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1. Introduction

1.1. Resonance varieties

The cohomology ring of a space captures deep, albeit incomplete information
about the homotopy type of the space. Suppose we are given a connected, finite
CW-complex X and a coefficient field k of characteristic different from 2. Finding
a presentation for the k-algebra A = H®(X,k), in and of itself, is not the end
of the story. One still would like to extract further information from this graded
algebra, such as the Betti numbers, b;(A) = dimy A*, the bigraded Betti numbers
b;; = dimy Torf‘(]k, k); or the cup-length. Such numerical invariants, though, are
oftentimes too coarse to tell apart graded algebras which may differ in quite subtle
ways.

Enter the resonance varieties, %} (A), which are the main focus of attention in
this paper. These varieties are homogeneous algebraic subsets of the affine space
Al = HY(X, k) which keep track of vanishing cup products in the cohomology ring
of X. More precisely, for each a € Al consider the cochain complex (A, §,) with dif-
ferentials 6% : A® — A1 given by 6 (u) = au. Then the degree i, depth k resonance
variety %, (A) consists of those points a € A' for which H*(A, d,) has dimension at
least k. In particular, %7 (A) is the union of all isotropic planes in A!.
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In general, the resonance varieties can be quite complicated. On the other hand,
if A is the cohomology ring of a formal space, then the resonance varieties of A are
unions of rationally defined, linear subspaces of A!, see [9,10]. Our main goal here
is to see what kind of restrictions another topological property, namely, Poincaré
duality, puts on the resonance varieties.

1.2. Poincaré duality algebras

A graded, locally finite, graded commutative algebra A is said to be a Poincaré
duality algebra of dimension m if there exists a k-linear map £: A™ — k such that
all the bilinear forms A* ® A™~% — k, a ® b — £(ab) are non-singular. For such a
PD,, algebra, the Betti numbers satisfy the well-known equality b;(A) = b,,—;(A4).
A similar phenomenon holds for the resonance varieties; more precisely, we show in
theorem 5.3 that

R (A) = 27 (A), (1.1)

for all 7 and k. Most interesting to us is the case when m = 3. For a PDg3 algebra
A, we have that %} (A) = %3 (A), and Z}(A) C {0} for i =0 or 3. So we are left
with computing degree 1 resonance varieties.

To that effect, we start by noting that the multiplicative structure of A is encoded
by the alternating 3-form pa: A°A' — k given by pa(a AbAc) = e(abe). Fixing
a basis {e1,...,e,} for Al and setting Wijk = fea(e; Aej Aeg), this information
can be stored dually in the trivector g =" ;5 €’ A e/ A e* belonging to /\3 (AL)*.
Conversely, any 3-form p: /\3V — k on a finite-dimensional k-vector space V' deter-
mines in an obvious fashion a PDj3 algebra A over k for which pg = pu. As shown
in theorem 4.7, this construction yields a one-to-one correspondence, A e« fiy4,
between isomorphism classes of PD3 algebras and equivalence classes of alternating
3-forms.

The rank of a 3-form p is the minimum dimension of a linear subspace W C V'
such that p factors through /\3 W. The computation of the degree 1 resonance
varieties of a PDj3 algebra reduces to the case when the associated 3-form has
maximal rank. More precisely, let A be any PDj3 algebra, and write A! = B! @ C*,
where the restriction of p4 to /\3 B! has rank equal to the rank of u,4. Letting
B the PDj3 algebra with associated 3-form equal to this restriction, we show in
theorem 6.2 that

Ry (A) = Ay, 1 (B) x C1 U R (B) x {0} (1.2)

for all k > 0, where r = corank p 4. In particular, Z} (4) = A for all k < corank 4.

In theorem 6.6 we give a lower bound on the dimension of the degree-1 resonance
varieties up to a certain depth. Letting v denote the nullity of 4, we show that

dim%Z}_(A) > v > 2, (1.3)

provided k = k and by (A) > 4; in particular, dim %} (A) > v. Finally, in theorem 6.7

we use a result from [15] to show that, with a few exceptions, Z1 (A) # {0}, provided
k=R.
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1.3. Pfaffians and resonance

Consider now the polynomial ring S = k[x1, ..., x,], and let 6 be the n x n skew-
symmetric matrix of S-linear forms with entries 6;, = 23;1 iy It turns out that
the resonance varieties of A are the degeneracy loci of this matrix, that is,

the vanishing locus of the ideal of codimension k£ minors of 6. Using known facts
about Pfaffian ideals of skew-symmetric matrices, we show in theorem 7.3 that

B3y, 1(A) if nis even,

1.5
K3 (A) if n is odd. (15)

AL (A) - {

We also show in theorem 7.5 that the bottom resonance varieties vanish, provided
n > 3 and py has maximal rank:

Ry —o(A) = By, 1 (A) = %, (A) = {0}. (1.6)
In this case, we have the following chains of inclusions for the varieties Zy, = %} (A):
Al :%0 2%1 2%2 :%3 DI 2:@'”_3 an_z = {0} if nis even,

1.7
Al:%02%’1:%22%3D~~~2%n_32%n_2:{0} if n is odd. ( )

1.4. The top resonance varieties

By way of contrast, the top resonance varieties of a PDj3 algebra A have a much
more interesting geometry. Without essential loss of generality, we may assume that
n = dim A! is at least 4 (the cases when n < 3 are easily dealt with). We then show
in theorem 8.6 that

1 (A) =

{V(Pf(uA)) if n is odd and 4 is generic in the sense of [1], (1.8)

Al otherwise.

Finally, suppose 4 is generic in the sense of [6]. If n is odd, then %} (A) is a
hypersurface which is smooth if n < 7, and singular in codimension 5 if n > 9. On
the other hand, if n is even, then %3 (A) is a subvariety of codimension 3, which is
smooth if n < 10, and is singular in codimension 7 if n > 12.

In Appendix A we list the irreducible 3-forms p 4 of rank at most 8, according to
the classification from [13, 22], together with the corresponding resonance varieties

This work is pursued in [34], where we provide further applications to the study
of cohomology jump loci of 3-manifolds.

2. The resonance varieties of a graded algebra

2.1. Resonance varieties

Let A be a graded, graded commutative algebra over a field k of characteristic
different from 2. Throughout, we will assume that A is non-negatively graded, that
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A is of finite-type (i.e. each graded piece A’ is finite-dimensional), and that A
is connected (i.e. A =k, generated by the unit 1). We will write b; = b;(A) for
the Betti numbers of A, and we will generally assume that b; > 0, so as to avoid
trivialities.
By graded-commutativity of the product and the assumption that chark # 2,
each element a € A' squares to zero. We thus obtain a cochain complex,
50 5 52

a a a

(A, 6,): A° Al A2 e (2.1)

with differentials §%(u) = a-u, for all u € A’. The resonance varieties of A (in
degree i > 0 and depth k > 0) are defined as

Ri(A) = {ac A" | dimy H' (A, a) > k}. (2.2)

In other words, the resonance varieties record the locus of points a in the affine
space A! = k" where the ‘twisted’ Betti numbers b;(4, a) := dimy H*(A, §,) jump
by at least k. We will allow at times k < 0, in which case we will set Z;(A) = AL
Clearly, the sets Z:(A) are homogeneous subsets of A'. Here is a more concrete
description of these sets, which follows at once from the definitions.

LEMMA 2.1. An element a € A' belongs to Zi(A) if and only if there emist
Ui, ..., u; € A® such that au, = --- = auy, =0n AL and the set {au,uy, ..., ux}
is linearly independent in A*, for all u € A1,

Consequently, %, (A) = {0} and Z},(A) = @ for k > b;; in particular, if b =0,
then %’,i(A) =@ for all k£ > 1. Moreover, for each i > 0, we have a descending
filtration,

At = R5(A) 2 #(A) 2+ 2%, (A) = {0} D %, ,(4) = 0. (2.3)
Therefore,

bi(A) =max {k |0 € Z}(A)}. (2.4)

2.2. Isotropic subspaces

We say that a linear subspace U C A! is isotropic if the restriction of the mul-
tiplication map A' A A' — A2 to U AU is the zero map; that is, ab =0, for all
a,beU.

LEMMA 2.2. Let A be a graded algebra as above.
(1) If U C A is an isotropic subspace of dimension k, then U C Z}_,(A).
(2) Z1(A) is the union of all isotropic planes in Al.

Proof. The first claim follows straight from the definitions. To prove claim (2),
let 2(A) be the union of all isotropic planes in A!. By claim (1), we have that
9(A) C #}(A); it remains to establish the reverse inclusion.
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So let a € %4 (A); there is then a vector b € A, not proportional to a, such that
ab=0 in A% Let U be the plane spanned by a and b. Then U is isotropic (if
a = Aa+ b and § = Aaa + b are two vectors in U, then clearly a8 = 0), and
we are done. O

REMARK 2.3. The resonance varieties %] (A) were first considered by Falk [18] in
the case when A is the Orlik—Solomon algebra attached to a hyperplane arrange-
ment and k = C. It was noted in that paper that lemma 2.2 holds in that setting,
while subsequent work of Falk [19] highlighted and made use of the fact that these
rulings by isotopic planes hold over fields k of arbitrary characteristic, even when
Z1(A) is not a union of linear subspaces, as is the case when char(k) = 0.

REMARK 2.4. The resonance varieties of a graded algebra A do not depend in an
essential way on the field k, but rather, just on its characteristic. More precisely, if
k C K is a field extension, then the k-points on % (A @k K) coincide with % (A).
Nonetheless, as we shall see in example 6.8, this subtle difference between the two
varieties can be quite meaningful.

2.3. Resonance varieties of products

One of the more pleasant properties of resonance varieties is the way they behave
with respect to tensor products of graded algebras. This topic is treated in various
levels of generality in [26,27,35]. We summarize here the relevant result.

PROPOSITION 2.5. Let A = B ®y C' be the tensor product of two connected, finite-
type graded k-algebras. Then

Zi(B @k C) = %y (B) x {0} U {0} x 2:(C),
R (B @y C) = | | #V(B) x #,F(C), ifi>2
p=0

Proof. As in [26,35], the claim easily follows from the following fact: if a =
(b,c) is an element in A' = B! @ C?', then the cochain complex (A,a) splits
as a tensor product of cochain complexes, (B,b) ® (C,c), and thus b;(A,a) =
Zp+q:i bp(B, b)by(C, c). U

2.4. Naturality properties

The resonance varieties show several good naturality properties with respect to
morphisms of graded algebras. To describe some of these properties, we start with a
lemma/definition, following the approach from [7], where a more general situation
is studied.

LEMMA 2.6. Let ¢: A — B be a morphism of graded k-algebras. For each a € A*,
there is an induced homomorphism

H'(A7 (Sa) (B 6@((1 ) (2'5)

Proof. Let [b] € H'(A,a), represented by an element b € A* such that ab=0 in
A" Since p(a)p(b) = 0, we may define a map ¢, from H'(A,d,) to H (B,dy(a))
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by sending [b] to [¢(b)]. To verify this map is well-defined, suppose b = ac, for some
c € A1 then ¢(b) = p(a)p(c), and so [p(b)] = [¢(c)]. 0

PrOPOSITION 2.7. Let p: A — B be a morphism of graded algebras such that
©': A" — B is injective and ¢'~! is surjective, for some i > 1. Then

(1) The homomorphisms @b : H'(A,8,) — H'(B,0,(,)) are injective, for all
a€ Al

(2) Suppose further that the map ¢': A — Bl is injective. Then this map
restricts to inclusions p': Zi(A) — Zi(B), for all k > 0.

Proof. To prove part (1), suppose that ¢ ([b]) = 0, for some b € A*. Then *(b) =
¢! (a)v, for some v € B~!. By our surjectivity assumption on ¢’~!, there is an
element u € A1 such that ¢*~!(u) = v, and so ¢*(b) = p'(av). Our injectivity
assumption on ¢’ now implies that b = av, and so [b] = 0.

Part (2) follows at once from part (1) and the definition of resonance varieties. [

As a particular case, we recover a result from [25, 33].

COROLLARY 2.8. Let ¢: A — B be a morphism of graded, connected algebras. If
the map @': A — Bl is injective, then ¢'(#L(A)) C Z}(B), for all k > 0.

It follows that the resonance varieties of a graded, connected algebra A depend
only on the isomorphism type of A. More precisely, if ¢: A = B is an isomorphism
between two such algebras, then the linear isomorphism ¢': A! =+ B! restricts to
isomorphisms ¢': %2} (A) = %} (B) for all k > 0.

In general, though, even if ¢: A — B is an injective morphism between two
graded algebras, the set ¢'(Z:(A)) may not be included in %} (B), for some i > 1
and k > 0.

EXAMPLE 2.9. Let f: S x S — S1V S? be the map obtained (up to homotopy)
by pinching a meridian circle of the torus to a point, and let ¢: A — B be the
induced morphism between the respective cohomology k-algebras. It is readily seen
that ¢ is injective, yet #%(A) = k, whereas %7 (B) = {0}.

3. Resonance and the BGG correspondence

In this section, we explain how the Bernstein—Gelfand—Gelfand (BGG) correspon-
dence can be used to find equations for the resonance varieties of a graded algebra,
and discuss the behaviour of these varieties under coproducts, and under injective
morphisms of algebras.

3.1. Equations for the resonance varieties

Once again, let A be a connected, finite-type commutative graded algebra
(cga) over a field k. Without essential loss of generality, we will assume that
n:=b1(A4) is at least 1. Let us pick a basis {e1,...,e,} for the k-vector space
Al and let {zy,...,7,} be the Kronecker dual basis for the dual vector space
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A = (AY)*. These choices allow us to identify the symmetric algebra Sym(A;)
with the polynomial ring S = k[x1,...,2,].

The Bernstein-Bernstein—-Gelfand correspondence (see for instance [17, §7B])
yields a cochain complex of finitely generated, free S-modules,

i—1
5/‘\

s
L(A)=(A®S,0): --- HAi_1®k54>Ai®kS*A>Ai+l®kS*>"‘,
(3.1)

with differentials given by 6% (u ® 1) = 37, eju ® x; for u € A*. By construction,
the matrices associated to these differentials have entries that are linear forms in
the variables of S.

It is readily verified that the evaluation of the cochain complex L(A) at an ele-
ment a € A! coincides with the cochain complex (A, §,) from (2.1), that is to say,
52|$j:aj = §%. By definition, an element a € A' belongs to Zi(A) if and only if

rank 6° 1 + rank 6% < b;(A) — F, (3.2)

where recall b;(A) = dimy A°. Let I,.(1)) denote the ideal of r x 7 minors of a p x ¢
matrix ¢ with entries in S, with the convention that Iy(v) = S and I.(¢) = 0 if
7 > min(p, ¢). Using the well-known fact that I,.(¢ © ) = > ., Is(¢) - I1(4), we
infer that

Ry (A) = V(Ibi(A)—kﬂ(&_l ® 5?4))

= N (Ve uvEeE). (33)

st=b;(A)—k+1

The degree 1 resonance varieties admit an even simpler description. Clearly, the
map 69 : S — S™ has matrix (z1 - x,), and so V(I1(6%)) = {0}; hence,

X (A) =V (1-1(54)) (34)
for 0 < k <nand Z.(A) = {0}.

REMARK 3.1. It is sometimes useful to consider the resonance schemes R (A)
of a graded algebra A as above. These schemes are defined by the ideals
Ib,i(A)—k+1(5f4_1 @ 4% ) from (3.3), and have as underlying sets the resonance varieties

X}, (A).

3.2. Induced morphisms in cohomology

Given an arbitrary morphism ¢: A — B of connected, finite-type graded k-
algebras, it is not clear how to define an induced chain map, L(y): L(A) — L(B).
Nevertheless, when ¢ is injective, this can be done (after making some non-canonical
choices), following the approach from [7].

Since each map ¢': A" < B is injective, the k-dual map, ¢;: B; — A;, is
surjective. Let ¢;: A; — B, be a k-linear splitting of ¢;, so that ¢; o ¢; =ida,.
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LEMMA 3.2. The map of S-modules L(p): L(A) — L(B) defined by

59 54
L(A): A°®y Sym(4;) — A @ Sym(4;) — A% @, Sym(A;) —
l L(v) l " ®@Sym(¢1) J{ @' ®Sym(¢1) l ©*®@Sym(1)
5% 5L
L(B): BY @y Sym(By) — B! @ Sym(By) — B? @ Sym(By) — -+

(3.5)

is a chain map.

Proof. Pick bases {e1,...,e,} for A and {fi,..., f,} for B! so that ¢'(e;) = f;
for j < p and ¢'(e;) = 0, otherwise. Letting {x1,...,2,} and {y1,...,y,} be the
dual bases for Ay and By, respectively, we find that

("™ @ Sym(¢1)) 0 64 (u @ 1) = 9" @ Sym(¢r) Z eju® T

3

@' (e))¢" (u) ® Y1 (z))

1

<.
Il
]
<

Mﬁ

fie' () @y,
1

(¢'(u) ®1)
o (@' ® Sym(¢1))(u ® 1),

<.
I

i
B
i

B

)
o

thus verifying our claim. O

The chain map defined above induces a morphism in cohomology, L(p)*:

H (L(A)) — H (L(B)). The next proposition follows at once.

PROPOSITION 3.3. For each i>0, the evaluation of the morphism L(p)*:
HY(L(A)) — H(L(B)) at a point a € A' vyields the map ¢&: H'(A,6,) —
Hi(B,é(p(a)) from (25)

3.3. Resonance varieties of coproducts

Let B and C be two connected cga’s. Their wedge sum, B V (', is a new connected
cga, whose underlying graded vector space in positive degrees is BT & CF, with
multiplication (b, ¢) - (V/, ) = (b, ec’). The next proposition sharpens results from
[26, 35]. Since this is a new proof, and since we will use the same approach to prove
theorem 6.2 below, we give complete details.
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PROPOSITION 3.4. Let A= BV C be the wedge sum of two connected, finite-type
graded k-algebras with by (B) > 0 and b1 (C) > 0. Identifying A* = B' & C*, we have

A (B) x % (C) if i=1,
%i A) = s+t:k71. 4
i(A) U Zi(B)xZi(C) ifiz2.
s+t=k

Proof. Note that L(A)* = L(B)" & L(C)". Thus, for i > 0 the matrix of 6% is the
block sum of the matrices of d; and 6, and so I.(6%) = >, L(0%) - I:(6¢),
where I4(6%) and I;(0},) are viewed as ideals of S = Sym(A;) by extension of scalars.

When i = 1, we get

Zr(A) =V (I, (4)-1(64))
=V (Iy,(4)-1(0p ® 65)

14 > L(Sp) - L(5)

s+t=bi(A)—k
= N (V) v nE)
s+t=b1(A)—k
= ﬂ (V(Ibl(B)—u(5113))UV(Ibl(C)—v(5lc))>
utv=k
= N (@B <) u (B x#i(C))
ut+v=k
= U Z;(B) x %/ (C)
s+t=k—1

where the last step is set-theoretical, based solely on the resonance filtrations (2.3)
for the algebras B and C. The proof for the case 7 > 1 is similar. O

4. Poincaré duality algebras and alternating forms

In this section, we consider a restricted class of graded algebras which abstract the
notion of Poincaré duality for closed, oriented topological manifolds, and we discuss
the alternating form naturally associated with such an algebra.

4.1. Poincaré duality

Let A be a non-negatively graded, graded-commutative algebra over a field k.
We will assume throughout that A is connected and locally finite. We say that A
is a Poincaré duality k-algebra of formal dimension m if there is a k-linear map
e: A™ — k (called an orientation) such that all the bilinear forms

Aty A™ =k, a®b— e(ab) (4.1)
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are non-singular. It follows e is an isomorphism, and that A’ =0 for i > m.
Furthermore, for each 0 < i < m, there is an isomorphism

PD": A" — (A™~")*  PD(a)(b) = £(ab). (4.2)

Consequently, each element a € A* has a ‘Poincaré dual’, ¥ € A™~%, which is
uniquely determined by the formula e(aa") = 1. We define the orientation class
wa € A™ as the Poincaré dual of 1 € A°, that is, wa = 1V. Conversely, a choice of
orientation class wq € A™ defines an orientation e: A™ — k by setting e(wa) = 1.

In more algebraic terms, a PD,, algebra is a graded, graded-commutative
Gorenstein Artin algebra of socle degree m.

The main motivation for these definitions comes from topology: if M is a com-
pact, connected, orientable, m-dimensional manifold, then, by Poincaré duality, the
cohomology algebra A = H'(M,k) is a PD,,, algebra over k, with the orientation
class [M] € Hp,(M,k) determining the orientation on A by setting w4 ([M]) = 1.

4.2. Tensor products and connected sums

The class of Poincaré duality algebras is closed under taking tensor products and
connected sums.

Indeed, if A and B are Poincaré duality algebras of dimension m and n, respec-
tively, then their tensor product, A ®y B, is a Poincaré duality algebra of dimension
m + n. Conversely, if the tensor product of two graded algebras is a PD alge-
bra, then each factor must be a PD algebra, see for instance [23, p. 188] or [32,
proposition 3.3].

Now let A and B be two PD,, algebras, with orientation classes wq and wpg,
respectively. Much as in [24], let us define their connected sum, C = A#B, as the
pushout

w—w A

Nw) — A (4.3)

i

B —— A#B

i€

In other words, C? =k -1, C' = A' @ B for 0 <i < m, and C™ =k - wc, with
w4 and wp identified to we, and with multiplication defined in the obvious way.

The motivation and terminology for the above notions comes from manifold topol-
ogy. Indeed, if M and N are two closed, oriented manifolds, then M x N is again
a closed, oriented manifold, and H (M x N,k) = H (M,k) ®x H (N, k). Moreover,
the cohomology algebra of the connected sum of two closed, oriented manifolds of

the same dimension is the connected sum of the respective cohomology algebras,
that is, H (M#N,k) = H (M,k)#H (N, k).

4.3. The alternating form of a PD,,, algebra

Associated with a PD,,, algebra over a field k there is an alternating m-form,

MA:/\'H'LAl_,]k7 MA(alA...Aam):g(al...am). (44)
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Let us specialize now to the case when m = 3. In this instance, the multiplicative
structure of A can be recovered from the 3-form ;= p4 and the orientation e, as
follows. As before, set n = by (A), and fix a basis {eq, ..., e, } for AL. Let {eY,... e
be the Poincaré dual basis for A2, and take as generator of A3 = k the class w = 1V.

The multiplication in A, then, is given on basis elements by
n
€icj = Zﬂijk ey, 67263v = djjw, (4.5)
k=1

where ;55 = p1(e; Aej Aeg) and &;; is the Kronecker delta. An alternate way to
encode this information is to let A; = (A%)* be the dual k-vector space and to
let €' € A; be the (Kronecker) dual of e;. We may then view u = pu dually as a
trivector,

p=> pipe Ael ek e NAy, (4.6)
and will sometimes abbreviate this as p ="y e'e’e”.
ExAMPLE 4.1. It is readily seen that the trivector associated with a connected sum
of two PDg3 algebras is the sum of the corresponding trivectors; that is,

HA#B = LA + jiB. (4.7)

Any alternating 3-form p: /\3V — k on a finite-dimensional k-vector space V'
determines a PD3 algebra A over k for which g = u: simply take A% = A3 =k
and A' = A% =V, choose dual bases as above, and define the multiplication map
as in (4.5).

REMARK 4.2. In [29], Roos outlined procedures for writing down a presentation
for the algebra A in terms of the trivector u, and for determining whether A is a
Koszul algebra.

REMARK 4.3. In [36], Sullivan showed that every alternating 3-form over a field k
of characteristic 0 can be realized as the 3-form associated with the cohomology
algebra A = H (M, k) of a closed, oriented 3-manifold M.

4.4. Classification of alternating forms

Let V be a k-vector space of dimension n, and let A" (V*) be the vector space
of alternating m-forms on V. The general linear group GL(V) acts on this affine
space by

Yan,). (4.8)

The orbits of this action are the equivalence classes of alternating m-forms on V.
(We write pu ~ p' if 4/ = g-p.) Over k, the Zariski closures of these orbits define
affine algebraic varieties. A standard dimension argument with algebraic groups
(see e.g. [5]) shows that there can be finitely many orbits over k only if n? > (),
that is, m < 2 or m =3 and n < 8. Furthermore, when k =R and k = C, each
complex orbit has only finitely many real forms, by [2, proposition 2.3].

(g.u)(alA.Aam) ::M(g—lal/\.../\g_
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Let us specialize now to the case of most interest to us, to wit, m = 3. For k = C,
the classification of alternating trilinear forms was carried out by Schouten [30] in
dimensions n < 7 and by Gurevich [22] for n = 8. For k = R, the classification was
done by Gurevich, Revoy and Westwick for n < 7 and by Djokovié¢ [13] for n = 8.
The classification in dimensions n < 7 was extended to arbitrary fields by Cohen
and Helminck [5].

Over C there are 23 orbits in dimension n = 8. Lying in the closure of another
orbit defines a partial order on the set of orbits; the corresponding Hasse diagram
is given in [14]. Those 23 complex orbits split into either 1, 2 or 3 real orbits, for
a total of 35 orbits, as indicated in [13]. Representative trivectors for each one of
these C-orbits (and the corresponding R-orbits for n < 7) are given in the tables
from Appendix A.

4.5. Maps of non-zero degree

Let A and B be two PD,,, algebras. We say that a morphism of graded algebras
@: A — B has non-zero degree if the linear map ¢™: A”™ — B™ is non-zero. In this
case, we may pick orientation classes such that

" (wa) = wp. (4.9)

Consequently, ¢ is compatible with the Poincaré duality isomorphisms from (4.2),
that is, (0™ ~%)* o PD’, = PD; 0, for 0 < i < m. It follows that

ppo N"o' = pa. (4.10)

Once again, the terminology comes from topology: if f: M — N is a map of
degree d # 0 between two closed, oriented manifolds of dimension m, then the
induced morphism in cohomology, f*: H (N,k) — H (M, k) will restrict to multi-
plication by d in degree m. Thus, if the characteristic of k does not divide d (for
instance, if chark = 0), then the morphism f* has non-zero degree.

We shall need the following alternate way to express the naturality of Poincaré
duality with respect to non-zero degree morphisms (compare with [24, lemma
1.3.1]).

LEMMA 4.4. Let ¢: A — B be a non-zero degree morphism between two PD,,
algebras. Then p(a) = p(a)V, for all homogeneous elements a € A.

Proof. We have p(a) - p(aV) = p(aa") = p(wa) =wp, and the claim follows at
once. g

PROPOSITION 4.5. A morphism p: A — B between two PD,, algebras is injective
if and only if ¢ has non-zero degree.

Proof. If ¢ is injective, then in particular ¢™ is injective, and thus is non-zero. For
the converse, suppose ¢ has non-zero degree. By the proof of the above lemma,
p(a) # 0, for all homogeneous elements a € A, and the claim follows. |

For instance, if A = B#C, then the canonical morphisms B — A and B — C' are
injective, and thus have non-zero degree.
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An isomorphism of PD,,, algebras is a map ¢: A — B between two PD,,, algebras
which preserves both the graded algebra structures and the orientation classes.

PROPOSITION 4.6. Two PD,, algebras A and B are isomorphic as PD,, algebras
if and only if they are isomorphic as graded algebras. Furthermore, either of these
conditions implies that pa ~ pp.

Proof. By proposition 4.5, if ¢: A — B is an isomorphism between the two under-
lying graded algebras, then condition (4.9) is satisfied, and so ¢ is an isomorphism
of PD,,, algebras. The converse is obvious.

Suppose now that ¢: A — B is an isomorphism of PD,,, algebras. Then, by (4.10),
we have that up o A" ! = pa, that is, up = @' - pa, and so pa ~ up. U

THEOREM 4.7. For two PDg3 algebras A and B, the following are equivalent.
(1) A= B, as PD,, algebras.
(2) A= B, as graded algebras.
(3) pa~ us.

Proof. In view of proposition 4.6, we only need to show that (3) = (2). Suppose
pa ~ pp. There is then a linear isomorphism g: Al — B! such that up =g - 4,
that is, wg = (/\3 g)(wa). Define a map ¢: A — B by requiring ¢ = id, ¢! =g,
©? = g¥ and ¢* = \* g, where ¢g¥: A2 — B2 is given by gV (a") = (g(a))". Clearly,
¢ is also a linear isomorphism. Now let a,b € A! be two non-zero elements. Setting
¢ = (ab)V, we have

wp = ©*(9)(wa) = ¢*(g)(abe) = g(a)g(b)g(c),
and so
¢(ab) = g"(ab) = g"(c") = g(c)" = g(a)g(b) = (a)p(b).

It follows that ¢ is an isomorphism of graded algebras, and we are done. O

In conclusion, the constructions from §4.3 together with the above theorem estab-
lish a one-to-one correspondence between isomorphism classes of three-dimensional
Poincaré duality algebras and equivalence classes of alternating 3-forms, given by
A e pig.

5. Poincaré duality and resonance

In this section, we explore some of the constraints imposed by Poincaré duality
on the resonance varieties of a PD algebra. Henceforth, the ground field k will be
assumed to be of characteristic different from 2.

5.1. Resonance varieties of PD,,, algebras

We start with a lemma expressing the compatibility between Poincaré duality
and the BGG correspondence. A similar statement is proved in [28, lemma 7.3], in
a more general context. For completeness, we provide a short proof.
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LEMMA 5.1. Let A be a PD,, algebra. Then, for all 0 <i < m and all a € A", we
have a commuting square,

(67 _
(Am—z)* (Am—i—l)*

=] bei &’T‘I’wﬂ
5t

Ai ¢ 3 Ai+17
where ®; = (—1)' PD".

Proof. Let b € A® and ¢ € A™~*~1. Then PD o4, (b)(c) = PD(ab)(c) = e(abc), while
5%, o PD(b)(c) = PD(b)(5_a(c)) = — PD(b)(ac) = —e(bac). Since ab = (—1)%ba, we
are done. g

The next corollary follows at once.
COROLLARY 5.2. Let A be a PD,, algebra. Then, for all 0 <i < m and all a € A',
(H'(A,8,))" = H™ (A, 6_,).

Furthermore, if ¢: A — B is a morphism between two PDy, algebras, then the
map @i H'(A,6,) — H (B, 04(,)) from (2.5) is dual to @' H™ (A, 6_,) —
Hm_i(B,éf(p(a)).

We are now ready to state and prove the resonance analogue of the palindromicity
of the Betti numbers of a Poincaré duality algebra.

THEOREM 5.3. Let A be a PD,,-algebra. Then, for all i and k,
Ri(A) = 2 (A).

Proof. By corollary 5.2, the k-vector space H*(A,d,) is dual to H™ %(A,5_,). The
claimed equality follows straight from the definition of resonance. |

This theorem shows that it is enough to compute the resonance varieties of a PD,,
algebra in degrees up to the middle dimension: the other ones are then essentially
given by Poincaré duality.

As a consequence of theorem 5.3, we deduce that #7"(A) = {0}, a fact which
was proved in a somewhat different fashion in [8, proposition 5.14]. Moreover, in
view of formula (2.4), we recover the fact that b;(A) = b,,—;(A). Thus, the above
theorem may be regarded as a generalization of the palindromicity of the Poincaré
polynomial of a closed, orientable manifold.

5.2. Connected sums and resonance

The resonance varieties of a connected sum of two Poincaré duality algebras can
be computed in terms of the resonance varieties of the factors. Arguing as in the
proof of proposition 3.4, we obtain the following result.
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PROPOSITION 5.4. Let A = B#C be the connected sum of two PD,, algebras with
positive first Betti numbers. Then, for all k > 0,

U ZUB)xZ(C) ifi=1o0rm-—1,

s+t=k—1

Zi(A) =L U ZUB)xZ(C) ifl<i<m-—1, (5.1)
s+t=k
{0} ifi=0o0rm, and k =1,

and Zi(A) = @, otherwise.

COROLLARY 5.5. Let A = B#C be the connected sum of two PD,, algebras. If
b1(B) > 0 and b1 (C) > 0, then #1(A) = AL

EXAMPLE 5.6. Let A= H (¥,,k) be the cohomology algebra of a closed, ori-
entable surface of genus g > 2. Since ¥, = ¥, _1#S5' x S, the above corollary
yields Z1(A) = AL

5.3. A resonance obstruction to domination

A fundamental question in manifold topology (studied by Gromov [21] and oth-
ers) is to decide whether there exists a map f: M — N of non-zero degree between
two closed, oriented manifolds M and N of the same dimension. If such a map
exists, one says that M dominates N.

By analogy, given two PD,, algebras A and B, we say that B dominates A if
there is a non-zero degree morphism A — B. By proposition 4.5, this is equivalent to
saying there is an injective morphism A — B; in particular, we must have b;(A) <
bi(B) for all i > 0. Applying corollary 2.8, we obtain a geometric obstruction to
domination.

COROLLARY 5.7. Suppose ZL(A) has larger dimension (or more irreducible
components) than %} (B), for some k > 1. Then B does not dominate A.

EXAMPLE 5.8. The exterior algebra E = A(k™) is a Poincaré duality algebra of
dimension m. Since the Koszul complex L(E) = F ® S is exact, the resonance
varieties of E vanish; more precisely, Z.(E) = {0} if 1 <k < (T) and is empty,
otherwise. It follows that £ does not dominate any PD,, algebra A for which
Z1(A) has positive dimension.

6. The resonance varieties of a PD3 algebra

We analyse now in more detail the structural properties of the resonance varieties
of a three-dimensional Poincaré duality algebra.

6.1. Reduction to degree 1 resonance

The next proposition reduces the computation of the resonance varieties of a PD3
algebra to those in degree 1.
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PROPOSITION 6.1. Let A be a PD3 algebra with by (A) = n. Then

1) Zi(A) = AL,
A (A) = 77 (A) = {0} and Z}(A) = Z,(A) = {0}.
HE(A) = RL(A) for 0 <k <n.

(1)
(2)
(3)
(4) In all other cases, i(A) = O.

Proof. Statements (1), (2) and (4) follow straight from the definitions and previous
remarks, while (3) follows from theorem 5.3. O

Thus, to understand the resonance varieties of a PDj3 algebra A, it suffices
to describe the resonance varieties %} (A), in depths 0 < k < by(A). As a trivial
example, suppose pa = 0; then %2} (A) = Al for k < by(A).

6.2. Decomposable and irreducible forms

The next result further reduces the computation of the resonance varieties of
an arbitrary PDgs algebra to those of a PDj3 algebra whose associated 3-form is
irreducible.

Let u: /\3V — k be an alternating 3-form on a finite-dimensional k-vector space
V. The rank of y is the minimum dimension of a linear subspace W C V such that
1 factors through /\3 W; we write corank yp = dim V' — rank . The 3-form p is said
to be irreducible if it has maximal rank, that is, corank u = 0.

THEOREM 6.2. FEvery PD3 algebra A decomposes as A = B#C, where B are C are
PD3 algebras such that pp is irreducible and has the same rank as pa, and po = 0.
Furthermore, the isomorphism A' = BY @ C' restricts to isomorphisms

Ki(A) = Ry 1(B) x CLUZ;,_(B) x {0} (6.1)
for all k > 0, where r = corank i 4.

Proof. Let W C A! be a subspace of dimension equal to rank y 4 for which the form
pa: NV — k factors through A® W, and let i be the restriction of y to W. By
construction, this is a 3-form whose rank equals that of y, that is, rank i1 = dim W.

Let B be the PD3 algebra corresponding to fi. Evidently, B! = W and up = i
is irreducible. It is now readily seen that A = B#C, where C is the PDg3 algebra
with C* = A'/B! and pc = 0.

By a previous observation, %} (C) = C! for t <r and %£}(C) = {0}. Formula
(6.1) now follows from proposition 5.4. O

REMARK 6.3. Suppose A = H'(M,k) is the cohomology algebra of a closed, ori-
entable 3-manifold M. Let M = N#P, where P is the connected sum of the factors
in the prime decomposition of M having the k-homology of either S® or S! x $2
and N is the connected sum of all the other factors. Setting B = H (N, k) and
C = H (P, k), we recover the decomposition A = B#C' from the above result.

As an immediate consequence of theorem 6.2, we have the following corollary.
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COROLLARY 6.4. If A is a PD3 algebra, then %} (A) = A" for all k < corank 4.

6.3. Nullity and isotropic subspaces

Before proceeding, we need a few more classical definitions, suitably adapted to
our setup (see for instance [16, 31]).

Let p: /\3V — k be a 3-form. A linear subspace U C V is 2-singular with respect
to pif plaAbAc)=0for all a,b € U and ce V. (If dimU = 2, we simply say U
is a singular plane.) The nullity of u, denoted null(u), is the maximum dimension
of a 2-singular subspace U C V. Clearly, V' contains a p-singular plane if and only
if null(p) > 2.

The following (very simple) lemma clarifies the relationship between singularity
and isotropicity in the context of PD3 algebras.

LEMMA 6.5. Let A be a PD3 algebra. A linear subspace U C A is 2-singular (with
respect to pa) if and only if U is isotropic.

Proof. If U C Al is a 2-singular subspace, then pa(a AbA c) = e(abe) = 0 for all
a,b € U and ¢ € A'. Since the bilinear form A? @ A! =k, ¥ ® ¢ — &(7c) is non-
degenerate, this implies ab = 0 for all a,b € U, that is, U is isotropic.

Conversely, if U C A! is an isotropic subspace, then ab = 0 for all a,b € U. Thus,
pala ANbAc)=¢e(abc) =0 for all a,b € U and ¢ € Al, that is, U is 2-singular. [

The next result gives a lower bound on the dimension of the degree-1 resonance
varieties.

THEOREM 6.6. Let A be a PDg3 algebra over an algebraically closed field k (of char-
acteristic different from 2), and let v =null(ua) be the nullity of the associated
alternating 3-form. If b1 (A) > 4, then

dim%Z!_(A)>v>2.
In particular, dim %1 (A) > v.

Proof. Since dimy A' >4 and k is algebraically closed, a result of Sikora [31,
corollary 20] implies that null(pa) > 2.

To prove the other inequality, pick a linear subspace U C A! of dimension v
such that pa(a AbAc) =e(abe) =0 for all a,b € U and ¢ € AL. By lemma 6.5, the
subspace U is isotropic. Also, by what we just established, dim U > 2. Therefore,
by lemma 2.2, U C %Z._;(A). Hence, dimU < dim %._,(A), and we are done. [J

v—1

6.4. Resonance varieties of PDg algebras over R

Motivated by his study of cut numbers of 3-manifolds, Sikora in [31] made the
following conjecture: If pu: A*V — k is a 3-form with dim V > 4 and if char(k) # 2,
then the nullity of 4 is at least 2 (i.e. V contains a singular plane). He noted that
the conjecture holds if either n := dim V is even or equal to 5, or, as mentioned
above, if k = k. Nevertheless, work of Draisma and Shaw [15, 16] implies that the
conjecture does not hold for k =R and n = 7. The following result explains the

reason, in terms of resonance varieties.
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THEOREM 6.7. Let A be a PD3 algebra defined over R. Then %Z+(A) # {0}, except
when pa is one of the forms 1, 111 or Xy, from Appendiz A.

Proof. Set n = by(A). If n < 2 everything is clear, so let’s assume that n > 2. We
may also assume that p 4 is irreducible, for otherwise, by corollary 5.5, Z+(A) = A*,
and there is nothing to prove.

Suppose now that %4 (A) = {0}, i.e. Z}(A) contains no singular plane. Then,
by lemmas 2.2 and 6.5, A! contains no singular plane. Hence, as shown in [16,
theorem 2], the formula (z x y) - 2 = pa(z, y, z) defines a cross-product on A = R™.
In turn, this cross-product yields a division algebra structure on R™*!, and so,
by a celebrated result of Bott—Milnor and Kervaire, we must have n =3 or 7. An
inspection of the tables from Appendix A shows that p4 must be equivalent to either
III (the associated cross-product on R? arises from quaternionic multiplication in
R*) or X; (as noted in [16], the corresponding cross-product on R” arises from
octonionic multiplication in R®). This completes the proof. O

The above proof highlights the fact (already alluded to in remark 2.4) that
real resonance varieties may carry more refined information than their complex
counterparts. We make this observation more explicit in the following example.

EXAMPLE 6.8. Let A and A’ be the real PDj3 algebras corresponding to the trivec-
tors X, and X,. Then A @ C = A’ ®g C, since pa ~ pa over C. On the other
hand, A %2 A’ over R, since pa 7 juas over R, but also because %1 (A) # {0}, yet
ZL(A) = {0},

Note that both #}(A®g C) and %} (A’ ®@g C) are projectively smooth con-
ics, and thus are projectively equivalent over C. Nevertheless, %} (A’ ®@g C) =
{x € C" | 3> 22 = 0} has only one real point (z = 0), whereas Z} (A ®g C) = {z €
C7 | w124 + 2275 + x336 = T2} contains, for instance, the real (isotropic) subspace
{$4:$5=$6:I7:0}.

7. Pfaffians ideals and resonance

In this section, we express the resonance varieties of a PD3 algebra A in terms of
the Pfaffians of the skew-symmetric matrix associated with the boundary map 4%,
and determine those varieties in bottom depth.

7.1. The cochain complex L(A)

Once again, let A be a PDj3 algebra over a field k of characteristic not
equal to 2. Fix a basis {e1,...,e,} for AL, identify the ring S = Sym(A4;) with
k[z1,...,z,], and consider the cochain complex L(A) = (A ®k S,04) defined by
the BGG correspondence,

50 61 62
A0, S — Al@y S — A2 @, S — A3 @y S. (7.1)

Recall from §3.1 that the differentials in L(A) are the S-linear maps given by
09(u) = Y7 ) eju@x; for u € A% In the bases for A%, ..., A% chosen in §4.3, we
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have that

5a(1) = Zej ® T,
=1

n n

Shle) =D ejei @y =3 Y pjnef @wj, (7.2)

=1 j=1k=1
n

2/ v v

o0a(e)) = E eje; xrj =w® x;.
Jj=1

Observe that the first and third maps have matrices 6% = (z1 --- x,) and
6% = (69)T. The most interesting to us is the skew-symmetric matrix associated
with the boundary map d.

EXAMPLE 7.1. Let pua = (e! Ae2+e3Aet)Ae® be the trivector 5; from
Appendix A. Then

0 T5 0 0 —x9
—T5 0 0 0 Ty

sh=1 o0 0 0 x5 —x4
0 0 —I5 0 I3
Xro —X Zq —XI3 0

REMARK 7.2. The matrices § also appear in recent work of De Poi et al. [6], as
well as Cardinali and Giuzzi [4], though in both cases the geometric origin and the
motiwation for studying them is very much different from ours.

7.2. Pfaffians and resonance

By (3.4), each resonance variety %;.(A) is the vanishing locus of the codimension k
minors of the skew-symmetric matrix 6. More generally, let 6 be a skew-symmetric
matrix of size n X n with entries in the polynomial ring S = k[x1,...,z,]. Define
the resonance varieties of 6 as

for 0 <k <n—1, and set %,(0) = {0}. Put another way, the resonance varieties
of a skew-symmetric matrix @ are the degeneracy loci of such a matrix. The next
result expresses these loci in terms of the Pfaffians of 6.

THEOREM 7.3. Let Pfo,.(0) be the ideal of 2r x 2r Pfaffians of an n x n skew-
symmetric matriz 6 with entries in S. Then:

Kok (0) = Zok+1(0) = V(P,_2k(0)), if nis even,

. ‘ (7.4)
Fok—1(0) = Ko (0) = V(Pl,_oxy1(0)), if nis odd.
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Proof. As shown by Buchsbaum and Eisenbud [3, corollary 2.6], the following
inclusions hold, for each r > 1:

]2r(9) g Png(G) g \/ 127-(9), and Igr,l(H) Q Png(H) (75)
Consequently, V (I2.—-1(0)) = V(I2-(0)) = V(Pf3,:(f)), and the claim follows. O

Note that the ideal Pf,,(0) is principal, generated by pf(f), the maximal Pfaffian
of 0, which equals 0 if n is odd. Thus, if n is even and 6 is non-singular, then
%1 (0) = %0(0) = V(pf(0)) is a hypersurface, while if 0 is singular, then % (0) = k™.
On the other hand, if n is odd, then %, (0) = %2(60) = V(Pf,_1(0)).

REMARK 7.4. We shall view the scheme structure for Ry (6) as being defined by
the Pfaffian ideals from (7.4).

Let us return now to the case when A is a PD3 algebra and 6 = &} is the boundary
map from (7.1). In that case, the matrix 6’y is singular, since § o §% = 0. Therefore,
we have the following chain of inclusions for the varieties Z} = %} (A):

A' =B =R DRy =Ry DRy =--- if bi(A) is even,

7.6
A' =R DR =Ry DRy =R, D -+ if bi(A) is odd. (76)

7.3. Bottom-depth resonance

We conclude this section with a vanishing result for the bottom resonance
varieties of a PD3 algebra whose associated 3-form is irreducible.

THEOREM 7.5. Let A be a PDg3 algebra. If pa has maximal rank n > 3, then
BE_y(A) = BE_,(A) = BL(A) = {0}, (7.7)

Proof. Clearly, Z}(A) = {0}. Let 6" = 6 be the differential from (7.2). By (7.4)
and (3.4), we have that

Prn—o(A) = %, 1 (A) = V(L(6")).

To complete the proof, it suffices to show that +/I;(0') =m, where
m = (z1,...,x,) is the maximal ideal at 0. By (7.1) all entries of the matrix §'
belong to m, and so /I;(6') C m. Since, by assumption, the form g4 has rank n,
each variable x; occurs in some entry of 8}, and thus equality holds. O

Now combining theorems 6.2 and 7.5, we obtain the following immediate
corollary.

COROLLARY 7.6. Let A be a PDg3 algebra, and decompose it as A = B # C, where

pup is irreducible and pc =0. If n=dimA' is at least 3, then %\ _,(A)=
R (A)=C1L.
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8. Top-depth resonance of PDj algebras

In this section, we study the geometry of the top-depth resonance varieties of a
PDg algebra, with special emphasis on the case when the associated 3-form satisfies
certain genericity conditions.

8.1. Determinants and Pfaffians

Let A be a PDjs algebra over k. As before, identify S = Sym(4;) with
k[z1,...,z,], where n =b1(A), and let 6' =0Y: A' @ S — A2 ®, S be the first
differential in the cochain complex L(A). In the previously chosen bases for A! and
A2, the matrix of 6! is skew-symmetric. Furthermore, §' is singular, since the vector
(21,...,2,) is in its kernel. Hence, both its determinant det(d') and its Pfaffian
pf(6') vanish.

In [37, Ch. ITI, lemmas 1.2 and 1.3.1], Turaev shows how to remedy this situation,
so as to obtain well-defined determinant and Pfaffian polynomials for the form
i = p1a by looking at codimension 1 minors of the associated matrix §1.

LEMMA 8.1 [37]. Suppose n = 3. There is then a polynomial Det(p) € S such that,
if §1(i; ) is the sub-matriz obtained from 6 by deleting the i-th row and j-th column,
then

det 6'(i; ) = (—1)" a2, Det(p).
Moreover, if n is even, then Det(u) = 0, while if n is odd, then Det(u) = Pf(u)?,
where pf(61(i;i)) = (=1)"La; Pf(u).

REMARK 8.2. If n is odd, then Det(u) is a homogeneous polynomial of degree n — 3,
while Pf(u) is a homogeneous polynomial of degree (n — 3)/2.

Let us note the following immediate corollary to lemma 8.1.

COROLLARY 8.3. With notation as above, let m be the mazimal ideal of S at 0.
Then

L1 (0Y) = 0 if nis even,
et C w2 (Pf(p)?) if nis odd.

We illustrate these notions with a simple example.

EXAMPLE 8.4. Let A= H (3, x S',k), where ¥, is a Riemann surface of genus
g > 1. The corresponding 3-form on A' = k9™ is =39 | a;b;c, while Pf(u) =
:v*ggjl. See also example 7.1 for the case g = 2.

8.2. Generic forms

The alternating 3-forms from example 8.4 fit into the more general class of
‘generic’ 3-forms, a class introduced and studied by Berceanu and Papadima in
[1]. For our purposes, it will be enough to consider the case when n = 2g + 1, for
some g > 1.

https://doi.org/10.1017/prm.2019.55 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.55

3022 A. I. Suciu

We say that a 3-form pu: /\3V — k is BP-generic if there is an element v € V
such that the 2-form ~, € V* A V* defined by

Yo(aAb) =pala NbAV) fora,beV (8.1)
has rank 2g, that is, 77 # 0 in /\29 V*. Equivalently, in a suitable basis for V', we
may write

g
u:Zai/\bi/\v—l—Zwijkzi/\zj/\zk, (8.2)
i=1
where each z; belongs to the span of a1,b1,...,a4,by in V, and the coefficients w;
are in k.

The following lemma, which was first suggested by S. Papadima, was recorded in
[12, remark 5.2] (see also [11, remark 4.5]). For completeness, we supply a proof,
in this slightly more general context.

LEMMA 8.5. Assume that n is odd and greater than 1. Then Z}(A) # Al if and
only if pa is BP-generic.

Proof. Suppose there is a class ¢ € A! such that ¢ ¢ %] (A). Then, for any class
a € Al which is not a multiple of ¢, we have that ac # 0. Letting b = (ac)" € Al, we
infer that 4(a A b A ¢) is non-zero. It follows that the 2-form . from (8.1) defines
a symplectic form on a complementary subspace to the vector ¢ € A', thereby
showing that pa is BP-generic. Backtracking through this argument proves the
reverse implication. O

8.3. The top resonance variety of a PD3 algebra

We are now in a position to describe fairly explicitly the first resonance variety
of a three-dimensional Poincaré duality algebra.

THEOREM 8.6. Let A be a PD3 algebra over a field k. Set n = dim A' and let
= ua be the associated 3-form. Then

%] if n=0;

Z(A) = {0} if n=1o0r n=3and pu has rank 3; (8.3)
V(Pt(u)) if nisodd, n>3, and p is BP-generic;
Al otherwise.

Proof. If n < 2, then p =0, and the conclusion is immediate. So suppose n > 3,
and let §' = 8 be the skew-symmetric matrix associated with g, as in (7.1). Recall
from (3.4) that 2 (A) = V(I,,_1(6")).

If n is even, then, by corollary 8.3, I,,_1(d') = 0, and so Z}(A) = AL

If n is odd, then again by corollary 8.3, I,,_1(6') = m? - (Pf()?). On the other
hand, by lemma 8.5, I,,_1(&') is non-zero if and only if u is BP-generic. In this case,
either n = 3 and so Pf(u) = 1 and %1 (A) = {0}, or n > 3 and %} (A) = V(Pf(u))
is a hypersurface of degree (n — 3)/2. This completes the proof. O
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As a corollary, we recover a closely related result, proved by Draisma and Shaw
in [15, theorem 3.2] by very different methods.

COROLLARY 8.7 [15]. Let V be a vector space of odd dimension n > 5 over a
field k and let u € /\3 V*. Then the union of all p-singular planes is either all
of V' or a hypersurface defined by a homogeneous polynomial in K[V] of degree

(n—3)/2.

Proof. Let A be the PDj3 algebra corresponding to p. By lemmas 2.2 and 6.5, the
union of all g-singular planes in A! =V coincides with %1 (A). Suppose that n
is odd, n > 5, and assume %;(A) # A! (by lemma 8.5, this means that u is BP-
generic). It follows from theorem 8.6 that % (A) = V (Pf(u)). By remark 8.2, Pf(u)
is a homogeneous polynomial of degree (n — 3)/2, and we are done. O

8.4. Another genericity condition

For a trivector u € /\3 V*, there is another genericity condition studied by
De Poi et al. in [6]. This condition requires that, for any non-zero vector
v € V, the bilinear form -, from (8.1) have rank greater than 2 (this is condi-
tion (GC3) from definition 2.9 in loc. cit., a condition which implies that p is
irreducible).

In the presence of the aforementioned genericity condition, a more precise geomet-
ric description of the two top resonance schemes of the corresponding PDj3 algebra
is given in [6, proposition 4.4]. We summarize this result in our terminology, as
follows.

THEOREM 8.8 [6]. Let A be a PDj3 algebra over C, and suppose pa is generic in
the above sense. Writing n = dim A', the following hold.

(1) Ifn is odd, then Ri(A) is a hypersurface of degree (n — 3)/2 which is smooth
if n < 7, and singular in codimension 5 if n > 9.

(2) If n is even, then R3(A) has codimension 3 and degree +("3%) +1; it is
smooth if n < 10, and singular in codimension 7 if n > 12.
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Appendix A. Resonance varieties of 3-forms of low rank

The following tables list the irreducible 3-forms g = pa of rank n < 8, and the
corresponding resonance varieties, %, = %} (A). The ground field k is either C or
R, as indicated. For simplicity, we will denote a trivector e A el A e* as ijk. We
use the classification of 3-forms of rank at most 8 of Gurevich [22], with further
elaborations from [5,13,14]. For n =6 and 7, we record the way complex orbits
split into real orbits, based on the tables of Djokovié¢ [13]. The computation of the
resonance varieties was done using the package Macaulay2 [20].

https://doi.org/10.1017/prm.2019.55 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2019.55

3024 A. I. Suciu
C 1 4l K2 K3
I 0 %) %) %}
11 123 0 0 0
I 125 +345 {25=0} {z5=0} 0
C R 12 %1 %2 = %3 %4
v 135 + 234 + 126 kS  {z; =29 =123 =0} 0
V a 123 + 456 kS  {z; =29 =123 =0}U 0
{1‘4:.’1}5:.’156:0}
b —135+146 +236 + 245 k® V(2% + 23,23 + 23,22 + 0
T3, T4T5 — T3e, T3T5 +
T4T6, 25 — 126, T1T5 +
Tk, Laky — 124, T1L3 + ToZy)
C R L Ry = Ry K3 = Ky K5
VI 123 + 145 + 167 {z, =0} {z1 =0} 0
VII 125 + 136 + {z1 =0} {1 =29 = 23 = 24 = 0} 0
147 + 234
VIII a 134+ 256 4+ 127 {$1:0}U{$2:0} {x1:x2:x3:x4:O}U

{581:332:1}5:136:0}
V(zy, 9,23 + 23,22 +
x%, T3T5 + Talg, Tals —
T376)

b —135+ 146 +
236 + 245 4 127

{22 + 22 = 0}

IX o 125+ 346 + {x124 + 2225 = 0} V(22 — 326, 71, T2, T4, T5)
137 + 247
b —135+ 146 + {z123 + X224 = 0} V(22 — 526, 71, T2, T3, T4)
236 + 245 +
127 + 347
X a 123 + 456 + {1‘1.’174 + Xox5 + 0
147 + 257 + 367 z316 = 22}
b —135+146+ {z?+a2i+a23+25+ O
236 + 245 + 2} + 2 + 22 =0}
127 + 347 + 567
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C 1% %1 %2 = %3 %4 = %5 %6
XI 147 + 257 + CS {I7 = 0} {.Ig =I5 = X7 = I8 = O}U 0
367 + 358 {ry=a3=a4=125 =27 =
0}
XII 456 + 147+ C8 {.’13‘5 = X7 = 0} {.Tg =24 =Ty = T7 = 0
257 + 367 + r128 + 22 =0}
358
XII  123+456+ C® {21 =5 =0}U {tr1=23 =04 =25 = 0
147 + 358 {1'3 =x4 = 0} Tokg + Trrg = O}
X1V 123 + 456 + C8 {1‘1 =I5 = {.131 =29 = X3 =Ty = Ty = 0
147 + 257 + 0}U{$3=]J4: 33‘7:0}
358 x5 =0}
XV 1234456 + C8 {w3=1a5= {r1=wo=a3=04=25= 0
147 + 257 + 124 — 22 =0} x6 = x7 =0}
367 + 358
XVI 147 + 268 + C8 {.’131 =Ty =T7 = {.Tl =Ty =7 =28 = 0
358 O}U{JEgZO} 0}U{5€2=ZE3=$5:1}6:
xrg = 0}
XVII 1474257+ C8 {a; =25 =0}U {r1 =9 =24 =025 =27 = 0
268 + 358 {3?2:.%'5:.’1?8: $8:0}U{$2:$3:.’L‘5:
0}U{$1:$4: 1‘6:.1‘7:1‘8:0}
Ty = 0}
XVIIT 456 + 147 + CS {$5 = Tg = {581 =T2 =Ty = T5 =T = 0
257 + 268 + T4Tg — Toly = x7 =23 =0} U{xy =23 =
358 0} U{ay =27 = Ty =125 =x6 =27 =x8 =0}
22 — 128 =0}
XIX 147 + 257+ C8 {.%‘2—33‘3:.135— {.1312334:1‘7:1‘8:.132— 0
367 + 268 + T = T7 — Xy = x3 =ax5 —xg =0} U {xy =
358 0} U{ze + 235 = Ty =27 =28 =To+ a3 =
T5 + Tg = X7 + x5 +a6 =0} U{ze =23 =
$8:0}U{.’L‘7: $5:$6:.’E7:$8:0}
rg — 0} U {1‘1 =
Ty = X7 = 0}
XX 456 + 147 + CS {$5 — X = {.Tl = T4 =T5 = Tg = 0

257 + 367 +
268 + 358

T7 — T8 = Xalg —
ToX7 + T3x7 =

O} ] {x5 + xg =
T7 + T8 = T4Tg —
ToX7 — X3L7 =
0} @] {1’7 =4 =
{,C?) — {L‘% — X1Tg =

0}

Ty = T8 =Ty — T3 —

0} U{ay =24 =25 =26 =
$7:$g=$2+$3:0}
U{I2=1‘3:$4=$5=1‘6:
1'711810}
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C 12 %1 %2 = %3 %4 = %5 %6
XXI 123 + 456 + (CS {$3$5 + Toxg + {331 =X =T3 = XTy4 = 0
147 + 268 + Tl = X1 = Ty = x5 =x6 = a8 = 0}
358 0} U {.%'1$4 + x% =
T1X3 — gLy —
T1T9 + T5Tg =
TaTe + T3Tg =
Tyls — T2Tg =
T3x5 + ToZg = 0}
XXII 1234456+ C® {fi=--=fp=0} 0 0
147 4+ 257 +
268 + 358
XXIT 1234456+ C® {g1=---=g=0} O 0
147 + 257 +
367 + 268 +
358
Note: In XXII and XXIII, the polynomials f; and g; are homogeneous of degree 3.

The varieties cut out by each of these two sets of polynomials have codimension 3.
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