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Abstract

The choice of components in industrial design involves setting design parameters that typi-
cally must reside inside permissible ranges called “design margins”. This paper proposes a
novel automated method called the Margin-Based General Regression Neural Network
(MB-GRNN) that classifies design errors for design parameters that are outside of permissible
ranges as outliers, directly from industrial design data, using an unsupervised machine learn-
ing approach. The method is based on a modified GRNN that estimates extremal margin
boundaries of design parameters by self-learning the features from datasets. These extremal
permissible margin boundaries are determined by “stretching out” the upper and lower
GRNN surfaces using an iterative application of stretch factors (a second kernel weighting fac-
tor). The method creates a variable insensitive band surrounding the data cloud, interlinked
with the normal regression function, providing upper and lower margin boundaries. These
boundaries can then be used to determine outliers and to predict a range of permissible values
of design parameters during design. Pushing out extremal margin boundaries reduce the false
identification of outliers. This classification technique could be used by industrial engineers to
detect likely outliers and to predict a range of permissible output limits for chosen design
parameters. The efficacy of this method has been validated against the widespread Parzen win-
dow method by comparing experimental results from three multivariate datasets. It was found
that the two methods have different but complementary capabilities. The MB-GRNN also uses
a modified algorithm for estimating the smoothing parameter using a combination of cluster-
ing, k-nearest neighbor, and localized covariance matrix.

Introduction and literature review

Design margins

In industrial design, design parameters are rarely set to the exact theoretically required values;
rather, they often have a margin that might be chosen deliberately or as a consequence of other
design decisions. Experienced engineers include such margins in a product design process to
serve several purposes. At the outset of the design process of any complex system, require-
ments, constraints, and capabilities are often uncertain. These uncertainties result from engi-
neering change or for accommodating product flexibility and future growth (Eckert and
Isaksson, 2017). To cover these uncertainties, designers tend to add margins to the design
parameter values based on their past experience to cover realistic requirements and later
firm up these values with analysis and testing (Eckert et al., 2019).

The design of large projects involves collaboration from multiple teams working in parallel
to tight schedules and budget constraints. The design process typically involves multiple pre-
planned iterative revisions to gather inputs and integrate results from the parallel teams (Wynn
and Eckert, 2017). During these iteration rounds, key requirements and key parameters can
change significantly, forcing other teams to accommodate these changes, and hence, a margin
is added to protect against design uncertainties (Eckert and Isaksson, 2017). In collaborative
complex system designs, these margins are estimated in negotiation between design teams
(Austin-Breneman et al., 2015). These margins provide a certain level of isolation between
design parameter choices so that a minor change to one design parameter does not force
an immediate review of every other possible independent design parameters. Examples of
such design parameters with lower and upper margins are: power, pressure, level, temperature,
pH, composition, and flow rate.

Design margins also play a critical role in safely managing engineering change and itera-
tion. Designers and engineers define upper and/or lower margins to form an envelope called
the “Safe Design Envelope (SDE)” for the chosen equipment (Eckert et al., 2019; Stauffer and
Chastain-Knight, 2019). These envelopes establish Safe upper and lower Operating Limits
(SOLs) for critical operating parameters, beyond which there is a risk of catastrophic
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equipment failure. SOLs aim is to prevent process safety incidents
and must be identified and documented for effective management
of safety (Dowell, 2001; Richardson, 2012; Forest, 2018).

The Center for Chemical Process Safety (Guidelines for safe auto-
mation of chemical processes 1993) advise multiple layers of protec-
tion are used to protect people, property, and the environment from
the hazards of chemical processing. This leads to a formal design
approach entitled Layers Of Protection Analysis (LOPA; Willey,
2014) that ensures safety systems are multiply redundant. The
LOPA design philosophy requires that critical parameters have a
margin defined during design, referred to as normal operating limits,
safe operating limits, instrumentation limits, and equipment con-
tainment limits (Stauffer and Chastain-Knight, 2019).

Buchan and Bolton pointed out that system reliability and
safety depend on an inherently safe design (ISD; Pandian et al.,
2015), and this requires that a high degree of rigor is applied to
design and fault analysis (Buchan and Bolton, 2009). Active sys-
tems rely on their ability to detect a system moving out of its safe
envelope, whereas passive systems provide more safety and reli-
ability by applying inherently safer design at the earliest stages
of the project design process. The passive features generally
involve less components that are easier to characterize and
whose design parameters form a safe operating envelope. One
challenge is to ensure that these design limits are fully understood
and complied with during the system’s lifecycle. Design margins
are not only applied in chemical processing but also in many
other areas such as power generation (Sutherland, 2011), jet
engine design (Eckert et al., 2019), civil engineering (Buchan
and Bolton, 2009), and nuclear power plants (Modarres, 2009).
Setting insufficient margins for critical parameters can result in
catastrophic accidents such as the collapse of [in]famous
Tacoma Narrows Bridge (Buchan and Bolton, 2009), whereas
overestimating margins results in overdesign and higher build
costs. Eckert also argues that awareness of margins during the
design process can lead to more efficient management of change
processes (Eckert and Isaksson, 2017).

Multiple factors contribute to these margins. The operation of
process plants or their components results in hidden variables not
captured in the design dataset. For instance:

• A fluid may have frictional energy loss as it moves along a pipe-
line changing its pressure and/or temperature properties in
accordance with some (hidden) distance variable.

• Pumping of fluids may change its pressure property in accor-
dance with some (hidden) pump capacity variable.

• The fuel efficiency of engines may vary in accordance with
some (hidden) cylinder diameter variables.

General regression neural network

Industrial design outcomes are influenced by a combination of
design parameters of single or multiple dimensions. Determining
the correlation between dependent and independent variables for
a system or process can be difficult. Traditional approaches have
limitations when modeling complex nonlinear systems. Artificial
Neural Networks (ANNs) have been found to solve such tasks bet-
ter in many practical applications (Aglodiya, 2017).

The General Regression Neural Network (GRNN) is a term
coined by Donald F. Specht (Specht, 1991), for a family of
ANNs derived from the statistical technique of Nadaraya–
Watson kernel regression (Nadaraya, 1964; Watson, 1964).
GRNNs are single-pass associative memory feed-forward type

ANNs and are generally used for function approximation.
GRNNs have been widely used for approximation, fitting, predic-
tion, and regression problems in the industry for fault detection
and diagnosis (He and He, 2011; Baqqar et al., 2012; Li et al.,
2018; Niu et al., 2019), batch processing and system identification
(Kulkarni et al., 2004; Ou and Hong, 2014; Al-Mahasneh et al.,
2018), building systems monitoring (Kim and Katipamula,
2018; Mohandes et al., 2019), and in other areas of engineering
(May et al., 2004; Cigizoglu and Alp, 2006; Pal and Deswal,
2008; Kumar and Malik, 2016; Lee et al., 2018; Jagan et al.,
2019). The GRNN algorithm is efficient, and it can learn high-
dimensional mappings in a single pass and results in acceptable
performance even with a tightly constrained training set
(Specht, 1991). Furthermore, it has only a single tuning parameter
to achieve function smoothing, unlike the Back Propagation
Neural Network (BPNN) and Support Vector Regression (SVR)
that require multiple parameters to be tuned, needing more com-
putational time and training data (Celikoglu and Cigizoglu, 2007;
Zhang et al., 2012; Jiang and Chen, 2016). The estimation of the
GRNN smoothing parameter also has the advantage that it is not
prone to local minima, unlike other methods such as BPNNs (Pal,
2011; Niuet al., 2017).

Outlier detection

Outlier detection (Hodge and Austin, 2004; Singh and Cantt,
2012; Zimek et al., 2012; Patil and Chouksey, 2016; Ge et al.,
2017; Xu et al., 2018) has been gaining prominence as an area
of machine learning (Ge et al., 2017; Xu et al., 2018). In other
published work, supervised, semi-supervised, and unsupervised
methods have all been used for outlier detection (Hodge and
Austin, 2004; Singh and Cantt, 2012; Xu et al., 2018). Among
the unsupervised methods, two commonly used approaches to
detect outliers are: statistical models to estimate a probability den-
sity function (p.d.f) using methods such as Parzen window
(Parzen, 1962; Mussa et al., 2015; Wang et al., 2019); and
ANNs that establish the relationship between variables as a regres-
sion model such as the GRNN (Specht, 1991; Kartal et al., 2018;
Wang et al., 2019). Unsupervised methods can learn directly from
industrial design datasets, offering clear economic benefits, and
use these models to validate data by detecting outliers. Outlier
detection has become a field of interest for many practitioners
of fault detection and diagnosis (Zimek et al., 2012; Xu et al.,
2018; Blazquez-Garcia et al., 2020). This paper investigates two
different methods for outlier detection using a modified GRNN
and the long-established Parzen method.

A new method for outlier detection

Most previous research work uses the GRNN algorithms to derive
a single regression model either to be used as a prediction tool or
to estimate the accuracy of data. An extension from this approach
is presented in this paper using a novel method called the
Margin-Based GRNN (MB-GRNN). It uses a modified GRNN
for the estimation of upper and lower regression boundaries
(also called margin boundaries) by deriving three interlinked
regression models from the same dataset. These margin bound-
aries, derived directly from data, can be used as a classifier to
detect outliers or to determine the maximum and minimum val-
ues of dependent variables for any given design parameters. To
obtain the best estimate of these margin ranges, the model must
achieve the best possible generalization of the data and stretch
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out the extremal margin boundaries to the appropriate extent. To
achieve the best generalization, the leave-one-out cross-validation
(LOOCV) method (Specht, 1991) is applied using a more sys-
tematic approach to derive features from data involving clustering,
k-nearest neighbor, and individual covariance. The motivation for
adding stretching factors to a GRNN comes from papers that have
weighted the terms of a GRNN to achieve computational gains
(Lee and Zaknich, 2015) and the weighted version of Nadaraya–
Watson estimator to determine a conditional mean (Cai, 2001).
The MB-GRNN method builds on these approaches by adding
stretch factors as a “second kernel factor” to the GRNN to itera-
tively inflate the extremal margin boundaries. The GRNN has not
been previously used in this way to determine the design margins
by stretching the regression surfaces to extremes of the range of
typical values, so that any atypical combinations located outside
of the regression surfaces can be identified as potential outliers.
These outliers may be indicative of a design fault or data entry
error and warrant further investigation by the design engineers.

The investigation uses both single and multidimensional sam-
ple domains that display margin characteristics and use an unsu-
pervised approach to learn from data without the need for specific
knowledge of the function of components. Two methods to detect
outliers are assessed here, contrasting their performance on this
class of problems. The first probabilistic method applied uses a
clustering (Berkhin, 2002) algorithm to find a set of neighboring
vectors and uses Parzen window (Parzen, 1962) to estimate p.d.fs
comprised of standard Gaussian kernels with optimized parame-
ters. The second method is the MB-GRNN regression algorithm,
developed by applying stretch factors as a second kernel term to
the GRNN to detect outliers of data. In each case, optimum gen-
eralization is achieved by applying a “smoothing parameter” using
the LOOCV method.

Computational methods for the proposed MB-GRNN

The process of learning a model by induction from a set of train-
ing samples involves developing an approximation to a multivari-
ate function. The function learned can be a probability density, if
a method such as Parzen window estimation (Parzen, 1962) is
used, whereas when the range is not a probability, a regression
approach such as the GRNN can learn the expected value.

The GRNN learns from a training dataset and generates a
“best-fit” nonlinear regression surface. It exhibits excellent
approximation to arbitrary functions having inputs and outputs
taken from sparse and noisy sources and can achieve optimal per-
formance by adjusting a single smoothing parameter (Specht,
1991; Islam et al., 2017). The GRNN is a very long-established
method, and it uses the summation of a large number of terms.
Others have looked at the idea of whether these terms can be
weighted (Cai, 2001; Lee and Zaknich, 2015), whereas the focus
of this paper is to examine whether these weightings can be
used as factors to establish the upper and lower margins enclosing
a data cloud. The sections below explain the computational
methods used. Details of the algebraic notations used in formulas
are described in Table A.1.

Parzen window estimator

Parzen window density estimation (Parzen, 1962) is a nonpara-
metric estimation method, which can estimate the joint probabil-
ity density function p(x, y) of multivariate data evaluated at
x [ Rd and y [ R1, based on a set of samples Strain, comprised

of N vectors {ci}, where each ci [ Rd+1 and ci = (xi, yi). The p.d.f
is an estimation of the average density in proximity to (x, y). The
standard equation for a Parzen window estimator is defined as:

p(x, y) = 1
N

∑N
i=1

f((x, y)|ci,Si), (1)

where ϕ((x, y)|ci,Σi) is a kernel function of x parameterized by a
central location ci and covariance matrix Σi. A set of training
examples Strain provides the central locations for the kernel func-
tions in Eq. (1).

The model is continuous over the domain Rd+1 for the given
training sample Strain and a kernel function ϕ(x, y). The imple-
mentation uses a Gaussian kernel function with x treated as a
row vector:

f((x, y)|ci,Si) = 1����������
(2p)d|Si|

√
[ ]

exp
−D2((x, y), ci|Si)

2

( )
. (2)

And the Mahalanobis distance D (De Maesschalck et al., 2000)
is defined as:

D(A, B|S) =
�����������������������
(A− B)S−1(A− B)T

√
. (3)

The distance Di((x, y),ci|Σi) is measured between a vector
(x, y) and ci, the central location of a kernel, weighted by Σi.
When x is multidimensional, the Mahalanobis metric provides
elliptical equidistance boundaries with covariance Σ determining
the major and minor axes. D can be used to determine the spread
of points forming a cluster from its central point if the covariance is
used as the normalizing measure (De Maesschalck et al., 2000).

Covariance determination

Covariance, in the statistical sense, is a measure of the correlation
between two variables (Dempster, 1972). In a multidimensional
domain, the covariance matrix Si [ RdXd , captures the correla-
tion between each pair of the dimensions.

The Parzen estimator uses a covariance matrix Σi that just con-
siders the set of neighbors Si in proximity to each ci and the
method applied was to calculate the covariance matrix for the
set of n nearest neighbors (Cover and Hart, 1967). The covariance
matrix is calculated for vector cij using:

Sijk = 1
n

∑
p[Si

(c pj − mj)(c pk − mk), (4)

where mk = 1/n
∑

p[Si, cpk is the mean and n is the number of
elements in the neighborhood set Si and ( j, k) are each in the
range [1,d] and select an element within the Σi matrix. The addi-
tional variable p is an index used to select the subset of ci values
that are members of the neighbors set Si.

Equation (4) takes into account the local variation of density in
a region around ci. The choice of n specific to each training data-
set is critical in determining the Mahalanobis distance metric, as
covariance acts to scale the Mahalanobis distance. The covariance
needs to be further scaled to provide a smooth generalization
between neighbors, and this must be done as a separate optimiza-
tion exercise for each training dataset using a scaling factor. The
neighborhood set Si is determined for each n chosen from a range
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of values and the optimum scaling factor is determined for each n
as shown in Figure 3.

Scaling factor

The covariance calculation described in Eq. (4) represents the dis-
tribution of n neighboring points around a mean μ. However, it
alone does not ensure smooth interpolation between neighbors.
The covariance matrix can be further optimized by determining
a scalar multiplier s (referred to as the scaling factor). The scaling
factor is determined using the LOOCV method that involves
omitting one sample at a time and constructing the network
based on the remaining samples. This network is then used to
predict the probability value of the omitted sample, and this is
averaged (Xu et al., 2013) by iterating over the entire set. The pur-
pose of this method is to find the solution that maximizes the
average probability of samples using the Parzen estimate as
shown in Figure 2 (or to develop a regression model for a
known variable by minimizing mean squared errors using the
GRNN model as shown in Fig. 3). The scalar factor s is then mul-
tiplied by the individual covariance Σi to give the optimum model
fit for both Parzen and GRNN models.

The scaling factor is obtained by multiplying the covariance by
a range of scaling values and iteratively repeating the above pro-
cess to find the best factor s that maximizes the average probabil-
ity (or minimizes the mean squared error) of samples for the
entire distribution. The optimization process is shown in
Figure 1 and the section “Smoothing parameter determination
for Parzen and GRNN methods (Refer Step 3 in Fig. 1)”.

To avoid making an arbitrary choice regarding the number of
neighbors n that influence the covariance, the scaling factor s can
be determined for a range of n and the optimum solutions chosen
as shown in Figures 2 and 3, to generate the model. It was found
experimentally that, where vectors have very nonuniform distri-
butions, choosing the n nearest neighbors may not give the
desired width for the covariance and to avoid this, a vector quan-
tization algorithm attributed to Linde, Buzo, and Gray (LBG;
Linde et al., 1980) was applied as shown in the section
“Pseudocode for data preprocessing and clustering to remove
near duplicates (Refer Steps 1 and 2 in Fig. 1)”. This was used
as a preprocessing step to find the optimum number of clusters z
and these clusters were used in place of the neighboring samples n.
This method aims to eliminate duplicates and minimize the influence
of closely spread points (near duplicates) when determining
covariance.

The LOOCV method can be applied again to determine the
optimum number of neighbors n for a given constant s, resulting
in minimizing the mean squared error (MSE) or maximizing the
average probability (MAP) for the given sample set are shown in
Figures 2 and 3, respectively.

GRNN model

The value of a dependent variable y is predicted by a GRNN
using the joint p.d.f estimated from known training data. The
resulting regression equation can be implemented in a parallel
neural network structure to predict the expected value of y for a
given x, using (Specht, 1991):

E[y | x] =
�+1
−1 yf(x, y)dy�+1
−1 f(x, y)dy

, (5)

where ϕ(x, y) is the joint continuous p.d.f. In practice, the joint
continuous p.d.f can be empirically estimated using Parzen
window estimation from a finite set of training examples. As
this approach is nonparametric, the model parameters are derived
directly from the training set using kernel functions. Rectangular
and Gaussian kernel functions are commonly used for multidi-
mensional datasets (Cristianini and Shawe-Taylor, 2000). The
GRNN determines the most probable value of y for a given
value of x as a prediction, whereas Parzen determines a joint
probability p(x, y).

Specht redefined the radial basis function model as an interpo-
lator to give y = f(x) that is related to Parzen window. He also
observed that the GRNN could learn from training datasets of
the form, Strain≡ {(ci, yi)} for 1≤ i≤N, a set of N training exam-
ples that are representative of the underlying probability distribu-
tion. Unlike in the case of the Parzen window (Section “Parzen
window estimator”), the GRNN’s ci is a d dimensional variable
ci [ Rd and ci = xi. The yi values are used to weight the kernels
on the numerator but not the denominator of Eq. (6). As
discussed in the section “Scaling factor”, the scaling factor s is
applied to optimize the width of covariance matrices, to result
in correct scaling for yi “heights”. The functional form of the
equation thus becomes:

f (x | ci, Si, s) =
∑N

i=1 yif(x | ci, sSi)∑N
i=1 f(x | ci, sSi)

. (6)

Proposed MB-GRNN model

Apart from the use of the GRNN as a predictor to define a control
function, this paper presents a new Margin-Based GRNN
(MB-GRNN) approach for outlier detection by defining upper
and lower margin boundaries for a given dataset. This is achieved
by adapting the GRNN algorithm, by applying stretch factors
as a second kernel weighting factor. As stated in the section
“A new method for outlier detection”, the idea of weighting
each one of the terms as shown in Eq. (7) with an additional
weighting wi has previously been used by other researchers
(Cai, 2001; Lee and Zaknich, 2015). The MB-GRNN takes the
form:

f (x | ci, Si, s, wi) =
∑N

i=1 yiwif(x | ci, sSi)∑N
i=1 wif(x | ci, sSi)

. (7)

The computational complexity to evaluate f(x) in Eq. (7) uses
time O(Nd2) and the calculation is well suited to vector processing
methods. By choosing the correct set of stretch factors wi, the
GRNN can be made to follow the extremal upper or lower margin
boundaries of a data cloud. The choice of stretch factors pushes
the margin boundaries outward based on the characteristics of
data. The resulting boundaries not only classify the data outliers
but also can be used as a range predictor of y for any given x
as shown in Figure 6. An approach for choosing the stretch factors
wi is described in the section “New margin-based GRNN
(MB-GRNN) model using stretch factors”.

Methodology

This section explains the experimental method applied to estimate
the upper and lower design margin boundaries from experimental
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design datasets using the MB-GRNN, enabling margin prediction
and outlier detection. Section "Algorithm Implementation Details"
provides the pseudocode for the methodology implemented.

Experimental data and its characteristics

Analysis of design datasets has highlighted the widespread use of
design margins. When viewed as a regression problem, and for
design parameters x (independent variables), when a regression
model g is learned from data such that y = g(x), it was found
that the resulting scalar variable y (dependent variable) inhabits
a range [ ymin, ymax], often with fairly uniform density, such
that ymin≤ g(x)≤ ymax. However, unlike the margin applied to
support vector regression problems, the range m is not of fixed
width but depends on x such that ymax = ymin +m(x). These
ranges can be observed directly from experimental datasets,
such as those in Figures 7 and 9. This creates the possibility of
adopting a classification approach to detect outliers outside
these typical design margins ymin or ymax.

Three publicly available engineering multivariate design data-
sets were chosen for the experiment that displays the characteris-
tics of margins. The first dataset used for experimental testing is
called the “Auto MPG Data Set” and is from the UCI machine
learning repository (Repository, 1993). It describes automobile
fuel consumption for a set of multivalued discrete and continuous
design parameters. The second set is an “Energy Efficiency Data
Set” also from the UCI machine learning repository
(Repository, 2012) that documents the heating and cooling
loads of buildings based on their design parameters. The final
dataset is a “Concrete Design Data Set” from the same source
(Repository, 2007), describing the compressive strength of con-
crete based on the composition of ingredients. These datasets
were selected as they relate directly to the design parameters of
engineered artifacts and also have specific characteristics with
multiple values of the dependent variables y for each value of
the independent variable x (e.g., see Figs. 7 and 9). Use of these
experimental datasets from multiple domains also suggests the
versatility of the approach for other datasets having similar
characteristics.

Data description

For the Parzen window approach, data were processed in the for-
mat (x, y) for N samples where each vector x = (x1, x2, x3, x4,…,
xd), and for the MB-GRNN models, x was used as the indepen-
dent variable and scalar y as the dependent variable. Parameters
used from the experimental datasets are listed in Table 1.

The Python language and the Spyder IDE were used to process
data, develop algorithms, and present results in graphical and
tabulated formats. The implemented algorithms deal with both
single and multiple dimensional data, and these datasets are
used to explain the experimental results and analysis.

Schematic diagram of the method proposed

The schematic diagram, as shown in Figure 1, describes the over-
view of the processing steps applied for outlier detection and mar-
gin prediction.

Data preprocessing and clustering (Steps 1 and 2 in Fig. 1)

Section “Data description” describes the selection of variables for
each data and array format. Each datum was first transformed
onto a logarithmic scale to lower the skewness of its data distribu-
tion, improving the interpretation of data. The transformed data
were normalized by linearly mapping each data to the unit inter-
val [0,1] to improve training efficiency and to minimize the risk of
certain variables being given more significance, especially when
they represent different orders of magnitude (Patton, 1995).

The LBG vector quantization algorithm was used to segregate
input data into an optimum number of clusters z to eliminate
duplicates and minimize the influence of near duplicates. The
optimum number of clusters z and the cluster mean values μ
are further used to determine optimum covariance. The pseudo-
code for the LBG algorithm is explained in the section
“Pseudocode for data preprocessing and clustering to remove
near duplicates (Refer Steps 1 and 2 in Fig. 1)”.

Determination of scaling factor and optimum covariance
(Step 3 in Fig. 1)

The covariance matrix Σi is calculated by choosing a suitable set
of neighbors with n members in the range 1≤ n≤ z, and a multi-
plicative factor called the scaling factor s that provide appropriate
smoothing for Σi. The scaling factor s is determined using the
LOOCV method, as described in the section “Smoothing
parameter determination for Parzen and GRNN methods (Refer
Step 3 in Fig. 1)”. Figure 2 shows the graph of average probability
versus scaling factors in the range [0.1,3] for neighbors n in the
range [4,19]. The optimum scaling factor sopt = 0.53939 that max-
imizes the global average probability was obtained1 when n = 4
and is used to determine optimum covariance (soptΣi) when cal-
culating the Parzen p.d.f.

Figure 3 shows the graph of GRNN mean squared error versus
scaling factors in the range [0.1,3] for neighbors n in the range
[3,19]. The optimum scaling factor sopt = 0.25757 that maximizes
the global average probability was obtained1 when n = 16 and is
used to determine optimum covariance (soptΣi) when calculating
the smoothing parameter. The computational complexity to
find the optimal value of s requires time O(N2d2) and memory
O(Nd2) and is largely determined by the calculation of the
leave-one-out metrics. The method is well suited to a range of
established bounded optimization techniques since the error

Table 1. Experimental dataset parameters

Dataset Variable (x1) Variable (x2) Variable (x3) Variable (y)

Auto MPG Cylinder Displacement Horsepower Weight Miles per gallon

Energy Efficiency Room Surface Area Wall Area Roof Area Heating Load

Concrete Concrete Qty Water Qty NA Compressive Strength

1For clarity and legibility, Figures 2 and 3 show only selected values of n neighbors to
explain the methodology.
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surfaces are scalar, smooth, and typically have a global minimum/
maximum. Experiments were conducted using various bounded,
and root-finding optimization functions for the three datasets pre-
sented in this paper. The results suggest significant savings in com-
putational time to reach the convergence. A novel derivative
function was used for root-finding functions, and these methods
and experimental results will be presented in a future paper.

Estimation (Step 4 in Fig. 1)

Parzen window p.d.f estimate

The implementation uses a Gaussian window function to estimate
the density of samples using the optimized covariance obtained in

Eq. (4). Figure 1 shows the steps involved, and the overall imple-
mentation uses Eqs (1)–(3).

New MB-GRNN model using stretch factors

The MB-GRNN implementation involves determining three
inter-related GRNN models: for the middle, upper, and lower
boundaries. These boundaries provide a way of ordering outliers
to measure the distances beyond the typical limits using an
error margin Error >0 as outlined in S23a and S23b of
Table A.3. Firstly, a conventional GRNN model (providing the
middle boundary) is found to segregate the data into the upper
and lower subsets, and subsequently, the upper and lower bound-
aries are determined using two stretched GRNNs.

Fig. 2. Parzen: selection of scaling factor (s) for (n) neighbors.

Fig. 1. Schematic diagram of Parzen and MB-GRNN application for outlier detection and prediction (for variable notations, refer Table A.1).
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Middle GRNN and segregation of datasets for the upper and
lower GRNN
The scaling factor sopt and optimum covariance matrix soptΣi
were determined as per the principles described in the section
“Determination of scaling factor and optimum covariance (Step
3 in Fig. 1)”. Once the middle GRNN model is found using Eq.
(6), it can be used to generate a predicted value yp = f(x) for
each xi. The green dotted line in Figure 6 shows the result for
the AutoMPG middle GRNN model estimated from the entire
set of data and denoted as ymp . The distance dmi = yi − ymp ,
where yi represent the actual value and ymp is the corresponding
predicted value, was used to segregate the dataset into disjoint
upper and lower subsets, which were used to determine the
upper and lower GRNN model, respectively. All yi values with
dmi . 0 were used for the upper MB-GRNN model versus those
for which dmi ≤ 0 that from the lower model.

Determination of the upper and lower GRNN boundaries
For each of the two segregated upper and lower datasets, the opti-
mum number of clusters z, scaling factor sopt, and optimum cov-
ariance matrix soptΣi were estimated. A set of four stretch factor
thresholds were chosen ŵ = (0.03, 0.1, 0.3, 0.5) for the experi-
ment. These specific values were not found to be critical for suc-
cess as they appear both in the numerator and denominator of the
GRNN, and so they self-normalize. However, it is important that
the values must span a wide range of at least two orders of mag-
nitude to ensure that some points have more prominent weight-
ings than others. The MB-GRNN was used to generate upper
(or lower) GRNN models using Eq. (7), by applying the weight
thresholds iteratively for datasets that lie within the upper and
lower boundaries. This iterative process pushes out the upper
(or lower) boundaries by ensuring that points closer to the
upper and lower boundaries have a higher weighting than the
interior points. The process shown in Table A.3 shows the greedy
algorithm that was developed for determining the stretched upper
and lower GRNN margin boundaries.

For this algorithm, a stretch factor threshold with M = 4 itera-
tions was chosen as a trade-off between computational efficiency
and performance. However, a convergence criterion could be
applied for a range of stretch factor thresholds until no new
data points get shifted from dui . 0 to dui ≤ 0 in any subsequent
iteration for upper boundary and vice versa for lower boundary.
The computational time of the stretch algorithm grows approxi-
mately linearly with M resulting in O(MN +N2d2) since the opti-
mal scaling factor s need to be re-estimated once each for the
upper and lower datasets, whereas the memory requirement is
O(Nd2). Figure 4 shows the outcome of an experiment utilizing
artificial data and using a known function 0.1sin 9x + 0.75 (only
the upper GRNN curves are shown for clarity). The orange
curve shows the middle GRNN, the blue curve shows the surfaces
for each stretch step iteration, the green curve shows the stretch
boundary after eight stretch steps, and the red curve shows the
artificially generated upper surface for the known function.
Eight stretch factor thresholds were used in a uniform logarithmic
scale between 10−2 and 1. Figure 5 shows the progression of the
stretch steps and MSE calculated for each stretch step against
the known function. The experimental results suggest that the
optimum performance is obtained after the first four stretch
steps, after which the difference in MSE is nominal.

Once the GRNN upper and lower boundaries are determined
using the stretch iterations, either points that lie outside of the
extremal boundaries can be nominated as outliers as explained
in the section “Experimental results and analysis”, or a reliability
threshold can be applied using a distance metric to identify out-
liers and near outliers as explained under the section
“Experimental results and outlier detection”.

Experimental results and analysis (Step 5 as per Fig. 1)

The following sections explain the experimental results and anal-
ysis obtained from the application of the MB-GRNN and Parzen
methods to the univariate and multivariate dataset parameters in
Table 1. Results from the MB-GRNN and Parzen methods use

Fig. 3. GRNN: selection of scaling factor (s) for (n) neighbors.
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similar optimization techniques as analyzed in the sections
“AutoMPG dataset" and "Energy efficiency and concrete datasets”.

AutoMPG dataset

Firstly, results and analysis for a univariate dataset, consisting of
199 examples, are explained to introduce the upper and lower
GRNN margin boundaries derived using an MB-GRNN. This
method is compared with the Parzen probabilistic approach.
Later, results and analysis will focus on multivariate datasets.

The similarities and differences between the MB-GRNN and
Parzen methods are indicated using color codes and markers.
The colors and markers used in figures and legends have been
kept consistent and are explained immediately below.

Each example was ranked in order of its Parzen probability
with low probability, suggesting that a point might be an outlier.
Data points that are outside the upper or lower GRNN boundaries
as estimated by the MB-GRNN are treated as outliers with Error
>0. Outliers estimated by the MB-GRNN are compared with the
25 lowest Parzen probabilities shown in Figures 6, 7, 9 and 10.

The small black dot “.” denotes points that are not detected as
outliers by the MB-GRNN (Error = 0 as per S23a and S23b of
Table A.3) and have higher Parzen probability ranking ≥25, indi-
cating agreement between the two methods.

The green colored “ ” data points also show cases with a very
high degree of agreement between the two methods since the
MB-GRNN identified them as outliers with the cost of error >0,
and they also have Parzen least probability ranking ≤15. These
denote most likely outlier points.

The magenta colored “ ” symbol shows the outliers identified
by MB-GRNN (Error > 0) and with least Parzen probabilities
ranking <15 and ranking >25, nominating them as potential out-
liers. The thresholds2 15 and 25 were chosen as they correspond
to 7.5% and 12.5% of points in the dataset, respectively.

The red color “ ” data points are cases where the two methods
disagree. They were not predicted as outliers by the MB-GRNN
(Error = 0) but are within the lowest 15 Parzen probabilities.
These data points are in regions with low point densities either
at the extremities of the x domain or between higher density
regions within the range. Due to MB-GRNN’s interpolative3

property, these points are judged by their y values being located
between the upper and lower surfaces.

On the other hand, the blue data points “ ” were identified as
legitimate outliers by the MB-GRNN (Error > 0), and where least
Parzen probabilities were ranked ≥25. These data points were

Fig. 5. Stretch steps and MSE.

Fig. 4. Progression of stretch algorithm.

2These thresholds were chosen arbitrarily to compare the performance and to present
the results.

3Subject to the specific selection of dependent and independent variables chosen for
the experimental analysis. These data points could become legitimate outliers should a
different axis system be chosen for the determination of MB-GRNN margin boundaries.
A method for selection of dependent and independent variables will be presented in a
future paper.
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either above or below the extremal boundaries determined by the
MB-GRNN.

The outlier classifications from both the MB-GRNN and
Parzen methods for the selected univariate dataset are shown in
Figure 6. Each case is color coded to show the degree of agreement
or disagreement between the two methods. There is a high degree
of correlation between the two methods (the black dots); however,
some results contrast due to the different approaches.

The Parzen and MB-GRNN methods use similar optimization
techniques to determine the scaling factor and covariance matrix
as described previously in the section “Determination of scaling
factor and optimum covariance (Step 3 in Fig. 1)”. Unlike the
conventional GRNN that only determines the line of best fit,
the MB-GRNN can determine the upper and lower boundaries
of the dataset to predict a range of legitimate y values for any
given x and use these boundaries as the limiting “fence” to iden-
tify the possible outliers as shown in Figure 6. Unlike some other
regression methods, such as those based on support vectors
(Cristianini and Shawe-Taylor, 2000), that provide a constant
width band of insensitivity, the MB-GRNN determines design mar-
gins that reflect the data distribution. These results suggest that the
proposed MB-GRNN method can be a useful approach for the
industry datasets that have a range of y values for any given x.

Figure 7 compares the result of two different methods for a
multivariate dataset (x1, x2, y). The results suggest that the
MB-GRNN and Parzen methods identify different types of out-
liers. The MB-GRNN predicts outliers that are outside the
upper and lower regression surfaces formed using a weighted con-
ditional expectation on the chosen dependent variable y and inde-
pendent variable x, whereas the Parzen method uses a joint
probability for the combination of (x, y). Both methods have mer-
its in identifying outliers as Parzen predicts the least probable data

points by estimating lower probabilities, whereas the MB-GRNN
predicts outliers based on a chosen dependent variable.

Compared to the univariate dataset, greater discrepancies were
observed between the MB-GRNN and Parzen methods for data-
sets with multivariate independent variables. For the most isolated
points, the green color “ ” and magenta colored “ ” data points
show a high degree of agreement between the two methods. From
Figure 7, it can also be observed that the red “ ” data points are
outliers effectively detected by Parzen, and the blue colored “ ”
maximal/minimal data points are outliers best detected by the
MB-GRNN. Just like Figure 6, the red “ ” are at the extremities
of the domain, and the blue “ ” / magenta “ ” are at the extre-
mities of the range.

Table 2 shows the result of the two different methods applied to
a four-dimensional multivariate dataset (x1, x2, x3, y) and Figure 8
shows the parallel coordinates plot of outliers detected by both
methods. The data points with MB-GRNN errors (Error > 0)
shown in green-dashed, magenta-dashdotted, and blue-solid cate-
gories and Parzen outliers not detected by MB-GRNN (Error = 0)
are shown in the red-dotted category. These results follow a similar
pattern with previous experiments presented above.

The green-dashed, magenta-dashdotted, and blue-solid cate-
gory data points in Figure 8 indicate the outliers identified by
the MB-GRNN, due to a single or a combination of independent
variables (x1, x2, x3) having unexpectedly low or high values. The
green-dashed and magenta-dashdotted points were also identified
as outliers by the Parzen method as one or more variables (x1, x2,
x3, y) were extremal in the domain with ranking MB-GRNN
Error > 0 and 0 < Parzen Rank <25. For example, the data point
with minimum miles per gallon (value 18) was identified as a
green-dashed category outlier, and this was due to high values
of displacement, horsepower, and weight (values 121, 112, and

Fig. 6. AutoMPG univariate outlier detection: MB-GRNN and Parzen plots.
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2933, respectively), resulting in lower fuel economy. Both Parzen
and MB-GRNN methods identified this data point as an outlier,
as it is positioned at the extremities of both range and domain.
Whereas the maximum miles per gallon (value 46.6) is shown
as a blue-solid category outlier due to relatively low values of dis-
placement, horsepower, and weight (values 86, 65, and 2110),
resulting in higher fuel economy. This data point was identified
as an outlier by the MB-GRNN due to it being located in the
extremities of the range. However, Parzen did not find this data
point as an outlier as it was not located on the extremities of
the domain. The red-dotted category data points were identified
as outliers by the Parzen method due to a single or a combination
of variables having significantly low or high values in the domain.
An example of red-dotted data point is with displacement,

horsepower, weight, and MPG values of 72, 69, 1613, and 35,
respectively, with displacement and weight having low values in
the domain. The results suggest that both Parzen and
MB-GRNN can complement each other to detect outliers in the
domain and range (for a given value of y), respectively.

Energy efficiency and concrete datasets

Figures 9 and 10 show the upper and lower margin boundaries for
the energy efficiency and concrete multivariate design datasets.
The algorithm and optimization techniques identical to that of
AutoMPG were applied to these datasets. The results are consis-
tent with the AutoMPG dataset presented in Figure 7.

The building energy efficiency data shown in Figure 9 can be
seen to be heavily quantized in the domain, having a wide range
of y values for a given x. Even with such quantized data, the
MB-GRNN was able to predict margin boundaries and pick the
blue colored “ ” points as outliers to identify values that are
away from the distribution. The red “ ” data points identified
as outliers by Parzen being extremal points in the domain.

For the concrete dataset shown in Figure 10, the upper and
lower boundaries are more complex. Despite this, the solution
still only finds a small fraction (18%) of data points as outliers
by combined Parzen and MB-GRNN methods.

Adaptation for incremental learning

Any online implementation of the algorithm described should
deal efficiently with the inclusion of a new data point (x,y) into
Strain. The GRNN is a nonparametric model, so parameter
re-estimation is not required with the advent of additional data
points. However, the computational complexity of evaluating
the model grows linearly with N, so any software implementation
might need to limit N by, for instance, avoiding near duplicates to

Fig. 7. AutoMPG multivariate outlier detection: MB-GRNN and Parzen.

Table 2. Analysis of results of AutoMPG multivariate dataset with (x1, x2, x3, y)
variables

Category
(Color – Linestyle) Ranking Criteria

Number of
data points

% distribution
of data points

Green – dashed MB-GRNN Error > 0
and Parzen Rank
≤15

7 3.5

Magenta –
dashdotted

MB-GRNN Error > 0
and 15 < Parzen
Rank <25

3 1.5

Blue – solid MB-GRNN Error > 0
and Parzen Rank
≥25

27 13.6

Red – dotted MB-GRNN Error = 0
and Parzen Rank
≤15

8 4.0

Black – NA MB-GRNN Error = 0 154 77.4
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existing data or aging data measurements so that outdated mea-
surements are excluded from consideration.

Although the GRNN itself is nonparametric, there are three
parameters described elsewhere in this method. The first is
derived from nearest neighborhood distance sets Si, so the advent
of a new data point would only affect one n-neighbor set and
necessitate recalculation of one covariance matrix Σi at computa-
tional time complexity O(Nd2).

The second parameter is the scalar stretch scaling s. The
advent of one new data point would have little impact on the mar-
gin estimates. However, once sufficient new data has been
inducted into Strain a batch process would be needed to re-estimate
s. As this is a well-behaved optimization problem, the previous
value could be used as a seed for any optimization technique
ensuring swift convergence to a new global optimum. This
comes at a computational time cost O(N2).

Finally, the weighted GRNN is controlled by a parameter set ŵ.
Since this is the focus of future research, it is likely that shortcuts
can be found to further reduce this computational cost. For

instance, a new data point can be temporarily assigned the
same weighting as its nearest neighbor and then a batch process
could periodically seek a global solution.

Conclusion

A novel MB-GRNN method has been presented in this paper that
can learn the extremal upper and lower regression boundaries of a
given data cloud by “stretching out” the GRNN surfaces. This
method is free from any assumptions about the form of the
data and is able to learn functions directly from training data to
classify outliers and also to predict a range of valid parameters
for any given new input parameter. The method has been tested
experimentally on three different multivariate datasets, and the
results were compared with the well-known Parzen window
method. The results presented in the section “Experimental
results and analysis” show a high level of agreement between
the two methods, as might be expected, but with Parzen and
MB-GRNN having their own distinct benefits and limitations.

Fig. 8. Parallel coordinates plot of outliers for data points in Table 2 (black is hidden from the plot so as not to overwhelm the plot).

Fig. 9. Energy efficiency multivariate outlier detection: MB-GRNN and Parzen.
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The MB-GRNN was able to detect outliers not found by the
Parzen probabilistic approach, but the regression method has
the limitation that it nominates certain isolated and extreme
data points within the regression boundaries as valid data. Such
data points located in the extremities of the domain can be
detected by Parzen as being outliers. However, considering the
Safe Operating Limits (SOLs), it is debatable whether these data
need to be treated as outliers as they are within the allowable mar-
gin. As the experiments show, for design datasets that show the
characteristics of margins, the MB-GRNN provides better results
than other methods, especially identifying outliers that lie near to
the maximum or minimum margin boundary limits. The Parzen
method provides a lower probability for isolated or extreme data
due to the cluster centers being far away from the outskirts, whereas
the GRNN, being a regression method, only detects extremities in
the function’s range rather than its domain. The MB-GRNN also
provides better interpolation, making it much more versatile at
establishing relationships between design variables.

Both the MB-GRNN and Parzen methods used similar optimi-
zation techniques in these experiments, creating the opportunity
to use both methods in conjunction to form a decision support
system that highlights potential design errors in industrial design
datasets. Both methods are unsupervised and work very well for
multivariate data. For industrial design data, these methods
have the potential to learn from large volumes of available design
data, identify data patterns from key parameters and rank the
plausibility of data against the model. It is expected that this
approach will benefit the design industry by detecting possible
design errors that are otherwise extremely difficult and time-
consuming to detect using manual checking.

With large quantities of multivariate data, considerable com-
putational time would be needed to implement the methods
described in this paper. To improve the computational time for
the determination of smoothing parameter, two other methods,
including a novel derivative-based root-finding method, have

been experimented successfully using all three datasets presented
in this paper. The results are consistent with the smoothing
parameter method presented in this paper but with a significant
reduction in computation time. It is envisaged that these new
methods will be presented in a future publication.

The MB-GRNN algorithm can be applied to datasets having
multiple values of the dependent variable for a given independent
variable. The paper analyzed the application of algorithms for sam-
ple datasets relating to automobiles, building energy efficiency and
concrete compressive strength. Machinery (e.g., rotating equipment)
or systems (e.g., piping systems in a process plant) that have param-
eters to function within a specific range of design or operating limits
have the prospect for application of this algorithms’. A cross-
validation scheme is also needed in practice with existing design
margin definitions to validate the algorithms” accuracy. It is
expected that the algorithm has the potential for application with
both online and offline datasets. The GRNN requires the determina-
tion of only one smoothing parameter, and with a significant reduc-
tion in computational time to determine this parameter using these
as yet unpublished optimization methods, this creates the opportu-
nity to extend this algorithm for online datasets.
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Appendix A: Algorithm Implementation Details

This section explains the algebraic notations and methodology applied to provide more clarity on the implementation steps to enable the reproduction of
algorithms. Algorithm steps are explained using pseudocode along with initialization parameters and termination conditions used for the chosen example.

Variable notations and descriptions

Table A.1 provides details of algebraic notations used in the earlier equations.

Table A.1. Variable notations and descriptions
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Input dataset used in this example

The dataset in Table A.2 has been used to explain the implementation of the algorithm in this section.

Pseudocode for data preprocessing and clustering to remove near duplicates (Refer Steps 1 and 2 in Fig. 1)

Table A.2. Example of dataset used in this section

Dataset Variable (x1) Variable (x2) Variable (x3) Variable (y)

AutoMPG Cylinder Displacement Horsepower Weight Miles per gallon
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Smoothing parameter determination for Parzen and GRNN methods (Refer Step 3 in Fig. 1)

This section explains the determination of optimum smoothing parameter for both Parzen window and MB-GRNN methods.

Parzen window: Pseudocode for smoothing parameter determination

MB-GRNN: Pseudocode for smoothing parameter determination
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Parzen window and MB-GRNN estimation

This section explains the determination of the upper and lower extremal GRNN boundaries by the MB-GRNN method and estimation of Parzen probabilities.

MB-GRNN: Pseudocode for the middle, upper, and lower GRNN boundaries estimation (Refer Step 4 in Fig. 1)

Table A.3. Pseudocode for the determination of stretched upper and lower GRNN boundaries
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Parzen window p.d.f estimate (Refer Step 4 in Fig. 1)

Parzen window probabilities are estimated using optimum smoothing parameter soptΣi explained under the section “Parzen window: Pseudocode for smoothing
parameter determination” and Eq. (1). The results are ranked from lower to higher probabilities. The data points having lower probabilities (with higher ranking)
indicate potential outliers in the domain.

Parameters and outlier detection (Refer Step 5 in Fig. 1)

This section describes the parameters used by the algorithm and how results are used for outlier detection.

The initialization parameters and optimization results

Experimental results and outlier detection

The data points (ci, yi) with Error >0 (as per S23a and S23b of Table A.3) identify points outside of the upper and lower GRNN extremal boundaries and hence
classified as outliers in the range by MB-GRNN. The higher-ranking data points having lower Parzen probabilities indicate outliers in the domain. Table 2 and
Figure 8 show how a combination of these methods can be used to identify outliers for both in the range and domain. Results and analysis obtained from this
experiment are explained further in the section “Experimental results and analysis”.

The MB-GRNN can also be used to identify outliers based on a reliability matrix by calculating a distance metric from middle GRNN (as per S24a and S24b of
Table A.3). For any given x value, a distance metric for each y value was computed using a normalized distance spanning the Middle GRNN as 0 and the Upper or
Lower GRNNs as 1. Hence, data points that lie outside the upper and lower MB-GRNN boundaries show dmetric > 1. Figure A.1 shows the outliers detected by
MB-GRNN using a distance metric. Blue solid lines show the dmetric > 1 and the orange dashed lines show 0.9 > dmetric > 1.

Table A.4. Parameters used by the algorithm for datasets in Table A.2

Method Parzen Middle GRNN Upper GRNN Lower GRNN

Clustering epsilon = 10−3, threshold = 10−3 epsilon = 10−3, threshold = 10−4

Neighbors n n1 = 5, n2 = 15 n1 = 7, n2 = 18 n1 = 7, n2 = 15 n1 = 7, n2 = 15

Scaling factor range [slow = 0.1: Δs = 0.05: sup = 5]

Scaling factor sopt 2.150505 for n = 6 0.495959 for n = 13 0.693939 for n = 12 0.545454 for n = 13

Initial stretch factor wi N/A N/A wi = 1 wi = 1

Stretch factors ŵ N/A N/A [0.03, 0.1, 0.3, 0.5] [0.03, 0.1, 0.3, 0.5]

Fig. A.1. Parallel coordinates plot indicating outliers with distance metric >0.9.
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