〉pt(x, dξ ) = −
∫
S

+
d

〈u, ξ 〉e−〈εu,ξ〉pt(x, dξ ) → −
∫
S

+
d

〈u, ξ 〉pt(x, dξ ) as ε→ 0.

Note that the limit on the right-hand side is finite. Indeed, using Fatou’s lemma, we obtain∫
S

+
d

〈u, ξ 〉pt(x, dξ ) ≤ lim inf
ε→0

∫
S

+
d

〈u, ξ 〉e−〈εu,ξ〉pt(x, dξ ) = Dφ(t, 0)(u) + 〈x,Dψ(t, 0)(u)〉<∞

for all u ∈ S
+
d . So ∫

S
+
d

〈u, ξ 〉pt(x, dξ ) = Dφ(t, 0)(u) + 〈x,Dψ(t, 0)(u)〉. (26)

In what follows, we compute the derivatives Dφ(t, 0) and Dψ(t, 0) explicitly. By means of
the generalized Riccati equation (4), we have

ψ(t, u) − u =
∫ t

0
R (ψ(s, u)) ds, t ≥ 0, u ∈ S

+
d .

According to Lemma 4.2 and Proposition 4.1 we are allowed to differentiate both sides of
the latter equation with respect to u ∈ S

+
d and evaluate at u = 0; thus, using the dominated

convergence theorem,

Dψ(t, u)|u=0 − Id =
∫ t

0
DR (ψ(s, u))Dψ(s, u)|u=0 ds, t ≥ 0,

where Id denotes the identity map on S
+
d . From [12, Lemma 3.2(iii)] we know that ψ(t, u) is

continuous in R≥0 × S
+
d , and noting that ψ(s, 0) = 0 (see [12, Remark 2.5]), we get

Dψ(t, 0) − Id =
∫ t

0
DR (0)Dψ(s, 0)ds, t ≥ 0.
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From this and the precise formula for φ(t, h) we deduce that

Dψ(t, 0) = etDR(0) and Dφ(t, 0) =
∫ t

0
DF(0)esDR(0)ds.

We use Lemma 4.2 to get that

DR(0)(u) = B̃�(u) and DF(0)(u) = 〈b +
∫
S

+
d \{0}

ξm(dξ ), u〉.

Finally, combining this with (26) yields∫
S

+
d

〈u, ξ 〉pt(x, dξ ) =
∫ t

0
(DF(0)) esDR(0)(u)ds + 〈x, etDR(0)(u)〉

=
∫ t

0
〈es̃B

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
, u〉ds + 〈et̃Bx, u〉.

Since the equality holds for each u ∈ S
+
d , the assertion is proved.

5. Estimates on ψ(t, u)

We fix an admissible parameter set (α, b, B,m, μ) and let ψ be the unique solution to (4).
In this section we study upper and lower bounds for ψ . Let us start with an upper bound for
ψ(t, u).

Propostion 5.1. Let ψ be the unique solution to (4). Then

‖ψ (t, u)‖ ≤ M‖u‖e−tδ, t ≥ 0, (27)

where M and δ are given by (9).

Proof. The proof is divided into three steps.
Step 1: Denote by qt(x, dξ ) the unique transition kernel of an affine process on S

+
d with

admissible parameters (α, b, B,m = 0, μ); that is, for each u, x ∈ S
+
d , we have∫

S
+
d

e−〈u,ξ〉qt(x, dξ ) = exp

(
−
∫ t

0
〈b, ψ(s, u)〉ds − 〈x, ψ(t, u)〉

)
, t ≥ 0. (28)

Applying Jensen’s inequality to the convex function t �→ exp (−t) yields∫
S

+
d

e−〈u,ξ〉qt(x, dξ ) ≥ exp

(
−
∫
S

+
d

〈u, ξ 〉qt(x, dξ )

)

= exp

(
−
∫ t

0
〈es̃Bb, u〉ds − 〈et̃Bx, u〉

)
, (29)

where the last identity is a special case of Theorem 2.2. Using (28) we obtain

〈x, ψ(t, u)〉 +
∫ t

0
〈b, ψ(t, u)〉ds ≤ 〈et̃Bx, u〉 +

∫ t

0
〈es̃Bb, u〉ds, for all u, x ∈ S

+
d , t ≥ 0. (30)
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Step 2: Let α ∈ S
+
d be fixed. We claim that (30) holds not only for b � (d − 1)α but also

for any b ∈ S
+
d . Aiming for a contradiction, suppose that there exist t0 > 0 and ξ, x0, u0 ∈ S

+
d

such that

I := 〈x0, ψ(t0, u0)〉 +
∫ t0

0
〈ξ, ψ(s, u0)〉ds − 〈x0, et0B̃�

u0〉 −
∫ t0

0
〈ξ, es̃B�

u0〉ds> 0.

We now take an arbitrary but fixed b0 � (d − 1)α. Noting that

� :=
∫ t0

0
〈b0, ψ(s, u0)〉ds −

∫ t0

0
〈b0, es̃B�

u0〉ds

is finite, we find a constant K > 0 large enough so that KI +�> 0, i.e.,

〈Kx0, ψ(t0, u0)〉 +
∫ t0

0
〈b0 + Kξ, ψ(s, u0)〉ds> 〈Kx0, et0B̃�

u0〉 +
∫ t0

0
〈b0 + Kξ, es̃B�

u0〉ds.

(31)

Now, since b0 + Kξ � (d − 1)α, we see that (31) contradicts (30) if we choose b = b0 + Kξ ,
x = Kx0, u = u0, and t = t0. Hence (30) holds for all b ∈ S

+
d .

Step 3: According to Step 2, we are allowed to choose b = 0 in (30), which implies

〈x, ψ(t, u)〉 ≤ 〈x, et̃B�
u〉

for all t ≥ 0 and x, u ∈ S
+
d . This completes the proof.

We continue with a lower bound for ψ(t, u).

Proposition 5.2. Let ψ be the unique solution to (4) and suppose that α= 0 and (14) is
satisfied. Then, for each u, ξ ∈ S

+
d ,

〈ξ, ψ(t, u)〉 ≥ e−Kt〈ξ, u〉, t ≥ 0. (32)

Proof. Fix u ∈ S
+
d and define Wt(u) :=ψ(t, u) − exp (−Kt)u. Using that exp (−Kt)u =

ψ(t, u) − Wt(u) we obtain

∂Wt(u)

∂t
= R(ψ(t, u)) + Kψ(t, u) − KWt(u).

Since W0(u) = 0, the latter implies

Wt(u) =
∫ t

0
e−K(t−s) (Kψ(s, u) + R(ψ(s, u))) ds.

Fix ξ ∈ S
+
d ; then

〈ξ,Wt(u)〉 =
∫ t

0
e−K(t−s) (K〈ξ, ψ(s, u)〉 + 〈ξ, R(ψ(s, u))〉) ds. (33)

In the following we estimate the integrand. For this, we write 〈ξ, R(ψ(s, u))〉 = I1 + I2, where

I1 = 〈ξ, B� (ψ(s, u))〉 and I2 = −
∫
S

+
d \{0}

(
e−〈ψ(s,u),ζ 〉 − 1

)〈ξ, μ (dζ )〉,
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and estimate I1 and I2 separately. For I1, by (14) we get

I1 = 〈B(ξ ), ψ(s, u)〉 ≥ −K〈ξ, ψ(s, u)〉,
where we used the self-duality of the cone S

+
d (see [27, Theorem 7.5.4]). Turning to I2, we

simply have

I2 =
∫
S

+
d \{0}

(
1 − e−〈ψ(s,u),ζ 〉) 〈ξ, μ (dζ )〉 ≥ 0.

Collecting now the estimates for I1 and I2, we see that

(K〈ξ, ψ(s, u)〉 + 〈ξ, R(ψ(s, u))〉)≥ 0,

and thus 〈ξ,Wt(u)〉 ≥ 0 by (33). This proves the assertion.

6. Proofs of the main results

In this section we will prove Theorem 2.2, Proposition 2.1, and Corollary 2.1. Let pt(x, dξ )
be the transition kernel of a subcritical affine process on S

+
d with admissible parameters

(α, b, B,m, μ), and let δ > 0 be given by (9).
We note that F(u) ≥ 0 for all u ∈ S

+
d . Based on the estimates on ψ(t, u) that we derived in

the previous section, we easily obtain the following lemma.

Lemma 6.1. Suppose that (10) holds. Then there exists a constant C> 0 such that

F(ψ(s, u)) ≤ C‖u‖e−sδ, s ≥ 0, u ∈ S
+
d . (34)

Consequently, ∫ ∞

0
F(ψ(s, u))ds ≤ C

δ
‖u‖, u ∈ S

+
d . (35)

Proof. We know that

F(ψ(s, u)) = 〈b, ψ(s, u)〉 +
∫
S

+
d \{0}

(
1 − e−〈ψ(s,u),ξ〉)m(dξ )

=: 〈b, ψ(s, u)〉 + I(u).

Now, first note that, by (27),

〈b, ψ(s, u)〉 ≤ ‖b‖‖ψ(s, u)‖ ≤ ‖b‖‖u‖e−sδ . (36)

We turn to the estimate of I(u). Once again using (27), we obtain

I(u) =
∫
S

+
d \{0}

(
1 − e−〈ψ(s,u),ξ〉)m(dξ )

≤
∫
S

+
d \{0}

min {1, 〈ψ(s, u), ξ 〉} m(dξ )

≤
∫
S

+
d \{0}

min
{
1, ‖ξ‖‖u‖e−sδ}m(dξ ).
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For all a ≥ 0 it holds that 1 ∧ a ≤ log (2)−1 log (1 + a); hence

I(u) ≤ 1

log (2)

∫
{‖ξ‖≤1}

‖ξ‖‖u‖e−sδm(dξ ) + 1

log (2)

∫
{‖ξ‖>1}

log
(
1 + ‖ξ‖‖u‖e−sδ)m(dξ )

=: J1(u) + J2(u).

Let C> 0 be a generic constant which may vary from line to line. Since m(dξ ) integrates
‖ξ‖1{‖ξ‖≤1} by definition, we have

J1(u) ≤ C‖u‖e−sδ .

Moreover, noting that m(dξ ) integrates log ‖ξ‖1{‖ξ‖>1} by assumption, for J2(u) we use the
elementary inequality (see [19, Lemma 8.5])

log (1 + a · c) ≤ C min {log (1 + a), log (1 + c)} + C log (1 + a) log (1 + c)

≤ C log (1 + a) + Ca log (1 + c)

≤ Ca (1 + log (1 + c))

for a = ‖u‖ exp (−sδ) and c = ‖ξ‖ to get

J2(u) ≤ C‖u‖e−sδ
∫

{‖ξ‖>1}
(1 + log (1 + ‖ξ‖))m(dξ ) ≤ C‖u‖e−sδ .

Combining the estimates for J1(u) and J2(u) yields

I(u) = J1(u) + J2(u) ≤ C‖u‖e−sδ . (37)

So, by (36) and (37), we have (34), which proves the assertion.
We are now able to prove Theorem 2.3.

Proof of Theorem 2.3. Fix x ∈ S
+
d . By means of Proposition 5.1, we see that

lim
t→∞

∫
S

+
d

e−〈u,ξ〉pt(x, dξ ) = lim
t→∞ exp

(
−
∫ t

0
F(ψ(s, u))ds − 〈x, ψ(t, u)〉

)

= exp

(
−
∫ ∞

0
F(ψ(s, u))ds

)
,

and the limit on the right-hand side is finite by Lemma 6. Clearly, by (35), we also have
that u �→ ∫∞

0 F(ψ(s, u)))ds is continuous at u = 0. Now, Lévy’s continuity theorem (cf. [12,
Lemma 4.5]) implies that pt(x, ·) → π weakly as t → ∞. Moreover, π has Laplace transform
(11). It remains to verify that π is the unique invariant distribution.

Invariance. Fix u ∈ S
+
d and let t ≥ 0 be arbitrary. Then∫

S
+
d

e−〈u,ξ〉
(∫

S
+
d

pt(x, dξ )π (dx)

)
=
∫
S

+
d

(∫
S

+
d

e−〈u,ξ〉pt(x, dξ )

)
π (dx)

= e−φ(t,u)
∫
S

+
d

exp(−〈x, ψ(t, u)〉) π (dx).
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Note that ψ satisfies the semi-flow equation by [12, Lemma 3.2]; that is, ψ(t + s, u) =
ψ (s, ψ(t, u)) for all t, s ≥ 0. Using that the Laplace transform of π is given by (11), for each
u ∈ S

+
d we obtain∫

S
+
d

e−〈u,ξ 〉
(∫

S
+
d

pt(x, dξ )π (dx)

)
= e−φ(t,u) exp

(
−
∫ ∞

0
F (ψ (s, ψ(t, u))) ds

)

= e−φ(t,u) exp

(
−
∫ ∞

0
F (ψ(t + s, u)) ds

)
= e−φ(t,u) exp

(
−
∫ ∞

t
F (ψ(s, u)) ds

)
= exp

(
−
∫ ∞

0
F (ψ(s, u)) ds

)
=
∫
S

+
d

e−〈x,u〉π (dx).

Consequently, π is invariant.

Uniqueness. Let π ′ be another invariant distribution. For fixed u ∈ S
+
d and t ≥ 0 we have∫

S
+
d

e−〈x,u〉π ′(dx) =
∫
S

+
d

e−〈u,ξ〉
(∫

S
+
d

pt(x, dξ )π ′(dx)

)

=
∫
S

+
d

exp(−φ(t, u) − 〈x, ψ(t, u)〉) π ′(dx).

Letting t → ∞ shows that π ′ also satisfies (11). By uniqueness of the Laplace transforms, it
holds that π ′ = π .

Proof of Proposition 2.1. Let x ∈ S
+
d and π ∈P(S+

d ) be such that pt(x, ·) → π weakly as
t → ∞. It follows that

lim
t→∞

∫
S

+
d

e−〈u,ξ〉pt(x, dξ ) =
∫
S

+
d

e−〈u,y〉π (dy), u ∈ S
+
d ,

and we obtain from (2) that

lim
t→∞ exp

(
−
∫ t

0
F(ψ(s, u))ds

)
= lim

t→∞ e〈x,ψ(t,u)〉
∫
S

+
d

e−〈u,ξ〉pt(x, dξ ) =
∫
S

+
d

e−〈u,y〉π (dy).

In particular, this implies ∫ ∞

0
F(ψ(s, u))ds<∞, u ∈ S

+
d .

Fix u ∈ S
++
d . Assume that α = 0 and (14) holds. By definition of F we have F(u) ≥ ∫

S
+
d

(1 −
exp (−〈u, ξ 〉))m(dξ ) and thereby

F(ψ(s, u)) ≥
∫

{〈ξ,u〉>1}

(
1 − e−e−Ks〈ξ,u〉)m(dξ ),
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where we used (32). Integrating over [0,∞) and using a change of variable r :=
exp (−Ks)〈ξ, u〉 with ds = −1/K · dr/r yields∫ ∞

0
F(ψ(s, u))ds ≥ 1

K

∫
{〈ξ,u〉>1}

∫ 〈ξ,u〉

0

1 − e−r

r
drm(dξ )

≥ 1

K

∫
{〈ξ,u〉>1}

∫ 〈ξ,u〉

1

1 − e−r

r
drm(dξ )

≥ 1 − e−1

K

∫
{〈ξ,u〉>1}

log (〈ξ, u〉)m(dξ ),

where we used in the last inequality that 1 − exp (−r) ≥ 1 − exp (−1)> 0 for r ≥ 1. This leads
to the estimate ∫

{〈ξ,u〉>1}
log (〈ξ, u〉)m(dξ ) ≤ K

1 − e−1

∫ ∞

0
F(ψ(s, u))ds<∞.

Letting u = 1 ∈ S
++
d gives 〈ξ, 1〉 = tr(ξ ) ≥ ‖ξ‖, so that∫
{‖ξ‖>1}

log (‖ξ‖)m(dξ ) ≤
∫

{〈ξ,1〉>1}
log (〈ξ, 1〉)m(dξ )<∞.

This completes the proof.

Proof of Corollary 2.1. Using that ‖ exp (t̃B)‖ ≤ M exp (−δt), where δ is given by (9), we
have

lim
t→∞

∫
S

+
d

ypt(x, dy) =
∫ ∞

0
es̃B

(
b +

∫
S

+
d

ξm(dξ )

)
ds ∈ S

+
d .

By direct computation we find that∫ ∞

0
es̃B

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
ds = −B̃−1

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
,

and hence it suffices to prove that limt→∞
∫
S

+
d

ypt(x, dy) = ∫
S

+
d

yπ (dy). To do so, we can

proceed as in the proof of Theorem 2.2. Indeed, by Lemma A.1, we estimate

sup
t≥0

∫
S

+
d

‖y‖pt(x, dy) ≤ sup
t≥0

tr

(∫
S

+
d

ypt(x, dy)

)
≤ √

d sup
t≥0

∥∥∥∥∥
∫
S

+
d

ypt(x, dy)

∥∥∥∥∥<∞.

Therefore, applying Fatou’s lemma yields∫
S

+
d

‖y‖π (dy) ≤ sup
t≥0

∫
S

+
d

‖y‖pt(x, dy)<∞.

So π ∈P1(S+
d ). Now, let ε > 0. By the dominated convergence theorem, we see that

lim
ε↘0

∫
S

+
d

1 − e−〈εu,y〉

ε
π (dy) =

∫
S

+
d

〈u, y〉π (dy).
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Moreover, noting that, by Proposition 5.1,

1 − e−〈ψ(s,εu),ξ〉 ≤ 〈ψ(s, εu), ξ 〉 ≤ ‖ξ‖‖εu‖e−δt,

we can use once again the dominated convergence theorem to obtain

lim
ε↘0

∫
S

+
d

1 − e−〈εu,y〉

ε
π (dy) = lim

ε↘0

1

ε

∫ ∞

0
F(ψ(s, εu))ds

= lim
ε↘0

∫ ∞

0

(
〈b, ψ(s, εu)

ε
〉ds +

∫
S

+
d \{0}

1 − e−〈ψ(s,εu),ξ〉

ε
m(dξ )

)
ds

=
∫ ∞

0
〈b,Dψ(s, 0)(u)〉ds +

∫ ∞

0

∫
S

+
d \{0}

〈Dψ(s, 0)(u), ξ 〉m(dξ )ds

=
∫ ∞

0
〈es̃B

(
b +

∫
S

+
d \{0}

ξm(dξ )

)
, u〉ds,

where we used that Dψ(s, 0)(u) = exp (s̃B�)u (see the proof of Theorem 2.2). Since the latter
identity holds for all u ∈ S

+
d , this concludes the proof.

7. Proof of Theorem 2.4

Proof of Theorem 2.4. Suppose that (10) holds. By definition of dL, we have

dL (pt(x, dξ ), π (dξ ))

= sup
u∈S+

d \{0}

1

‖u‖

∣∣∣∣∣
∫
S

+
d

e−〈u,ξ〉pt(x, dξ ) −
∫
S

+
d

e−〈u,ξ〉π (dξ )

∣∣∣∣∣
= sup

u∈S+
d \{0}

1

‖u‖
∣∣∣∣exp

(
−
∫ t

0
F (ψ(s, u)) ds − 〈x, ψ(t, u)〉

)
− exp

(
−
∫ ∞

0
F (ψ(s, u)) ds

)∣∣∣∣ .

(38)

Let C> 0 be a generic constant that may vary from line to line. Then, using (34), for each t ≥ 0
we have∣∣∣∣exp

(
−
∫ t

0
F (ψ(s, u)) ds − 〈x, ψ(t, u)〉

)
− exp

(
−
∫ ∞

0
F (ψ(s, u)) ds

)∣∣∣∣
≤ |exp(−〈xψ(t, u)〉)− 1| ·

∣∣∣∣exp

(
−
∫ t

0
F (ψ(s, u)) ds

)∣∣∣∣
+
∣∣∣∣exp

(
−
∫ t

0
F (ψ(s, u)) ds

)
− exp

(
−
∫ ∞

0
F (ψ(s, u)) ds

)∣∣∣∣
≤ |〈x, ψ(s, u)〉| +

∣∣∣∣∫ ∞

t
F (ψ(s, u)) ds

∣∣∣∣
≤ M‖x‖‖u‖e−tδ + C‖u‖

∫ ∞

t
e−sδds

≤ C (1 + ‖x‖) ‖u‖e−tδ,

which when plugged back into (38) implies (16).
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8. Proof of Theorem 2.5

Proof of Theorem 2.5. Note that π ∈P1(S+
d ) by Corollary 2.1. Let qt(x, dξ ) be a transition

kernel for the conservative, subcritical affine process with admissible parameters (α = 0, b =
0, B,m = 0, μ). Using the particular form of the Laplace transform for pt(x, ·) (see (2)), it is not
difficult to see that pt(x, ·) = qt(x, ·) ∗ pt(0, ·), where ‘∗’ denotes the convolution of measures.
Let H be any coupling with marginals δx and π , i.e., H ∈H(δx, π ). Using the invariance of π ,
together with the convexity of W1 (see [48, Theorem 4.8] and [18, Lemma 2.3]), we find that

W1 (pt(x, ·), π)= W1

(∫
S

+
d

pt(y, ·)δx(dy),
∫
S

+
d

pt(y′, ·)π (dy′)
)

≤
∫
S

+
d ×S

+
d

W1
(
pt(y, ·), pt(y′, ·))H(dy, dy′)

≤
∫
S

+
d ×S

+
d

W1
(
qt(y, ·), qt(y′, ·))H(dy, dy′).

The integrand can now be estimated as follows:

W1
(
qt(y, ·), qt(y′, ·))≤

∫
S

+
d ×S

+
d

‖z − z′‖G(dz, dz′)

≤
∫
S

+
d

‖z‖qt(y, dz) +
∫
S

+
d

‖z′‖qt(y′, dz′)

≤ M
√

de−tδ (‖y‖ + ‖y′‖),
where G is any coupling of (qt(y, ·), qt(y′, ·)) and we have used Lemma A.1 to obtain

∫
S

+
d

‖z‖qt(y, dz) ≤ tr

(∫
S

+
d

zqt(y, dz)

)

= tr
(

et̃By
)

≤ √
d
∥∥∥et̃By

∥∥∥
≤ M

√
de−tδ‖y‖.

Combining these estimates, we obtain

W1(pt(x, ·), π ) ≤ M
√

de−tδ
∫
S

+
d ×S

+
d

(‖y‖ + ‖y′‖)H(dy, dy′)

≤ M
√

de−tδ

(
‖x‖ +

∫
S

+
d

‖y‖π (dy)

)
,

which yields (17).
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9. Extension to affine processes on finite-dimensional convex cones

In this section we outline how our main result, Theorem 2.3, can be extended to the
more general framework of affine processes on convex cones. Below we briefly introduce the
necessary concepts, while additional details, proofs, and references can be found in [13].

Let V be a finite-dimensional Euclidean space with scalar product 〈·, ·〉 and associated norm
‖ · ‖. Let K ⊂ V be a closed convex cone and suppose that it is proper, i.e. K ∩ (−K) = {0}, and
generating, i.e. V = K − K. Note that its closed dual cone

K∗ = {u ∈ V | 〈x, u〉 ≥ 0, ∀x ∈ K}
is then also generating and proper. The partial order on V is, for u, v ∈ V , defined by u � v ⇐⇒
v − u ∈ K∗. The following is the definition of affine transition semigroups due to [13, Definition
2.1].

Definition 9.1. (Cuchiero et al. [13].) A Markov transition kernel (pt(x, dξ ))t≥0,x∈K is called
affine if the following hold:

(i) pt(x, ·) −→ ps(x, ·) weakly as t → s for every s ≥ 0 and x ∈ K.

(ii) There exist functions φ : R+ × K∗ −→R and ψ : R+ × K∗ −→ V such that∫
K

e−〈u,ξ〉pt(x, dξ ) = e−φ(t,u)−〈ψ(t,u),x〉, x ∈ K, (t, u) ∈R+ × K∗. (39)

Note that this definition allows non-conservative affine transition kernels. However, having
in mind that we investigate existence, uniqueness, and convergence of pt(x, ·) to the invariant
distribution, we restrict our study to conservative kernels; that is, pt(x,K) = 1 for all t ≥ 0
and x ∈ K. The following is a summary of the main results obtained in [13] on the existence
and structure of conservative affine transition kernels. We emphasize that these results hold
in a more general setting that allows killing and explosion of the process; see [13] for more
details.

Theorem 9.1. (Cuchiero et al. [13])

(a) Let pt(x, dξ ) be a conservative affine transition kernel. Then the associated transition
semigroup is C0-Feller, and the functions φ, ψ are differentiable with respect to t and
satisfy the generalized Riccati equations for u ∈ K∗; that is,

∂tφ(t, u) = F(ψ(t, u)), φ(0, u) = 0, (40)

∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = u ∈ K∗,

where F(u) = ∂tφ(t, u)|t=0 and R(u) = ∂tψ(t, u)|t=0. Moreover, there exists a parameter
set (Q, b, B,m, μ) such that the functions F and R are of the form

F(u) = 〈b, u〉 −
∫

K\{0}

(
e−〈u,ξ〉 − 1

)
m(dξ ),

R(u) = −1

2
Q(u, u) + B�(u) −

∫
K\{0}

(
e−〈u,ξ〉 − 1 + 1{‖ξ‖≤1}〈ξ, u〉

)
μ(dξ ),
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where

(i) b ∈ K;

(ii) m is a Borel measure on K\{0} with∫
K\{0}

(1 ∧ ‖ξ‖)m(dξ )<∞;

(iii) Q:V × V −→ V is a symmetric bilinear function such that for all v ∈ V, Q(v, v) ∈
K∗, and 〈x,Q(u, v)〉 = 0 whenever 〈u, x〉 = 0 for u ∈ K∗ and x ∈ K;

(iv) μ is a K∗-valued σ -finite Borel measure on K\{0} satisfying∫
K\{0}

(
1 ∧ ‖ξ‖2

)
〈x, μ(dξ )〉<∞, x ∈ K;

(v) B:V −→ V is a linear map satisfying, for all u ∈ K∗ and x ∈ K with 〈u, x〉 = 0,∫
K\{0}

1{‖ξ‖≤1}〈ξ, u〉〈x, μ(dξ )〉 ≤ 〈x, B�(u)〉<∞.

(b) Conversely, let (Q = 0, b, B,m, μ) be a parameter set satisfying the above conditions,
and suppose in addition that∫

K\{0}
1{‖ξ‖>1}‖ξ‖〈x, μ(dξ )〉<∞, x ∈ K. (41)

Then there exists a unique conservative affine transition semigroup on K such that (39)
holds for all (t, u) ∈R+ × K∗, where φ(t, u) and ψ(t, u) are given by (40).

Note that, for a given parameter set (Q, b, B,m, μ), existence of an affine transition kernel
is only shown for the case Q = 0, while conservativeness is a consequence of the first moment
condition (41) (see [13, p. 373] and follow the argument given in [16, Section 9]).

Assuming, in addition, that K is an irreducible symmetric cone (see [13, Definition 2.6]),
there exists a conservative affine transition semigroup for any parameter set (Q, b, B,m, μ)
fulfilling the above conditions (i)–(v) and (41); see [13, Theorem 2.19]. Moreover, for dimen-
sions larger than 2 it has been shown that the jumps are of finite variation and the drift satisfies
b � 4−1d(r − 1)Q(e, e), where e denotes the identity element for the multiplication on V , and
r denotes the rank and d the Peirce invariant of V; see [13, Theorem 2.13] and [13, Appendix]
for additional details. Note that if we let V = Sd and K = S+

d , we obtain the case of positive
semidefinite matrices as a particular case of these results.

Below we provide an extension of Theorem 2.3 for a conservative affine transition kernel on
a proper closed convex cone K, which is generating. Since we do not suppose that this cone is
symmetric, existence of such a kernel is a priori not clear and should be established separately.

Theorem 9.2. Suppose that there exists an affine transition kernel pt(x, dξ ) with parameters
(Q, b, B,m, μ) satisfying (41) (which makes the kernel pt necessarily conservative). Define
B̃:V −→ V by

B̃(u) := B(u) +
∫

K\{0}
1{‖ξ‖>1}ξ 〈u, μ(dξ )〉, u ∈ V,
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and suppose that σ (̃B) ⊂ {λ ∈C | Re(λ)< 0}. Moreover, assume that∫
K\{0}

1{‖ξ‖>1} log (‖ξ‖)m(dξ )<∞.

Then the conservative affine transition kernel pt(x, dξ ) has a unique invariant distribution
π . Moreover, for each x ∈ K, one has pt(x, ·) −→ π weakly as t → ∞, and π has Laplace
transform ∫

K
e−〈u,ξ〉π (dξ ) = exp

(
−
∫ ∞

0
F(ψ(s, u))ds

)
, u ∈ K∗,

where the latter integral is absolutely convergent.

Proof. We follow the proof of our main result, Theorem 2.3.

Step 1. Let us prove that there exist constants M ≥ 1 and δ > 0 such that

‖ψ(t, u)‖ ≤ M‖u‖e−δt, t ≥ 0, u ∈ K∗. (42)

Indeed, one could check that Theorem 2.2 also holds in this situation (provided that m has
finite first moment). One may think of deducing the assertion by arguments similar to those for
Proposition 5.1. Unfortunately, the latter is built on a convolution argument, and it requires the
existence of a conservative affine transition kernel with parameters (Q, b, B,m = 0, μ), which
is currently not known. So we provide below an alternative and direct proof which avoids the
convolution trick.

First observe that, for u ∈ K∗, it holds that

R(u) = −1

2
Q(u, u) + B̃�(u) −

∫
K\{0}

(
e−〈u,x〉 − 1 + 〈ξ, u〉

)
μ(dξ ) � B̃�(u).

Let y(t, u) = et̃B�
(u) be the unique solution to

∂ty(t, u) = B̃�(y(t, u)), y(0, u) = u ∈ K∗.

Note that R is quasi-monotone increasing on K∗ by [13, Proposition 3.12]. Then

0 = ∂tψ(t, u) − R(ψ(t, u)) = ∂ty(t, u) − B̃�(y(t, u)) � ∂ty(t, u) − R(y(t, u)),

and hence by Volkmann’s comparison theorem for ordinary differential equations (see [13,
Theorem 3.13]) we conclude that

ψ(t, u) � y(t, u) = et̃B�
(u);

that is,
〈ψ(t, u), x〉 ≤ 〈et̃B�

(u), x〉, x ∈ K.

Now we can repeat the argument in [13, p. 387]: since K∗ is a finite-dimensional proper closed
convex cone, it is normal; i.e., there exists a constant γK∗ such that for x, y ∈ K∗,

0 � x � y =⇒ ‖x‖ ≤ γK∗‖y‖.

We thus have
‖ψ(t, u)‖ ≤ γK∗

∥∥∥et̃B�
(u)
∥∥∥ , u ∈ K∗.
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The property (42) is now an immediate consequence of the assumption that the spectrum of B̃
is contained in the left half-plane of C.

Step 2. Following exactly the same arguments as in Lemma 6.1, we find a constant C> 0
such that ∫ ∞

0
F(ψ(t, u))dt ≤ C‖u‖, u ∈ K∗.

Step 3. Using [13, Proposition 3.1(i)–(ii)] combined with a version of Lévy’s continuity
theorem [13, Lemma 3.7], the assertion can be deduced by literally the same arguments as
given in the proof of Theorem 2.3.

Appendix A. Matrix Calculus

For a d × d square matrix x, recall that tr(x) =∑d
i=1 xii. The Frobenius norm of x is given

by ‖x‖ = tr(xx)1/2 = (
∑d

i,j=1 |xij|2)1/2. Let us recollect one property of this norm.

Lemma A.1 Let x ∈ S
+
d ; then

‖x‖ ≤ tr(x) ≤ √
d‖x‖.

Proof. Write x = u�κu, where u is orthogonal and κ is diagonal with its entries given by
λi(x), i = 1, . . . , d, the eigenvalues of x. We have

‖x‖2 = tr
(

u�κ2u
)

=
d∑

i=1

λi(x)2.

Since x ∈ S
+
d , it holds that λi(x) ≥ 0, i = 1, . . . , d. Then

‖x‖ =
(

d∑
i=1

λ2
i (x)

)1/2

≤
d∑

i=1

λi(x) ≤ √
d

(
d∑

i=1

λ2
i (x)

)1/2

= √
d‖x‖.
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