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We study the interactions between a nematic liquid crystal disclination and the surface

of the half-space which bounds it. When strong anchoring conditions are applied on the

boundary, the biaxial core of the disclination affects the repulsive force that tends to drive

the disclination away from the surface. If we replace the strong boundary conditions with an

anchoring potential, the surface-disclination interaction depends on the surface extrapolation

length. In particular, the nematic may expel the disclination if the anchoring strength is below

a critical value.

1 Introduction

Nematic liquid crystals are so-called because of the dramatic threads which can be seen

to run through them when they are viewed through crossed polarizers under a microscope

[21]. It is now known that the nematic liquid crystals are anisotropic fluids, characterized at

each point by a vector n ≡ −n, which describes the local preferred molecular direction. The

equivalence between n and −n reflects the molecular head-and-tail symmetry. Much effort

has been expended over the years in developing first a static and then a dynamic theory,

based on force balances, which include n and its spatial derivatives [14, 15, 18, 25, 34].

The threads mentioned above are now known to be line singularities in the director field,

along which n is no longer defined. The singularities are known as disclinations and are

the orientational analogues of dislocations in solids. The disclinations in liquid crystals

are special in that a half-turn of the director is sufficient to restore it to its original

orientation, and a disclination line can be defined by a region around which a closed path

including an odd number of half-integral turns can be drawn. We shall return to this in

more detail below.

The dilemma in constructing a proper treatment of the full mechanical properties of

nematic liquid crystals is not only that the bulk continuum theories developed by Oseen

and all subsequent research workers [20, 33, 42] do not formally allow for the separate

existence of these disclinations, but that the infinite orientational spatial derivatives which

formally occur in their neighbourhood are unphysical and must be removed before a full

understanding of the problem can be reached. In view of the fact that disclination lines are
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almost ubiquitous in experimental nematic samples, as well as the fact that there has been

intense interest in the mechanics of nematic liquid crystals, it is surprising that even now

a full mechanical treatment of these systems including defects still eludes us. This paper is

a contribution to this debate, and like many other such contributions, is able to proceed

because the director description of liquid crystals is embedded in the more general

order parameter picture which allows the degree of orientation to be locally varied.

The problem we address concerns the location of disclination lines within a confined

system, and more specifically the effect of a single boundary on the location of such

lines.

A confined nematic liquid crystal is forced to display point or line singularities whenever

the boundary conditions imposed on it are topologically nontrivial. Reviews of various

aspects of this phenomenon are given in [5, 23, 29]. In particular, the disclinations,

which are topologically stable line defects, arise when the director n rotates an odd

multiple of π when we follow its continuous variation around the line. If we denote by

k the number of half-turns the director makes around the singular line, this latter is

usually named a k
2
-disclination . Half-integer charged disclinations are made possible by

the n ↔ −n symmetry that characterizes the nematic. The mere existence of disclinations

induces a paradox in the Frank variational theory of nematic liquid crystals [20], since

any director field representing a topologically stable disclination apparently possesses an

infinite free-energy.

One way to avoid the divergence of the free-energy density close to the disclination is to

excise from the system a small volume including the singularity, and then derive the static

and dynamic properties of the disclinations by taking the limit as the excised volume goes

to zero [9]. Nevertheless, the complete physical description of small regions around the

singularities requires an extension of Frank–Oseen–Zocher theory [20, 33, 42], obtained

by replacing the director order parameter by the tensor of second-order moments of the

local probability distribution of nematic molecules [12, 16]. As a first generalization of

the classical theory, it has been shown that the structure and dynamical properties of

point [36] and line [24, 37] defects are strongly influenced by the reduction of the degree

of orientation, even if one assumes that the nematic remains everywhere uniaxial, and

that it becomes isotropic on the defect. Furthermore, numerical and theoretical studies

[6, 28, 30, 31, 41] of the core structure have proved that inside the core of a disclination

the nematic not only decreases its degree of orientation, but it actually abandons the

uniaxial phase, by becoming biaxial in a small, but finite, region surrounding the defect.

Recently, tremendous interest in the structure and properties of liquid crystal disclinations

has arisen, partly because they can be thought of as laboratory analogues of cosmological

structures [8, 11], partly because despite their experimental visibility they are nevertheless

extremely complex to describe.

When we consider a nematic disclination confined in a half-space where strong anchor-

ing conditions are applied, the classical limit procedure described above (first applied by

Eshelby [17]) yields a repulsive force proportional to the inverse of the distance between

the line defect and the surface. On the other hand, in a recent investigation the usual

strong anchoring conditions are replaced by an absolutely free boundary, where no an-

choring is applied [40]. In this case the disclination is attracted towards the surface, and

eventually expelled from the system.
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In this paper we study the interaction between a +1
2

disclination and a planar surface,

when either strong or weak anchoring conditions are imposed at the bounding surface,

using the internal Landau–de Gennes potential to analyse the biaxial structure of the core

of the disclination. In the former case, we find that if the disclination is sufficiently far

away from the surface, the core radius tends to a constant, and the core structure gives

no essential contribution to the repulsive force, so that we retrieve the classical results

obtained in the limit of a vanishing core. Nevertheless, when the disclination approaches

the surface, we find that the core radius shrinks, and the repulsive force increases, doubling

its value with respect to the classical prediction.

Furthermore, when a weak anchoring potential is applied to the nematic, we show that

the interaction between the surface and the disclination suffers large modifications. If the

anchoring is strong enough, the force is still repulsive at all distances, although it remains

bounded even when the disclination approaches the surface. If however we decrease the an-

choring strength, a critical distance rcr appears, such that the force is repulsive if the

surface-disclination distance is greater than rcr, while it becomes attractive below rcr.

The results obtained in Richardson [40] (attractive force at all distances) remain valid in

the limiting case of vanishing anchoring at the boundary.

The paper is organized as follows. In § 2 we describe the model and the free-energy

functional we use. § 3 is devoted to the strong anchoring limit; the surface-disclination

force and the core structure will be analysed therein. In § 4 we replace the strong anchoring

conditions by a weak anchoring potential and we analyse the qualitative changes suffered

by the surface-disclination force. Finally, in § 5 we discuss the results obtained.

2 The model

Let us consider a nematic liquid crystal confined in the half-space x � 0, with a +1
2

line

defect, parallel to the z-direction and passing through the point P◦ = r ex. In this section

we introduce the free-energy functional and the boundary conditions that we will use to

determine a quasi-equilibrium configuration for any given value of the distance r between

the disclination and the boundary of the nematic.

2.1 Nematic order tensor

We consider a nematic liquid crystal made up of axisymmetric molecules possessing also

head-and-tail symmetry. Even if the molecules tend to arrange themselves in parallel

configurations, at any finite temperature a certain degree of disorder will be present

throughout the sample. Thus, we describe the local configuration of the nematic liquid

crystal by means of the symmetric traceless order tensor Q of second order moments

of the local distribution of molecular orientations, which is defined as follows [12]. Let

fx(n) denote the probability density for a molecule placed at the point x ∈ B to have

the orientation n ∈ �2. In particular, the head-and-tail symmetry requires fx(n) = fx(−n).

The traceless order tensor Q(x) is defined as

Q(x) :=

∫
�2

fx(n)

(
n ⊗ n − 1

3
I

)
da.
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The local physical properties are linked to the degree of symmetry of Q. The nematic is

biaxial where the three eigenvalues of the order tensor are all different; it is uniaxial if two

eigenvalues coincide; finally, it locally melts, and becomes isotropic if all three eigenvalues

coincide and thus Q = 0. We remark that Q may be either more or less symmetric than

the molecules themselves (which are all uniaxial), since it reflects the symmetry of the

distribution of the molecules. When the nematic is uniaxial, Q can be written as

Q = s
(
n ⊗ n − 1

3
I
)
,

where s ∈ [− 1
2
, 1] is the degree of orientation [16] and the unit vector n is the director . In

particular s, and thus Q, vanishes if the nematic is isotropic.

We need to describe a +1
2

disclination parallel to the z-direction. The symmetry of B
suggests to focus on distributions Q independent of z with ez as one of the eigenvalues

Q = λ1 e1 ⊗ e1 + λ2 e2 ⊗ e2 + λz ez ⊗ ez , (2.1)

where{
e1(x, y) = cosϕ(x, y) ex + sinϕ(x, y) ey
e2(x, y) = −sinϕ(x, y) ex + cosϕ(x, y) ey

and λz(x, y) = −λ1(x, y) − λ2(x, y), (2.2)

so that we will simply refer our configurations to the half-plane B0 := B ∩ {z = 0}.

2.2 Free energy functional

We determine the equilibrium configuration of the nematic liquid crystal by minimizing

the bulk free-energy functional

Fb[Q] :=

∫
B0

(fel(Q,∇Q) + fLdG(Q)) da, (2.3)

subject to strong boundary conditions or completed with an anchoring energy functional,

as we describe below. Using the 1-constant approximation for the elastic part of the

free-energy density and the usual expression for the Landau–de Gennes potential [12],

the bulk free-energy functional (2.3) can be written as

Fb[Q] :=

∫
B0

(
κ

2
|∇Q|2 + a tr Q2 − b tr Q3 + c tr Q4

)
da, (2.4)

where κ is an elastic constant and, in the nematic phase, a < 0, while b, c > 0. We remark

that a more detailed study of the problem, or the treatment of nematic materials with

quite different splay, twist and bend moduli, requires a more specific expression for the

elastic potential.1 Furthermore, numerical simulations [22, 41] prove that the z-symmetry

of the equilibrium configurations is broken when the elastic moduli are assumed different.

1 See Longa et al. [26] for the more general rotationally-invariant elastic potential quadratic in

the gradient of the order tensor and at most quadratic in Q.

https://doi.org/10.1017/S0956792502005016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792502005016


Expulsion of disclinations in nematic liquid crystals 43

Thus, our symmetrical setting is strictly related to the 1-constant approximation assumed

in (2.4).

If Q is everywhere uniaxial, with constant degree of orientation s ≡ s0, the Landau–

de Gennes potential simply contributes an additive constant, and the whole free energy

functional (2.4) reduces to the classical 1-constant approximation to Frank’s free energy

functional [20],

FFr[n] := κ s20

∫
B0

|∇n|2 da = κ s20

∫
B0

|∇ϕ|2 da. (2.5)

It was first noted by Lyutsyukov [27] that the order-tensor description of nematic liquid

crystals avoids the free-energy divergence, since �4 has no defect in d = 3, whereas �2

does. Thus, on some length scale the �2 defect would relax to the �4 non-defect. To

analyse this relaxation, Lyutsyukov made use of a constraint which has been widely used

subsequently [3, 7, 35]. To introduce it, we recall that the parameter b in (2.4) is usually

much smaller than both |a| and c . In fact, b is responsible for the isotropic-nematic

transition being first order, but it is well-known [12] that this transition is only weakly

first order. Thus (see Biscari & Virga [7] for details) we can impose on Q the constraint

tr Q2 = 2
(
λ2

1 + λ1λ2 + λ2
2

)
≡ −a

c
=:

2

3
s20, (2.6)

where s0 ∈ (0, 1] represents the degree of orientation preferred in the bulk. The constraint

(2.6) automatically minimizes the second- and fourth-order terms in the Landau–de

Gennes potential, so that they will be henceforth dropped from the bulk free energy.

Recent numerical simulations [1] confirm the validity of the constraint (2.6) in the regime

T 	 TNI, while it gives only qualitative understanding of the results close to the nematic-

isotropic transition, where a vanishes. To implement (2.6) we introduce a scalar parameter

u(x, y) [7], in terms of which we write the eigenvalues of Q as

λ1 = − s0

3
(u −

√
3 − 3u2), λ2 = − s0

3
(u +

√
3 − 3u2), λz =

2

3
s0 u; (2.7)

u may attain all the values in [−1, 1]. In particular, when u = − 1
2

the nematic is uniaxial

with degree of orientation s0 and director e1, and when u = −1 the nematic is uniaxial

with degree of orientation −s0 and director ez; finally, if u takes an intermediate value

between −1 and − 1
2
, the nematic is biaxial.

To sum up, we are left with just two parameters to identify the order tensor Q: the

angle ϕ characterizing the eigendirections, and the scalar u, in terms of which all the

eigenvalues can be determined.

2.3 Anchoring

We assume that a homeotropic uniaxial anchoring is applied on the nematic at its

boundary ∂B0 = B0 ∩ {x = 0}. Thus, when studying strong anchoring effects, we will

enforce the boundary condition

Q(0, y) = Q0 := s0

(
ex ⊗ ex − 1

3
I

)
for all y ∈ �, (2.8)
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which, in terms of ϕ and u, is equivalent to requiring that

ϕ(0, y) = π and u(0, y) = −1

2
for all y ∈ �. (2.9)

By contrast, the study of weak anchoring effects requires a relaxation of the boundary

condition (2.8) by inserting in the free energy functional the anchoring energy

Fs[Q] :=
w

2

∫
∂B0

tr[(Q − Q0)
2]d�. (2.10)

Expression (2.10) for the anchoring energy is the most sensible generalization [32] to the

order tensor of the classical Rapini–Papoular anchoring energy [39]. Indeed, if we insert

in (2.10) both Q0 as in (2.8) and a uniaxial order tensor Q = s0(n ⊗ n − 1
3
I), we obtain

FRP[n] = w s20

∫
∂B0

(1 − (n · ex)
2)d�.

Finally, to enforce a +1
2

disclination at the point P◦, we restrict our attention to angular

configurations ϕ(x, y) satisfying the topological property

∫
γ

∣∣∣∣dϕd�
∣∣∣∣ d� = π (2.11)

around any closed curve γ, having natural parameter � and enclosing the point P◦ in B0.

Condition (2.11) ensures that the planar eigenvectors of Q complete a half-turn when we

follow their continuous variation along γ [5].

2.4 Classical minimizer and beyond

In the classical Frank theory, which we can easily retrieve in our formulation by imposing

u ≡ − 1
2
, the Euler–Lagrange equation associated with the functional FFr in (2.5) simply

reduces to the Laplace equation in the plane. The minimizing fields ϕ are thus the harmonic

functions which satisfy suitable boundary conditions [9]. In particular, by using an image

method, it is possible to construct explicitly an harmonic function ϕ satisfying both (2.9)

and (2.11): let P◦ = r ex be a point belonging to the disclination, and let P ∗
◦ = − r ex be its

mirror image with respect to the boundary ∂B0 (see Figure 1). Furthermore, for any point

P , we introduce the angle ϑ determined by (P − P◦) and ex, and the angle ϑ∗ determined

by (P − P ∗
◦ ) and ex; then, a harmonic function satisfying both (2.9) and (2.11) is given by

ϕ(x, y) =
1

2
(π + ϑ(x, y) + ϑ∗(x, y)). (2.12)

The well known problem with the classical minimizer (2.12) is that it yields an infinite

energy for any value of r. Nevertheless, it is possible to exclude from B0 a small disc Dε

of radius ε, centred at P◦. The energy of the configuration (2.12) and thus the force acting

on the disclination can then be computed. Finally one takes the limit ε → 0 of the force.

https://doi.org/10.1017/S0956792502005016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792502005016


Expulsion of disclinations in nematic liquid crystals 45

Figure 1. Geometry of the +1
2

line defect near a planar boundary, parallel to the disclination.

As a result, one finds that [10, 17]

F =
κπ

2r
ex ∀r > 0. (2.13)

To go beyond the Frank theory, we still keep the expression (2.12) for ϕ, but we relax

the assumption u ≡ − 1
2
. This permits the degree of orientation of the nematic to decrease,

it may even become biaxial. We expect the nematic to leave its most ordered state mainly

close to the defect. We therefore parametrize the points in the plane by means of the

angle ϑ introduced above, and their distance ρ from P◦ (or, still better, by means of the

dimensionless distance t := ρ/r):

P = r(1 + t cos ϑ) ex + r t sin ϑ ey.

The parameter u measures the degree of biaxiality induced in the system by the disclination.

Biaxial nematic configurations are strongly penalized both by the Landau–de Gennes

potential in (2.3) and by the boundary conditions. Thus, we expect u to be noticeably

different from − 1
2

only close to the singularity and the degree of biaxiality to depend

mainly from the distance from the disclination. Consequently, we assume that u depends

on t, but not on ϑ.

When we want to impose strong anchoring conditions on ∂B0, we must require the

nematic to be uniaxial there. (The director orientation is automatically orthogonal to the

surface as a result of (2.12)). This amounts to requiring u(t) ≡ − 1
2

for all t � 1, which

means that we assume that the minimizing distribution differs from the classical minimizer

only inside a circle of radius r, centred at P◦.

If we substitute (2.2), (2.7) and (2.12) into (2.1), we obtain for the order tensor

Q = s0u

(
ez ⊗ ez − 1

3
I

)
− s0√

3

√
1 − u2 [cos(ϑ + ϑ∗) (ex ⊗ ex − ey ⊗ ey)

+ sin(ϑ + ϑ∗) (ex ⊗ ey + ey ⊗ ex)]. (2.14)
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Then, inserting (2.14) in (2.4), we obtain the following expression for the free-energy:

Fb[u]=
κ s20
3

∫ T

0

t dt

∫
cos ϑ�−1/t

dϑ

[
u′2

1 − u2
+

1 − u2

t2
1 + 2t cos ϑ + t2

1 + t cos ϑ + 1
4
t2

+
r2

ξ2
(1 − u (4u2 − 3))

]
, (2.15)

where ξ :=
√

3κ
2bs0

is the nematic coherence length , T := R/r, where R is the dimension of

the sample (which we will assume to be much greater than any other length that comes
into play), u′ := du

dt
, and a constant has been added to the Landau–de Gennes potential

in order to raise its minimum value to zero.

3 Strong anchoring

In this section we study the properties of the minimizers of the functional (2.15), subject

to the condition u(t) ≡ − 1
2

for all t � 1. Performing the integral over the angular variable

in (2.15), we obtain

Fb[u] =
2π

3
κs20

∫ 1

0

[
t u′2

1 − u2
+

1 − u2

t
(
1 − t2

4

) +
r2

ξ2
t(1 − u (4u2 − 3))

]
dt

+
2

3
κs20

∫ T

1

[
3(t2 − 2)

t(t2 − 4)
arctan

(
t − 2

t + 2

√
t + 1

t − 1

)
+

3

2t
arcos

(
−1

t

) ]
dt

=
2π

3
κs20

∫ 1

0

[
t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+
r2t2

ξ2
(1 − u (4u2 − 3))

]
dt

t

+πκs20 lg
R

r
+ c1 κs

2
0 + O

(
r

R

)
, (3.1)

where

c1 :=

∫ ∞

1

[
2(t2 − 2)

t(t2 − 4)
arctan

(
t − 2

t + 2

√
t + 1

t − 1

)
+

1

t
arcos

(
−1

t

)
− π

t

]
dt = −1.31474 . . .

3.1 Repulsive force on the disclination

The Euler–Lagrange equation associated with the functional (3.1) is

d

dt

(
2 t u′

1 − u2

)
=

2 t u′2 u

(1 − u2)2
− 2u

t
(
1 − t2

4

) +
r2

ξ2
t (3 − 12u2). (3.2)

The correct boundary condition to be imposed at t = 0 for (3.2) can be deduced from the

analysis of the functional (3.1): the integrand is finite in the limit t → 0 only if lim
t→0

u2(t) =

1 and lim
t→0

u′(t) = 0 . Furthermore, and since u is to be continuous at t = 1, we have

toimpose u(1) = − 1
2
. It can be solved numerically using a relaxation method and yields

the minimizing distribution for any value of r. Then, differentiating the resulting minimal

free-energy with respect to r, we obtain the quasi-static elastic force acting on the

disclination:

F = −dFmin

dr
ex. (3.3)

https://doi.org/10.1017/S0956792502005016 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792502005016


Expulsion of disclinations in nematic liquid crystals 47

We note that (3.3) is valid only as long as backflow effects can be neglected, that is, only

when the translational degrees of freedom do not influence the rotation of the nematic

molecules. In fact, the force acting on the disclination is exactly given by (3.3) in the limit

of vanishing macroscopic velocities [10], so that we will often refer to the force (3.3) as a

quasi-static force.

Before embarking upon an analysis of the numerical results, we focus on two asymptotic

limits which can be studied analytically.

a) The large distance limit r � ξ. In this limit, the r2/ξ2 term dominates in (3.1).

Therefore, and to make the coefficient of r2/ξ2 as small as possible, the solution

of (3.2) remains almost constantly equal to − 1
2

for all values of t >∼ ξ/r . Recalling

that the first two terms in the functional depending on u are scale-invariant under the

transformation t �→ αt, while the third scales as α2, we then find

∫ 1

0

[
t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+
r2t2

ξ2
(1 − u (4u2 − 3))

]
dt

t

�
∫ ξ

r

0

[
t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+
r2t2

ξ2
(1 − u (4u2 − 3))

]
dt

t
+

∫ 1

ξ
r

[
1 − 1

4

1 − t2

4

]
dt

t

=

∫ 1

0

[
t2 u′2

1 − u2
+

1 − u2

1 − t2

4

+ t2 (1 − u (4u2 − 3))

]
dt

t
+

3

8
log

4r2 − ξ2

3ξ2
. (3.4)

The integral in (3.4) is now independent of r and ξ, and can be interpreted as Fcore,

the elastic energy stored in the region t ∈ [0, 1] when r � ξ. Thus, in this limit,

Fmin = Fcore +
π

4
ks0 log

4r2 − ξ2

3ξ2
+ πκs20 lg

R

r
+ c1 κs

2
0 + O

(
r

R

)

= Fcore +
π

2
κs20 log

R

rξ
+ const. + O

(
ξ2

r2

)
+ O

(
r

R

)
. (3.5)

Using (3.5) we retrieve the classical result

F =
πκs20
2r

ex

(
1 + O

(
ξ2

r2

)
+ O

(
r

R

))
. (3.6)

Physically, the quantity u is noticeably different from − 1
2

only in the region t ∈ [0, ξ
r
], or

equivalently ρ ∈ [0, ξ]. This implies that the dimension of the core tends to a finite value,

closely related to the nematic coherence length, when the disclination is sufficiently far

away from the surface. We emphasize that (3.6) is in perfect agreement with the classical

result (2.13) if we neglect terms O(ξ2/r2), i.e. if we neglect the core radius.

b) The small distance limit r 	 ξ. Here, by contrast, the term containing r2/ξ2 in (3.1) can

be neglected, and u may be far from its bulk value − 1
2

over the whole interval t ∈ [0, 1]

(that is, ρ ∈ [0, r]). Consequently, we have

Fmin � πκs20 log
R

r
+ Fcore + const. + O

(
r2

ξ2

)
+ O

(
r

R

)
,
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Figure 2. Intensity of the quasi-static force acting on a disclination placed at a distance r from a

boundary where strong anchoring is applied.

from which we find

F =
πκs20
r

ex

(
1 + O

(
r2

ξ2

)
+ O

(
r

R

))
,

so that the coefficient of r−1 in the repulsive force doubles at short distances.

Figure 2 illustrates the behaviour of the repulsive force acting on the disclination as a

function of the distance r from the boundary. The numerical results confirm the analytical

limits described above. They give an estimate of the distance from the surface at which the

intensity of the repulsive force matches the intensity computed from the classical model.

We find that, so long as r >∼ 3ξ, the classical model can be applied without any serious

error.

3.2 Core structure

The degree of orientation of a nematic liquid crystal always decreases close to a defect

line. In addition, the present authors [6, 41] and others [27, 28, 35] have shown that the

nematic becomes biaxial inside the core of a disclination. The defect itself can be localized

to the region where the nematic is uniaxial with a negative degree of orientation. It is

always surrounded by a closed surface on which one of the eigenvalues of the order tensor

vanishes. Figure 3a, which exhibits the spatial variation of the eigenvalues of Q obtained

through a numerical solution of (3.2), confirms this prediction.

The concept of degree of orientation is well-defined for uniaxial nematics, and extremely

useful in describing non-uniform nematics. It has been generalized [4] to biaxial order

tensors:

s(λ1, λ2, λ3) :=

(
27

2

3∏
i=1

λi

) 1
3

.
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Figure 3. Structure of the core of a disclination. (a) Variation of the eigenvalues of the order

tensor as a function of the distance from the center of the core. (b) Analysis of the behaviour of the

degree of orientation. In both graphs, the disclination is placed at a distance r = 3ξ away from the

surface.

Then, s is positive in the bulk but negative inside the defect core. Furthermore, Figure 3b

shows that this transition is extremely sharp. It is thus physically as well as mathematically

meaningful to define the core radius ρ0 as the distance from the disclination at which one

of the eigenvalues, and thus the degree of orientation, vanishes.
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Figure 4. Core radius of a disclination line as a function of its distance from the surface. (a) ρ0

vanishes when the disclination approaches the surface, and tends to its constant bulk value when

the defect is very far from the wall. (b) ρ0 = O(r) when r → 0.

Figure 4 analyses how the core radius depends upon the distance of the disclination

from the surface. In particular, it confirms the asymptotic analysis performed in § 3.1.

When the disclination approaches the surface, the core reduces its radius, scaling as r

when this latter vanishes (see Figure 4b). By contrast, when the defect moves inside

the bulk, the core radius tends to a constant value (see Figure 4a). Furthermore, it is

interesting to note that lim
r→0

ρ0

r
= 0.475... and lim

r→∞

ρ0

ξ
= 0.445..., so that the core radius

tends to assume a value which is almost exactly a given fraction (slightly smaller than 1
2
)

of the smaller length of the problem, be it r or ξ.
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Figure 5. Line disclination P◦ in a nematic liquid crystal close to a weak anchoring surface.

4 Weak anchoring

To study weak anchoring effects, we proceed as follows. First, we add to the free-energy

functional the anchoring energy (2.10). Then, we modify the geometrical setting of Figure

1 by introducing the anchoring length ξa, similar to the cutoff length used in Fournier

& Galatola [19]. We make the ansatz (see Figure 5) that the configuration of a nematic

subject to weak anchoring coincides with the configuration the same nematic would

assume were strong anchoring conditions applied not at its surface ∂B0, but rather at

a distance ξa behind the wall. Thus, the trace of the director on the actual surface can

be completely different from the preferred, homeotropic, alignment, if ξa turns out to be

sufficiently large.

The quantity ξa is a variational parameter. Increasing values of ξa are able to decrease

the elastic energy, but at the same time they yield an increase of anchoring energy. Then,

for any r and any value of the surface extrapolation length , defined as ζ := κ/w [12],

we have to determine the optimal configuration by minimizing, with respect to ξa, the

complete free energy functional F := Fb + Fs. In general, the two surface lengths ξa and

ζ do not coincide [38], though they are closely related, as we describe below.

This parametrization also allows for the description of the expulsion of the defect from

the sample, since r is now no longer necessarily positive. The only requirement to be

imposed on the distance is that ra := r + ξa must be positive, so that r may become

negative (thus representing an expelled defect) provided that the optimum ξa is great

enough.

When we insert the order tensors (2.8) and (2.1), with eigenvalues and eigenvectors

given by (2.7) and (2.12), in the anchoring energy (2.10), we obtain:

Fs =
2

3
κs20

ra

ζ

∫ 1

r̃

t√
t2 − r̃2

[
2 + u −

√
3 − 3u2 (t2 + 2r̃ − 2r̃2)

t
√
t2 + 4 − 4r̃

]
dt

+ κs20
ra

ζ

∫ R
ra

1

t√
t2 − r̃2

[
1 − t2 + 2r̃ − 2r̃2

t
√
t2 + 4 − 4r̃

]
dt, (4.1)
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where r̃ := r/ra, while the bulk energy (2.4) becomes:

Fb =
2π

3
κs20

∫ r̃

0

[
t u′2

1 − u2
+

1 − u2

t
(
1 − t2

4

) +
r2a
ξ2

t(1 − u (4u2 − 3))

]
dt

+
2

3
κs20

∫ 1

r̃

[
t u′2

1 − u2
+

r2a
ξ2

t(1 − u (4u2 − 3))

]
arcos

(
− r̃

t

)
dt

+
8

9
κs20

∫ 1

r̃

(1 − u2)

[
3(t2 − 2)

t(t2 − 4)
arctan

(
t − 2

t + 2

√
t + r̃

t − r̃

)
+

3

2t
arcos

(
− r̃

t

)]
dt

+
2

3
κs20

∫ R
ra

1

[
3(t2 − 2)

t(t2 − 4)
arctan

(
t − 2

t + 2

√
t + r̃

t − r̃

)
+

3

2t
arcos

(
− r̃

t

) ]
dt. (4.2)

4.1 Asymptotic regimes

Again, we first analyse the functionals (4.1) and (4.2) in the asymptotic regimes representing

a disclination very far from or very close to the surface. A complete picture based on

numerical computations then follows.

4.1.1 Large distance limit r � ξ, ξa, ζ

The bulk free-energy Fb can be computed as the free-energy corresponding to a defect

placed at a distance ra from the surface minus the free-energy stored in the strip x ∈
[−ξa, 0), which lies outside the system. In the large distance limit, the whole core region

lies inside the bulk, far away from the boundary. Thus, u � − 1
2

in all the region close to

the external surface, and in particular in the strip x ∈ [−ξa, 0). This yields

Fb =
π

2
κs20 log

R

raξ
+ const. + O

(
ξ2

r2

)
+ O

(
r

R

)
− 3κs20

ξa

r

∫ ∞

1

√
t2 − 1

t3
dt + O

(
ξ2
a

r2

)

= Fstr − 5π

4
κs20

ξa

r
+ O

(
ξ2
a

r2

)
+ O

(
ξ2

r2

)
+ O

(
r

R

)
,

where Fstr denotes the free energy obtained in the strong anchoring case. Analogously,

we obtain for the anchoring energy

Fs = 2κs20
ξ2
a

rζ

∫ ∞

1

√
t2 − 1

t3
dt + O

(
ξ3
a

r2ζ

)
=

π

2
κs20

ξ2
a

rζ
+ O

(
ξ3
a

r2ζ

)
,

and thus

F = Fstr +
π

2
κs20

(
−5

2

ξa

r
+

ξ2
a

rζ

)
+ O

(
ξ2
a

r2

)
+ O

(
ξ2

r2

)
+ O

(
r

R

)
. (4.3)

The dominant part in the functional (4.3) is minimized when

ξa =
5

4
ζ, (4.4)
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and its minimum value is

Fmin � Fstr − 25π

32
κs20

ζ

r
, (4.5)

from which we obtain

F(r) = −dFmin

dr
= Fstr − 25π

32
κs20

ζ

r2
+ o(r−2), (4.6)

where Fstr is the value of the quasi-static force when strong anchoring conditions are

applied. Equation (4.6) shows that the correction to the quasi-static force tends to decrease

its absolute value. Nevertheless, in this limit this correction is O(r−2), and thus negligible

if compared to Fstr itself, which is O(r−1) as (3.6) shows.

4.1.2 Short distance limit r 	 ξ, ξa, ζ

To analyse this case, we begin by estimating the limiting value approached by the

anchoring length ξa as r → 0. In this case, the dominant contribution in (4.2) arises from

the last integral, so that

Fb = πκs20 log
R

ξa
+ O

(
ξa

R

)
+ O

(
ξ2
a

ξ2

)
,

since the last integrand in (4.2) behaves as 3π/(2t) when t � 1. For the anchoring energy

we obtain:

Fs = ws20 ξa

[
2

3

∫ 1

0

(
2 + u −

√
3 − 3u2 t√
t2 + 4

)
dt +

∫ R
ξa

1

(
1 − t√

t2 + 4

)
dt

]

= c2 ws
2
0 ξa + O

(
ξa

R

)
, (4.7)

where c2 :=
2

3

∫ 1

0

(
2 + u −

√
3 − 3u2 t√
t2 + 4

)
dt +

√
5 − 1 . Thus,

F = κs20

(
π log

R

ξa
+ c2

ξa

ζ

)
+ O

(
ξa

R

)
+ O

(
ξ2
a

ξ2

)
,

which is minimized when

ξa =
π

c2
ζ,

so that we again retrieve that the anchoring length scales with the surface extrapolation

length, at least as long as this latter is small enough when compared to the nematic

coherence length.

Now, to estimate the quasi-static force on the disclination when it reaches the surface,

we must determine the leading terms in r (when r → 0) to (4.1) and (4.2). For the sake

of brevity, we skip here the lengthy details of this computation, and we directly give the

results:

Fb = Fb|r=0 +

(
c3 + c4

ξ2
a

ξ2

)
κs20

r

ξa
+ O

(
r2

ξ2
a + ξ2

)
,
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with

c3 :=
2

3

∫ 1

0

(
tu′2

1 − u2
+

4(1 − u2)(1 + t2)

t(4 + t2)

)
dt

t
+

1

2
− 2π +

3

2
arctan 2,

and

c4 :=

∫ 1

0

(1 − u(4u2 − 3)) dt.

On the other hand,

Fs = Fs|r=0 − c5ws
2
0r + O

(
r2

ξa

)
,

with

c5 := log(2 +
√

5) +
2

5

√
5 − c2 − 8

3

√
3

∫ 1

0

√
1 − u2

(t2 + 2) dt

t(t2 + 4)3/2
.

The quasi-static force on a disclination placed exactly at the surface is thus

F(0) = −
(
c3 + c4

ξ2
a

ξ2

)
κs20
ξa

+ c5ws
2
0 =

κs20
ζ

[(
c5 − c2c3

π

)
− πc4

c2

ζ2

ξ2

]
. (4.8)

The term (c5 − c2c3/π) must clearly be (and turns out to be) positive, since the quasi-static

force on the disclination must be repulsive and unbounded in the strong anchoring limit

ζ → 0. Nevertheless, what is really interesting is that both c4 and c2 are positive. The

former, which measures the internal energy stored in the core, is so because we added

a constant to the Landau–de Gennes potential in (2.15) precisely to set the preferred

degree of orientation as its zero-level. The latter measures the anchoring energy, apart

from a multiplication factor (see (4.7)), and thus it is positive definite by construction (see

(2.10)). Thus, the term in the square brackets in (4.8) may change sign when the ratio ζ/ξ

becomes sufficiently large, with the result that the boundary force on the disclination may

become attractive when the anchoring is sufficiently weak.

4.2 Anchoring length

Figure 6 illustrates how ξa depends upon r for different values of the surface extrapolation

length. The anchoring length increases when the defect approaches the surface, and it

is almost proportional to the surface extrapolation length. This latter effect is enhanced

when the ratio ζ/ξ becomes great enough (we recall ζ is typically greater than ξ [2],

in some cases even by more than one order of magnitude [13]). Furthermore, Figure 6

confirms the long-distance analytical prediction (4.4), and shows that when ζ becomes of

the order of or greater than ξ, (4.4) remains valid at all distances r � 0.

4.3 Expulsion of the defect

Figure 7 shows the fundamental qualitative changes that the weak anchoring induces in

the quasi-static force acting on a disclination. In it, positive values of F denote repulsion

from the surface, while negative values indicate attraction. As long as ζ <∼ ξ, the force

remains always repulsive, and it monotonically increases when the disclination approaches

the surface, even if it tends to a finite limit when r → 0. Furthermore, as we have already
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Figure 6. Dependence of the anchoring length ξa on the distance between the disclination and the

surface for the values of the surface extrapolation length indicated therein.

Figure 7. Quasi-static force acting on a disclination line placed at a distance r from a weak-

anchoring surface. From top to bottom, the graphs refer to the following values of the ratio

between the surface extrapolation length ζ and ξ: .05, .5, 1, 1.25, 2.5, 5, and 10.

observed in (4.5), the long-distance behaviour of the quasi-static force does not depend

on the anchoring strength.

By contrast, and confirming (4.8), Figure 7 shows that when ζ increases (that is,

the anchoring strength decreases) the quasi-static force may first lose its monotonicity,

reaching its maximum when the line defect is at a finite distance from the surface. If the

anchoring strength decreases further, the surface-disclination force becomes attractive at
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Figure 8. (a) Force on a disclination placed exactly at the surface of a nematic liquid crystal as a

function of the ratio between the nematic coherence length and ξ and surface extrapolation length

ζ . Positive values of F(0) imply that the disclination is pushed towards the nematic bulk, while

negative values denote an expulsion of the disclination. (b) Critical value of the distance from the

surface at which the quasi-static force on the disclination vanishes, in units of ξ (solid line) and

ζ (dashed line). Both graphs are shown as a function of the ratio ξ/ζ .

short-distances, that is, the sample tries to expel the disclination if it comes sufficiently

close to the surface.

Figure 8a illustrates in detail the behaviour of F(0) as a function of ζ . The almost

linear shape of the curve confirms (4.8). The critical value of the surface extrapolation

length at which the surface force changes sign and the expulsion process may arise is

given by ζcr = .7974ξ.

Figure 8b shows the ζ-dependence of the critical distance rcr at which the quasi-static

force vanishes. The surface-disclination interaction is attractive when r < rcr and repulsive
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at greater distances. It is worth noting that when ζ crosses ζcr, rcr jumps abruptly from 0

to a value close to 0.13ξ. Furthermore, the dashed line shows that rcr = O(ζ) when this

latter diverges, so that in the weak anchoring limit we retrieve [40] that the quasi-static

force on the disclination becomes attractive at all distances.

We note that rcr is always an unstable equilibrium distance for the disclination. The line

defect is driven towards the bulk as long as it remains at a distance r > rcr. Nevertheless,

if it crosses the critical distance from the surface, it is pushed outwards and eventually

expelled from the sample.

5 Concluding remarks

We have studied the quasi-static force that a bounding surface induces on a nematic

disclination. More precisely, we have treated in detail the case of a single +1
2

defect.

However, the methods presented here can also be used to study the boundary interactions

of disclinations of greater topological charges or the interactions between two or more

defect lines. Our main outcomes are the following:

• When strong anchoring is enforced, the inclusion of a finite biaxial core in the description

of the disclination increases the repulsive force that drives the disclination away from

the surface. Nevertheless, this strengthening of the repulsive force is a short-range effect,

that can be felt only when the distance between the disclination and the surface is of

the order of the nematic coherence length.

• The core radius is almost constant (and closely related to the nematic coherence length)

as long as the disclination is sufficiently apart from the external surface; otherwise, it

scales with the distance from the boundary.

• If we replace the strong anchoring conditions with a weak anchoring energy, a critical

distance rcr arises as soon as the the surface extrapolation length ζ becomes greater

than the nematic coherence length. The surface-disclination interaction is now attractive

for r < rcr, but it remains repulsive when r > rcr.

• The critical distance rcr is proportional to ζ when this latter diverges. To be more precise,

and considering that physically reasonable values for ζ lie in the range 10−9 ÷ 10−6m.,

that is ζ = 1÷102ξ, we obtain from the dashed line in Figure 8b the estimate rcr = 0.13ζ.
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