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Instability and symmetry breaking of surfactant
films over an air bubble
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We examine the asymmetric flows of aqueous surfactant films over an air bubble. A thin
film is formed by raising an equilibrated air bubble through an aqueous solution of Triton
X-100 (0.01 mM, below critical micelle concentration). Due to the advection generated
by the squeezing motion, the initially uniformly distributed surfactants redistribute and,
thus, generate an axisymmetric surface tension gradient that drives a Marangoni flow. The
external forcing of raising the bubble also creates an axisymmetric dimpled film with a
radial thickness variation that reaches its minimum at the rim of the dimple. The curvature
in the film thickness generates an axisymmetric capillary pressure driven flow. When
the apex of the bubble has penetrated the initially flat air-solution interface, the rising
bubble is stopped and the resulting flow demonstrates symmetry breaking both in the
experiment and in the parameter matched numerical simulation. Linear stability analysis
reveals the mechanism behind the disturbance growth. It is found that the most dangerous
azimuthal wavenumber scales linearly with the ratio of the rim radius to the radial width
of significant radial pressure and surface tension gradients after stopping the bubble.
Finally, we compare this instability to the previously studied surfactant spreading induced
fingering phenomenon (Warner, Craster & Matar, Phys. Fluids, vol. 16, issue 8, 2004,
pp. 2933–2951).

Key words: lubrication theory

1. Introduction

Surfactants are surface active agents that exist between phases to reduce the interfacial
energy and thereby stabilize interfaces that are otherwise unstable. They are present
in numerous processes that affect our lives. Pulmonary surfactants coat the air–liquid
interface of the alveoli and enable us to breath (Zasadzinski et al. 2001). Excessive
amounts of insoluble surfactants on the ocean surface can lead to the formation of a visible

† Email address for correspondence: esgs@stanford.edu

© The Author(s), 2022. Published by Cambridge University Press 953 A26-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

88
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:esgs@stanford.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.888&domain=pdf
https://doi.org/10.1017/jfm.2022.888


X. Shi, G.G. Fuller and E.S.G. Shaqfeh

layer of ‘slick’ that changes the viscoelasticity of the liquid–air interface and dampen
waves (Cunliffe et al. 2013). Water-based paints require surfactants to improve wetting
and disperse pigments (Hellgren, Weissenborn & Holmberg 1999). Surfactant-based
dispersants are used as a chemical means of cleaning an oil spill and preventing the
formation of oil slicks (Dave & Ghaly 2011). The prevalence and importance of surfactants
call for a fundamental understanding of their dynamical interactions at the interfaces of
different materials, and this is a subject of much historical and present day active interest.

The nature of surfactants restricts these ambiphilic molecules to be most active at
air–water or oil–water interfaces. Thin liquid films, therefore, are effective systems through
which we can examine the dynamics of surfactants. There are several commonly used
experimental techniques for generating thin films in surfactant solutions. One technique
involves using a syringe to inject air just below a surfactant solution surface to generate
a near-hemispherical bubble, whose film thickness at the apex can be measured via
interferometric techniques (Champougny et al. 2016).

With this method, one can easily study the film drainage rate and the relative importance
of gravity to surface tension by changing the bubble volume (Lhuissier & Villermaux
2012). This technique allows researchers to examine the film evolution of large surface
bubbles. Miguet et al. (2021) studied the marginal regeneration phenomenon of surfactant
films over bubbles with a radius of curvature of more than a centimetre. A characteristic
visual example of this phenomenon can be found in figure 1 of Miguet et al. (2021).
Numerous numerical studies of free surface bubbles have been conducted (Pigeonneau
& Sellier 2011; Atasi et al. 2020). Atasi et al. (2020) studied the lifetime of surface
bubbles in the presence of surfactants. The numerical study offers many insights into
the relations between the evolution of film thickness, gravitational effects and surfactant
coverage. However, the study is limited to axisymmetric film evolution and cannot capture
the azimuthal flow inside the liquid film that coats the surface bubbles.

A second experimental approach introduces an air bubble at a distance from the interface
between a surfactant solution bath and the ambient air. As the air bubble rises, its velocity
(Borkowski, Kosior & Zawala 2020) and path (Tagawa, Takagi & Matsumoto 2014) can
be studied. A third class of approaches involves mechanically forcing two interfaces close
together. This can be achieved through a variety of geometric arrangements, summarized
in figure 2 of Chatzigiannakis, Jaensson & Vermant (2021). When this class of thin
film generation technique is paired with digital imaging, one can obtain interferometric
information on the temporal and spatial evolution of film thickness and symmetry. To set
context, we introduce a few examples that are relevant to the present work.

Joye (1994) conducted film drainage experiments with a Scheludko-cell based design,
where a thin film is formed by withdrawing liquid from an initially filled circular sample
holder. Once the thin film has reached a desired thickness, the withdrawal is stopped and
the film is allowed to evolve under various physical forces. An example of asymmetrical,
aqueous surfactant film evolution can be found in figure IV-1 of Joye (1994). More recently,
this type of apparatus has been improved to study the stratification of foam films (Ochoa
et al. 2021).

The dynamic fluid-film interferometer (DFI) is another technique used to manually form
a thin film (Frostad et al. 2016). In the DFI an air bubble or a liquid droplet is supported
on a capillary and is fully submerged in a liquid chamber of interest. A motor brings the
initially curved and flat faces together until the film is thin enough to form interference
patterns. The interference video gives information on film thickness and film symmetry.
This set-up has been used to visualize the flow of aqueous surfactant films. Frostad et al.
(2016) examine three commonly studied water-soluble surfactants (sodium dodecyl sulfate
(SDS), cetrimonium bromide (CTAB) and Triton X-100), and their effects on aqueous
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surfactant films trapped in between an air bubble and the initially planar air–solution
interface. The interference videos for all three species can be found in the supplementary
files. In all three videos, the evolution of the film symmetry undergoes similar stages.
In the first stage, the field of view of the interference patterns grows radially outward
in an axisymmetric fashion. During this stage, the motor is forcing the two interfaces
together, forming a dimple atop the air bubble. When the motor stops moving, the dimple
ceases to expand in the radial direction, and the system succumbs to ambient disturbances.
The disturbance first manifests itself around the rim of the dimple: at 2 s in the SDS
video, at 4 s in the CTAB video and at 3 s in the Triton video. Thereafter, the asymmetry
grows more pronounced and the previously axisymmetric dimple evolves to conform to
the asymmetry at the rim. Eventually, the dimple discharges through a few contact points
along the rim and the volume of the dimple drastically decreases. The dimple discharge
event triggers secondary non-axisymmetric film evolution until the film thins down to
nanoscopic thickness and the bubble coalesces. Understanding the physical forces that
drive the onset of the disturbances in the surfactant film is of paramount importance
because the symmetry breaking event triggers the subsequent rapid dimple discharge
that contributes to drastic film thinning that affects the lifetime of the bubble. Highly
asymmetrical patterns of insoluble surfactant films can be seen in figure 9 of Hermans
et al. (2015) and figures 6 and 7 of Bhamla et al. (2017). Additional experimental examples
of asymmetrical dynamic evolution of thin films are discussed in our previous work (Shi
et al. 2021).

These examples of asymmetrical interference patterns suggest that there are common
forces associated with surfactant film evolution that drive the system to develop in an
asymmetrical fashion. To this end, we devote the present study to understanding the
physical mechanism behind the asymmetrical evolution of water-soluble surfactant films,
at a concentration below the critical micelle concentration. The article is organized as
follows. We first introduce in detail the DFI set-up and the experimental procedures
used for this study, followed by descriptions of the lubrication theory and the numerical
methods. We then describe the experimental and computational evolution of an aqueous
surfactant film over an air bubble, with a focus on capturing the onset of asymmetric
disturbances. A linear stability analysis is presented to elucidate the mechanism behind
the observed symmetry breaking events. The analysis also reveals mode selection for a
given set of system parameters. We finish the article with a discussion of the factors that
affect the mode selection and the mechanism of the instability.

2. Experiment

Surfactant film drainage experiments are conducted using a custom-made DFI. The
equipment set-up is described in our previous work (Shi, Fuller & Shaqfeh 2020). For
completeness, we shall only provide a succinct description of the apparatus and the
experimental procedures.

The experimental apparatus is composed of a liquid sample chamber, which is mounted
onto a motorized platform. Two of the four chamber walls are made of glass, enabling
visualization into the chamber. A 16-gauge capillary with an inner diameter of 1.2 mm is
held fixed and positioned at the centre of the chamber at the start of an experiment. The
capillary is connected to a 100 μl syringe filled with air.

Prior to each sample loading, the cleanliness of the assembly is tested via the
following procedure. The empty chamber is filled with deionized water and an air bubble
of approximately 5 μl is extruded from the capillary. The motorized platform then
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positions the apex of the bubble to be approximately 0.1 mm away from the air–water
interface. The motor then translates the chamber downward for 0.4 mm at 0.1 mm s−1.
If the bubble coalesces within 5 s, then the chamber is deemed sufficiently clean and
experiments with surfactant solutions may proceed. The cutoff time of 5 s is chosen
because a surfactant-covered bubble that undergoes the same experimental procedure
typically lasts longer than 12 s. If the bubble in the deionized water takes longer than
5 s to coalesce, then the chamber is taken from the platform and vigorously cleaned
with deionized water. The test and cleaning are repeated until the assembly meets the
criterion.

The model surfactant used in this study is Triton X-100, a widely studied non-ionic
surfactant composed of a hydrophilic polyethylene oxide chain and a hydrophobic
hydrocarbon chain. Furthermore, Triton X-100 readily adsorbs onto air–water interfaces,
making it one of the more effective, water-soluble surfactants (Chang & Franses 1995).
For a typical experiment, approximately 4 ml of a Triton X-100 (laboratory grade,
Sigma-Aldrich) aqueous solution is loaded into the chamber. The water used in making
the solution is filtered by a Millipak Express 40 filter (0.22 μm membrane) to remove
particulates. For all the experiments presented in this paper, the concentration of the Triton
X-100 solution is 0.01 mmol l−1, which is below the critical micelle concentration at 25 ◦C
(Lin, McKeigue & Maldarelli 1990). An air bubble of approximately 5 μl is extruded from
the capillary. The top of the chamber is then covered with a glass slide and the system is
left to equilibrate for 30 min, such that the surfactant present in the bulk can adsorb onto
the newly formed air bubble.

After the equilibration period, the glass cover is removed and the motorized platform
moves the chamber downward such that the apex of the bubble is positioned as close as
possible to the flat liquid–air interface without penetrating the interface (approximately
0.1 mm of apex clearance). This procedure ensures the applicability of lubrication theory,
developed to describe the dynamics of the film. After a one minute pause, the motor moves
the chamber assembly downward by 0.4 mm at a speed of 0.1 mm s−1. The motor then
stops the translation. The top camera records the interference patterns of the thin liquid
film atop the air bubble throughout this process. Film thickness and symmetry information
are obtained by analysing the interference video.

3. Theoretical model

3.1. Lubrication equations
We consider a spherical, non-deformable air bubble of radius a, approaching an initially
flat interface between air and an aqueous surfactant solution (figure 1). At the start of
the experiment, the apex of the bubble is positioned a distance b below the top air–liquid
interface. It is assumed that ε ≡ b/a � 1, such that the lubrication approximation applies.
The bulk liquid phase is composed of an aqueous surfactant solution with a bulk surfactant
concentration of c0. We assume that at the start of the experiment, the surfactant in the
solution and the surfactant adsorbed onto the two air–liquid interfaces are in equilibrium
and the equilibrium surface concentration is Γ0. The surfactant is characterized by a bulk
diffusivity of D and a surface diffusivity of Ds. The bulk concentration of the surfactant is
below the critical micelle concentration and is small enough such that the solution density
and viscosity are the same as those of the Newtonian solvent, ρ and μ, respectively. At
t∗ = 0, the bubble is moved upwards, against gravity, for a distance d at a speed of U. The
bubble is then held fixed after t∗stop = d/U. For simplicity, the capillary-pinned bubble
in the experiment is treated in the theoretical model as a non-deformable sphere with a
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Figure 1. Schematic of a spherical air bubble approaching the interface between air and aqueous surfactant
solution.

non-zero surface velocity. As shown in later sections, this simplifying assumption still
allows us to capture the onset of symmetry breaking. Furthermore, because the Reynolds
number Re ≡ (ρUb)/μ � 1, we neglect all inertial effects. We also neglect the effects
of evaporation-driven film thinning and evaporation-generated Marangoni flows (Poulain,
Villermaux & Bourouiba 2018) to focus on the effects of surfactant transport-induced
phenomena. As will be shown in the results section, the model is only used to capture
the dynamics during the onset of the disturbance. During this time, the minimum film
thickness is around 200 nm, thus, we neglect the effects of the disjoining pressure
(Stubenrauch & Von Klitzing 2003).

A cylindrical coordinate system (z∗, r∗, θ ) is used to accommodate the geometry of the
system and the motion of the bubble. The origin is placed at the intersection of the initially
flat liquid–air interface and the vertical axis of the bubble. The vertical axis is represented
by z∗, the radial coordinate is represented by r∗ and θ represents the azimuthal angle. The
asterisk represents dimensional quantities.

The following scales are chosen to render the governing equations dimensionless. The
lubrication length scales in the axial and radial directions are b and

√
ab, respectively.

The vertical velocity (v∗
z ) is scaled by the motor speed (U). Mass conservation demands

the velocities in the radial (v∗
r ) and azimuthal (v∗

θ ) directions be scaled by U/
√
ε. Time

is non-dimensionalized by b/U and the pressure scale is (1/ε2)(μU/a). The scale for the
bulk surfactant molar concentration is c0. The surface adsorbed surfactant concentration
(Γ ∗) is non-dimensionalized by the maximum packing concentration (Γ∞). The scale for
surfactant adsorption fluxes ((UΓ∞)/b) is obtained when non-dimensionalizing the mass
transfer equation of the surface adsorbed species.

With the above scales, we proceed to non-dimensionalize the governing equations,
expand all variables in ε: ψ = ψ(0) + εψ(1) + ε2ψ(2) + . . . and extract the governing
equations for variables at each order. Similar to our previous study (Shi et al. 2020),
we need to examine the combined effects of the O(1) and the O(ε) terms, such that
when the concentration of the surfactant goes to zero, the governing equations of a clean
air–liquid interface are recovered. The order-combined variables are denoted with a hat:
ψ̂ ≡ ψ(0) + εψ(1). We introduce only the final form of the governing equations. Detailed
treatment of the order-combined variables can be found in the Appendix of Shi et al.
(2020) and § A.7.3 of Barakat (2018).
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The position of the top liquid–air interface (ĥ1) is described by

∂ ĥ1

∂t
+ 1

r
∂

∂r

(
rĥ〈̂vr〉

)
+ 1

r
∂

∂θ

(
ĥ〈̂vθ 〉

)
=
{

1, (t � tstop),

0, (t > tstop),
(3.1)

where ĥ ≡ ĥ1 − h2 and tstop ≡ d/b. The position of the bubble–liquid interface (h2) is
known at all times, as we assume no bubble deformation, i.e.

h2 ≡
{

−1 − r2/2 + t, (t � tstop),

−1 − r2/2 + tstop, (t > tstop).
(3.2)

The bracket around the radial and azimuthal velocities indicates depth averaging: ˆ〈ψ〉 ≡
(1/ĥ)

∫ ĥ1
h2
ψ̂ dz, where ψ = vr and vθ . The normal stress balance across the top liquid–air

interface is

1
r
∂

∂r

(
r
∂ ĥ1

∂r

)
+ 1

r2
∂2ĥ1

∂θ2 − Boĥ1 + CaP̂ + 2εCa
(

1
r
∂

∂r

(
r〈̂vr〉

)+ 1
r
∂ 〈̂vθ 〉
∂θ

)
= 0, (3.3)

where Bo ≡ ρgab/γwater and Ca ≡ (1/ε2)(μU/γwater). The gravitational acceleration is
denoted by g = 9.8 m s−2. The first non-dimensional parameter is the Bond number, which
compares the relative importance of gravity to the surface tension of a clean interface. The
second non-dimensional number is the capillary number, which compares viscous stresses
to capillary stresses. The tangential stress balances in the radial and azimuthal directions
are

∂P̂
∂r

= 1

ĥ

1
εCa

⎛⎝∂
(
−Π(0)

1

)
∂r

+
∂
(
−Π(0)

2

)
∂r

⎞⎠
+ ε

{
2
∂

∂r

(
1
r
∂

∂r

(
r〈̂vr〉

))+ ∂

∂r

(
1
r
∂ 〈̂vθ 〉
∂θ

)
+ 1

r2
∂2〈̂vr〉
∂θ2 − 2

r2
∂ 〈̂vθ 〉
∂θ

+ 2

ĥ

∂ ĥ
∂r

(
1
r
∂

∂r

(
r〈̂vr〉

)+ ∂ 〈̂vr〉
∂r

+ 1
r
∂ 〈̂vθ 〉
∂θ

)
+ 1

ĥ

1
r
∂ ĥ
∂θ

(
1
r
∂ 〈̂vr〉
∂θ

+ r
∂

∂r

( 〈̂vθ 〉
r

))}
(3.4)

and

1
r
∂P̂
∂θ

= 1

ĥ

1
εCa

⎛⎝1
r

∂
(
−Π(0)

1

)
∂θ

+ 1
r

∂
(
−Π(0)

2

)
∂θ

⎞⎠
+ ε

{
2
r2
∂2〈̂vθ 〉
∂θ2 + ∂

∂r

(
1
r
∂

∂r

(
r〈̂vθ 〉

))+ 1
r
∂

∂θ

(
1
r
∂

∂r

(
r〈̂vr〉

))+ 2
r2
∂ 〈̂vr〉
∂θ

+ 2

ĥ

1
r
∂ ĥ
∂θ

(
1
r
∂

∂r

(
r〈̂vr〉

)+ 〈̂vr〉
r

+ 2
r
∂ 〈̂vθ 〉
∂θ

)
+ 1

ĥ

∂ ĥ
∂r

(
1
r
∂ 〈̂vr〉
∂θ

+ r
∂

∂r

( 〈̂vθ 〉
r

))}
,

(3.5)

where Π
(0)
1 and Π

(0)
2 are the surface pressures exerted by the adsorbed surfactant

on the top and bottom interfaces, respectively. The surface pressures represent the
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reduction in surface tension caused by the presence of the surfactant on the interfaces.
Non-dimensionalizing surface tension with γwater = 72 mN m−1 we obtain γ1 = 1 −Π

(0)
1

and γ2 = 1 −Π
(0)
2 .

At t = 0, the bulk surfactant and the adsorbed surfactant are assumed to be in
equilibrium and the adsorbed surfactant concentration is assumed to be Γ0 on both
interfaces, despite the difference in the curvature of the two interfaces. Based on this
assumption and by letting Γ (0)1 and Γ (0)2 have the same boundary conditions, we further
simplify the equations Γ (0)1 = Γ

(0)
2 ≡ Γ (0). Consequently, the flux of surfactant adsorbing

from the bulk onto the two interfaces are the same, i.e. jn1 = jn2 ≡ jn, and the surface
pressures are the same, i.e. Π(0)

1 = Π
(0)
2 ≡ Π(0). Without committing to any specific

surfactant species, we now express the transport equations for the surfactant species
present in the bulk and on the liquid–air interfaces.

∂c(0)

∂t
+ 〈̂vr〉∂c(0)

∂r
+ 〈̂vθ 〉1

r
∂c(0)

∂θ
− 1

Pe

(
1
r
∂

∂r

(
r
∂c(0)

∂r

)
+ 1

r2
∂2c(0)

∂θ2

)

− 1
Pe

1

ĥ

(
∂ ĥ
∂r
∂c(0)

∂r
+ 1

r
∂ ĥ
∂θ

1
r
∂c(0)

∂θ

)
= −2β

ĥ
jn (3.6)

and

∂Γ (0)

∂t
+ 1

r
∂

∂r

(
rΓ (0)vr,s

)
+ 1

r
∂

∂θ

(
Γ (0)vθ,s

)
− 1

Pes

(
1
r
∂

∂r

(
r
∂Γ (0)

∂r

)
+ 1

r2
∂2Γ (0)

∂θ2

)
= jn, (3.7)

where β ≡ Γ∞/(c0b). The bulk Péclet number (Pe ≡ aU/D) compares convection to bulk
diffusion. The surface Péclet number (Pes ≡ aU/Ds) compares the effects of convection to
surface diffusion for the adsorbed surfactants. The surface velocities (vr,s and vθ,s) can be
obtained by integrating the Stokes equations and incorporating the O(1) tangential stress
balances, i.e.

vr,s = 〈̂vr〉 − 1
εCa

ĥ
6
∂Π(0)

∂r
(3.8)

and

vθ,s = 〈̂vθ 〉 − 1
εCa

ĥ
6

1
r
∂Π(0)

∂θ
. (3.9)

The corresponding initial and boundary conditions for these equations are

at t = 0 : ĥ1 = 0, P̂ = 0, 〈̂vr〉 = 0, 〈̂vθ 〉 = 0, c(0) = 1, Γ (0) = Γ0/Γ∞,

as r → ∞ : ĥ1 → 0, P̂ → 0, 〈̂vr〉 → 0, 〈̂vθ 〉 → 0, c(0) → 1, Γ (0) → Γ0/Γ∞,

and ψ(θ) = ψ(θ + 2π), where ψ = ĥ1, P̂, 〈̂vr〉, 〈̂vθ 〉, c(0), Γ (0). (3.10)
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ε b/a 0.108
tstop d/b 2–8
Ca (1/ε2)(μU/γwater) 1.2 × 10−4

Bo (ρgab)/γwater 0.021
Pe aU/D 458
Pes aU/Ds 4580
Ma εRTΓ∞/(μU) 7665
La (kac0)/kd 15.1
α (bkac0)/U 0.644
β Γ∞/(c0b) 2.26

Table 1. Dimensionless parameters used in this study.

3.2. Surfactant specific parameters
The isotherms that relate the surface pressure to the adsorbed surfactant concentration
are dependent on the surfactant species. In this section we describe the isotherm and the
associated adsorption and desorption fluxes for Triton X-100. Lin et al. (1990) published a
detailed study of Triton X-100 using a pendant drop tensiometry apparatus. All Triton
X-100 associated parameters are extracted from their study. The diffusivity of Triton
X-100 in water is D = 2.6 × 10−10 m2 s−1. The surface diffusivity is assumed to be ten
times larger than bulk diffusivity. Figure 7 of Lin et al. (1990) describes the equilibrium
isotherms for Triton X-100 aqueous solutions. There are no significant differences between
the Frumkin and Langmuir isotherms for bulk concentrations between 1 μM and 100 μM.
In this paper, for the sake of simplicity, we use the Langmuir isotherm

γ = 1 −Π = 1 + εCaMa log[1 − Γ ], (3.11)

where the Marangoni number is Ma ≡ εRTΓ∞/(μU). After applying the above definition
of surface pressure, the Marangoni number appears in the non-dimensionalized radial
and azimuthal stress balances. It is a multiplier to the dimensionless concentration whose
gradient drives Marangoni flow. Here Γ∞ is obtained by fitting data to the Langmuir–von
Szyszkowski’s equation, γ = 1 − RTΓ∞/γwater log[1 + c∗/cfit], yielding Γ∞ = 2.91 ×
10−6 mol m−2 and cfit = 6.62 × 10−4 mol m−3.

Langmuir kinetics is used to describe the dynamics of surfactant adsorbing onto the
air–water interface and the bubble surface. The adsorption flux is defined as j∗ads =
kac∗(Γ ∗ − Γ∞) and the desorption flux is j∗des = kdΓ

∗. The adsorption coefficient, ka =
50 m3 s−1 mol−1, is extracted from figure 10 of Lin et al. (1990). It follows that the
desorption coefficient kd = cfitka = 0.033 s−1. Non-dimensionalizing the total flux of
surfactant adsorbing onto an air–water interface we obtain jn ≡ α (c(1 − Γ )− Γ/La),
where La ≡ (kac0)/kd and α ≡ (bkac0)/U. All of the extracted values are also consistent
with the values published in table 4 of Shen et al. (2002). Table 1 contains a summary of
all the non-dimensional parameters and their values used in this study.

3.3. Numerical considerations
The set of six nonlinear governing equations describes the relationship among six
unknowns. The initial and boundary conditions of four of these are homogeneous. Here
c(0) and Γ (0) are the variables with non-homogeneous initial and boundary conditions.
In the numerical implementation, we solve for the respective variables: log(c(0))
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and Γ (0) − Γ0/Γ∞. The governing equations are spatially discretized using the finite
difference method. In the radial mesh a stretched mesh is used such that in each radial
direction, 50 % of the grid points are positioned on r ∈ [0, 1] and the rest of the points
are positioned on r ∈ (1,Rmax]. In the azimuthal direction the mesh is evenly divided into
60 slices such that the disturbance onset can be reasonably resolved. A Crank–Nicolson,
adaptive time stepping is used for time advancement. At each iteration, the governing
equations are solved using a lower–upper (LU) factorization based direct solver provided
in the PETSc package (Balay et al. 2019). Validation of the numerical solution is discussed
in detail in the following sections.

4. Results and discussion

4.1. Thin film evolution and disturbance onset
Figure 2 shows the validation experimental and simulation data associated with the
dynamical evolution of a Triton X-100 aqueous film over an air bubble. The experimental
conditions and experimental parameters are presented in table 1 with tstop = 3.11.
Figure 2(a) shows the temporal evolution of the maximum film thickness. For the
experimental data, ĥmax is defined to be the maximum measurable film thickness within
the field of view, while in the simulation, ĥmax = max(ĥ(t, r � R(θ), θ)), where R(θ)
corresponds to the radial position of minimum film thickness for a given azimuthal
direction. Here R(θ), the rim, bounds the so-called dimple.

In both the experiment and the simulation, ĥmax decreases with time as a result of
the squeezing motion of the motor driving the two interfaces together. Similar to the
experiments done by Frostad et al. (2016), this experiment also shows three stages
of film evolution. The first stage corresponds to the time when the motor is moving:
0 < t < tstop. During this period, the bubble is forced upward and the dimple grows
from r = 0 radially outward in an axisymmetric fashion (figure 2b1–3). The second
stage corresponds to the rapid change in film thickness after tstop = 3.11 (tstop < t < 5,
figure 2b4–10). Figure 3(a) provides the film thickness contour that corresponds to the
interference pattern in figure 2(b4). Shortly after the motor has stopped moving, the system
succumbs to ambient disturbances that break the axial symmetry of the outermost blue
ring that corresponds to the rim location (figure 2b5). Figure 3(b) shows the effect of
the disturbances on the film thickness at t = 3.65. As the amplitude of the disturbance
grows, the thin film becomes more asymmetrical, and the previously centred ĥmax is
convected away from r = 0 (figures 2b6–8 and 3c). Eventually, the dimple discharges
from the side (figure 2b9 and 2b10), leaving behind a plume of a very non-axisymmetric
film (figure 2b11 and 2b12). The film enters the last stage of its evolution, where the
non-axisymmetric film continues to thin at a rate that is slowed relative to that during
the dimple discharge (figure 2a). The bubble eventually coalesces as a result of further
ambient disturbances.

In contrast to the experimental evolution of ĥmax, the simulated maximum film thickness
thins at a faster rate during 0 < t < 1, leading to a thinner film during 1 < t < 4.22. We
believe the differences are mainly the result of our assumption that the lower surface is
non-deformable. This assumption can be evaluated by examining the deformation of a
freely rising bubble in a surfactant free liquid (Pigeonneau & Sellier 2011). The Bond
number in this study is close to the parameter used in figure 9(a) of Pigeonneau &
Sellier (2011), where an air bubble freely rises toward an initially flat liquid–air interface
with a one-radius initial clearance over the apex of the bubble. In their study, a small
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Film thickness (nm)
100 200 300

(9) (10) (11) (12)

(5) (6) (7) (8)

(1) (2) (3) (4)

400 500 600 700 800 900 1000

0 1 2 3 4 5 6 7 8 9

Experiment

Simulation

10

0.002

0.004

0.006

0.008

0.010

t

ĥmax

(a)

(b)

Figure 2. Evolution of a Triton X-100 aqueous film over an air bubble. (a) Dynamics of the maximum film
thickness measured in the experiment (circles) and obtained via 2-D numerical simulation (solid line). The
experimental parameters and simulation parameters are reported in table 1, with a tstop = 3.11. The twelve
filled circles correspond to the twelve interference patterns displayed in (b). The diameter for each of the
interferograms corresponds to 1.2 mm. The location of ĥmax is marked with an ‘x’.
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Figure 3. Experimental film thickness profiles during the symmetry breaking event for an aqueous solution
of Triton X-100 at a concentration of 0.01 mM; (a) t = 3.47, (b) t = 3.65, (c) t = 3.83. These contour maps
correspond to the interference patterns presented in figures 2(b4), (b5) and (b6).

amount of deformation is observed when the bubble freely rises until the minimum
film thickness approaches the numerical resolution. In fact, Pigeonneau & Sellier (2011)
have deemed the deformation to be small enough such that ‘the bubble remains nearly
spherical when rising’. However, in our study, a motor forces the bubble upward, thus
moving beyond the position described in figure 9(a) of Pigeonneau & Sellier (2011). It is
possible that the actual bubble deformation exceeds that reported by Pigeonneau & Sellier
(2011). Furthermore, due to the limitations in the azimuthal mesh size, the simulation
can capture the evolution of the film up to t = 4.22, at which time the accumulated
numerical round-off errors act to disturb the rim. Despite the limitations of the numerical
tool, we can still capture the onset of the symmetry breaking event. Understanding the
underlying physics that drives the symmetry breaking is the first step to understanding
the subsequent rapid dimple discharge that affects the overall bubble lifetime. For the
remainder of this paper, we focus on understanding the onset of symmetry breaking as
shown in figures 2(b5) and 3(b).

Figure 4 provides the onset of symmetry breaking observed in the two-dimensional
(2-D) simulation. At t = 4.10, the film thickness profile and the adsorbed surfactant
distribution are both axisymmetric (figure 4a,d). The film thickness profile shows the
presence of a dimple, which is the volume of liquid bounded by a ring of thin film at
the rim, R = 0.88. The adsorbed surfactant concentration is depleted inside the dimple
and approaches the initial adsorbed concentration of Γ0/Γ∞ for r > R (figure 4d). At
t = 4.20, the effects of the instability are evident. Wrinkles in the rim location are observed
in the film thickness contour plot (figure 4b). Fluctuations in the adsorbed surfactant
concentration gradient in the radial direction can also be seen near r = 0.88 in all
azimuthal directions (figure 4e). Soon afterward, at t = 4.22, the rim wrinkling becomes
even more pronounced, such that fluctuations in ĥ(t = 4.22, r = R, θ) can easily be seen
in figure 4(c). Correspondingly, ∂Γ (0)/∂r becomes more non-axisymmetric, with regions
achieving a more dense surfactant packing than the initially adsorbed concentration (see
the black regions in figure 4f ). The topology presented in figure 4(c) is reminiscent of the
interference pattern shown in figure 3(b). Due to the limitation in the numerical tool, the
rest of the study is focused on examining the transition from an axisymmetric film to a
non-axisymmetric film, as captured in figure 4 and figure 3(a,b).
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Figure 4. Film thickness ((a–c), ĥ) and adsorbed surfactant concentration deviation from the initial
concentration ((d,e), Γ (0) − Γ0/Γ∞) during the symmetry breaking event observed in a 2-D numerical
simulation (t = 4.10, 4.20, 4.22). The simulation is conducted at ε = 0.108, tstop = 3.11, Ca = 1.2 × 10−4,
Bo = 0.021, Ma = 7665, Pe = 458, PeS = 4580, Γ0/Γ∞ = 0.938, α = 0.644, β = 2.26, La = 15.1. This
parameter set corresponds to the experimental conditions described in figure 2. In this simulation the source of
disturbance is the accumulated numerical error.

To further compare the evolution of the disturbance in the experiment and the
simulation, we compare the Fourier transform of R,

Cm = 1
2π

∫ π

−π

e−imθ R(θ)− Ravg

Ravg
dθ, (4.1)

where m is the wavenumber and Ravg is the location of the rim averaged over all
azimuthal directions. Figure 5(a) shows the magnitude of Cm deviation from Cm(t =
3.49) at selected time points during the symmetry breaking event in the experiment.
The subtraction of |Cm(t = 3.49)| allows us to discard the signals associated with the
pixelated nature of the interfograms and focus on the signals that grow over time as
a result of disturbance growth. The experimental data shows that wavenumbers 9, 11,
13, 14 and 17 have significant disturbance growth. Among these wavenumbers, m =
11 corresponds to the most prominent growth. In the corresponding 2-D simulation
(figure 5b), wavenumbers 8 and 10 are the top two amplified modes. Despite the difference
in the sources of disturbance for the experiment and the simulation, the rapid growth
of modes associated with intermediate wavenumbers are observed. The good agreement
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Figure 5. Fourier transform of the rim location during symmetry breaking for the experiment (a) and the
simulation (b). The experimental condition and simulation parameters are described in figures 2 and 4.

between the experiment and the simulation gives us confidence in the ability of the
theoretical model to capture the disturbance onset. To understand the symmetry breaking
mechanism and the driving forces behind the mode selection, we therefore conduct a linear
stability analysis.

4.2. Linear stability analysis
In this section we examine the linear responses of the system subjected to a small
perturbation. Experimental and simulation observations suggest that after the external
forcing stops, the system soon succumbs to ambient disturbance and non-axisymmetric
patterns with an intermediate wavenumber first developing around the rim of
the film. To understand the system behaviour, we employ a linearized stability
analysis.

The base state is the axisymmetric, one-dimensional (1-D) solution to the governing
equations. Similar to our previous study (Shi et al. 2021), the base state evolves in time
and in the radial direction. The linearized stability equations are derived by subtracting the
axisymmetric, 1-D governing equations from the 2-D governing equations described in the
theory section, followed by discarding all nonlinear terms in the disturbance quantities,
ψ̃(t, r, θ) ≡ ψ(t, r, θ)− ψ1D(t, r), where ψ represents ĥ1, P̂, 〈̂vr〉, 〈̂vθ 〉, c(0) and Γ (0).
Based on the amplified perturbation in the experiment and in the simulation, we seek
solutions in the form of ψ̃ = exp(imθ)ψ̄(t, r), without making the usual assumption of
exponential disturbance growth in time. After some algebra, we obtain the linearized
governing equations for ψ̄(t, r).

The linearized disturbance equations associated with the mass and species balances
are

∂ h̄1

∂t
+ 1

r
∂

∂r

(
r
(
h1D〈vr〉 + h̄1 〈vr〉1D

))+ im
r

h1D〈vθ 〉 = 0, (4.2)
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∂ c̄
∂t

+ 〈vr〉1D
∂ c̄
∂r

+ 〈vr〉∂c1D

∂r
− 1

Pe

(
1
r
∂

∂r

(
r
∂ c̄
∂r

)
− m2

r2 c̄
)

− 1
Pe

1
h1D

(
∂h1D

∂r
∂ c̄
∂r

+ ∂ h̄1

∂r
∂c1D

∂r
− h̄1

h1D

∂h1D

∂r
∂c1D

∂r

)
= −2αβ

h1D

(
c̄ − c̄Γ1D − c1DΓ̄ − Γ̄ /La

)+ 2αβ
h2

1D
h̄1 (c1D(1 − Γ1D)− Γ1D/La) (4.3)

and

∂Γ̄

∂t
+ 1

r
∂

∂r

(
rΓ (0)1D v̄r,s

)
+ 1

r
∂

∂r

(
rΓ̄ vr,s,1D

)+ im
r
Γ
(0)

1D v̄θ,s

− 1
Pes

(
1
r
∂

∂r

(
r
∂Γ̄

∂r

)
− m2

r2 Γ̄

)
= α(c̄ − c̄Γ (0)1D − c(0)1DΓ̄ − Γ̄ /La), (4.4)

where

v̄r,s = 〈vr〉 − Ma
6

h̄1

1 − Γ
(0)

1D

∂Γ
(0)

1D
∂r

− Ma
6

ĥ1D

⎛⎜⎝ 1

1 − Γ
(0)

1D

∂Γ̄

∂r
+ Γ̄(

1 − Γ
(0)

1D

)2

∂Γ
(0)

1D
∂r

⎞⎟⎠
(4.5)

and

v̄θ,s = 〈vθ 〉 − Ma
6

im
r

ĥ1D

1 − Γ
(0)

1D

Γ̄ . (4.6)

The linearized disturbance equations associated with the stress balances at the interfaces
are

1
r
∂

∂r

(
r
∂ h̄1

∂r

)
− m2

r2 h̄1 − Boh̄1 + CaP̄ + 2εCa
1
r
∂

∂r

(
r〈vr〉

)+ 2εCa
im
r

〈vθ 〉 = 0, (4.7)

∂P̄
∂r

= 2Ma

ĥ1D

(
−1

1 − Γ
(0)

1D

∂Γ̄

∂r
− Γ̄

(1 − Γ
(0)

1D )
2

∂Γ
(0)

1D
∂r

+ h̄1

ĥ1D

1

1 − Γ
(0)

1D

∂Γ
(0)

1D
∂r

)

+ ε

(
2
∂

∂r

(
1
r
∂

∂r
(r〈vr〉)

)
− m2

r2 〈vr〉 + ∂

∂r

(
im
r

〈vθ 〉
)

− 2im
r2 〈vθ 〉

)

+ ε
2

ĥ1D

∂ ĥ1D

∂r

(
1
r
∂

∂r

(
r〈vr〉

)+ ∂〈vr〉
∂r

+ im
r

〈vθ 〉
)

+ ε
2

ĥ1D

(
1
r
∂

∂r
(r 〈vr〉1D)+ ∂〈vr〉1D

∂r

)(
∂ h̄1

∂r
− h̄1

ĥ1D

∂ ĥ1D

∂r

)
(4.8)
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and

im
r

P̄ = im
r

2Ma

ĥ1D

−Γ̄
1 − Γ

(0)
1D

+ ε

(
−2m2

r2 〈vθ 〉 + ∂

∂r

(
1
r
∂

∂r
(r〈vθ 〉)

)
+ im

r
1
r
∂

∂r

(
r〈vr〉

)+ 2im
r2 〈vr〉

)
+ ε

im
r

2

ĥ1D
h̄1

(
1
r
∂

∂r
(r 〈vr〉1D)+ 〈vr〉1D

r

)

+ ε
1

ĥ1D

∂ ĥ1D

∂r

(
im
r

〈vr〉 + r
∂

∂r

(
〈vθ 〉

r

))
. (4.9)

In the far field (r → ∞) these variables and their radial derivatives decay to zero.
The initial conditions for h̄1, c̄ and Γ̄ are defined as

h̄1(tini, r) = exp(−K (r − R)2), (4.10)

c̄(tini, r) = Γ̄ (tini, r) = (r − R) exp(−K(r − R)2), (4.11)

where K = 200 and R represents the radial location where the film thickness is at its
thinnest at tini, i.e. the rim. In other words, the disturbances are localized near the rim
of the base state. These disturbances are smooth approximations of the difference between
the fully 2-D simulations during disturbance onset and the corresponding 1-D base state.
We assume that these disturbances act to promote the growth of the unstable mode.
Choices of the exponential factor K have little effect on the subsequent analysis (figure 14).
The initial conditions for P̄, 〈vr〉 and 〈vθ 〉 are obtained by solving (4.7), (4.8) and (4.9)
simultaneously. By setting the wavenumber m to an integer and applying the initial and
boundary conditions, we complete the initial value problem. These equations are time
advanced numerically using the implicit time-stepping method.

Another way to study the system response to perturbation can be achieved by introducing
perturbation of a known form and amplitude to the full 2-D simulation. By analysing the
evolution of the injected perturbation in the linearized disturbance system and the full 2-D
system, we can gain insight into the behaviour of the system. To such an end, the following
perturbation is injected into the 2-D simulation at tini:

ψinject = Cinject cos(mθ)ψ̄(tini, r). (4.12)

Here ψ represents the six variables of interest and Cinject = 0.0001 is a scaling factor to
avoid numerical issues. The definitions for ψ̄(tini, r) are given in (4.10) and (4.11).

Figure 6 shows the effects of a m = 10 perturbation on a 2-D simulation. The
perturbation is injected at t = 4 and each column in the figure corresponds to a time
point: t = 4, 4.005 and 4.1. Upon perturbation injection, features associated with the
wavenumber of the injected perturbation become immediately apparent. For ĥ and Γ (0) −
Γ0/Γ∞, the disturbance grows with time, leading to more pronounced rim wrinkling and
fluctuations in ∂Γ (0)/∂r (figure 6a–f ). Here

〈
v̂r
〉

and
〈
v̂θ
〉

first decrease in amplitude, but
grow at later times. The signs of

〈
v̂r
〉
and

〈
v̂θ
〉
give a clear indication of the flow directions.

A positive value in
〈
v̂r
〉

corresponds to radial flow from the dimple into the bulk, and a
positive value in

〈
v̂θ
〉

corresponds to counterclockwise flow in the azimuthal direction. In
each 2π/m azimuthal segment there is a pair of locally circulating flows clustered around
the rim.
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Figure 6. Responses of the 2-D simulation to m = 10 perturbation injection at t = 4 for selected variables: ĥ
(a–c), Γ (0) − Γ/Γ∞ (d–f ),

〈
v̂r
〉

(g–i) and
〈
v̂θ
〉

(j–l). Plots (a,d,g,j) are plotted at t = 4, the time of perturbation
injection. Plots (b,e,h,k) are plotted at t = 4.005 and plots (c, f,i,l) are plotted at t = 4.01. The simulation
parameters are the same as those described in figure 4.
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Figure 7. Comparison of gains of the linearized disturbance quantities (lines) and gains of the injected
disturbances in the 2-D simulations (symbols) for three different wavenumbers. The simulation parameters
are the same as those described in figure 4.

To measure the growth of these disturbance quantities, we introduce the ‘gain’ for each
variable. i.e.

Gψ̄ (t) =

∫ ∞

0
ψ̄2r dr∫ ∞

0
ψ̄2

inir dr
. (4.13)

If the value of Gψ̄ (t) increases above unity, then the corresponding disturbance is growing,
indicative of an unstable system. Similarly, the gain associated with the perturbation
injected into the 2-D simulation is

Gψ,2D(t) =

∫ 2π

0

∫ 2

0
(ψ − ψ1D)

2 r dr dθ∫ 2π

0

∫ 2

0
ψ2

injectr dr dθ
. (4.14)

The upper integration bound in the radial direction for Gψ,2D is at r = 2 > R. This
truncation is necessary to exclude the effects of the accumulated solution difference
between the 2-D simulation and the corresponding 1-D base state prior to tini. Because
the disturbances introduced to the system are localized to the rim, this truncation still
accounts for the changes to the variable as a result of perturbation injection.

Figure 7 shows the comparison in the evolution of Gψ̄ and Gψ,2D, for all six disturbance
quantities and at three wavenumbers, m = 2, 5, 10. Disturbance is injected into the 2-D
simulation at tini = 4 and the linearized disturbance equations are time advanced starting
at tini = 4. Here Gψ,2D is plotted up to the point where azimuthal resolution is lost.
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Figure 8. Evolution of the linearized disturbance quantities at different wavenumbers. The simulation
parameters are the same as those described in figure 7. For this set of parameters, the wavenumber that
maximizes disturbance growth is m = 10.

The growth in Gψ̄ and Gψ,2D shows good agreement for all variables except for c̄.
The good agreement in Gψ̄ and Gψ,2D verifies that the perturbation injection in both
approaches are implemented correctly. Furthermore, it indicates that the system responds
linearly in the short time period after the perturbation injection. The discrepancy in c̄
is caused by a significant difference between c(0) and c(0)1D at the time of perturbation
injection. The significance of the difference is reflected in the large value of Gc,2D prior
to tini = 4. Despite the discrepancy at the onset of the disturbance injection, the eventual
growth rate in Gc̄ and Gc,2D still show good agreement, further indicating that the system
responds linearly to the small disturbance.

We find that Gψ̄ and Gψ,2D for all three wavenumbers show eventual growth after
the introduction of disturbance, indicating that the system is unstable. For the three
wavenumbers probed in this figure, in general, m = 10 shows the fastest growth rate and
m = 2 has the slowest growth rate. For h̄1, during tini < t < tini + 0.01, the growth rate for
m = 5 is faster than m = 10. After t = tini + 0.01, Gh̄1

,m = 10 is larger than Gh̄1
,m = 5.

This growth rate crossover is also captured by disturbance injection into the 2-D equations.
This crossover is only observed in h̄1, which may explain why there are multiple fast
growing wavenumbers associated with the change in the rim location observed both in the
experiment and the simulation presented in the previous section. These observations call
for a refined sweep in the wavenumber.

Figure 8 shows the evolution in the gain from tini = 4 to t = 4.1 for h̄1, c̄ and Γ̄ at a
variety of wavenumbers, ranging from 2 to 40. All simulation parameters are the same as
those used in figure 7. For this parameter set, m = 10 corresponds to the fastest disturbance
growth. As the wavenumber increases, the growth rate in the gain for all three variables is
reduced. When the wavenumber is increased to m = 40, the value of the gain eventually
decays below unity, indicating that the system is linearly stable to high wavenumber
perturbations.

4.3. Symmetry breaking mechanism
We are now in a position to understand the underlying physical mechanism that drives this
instability. The form of the linearized disturbance equations prohibits explicit expressions
of P̄, 〈vr〉 and 〈vθ 〉, in terms of capillarity, Marangoni and gravity contributions. The best
we can do is to examine the combined effects of those physical forces on 〈vr〉 and 〈vθ 〉 and
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see how these two terms affect the time rate of change of Gh̄1
and GΓ̄ . Because c̄ is closely

associated with Γ̄ , we shall only examine Γ̄ to avoid redundancy.
Rearranging (4.2), yields

1
2

dGh̄1

dt
= Avr + Avθ , (4.15)

where

Avr = −

∫ ∞

0
h̄1

1
r
∂

∂r
(rĥ1D〈vr〉)r dr∫ ∞

0
h̄2

1,inir dr
−

∫ ∞

0
h̄1

1
r
∂

∂r
(rh̄1〈̂vr〉1D)r dr∫ ∞

0
h̄2

1,inir dr
(4.16)

and

Avθ = −

∫ ∞

0
h̄1ĥ1D

im〈vθ 〉
r

r dr∫ ∞

0
h̄2

1,inir dr
. (4.17)

Similarly, (4.4) can be rearranged into

1
2

dGΓ̄
dt

= Bvr + Bvθ + BDiff + BAds, (4.18)

where

Bvr = −

∫ ∞

0
Γ̄

1
r
∂

∂r
(rΓ (0)1D v̄r,s)r dr∫ ∞

0
Γ̄ 2

inir dr
−

∫ ∞

0
Γ̄

1
r
∂

∂r
(rΓ̄ vr,s,1D)r dr∫ ∞

0
Γ̄ 2

inir dr
, (4.19)

Bvθ = −

∫ ∞

0
Γ̄ Γ

(0)
1D

imv̄θ,s
r

r dr∫ ∞

0
Γ̄ 2

inir dr
, (4.20)

BDiff = − 1
PeS

∫ ∞

0
Γ̄

(
1
r
∂

∂r

(
r
∂Γ̄

∂r

)
− m2

r2 Γ̄

)
r dr∫ ∞

0
Γ̄ 2

inir dr
(4.21)

and

BAds = α

∫ ∞

0
Γ̄ c̄(1 − Γ

(0)
1D )r dr∫ ∞

0
Γ̄ 2

inir dr
− α

∫ ∞

0
Γ̄ 2(c(0)1D + 1/La)r dr∫ ∞

0
Γ̄ 2

inir dr
. (4.22)

With the above definition, we can observe the overall effects of radial advection (Avr
and Bvr ), azimuthal advection (Avθ and Bvθ ), diffusion (BDiff ) and adsorption (BAds) on
the time rate of change of Gh̄1

and GΓ̄ . For each of these quantities, a positive value
means disturbance growth and a negative value corresponds to stabilizing effects. Figure 9
shows the evolution of dGh̄1

/dt, dGΓ̄ /dt and the associated physical contributing terms at
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Figure 9. Evolution of the time rate of change in the gain for h̄1 (a–e) and Γ̄ ( f –j) and contributing
physical forces for five wavenumbers. From left to right, each column corresponds to one wavenumber
m = 2, 5, 10, 20, 40, respectively. The simulation parameters are the same as those described in figure 8.

five different wavenumbers: m = 2, 5, 10, 20, 40. The simulation conditions are the same
as in figure 8. The y-axis scale in figure 9 is a symmetric log plot, where large absolute
values are plotted on a log scale and values near zero are plotted on a linear scale.

For m = 2, 5, 10, h̄1 (figure 9a–c) and Γ̄ (figure 9f –h) grow over time, as evidenced
by the positive values of dGh̄1

/dt and dGΓ̄ /dt. For a short time period after tini = 4, Avr

is the dominant factor in destabilizing h̄1 and Avθ is briefly stabilizing. As time goes on,
Avθ increases in magnitude and becomes the dominant cause for destabilization in h̄1.
For Γ̄ , Bvr,s acts to destabilize the system, while Bvθ,s acts to stabilize. The balance in
these two terms determine the overall growth rate, which increases as the wavenumber
increases from 2 to 10. The contributions from diffusion and surfactant adsorption terms
have negligible stabilizing effects.

The term m = 20 marks a transition point in the behaviour of the disturbance growth
rate (figure 9d,i). Avr becomes stabilizing and its stabilizing influence on h̄1 reduces
the growth rate of Gh̄1

when compared with dGh̄1
/dt for m = 10. Correspondingly, the

magnitudes of Bvr,s and Bvθ ,s decrease, leading to a decrease in the growth rate of dGΓ̄ /dt
at m = 20. At m = 40, the system is linearly stable (figure 9e,j). Both dGh̄1

/dt and dGΓ̄ /dt
become negative as a result of reduction in the amplitudes of Avr , Avθ , Bvr and Bvθ . The
variations in the amplitudes of these four terms lead to the change in disturbance growth
rates observed in figure 8 and are the reasons behind wavenumber selection.

Figure 10 shows the comparisons of the base state variables and selected radial cuts of
variables in the 2-D simulation with m = 10 disturbance injection. Here θ = 0 and θ =
π/m are chosen because they correspond to the first half-period in the injected disturbance
(see (4.12)). Figure 10(a) shows the base state film thickness at t = 4.005 (black solid
line). In contrast, ĥ(θ = 0) (red dashed line) shows an increase in film thickness relative to
the base state and ĥ(θ = π/m) (blue dash-dotted line) shows film thinning relative to the
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Figure 10. Comparisons of the radial profile evolution between the base state quantities (black solid lines) and
the θ = 0 (red dashed lines) and θ = π/m (blue dash-dotted lines) cuts in the 2-D simulation with m = 10
disturbance injection at t = 4. Plots (a,c) also show the linearized disturbance quantities, h̄1 and Γ̄ , plotted on
the right y axis in black dotted lines. The linearized disturbance equations are solved with m = 10, tini = 4. All
quantities are plotted at t = 4.005. The other simulation parameters are the same as those described in figure 7.

base state. The linearized disturbance in film thickness (h̄1, black dotted line) shows the
change in film thickness is concentrated near the rim. Figure 10(b) shows depth-averaged
velocity in the radial direction. A positive value indicates flow away from r = 0. The base
state

〈
v̂r
〉

indicates that liquid is leaving the dimple region at a relatively slow rate, when
compared with the 2-D simulation with disturbance injection. In the direction where the
disturbance acts to thicken the film,

〈
v̂r
〉
(θ = 0) flows out of the dimple region at a fast

rate, whereas
〈
v̂r
〉
(θ = π/m) indicates liquid is being drawn back towards r = 0. As a

result, surfactants in the θ = 0 and θ = π/m directions are convected in opposite radial
directions (figure 10c). In θ = 0, when compared with the base state, the surface adsorbed
surfactant concentration is depleted in the region shortly before the rim and enriched
over r > R. This trend is also observed in the radial profile of the linearized disturbance
quantity, Γ̄ . In contrast, Γ (0)(θ = π/m)− Γ0/Γ∞ is enriched over 0.8 < r < R when
compared with Γ (0)1D − Γ0/Γ∞. Thus, an azimuthal surfactant concentration gradient is
established, such that the Marangoni stress will draw liquid from θ = π/m toward θ = 0
over 0.8 < r < R. This clockwise flow is reflected in the negative valued

〈
v̂θ
〉
(θ = π/m)

around r = R (figure 10(d) blue dash-dotted line). In other words, liquid is flowing from
the disturbance-thinned region into the already thickened film region. Here

〈
v̂θ
〉
(θ = 0)

is largely positive, indicating a counterclockwise flow that is driven both by liquid mass
conservation and the enriched surface adsorbed surfactant in the region just beyond the
rim.

Combining the observations made in figures 6 and 9, we can begin to understand
the underlying physical mechanism. An azimuthal direction fluctuation in film thickness
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leads to local fluctuations in
〈
v̂r
〉
. A locally thickened film acts to dispel liquid from

the dimple, leading to an increase in
〈
v̂r
〉
. Conversely, a locally thinned film leads to

liquid mass retracting into the dimple region, resulting in
〈
v̂r
〉

flowing towards r = 0. The
difference in the flow directions convects the surface adsorbed surfactants in different
radial directions. This process creates an azimuthal surfactant gradient that draws liquid
from the already relatively thin region into the disturbance-enriched thick film region. As a
result of these combined flow motions, the initially thickened film thickens further, leading
to the observed flow instability.

4.4. The most dangerous wavenumber
In this section we study the effect of tstop on the maximum growth wavenumber, mmax, in
an attempt to elucidate the factors that control mmax. For context, the equilibrium tstop,eqlb

can be approximated by balancing the buoyancy force to the capillary force, ρg4
3πa3 =

γsolution2πReqlb, where γsolution is the surface tension of the surfactant solution and Reqlb
is the approximate rim location at equilibrium for a spherical bubble. After some simple
computation, one can obtain tstop,eqlb = 1.14 for this system. We now conduct a study to
understand the underlying mechanisms that determine mmax, by perturbing tstop beyond its
equilibrium value.

First, we observe the effect of increasing tstop on the base state, by solving the
axisymmetric, 1-D governing equations with all parameter values presented in table 1.
Figures 11(a) and 11(b) show the radial profiles of film thickness (ĥ1D) and surface
concentration deviation from its initial value (Γ (0)1D − Γ0/Γ∞), plotted at t = tstop + 1 for
seven different tstop values. The figures are plotted at t = tstop + 1 because they are the
initial time used in evolving the linearized stability equations subsequently. The protrusion
of the air bubble above the initially flat liquid–air interface grows with increasing values
of tstop. As a result, the location of the rim, R, moves further away from the centreline,
thereby widening the circumferential domain over which the disturbance can travel in
the azimuthal direction. Similarly, an increase in tstop shifts the location of the surfactant
gradient radially outward (figure 11b).

Figure 11(c) shows the corresponding pressure profiles as the blue solid lines. In all
seven cases, the pressure at the apex of the bubble is higher than in the bulk. The
pressure drop occurs over the location of the rim. The dominant flow driving forces
in the radial direction are the pressure gradient, ∂P̂1D/∂r, and the Marangoni stresses,
−(2Ma/ĥ1D(1 − Γ

(0)
1D ))(∂Γ

(0)
1D /∂r). The difference in these two quantities dictate the

overall flow direction. Figure 11(d) shows that, for the seven conditions examined,
∂P̂1D/∂r overwhelms the Marangoni stresses, leading to liquid discharge from the dimple
into the bulk region. Furthermore, we define �R to be the radial width over which the
amplitude in the difference of the pressure gradient and the Marangoni driving forces is
appreciable,

Ca
∂P̂1D

∂r
+ 2MaCa

ĥ1D(1 − Γ
(0)

1D )

∂Γ
(0)

1D
∂r

< −0.0001. (4.23)

With a good understanding of the effects of tstop on the base state, we now probe
its effect on the growth rate of the disturbance variables. For each of the tstop values
presented in figure 11, we solved the linearized disturbance equations at tini = tstop + 1.
Figures 12(a) and 12(b) show the value of gain for h̄1 and Γ̄ plotted at t = tini + 0.1 for
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ĥ 1
D

1 × 10–4

0 1

102

101

100

10–1

2 3

–25 –20 –15 –10 –5
rself

tstop = 2

tstop = 3

tstop = 4

tstop = 6

tstop = 7

tstop = 8

tstop = 5
h se

lf

0 5 –25

0.4

0.2

0

–0.2

–20 –15 –10 –5
rself

Γ
se

lf

0 5

4 5 0
–1.0

–0.5

1
D

Γ
(0

)  –
 Γ

0
/Γ

∞

0

1 2 3 4 5

0 1

3 0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

2

1

0

C
aP̂

1
D

–1
2

r r
3 4 5 0 1 2 3 4 5

C
a

+
2
C

aM
a

∂
P̂ 1

D
∂
r
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Figure 11. Effects of tstop on selected base state variables: (a) film thickness, (b) surface adsorbed surfactant
concentration deviation from its initial value, (c) pressure and (d) the difference between the pressure
gradient and the Marangoni stresses. The inset figures in (a,b) are the rescaled film thickness and surface
adsorbed surfactant concentration, where rself = (r − R)/(ĥ2

1D,R/(∂Γ
(0)

1D /∂r|R))1/3, hself = ĥ1D/ĥ1D(r = R)

and Γself = (Γ
(0)

1D − Γ
(0)

1D (r = R))/(ĥ1D,R(∂Γ
(0)

1D /∂r|R))2/3. The variables exhibit self-similar behaviour. All
the radial profiles are plotted at t = tstop + 1. The simulation parameters are provided in table 1.

a range of wavenumbers. It is clear from these two sets of dispersion curves that there
is a wavenumber that corresponds to the maximum growth rate for each tstop, and the
maximum growth rate wavenumber (mmax) increases monotonically with tstop. Combining
observations made on figure 11, we now plot mmax against R(tini)/�R (figure 12c), which
is the ratio of the rim radius at the time of disturbance injection to the width of pronounced
pressure gradient contribution from capillarity and Marangoni forces. Figure 12(c) shows
a clear linear relationship between the two quantities. In fact, mmax ∼ 2R/�R.

Figure 13 provides a comparison between the most dangerous wavenumbers obtained
in the linear stability analysis and those of the experiments. Because the interferograms
only give film thickness information and not the distribution of surfactant species, it
is impossible to obtain the equivalent value of �R in the experiments. Therefore, the
effect of tstop on mmax is examined. The linear stability analysis data indicates that mmax
monotonically increases with tstop, confirming the observations made in figure 12. Two
sets of experimental data are presented in figure 13. For the experiment with tstop = 3.11,
the wavenumbers with the fastest growth rates are m = 11 and m = 13, consistent with
figure 5(a). Experiment 2 has a smaller tstop = 2.33 and its most dangerous wavenumbers
are m = 8 and m = 10. The trend in the two sets of experiments suggests that mmax grows
with increasing values of tstop. The offset in mmax between the experimental data and the
linear stability analysis can be the result of the non-deformability assumption applied to
the bubble interface in the model and measurement errors associated with the pixelated
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Figure 12. (a,b) Gain as a function of wavenumber for linearized disturbance quantities h̄1 and Γ̄ . Each
linearized stability simulation starts at tini = tstop + 1 and the value of the gain is plotted at t = tini + 0.1.
The dot on each line signifies the maximum growth wavenumber, mmax. (c) Linear dependence of mmax on
the ratio of rim location at disturbance injection time (R) to the width of pronounced radial direction pressure
gradient (�R). The simulation parameters are provided in table 1.
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Figure 13. Comparison of mmax obtained from linear stability analysis (circles) and from experiments
(triangles and squares). The experimental conditions for experiment 1 correspond to the values in table 1
with tstop = 3.11. The experimental conditions for experiment 2 are as follows: ε = 0.137, tstop = 2.33,
Ca = 7.34 × 10−5, Bo = 0.029, Ma = 9700, Pe = 482, PeS = 4820, Γ0/Γ∞ = 0.938, α = 0.86, β = 1.70,
La = 15.1.

nature of the images captured by the top camera. Despite the difference in the values,
the experimental mmax values fall within the range of mmax obtained in the simulation.
The agreement in mmax and the trend with respect to tstop provide some validation for the
linearized stability analysis. The Fourier transform of the rim location for experiment 2
can be found in the Appendix (figure 15).

4.5. Comparison with surfactant spreading and marginal regeneration
The behaviour of our system is reminiscent of the fingering behaviour associated with
the deposition of a surfactant droplet onto a thin liquid film (Warner, Craster & Matar
2004). We shall refer to their study as WCM henceforth. In the WCM system, a droplet of
soluble surfactant is deposited on an initially surfactant free thin liquid film. The deposited
droplet spreads and the surfactant advances from the droplet to surfactant-poor regions on
the thin liquid film, driven by Marangoni stresses. As the leading front spreads radially
outward, a severely thinned region of the film is formed between the deposited drop and
the leading front. This thin region is effectively pinning the droplet in place and delaying
the mass transport. Experimental observations show that this flow process is susceptible
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to ambient disturbances, and fingering patterns can be observed forming in the pinning
region, where the film is at its thinnest (see figure 1 in WCM). The base state for the WCM
system is the streamwise spreading process and the effect of disturbance in the transverse
direction is studied. Their linear stability analysis reveals that, for a given set of parameters,
there is a maximally amplified intermediate wavenumber associated with the transverse
disturbance. This disturbance is trapped in the pinning region, rather than at the advancing
front. The physical mechanism behind the growth of the disturbance can be summarized
as follows: a small fluctuation in film thickness leads to a local increase in film thickness
and subsequently the local surface velocity, which scales with film thickness. The increase
in local surface velocity leads to enhanced advection of surfactant away from this thick
film region, thereby increasing the surface tension locally. Marangoni stress draws more
liquid into this locally thick, high surface tension region, contributing to the growth of the
disturbance.

The instability in this study shares many common features with the surfactant spreading
system. In both systems, the disturbances are amplified in the region where the liquid film
is at its minimum thickness, i.e. the pinning region that restricts flow. Disturbances act to
locally thicken the surfactant film (figure 7a in WCM and figure 10a). Simultaneously, the
surface adsorbed surfactant concentration is depleted in the thinning region and enriched
just beyond the rim (figure 7b in WCM and figure 10d). The perturbation in the surfactant
concentration leads to Marangoni flows in the transverse direction that further act to
increase the thickness in the already thickened film. Both systems exhibit mode selection
behaviour (figure 6 in WCM and figure 8), with an intermediate wavenumber that gives
the fastest growth rate. Jensen & Naire (2006) conducted an extension study on the WCM
system and found that self-similar structures can be determined in different regions of the
spreading event by appropriately rescaling the film thickness profiles and the concentration
profiles. By using the scales provided in (Jensen & Naire 2006), we found self-similar
features in the base state solution (insets in figure 11a,b). More importantly, Jensen &
Naire (2006) found that, for the WCM system, the wavelength of most dangerous linearized
disturbance is comparable to the width of the pinning region. This relationship confirms
our observation of m ∼ R/�R.

These two systems also have features that are unique. The dominant flow driving forces
are different in the two studies: the initially deposited surfactant droplet creates the surface
tension gradient that drives the spreading event in the WCM study, whereas in our system,
external forcing creates the surfactant gradient through advection, yielding a high surface
tension region over the apex of the bubble and a low surface tension region in the bulk.
Thus, the surface tension gradient in the streamwise direction for the two systems are
reversed. In our system, after tstop, the radial pressure gradient overwhelms Marangoni
flow and acts to expel the liquid from the dimple (figure 11d), leading to the sustained
decrease in maximum film thickness observed in figure 2(a) and figure 5 of Frostad et al.
(2016). The geometry of the substrates affects the formulation of the lubrication theory:
in the WCM study the lower surface is a flat wall with a no-slip boundary condition; in
this study the lower surface is an air bubble whose interfacial tension is dependent on the
soluble surfactant adsorption kinetics. Finally, the curvature of the substrates affect the
subsequent flow development. In the WCM study the deposited surfactant droplet expands
indefinitely into domains that are covered by a clean liquid film of constant thickness. As
a result, the fingers obtain significant growth (figure 14 in WCM). In contrast, in this study
the curvature of the air bubble creates a domain with drastic film thickness increase beyond
the rim in the radial direction (figure 10a). When perturbation disturbs the film thickness,
the liquid in the dimple flows through the path of least resistance and discharges into the
bulk region. In other words, the curvature of the lower surface limits the spatial domain
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over which disturbances can grow and, as a result, no pronounced fingering effects are
observed in this study.

Finally, some discussion is in order to compare this study to the marginal regeneration
phenomenon. Figure 1 of Miguet et al. (2021) shows a typical marginal regeneration
process developed over a freely suspended air bubble in a surfactant solution. The thin
liquid film and the bulk of the surfactant solution is separated by a rim with minimum
film thickness (see figure 6 of Lhuissier & Villermaux 2012). Thin patches of film form
along this rim of pinched film. These thin patches move away from the border and displace
the thicker film at the top of the bubble. These highly nonlinear, convective plumes drive
the drainage over the bubble and enhance mixing inside the thin liquid film. In § 2.2 of
Lhuissier & Villermaux (2012) the authors conducted an extensive study of film drainage
over a freely suspended air bubble and found that the wavelength of the convection cells
scales with bubble size and film thickness, and evolves in time (see figures 11 and 12(b) of
Lhuissier & Villermaux 2012).

At first glance, the characteristic rising plumes in the marginal regeneration process
is not present in our system. However, if one were to define marginal regeneration as a
process that is initiated with film thickness fluctuations along the rim of the film (i.e. the
location of the minimum film thickness) and thinner liquid moves from the rim into the
thin film region, thereby displacing the thicker film in the film region into the bulk region,
then the film evolution described in this study is a type of marginal regeneration. Gros
et al. (2021) studied marginal regeneration in horizontal surfactant films that suppress the
effects of gravity. Figure 2(d) in the Gros system depicts the evolution of the film thickness
profile, where film thickness fluctuations form near the meniscus and patches of thin film
grow and coalesce. Despite the lack of the characteristic rising plumes, the authors found
good agreement between their system and systems where the rising plumes are present.
The onset of the instability described in the Gros study is similar to the present study.
Furthermore, in our system, the wavenumber associated with the most dangerous mode
in the linear stability analysis is different from the wavenumber of the film ridges during
the stage where the dimple rapidly discharges (figure 2(b)5 versus figure 2(b)6–9). This
difference suggests the presence of nonlinear effects that drive the development of the
non-axisymmetric plumes observed in our system.

5. Conclusion

In this paper we consider the behaviour of a soluble surfactant film over an air bubble.
Through experimental observations and numerical simulations, we capture the onset of
symmetry breaking associated with the emergence of an air bubble from an aqueous
solution of Triton X-100 below the critical micelle concentration. As the air bubble
emerges from the solution, a thin liquid film is formed atop the air bubble. After the
bubble has penetrated the initially flat air–liquid interface, the bubble is held in place.
Thereafter, the previously axisymmetric film succumbs to ambient disturbances and
symmetry breaking ensues. In both the experiment and the parameter matched simulation,
the perturbation associated with intermediate wavenumbers exhibit the fastest growth.

A linear stability analysis is conducted to elucidate the mechanism behind the
disturbance growth. Similar to a previous study in surfactant spreading (Warner et al.
2004), we find that the disturbance acts to locally thicken the film while creating an
azimuthal surfactant gradient that acts to bring more liquid into the already thickened
local region, thereby contributing to the growth of the disturbance.
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Instability of surfactant films

Finally, we examine the effect of bubble protrusion on the maximum growth rate
wavenumber, mmax. As the bubble protrusion increases, so does the circumference of the
rim, R, where the disturbances initially act upon the system. Analysis of the base state
film thickness profiles and the adsorbed surfactant gradients reveals that the width over
which the radial direction flow driving force has an appreciable amplitude (�R) is another
important system length scale. Scaling analysis reveals that mmax ∼ 2R/�R.

In summary, this work gives a comprehensive examination of the symmetry breaking
phenomenon associated with a soap bubble emerging from a soap bath. With the
theoretical framework introduced in this paper, others may use the tools we have developed
to examine other thin film systems that evolve on a curved substrate – a commonly
encountered geometry. Future work may involve (1) examining the shear and dilatational
effects of insoluble surfactants on an interface by using the Boussinesq–Scriven model,
(2) increasing the numerical spatial resolution to allow for more azimuthal refinement, (3)
incorporating bubble surface deformation to the model formulation, and (4) investigating
the nonlinear flows that occur after the onset of instability.
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Appendix A

A.1. Derivation of the governing equations

A.1.1. Geometry
Let the shape functions for the top and the bottom interfaces be f1 = z − h1(t, r, θ) and
f2 = z − h2(t, r, θ). The surface normal vectors point from the gas phase into the liquid
phase. Following these definitions, the unit normals are

n1 = − ∇f1
||∇f1|| = 1

S1

(√
ε
∂h1

∂r
er + √

ε
1
r
∂h1

∂θ
eθ − ez

)
, (A1)

n2 = + ∇f2
||∇f2|| = 1

S2

(
−√

ε
∂h1

∂r
er − √

ε
1
r
∂h1

∂θ
eθ + ez

)
, (A2)

where S2
1 = 1 + ε(∂h1/∂r)2 + ε((1/r)(∂h1/∂θ))

2, and S2
2 = 1 + ε(∂h2/∂r)2 + ε((1/r)

(∂h2/∂θ))
2. The surface tangent vectors for each interface are defined as

t1
1 = √

ε
∂h1

∂r
ez + er, t2

1 = √
ε

1
r
∂h1

∂θ
ez + eθ , (A3a,b)

t1
2 = √

ε
∂h2

∂r
ez + er, t2

2 = √
ε

1
r
∂h2

∂θ
ez + eθ . (A4a,b)

The mean curvatures κ1 and κ2 are defined as

κ1 = ∇ · n1 = 1
r
∂

∂r

(
r

1
S1

∂h1

∂r

)
+ 1

r
∂

∂θ

(
1
S1

1
r
∂h1

∂θ

)
, (A5)

κ2 = ∇ · n2 = 1
r
∂

∂r

(
r

1
S2

∂h2

∂r

)
+ 1

r
∂

∂θ

(
1
S2

1
r
∂h2

∂θ

)
. (A6)
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For the sake of completeness, we also provide the expressions for various surface operators
used in the subsequent derivation.

The surface Laplacian for a scalar function f on surface i is defined as

∇2
s f = ∇2f − (∇ · ni) (ni · ∇f )− nT

i · ∇ (∇f ) · ni. (A7)

After some algebra, one may obtain

∇2
s f = 1

ε2
∂2f
∂z2 + 1

ε

1
r
∂

∂r

(
r
∂f
∂r

)
+ 1
ε

1
r2
∂2f
∂θ2

− κi

Si

(
−1
ε

∂f
∂z

+ ∂f
∂r
∂hi

∂r
+ 1

r
∂f
∂θ

1
r
∂hi

∂θ

)
+ 1

S2
i

(
− 1
ε2
∂2f
∂z2 + 1

ε

∂

∂r

(
∂f
∂z

)
∂hi

∂r
+ 1
ε

1
r
∂

∂θ

(
∂f
∂z

)
1
r
∂hi

∂θ

)

+ 1
S2

i

(
1
ε

∂

∂z

(
∂f
∂r

)
∂hi
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(
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∂θ

)
1
r
∂hi

∂θ
− ∂

∂r

(
1
r
∂f
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(A8)

The surface gradient operator is defined as

∇s,i = (I − nini) · ∇ (A9)

= ez
1
S2

i

(((
∂hi

∂r

)2

+
(

1
r
∂hi

∂θ

)2
)
∂
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)
. (A10)

Here we provide the detailed expression for the surface divergence operator for surface
i applied to a vector, F ,

∇s · F = 1
S2

i

(((
∂hi

∂r

)2

+
(

1
r
∂hi

∂θ

)2
)
∂Fz

∂z
+ 1
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− ε1/2 1
r
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1
r
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∂r
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(A11)

In-plane surface velocity at the two interfaces can be expressed as u∗
s,i =

(I − nini) · u∗|hi , where u∗|hi = uzez + (1/ε1/2)urer + (1/ε1/2)uθeθ . The subscript i =
1, 2 represents the top and bottom interfaces. After some algebraic manipulations, one can
get the following detailed expression:

us,i = ez

S2
i
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ε

((
∂hi
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)2

+
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1
r
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)2
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∂θ

)2
)

ur − ε1/2 1
r
∂hi

∂θ

∂hi

∂r
uθ

)

+ eθ
S2

i

(
ε1/2 1
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∂r
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(
1 + ε

(
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)2
)

uθ

)
. (A12)

A.1.2. Mass and momentum balances
The non-dimensionalized continuity equation for a Newtonian, incompressible liquid is

∂vz

∂z
+ 1

r
∂

∂r
(rvr)+ 1

r
∂vθ

∂θ
= 0, (A13)

and the associated kinematic boundary condition at the two liquid–air interfaces is

∂hi

∂t
− vz

∣∣
hi

+ vr
∣∣
hi

∂hi

∂r
+ vθ

∣∣
hi

1
r
∂hi

∂θ
= 0, (A14)

where the subscript i = 1, 2 represents the top and bottom interfaces. We integrate the
continuity equation with respect to z and apply the kinematic boundary conditions to get
the following mass balance inside the liquid film:

∂h
∂t

+ 1
r
∂

∂r
(rh 〈vr〉)+ 1

r
∂

∂θ
(h 〈vθ 〉) = 0. (A15)

Here h ≡ h1 − h2,
∫ h1

h2
vr dz = h 〈vr〉 and

∫ h1
h2
vθ dz = h 〈vθ 〉.

Neglect all inertial effects and the resulting Stokes equations are

∂P
∂z

= −Bo
Ca

+ ε
∂2vz

∂z2 + ε2
(

1
r
∂

∂r

(
r
∂vz

∂r

)
+ 1

r2
∂2vz

∂θ2

)
, (A16)

∂P
∂r

= ∂2vr

∂z2 + ε

(
∂

∂r

(
1
r
∂

∂r
(rvr)

)
+ 1

r2
∂2vr

∂θ2 − 2
r2
∂vθ

∂θ

)
(A17)

and
1
r
∂P
∂θ

= ∂2vθ

∂z2 + ε

(
∂

∂r

(
1
r
∂

∂r
(rvθ )

)
+ 1

r2
∂2vθ

∂θ2 + 2
r2
∂vr

∂θ

)
. (A18)
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A.1.3. Surfactant mass transport
The motion of the lower interface approaching the top interface drives liquid flow inside
the thin film. As a result, the surfactant distributions at the interfaces are driven away from
equilibrium. Because the local surfactant concentration is related to the surface tension, it
is necessary to examine the relationship between the liquid flow inside the thin film and
the distribution of the surfactants at the interfaces. In the bulk the surfactant concentration
is governed by the following advection–diffusion equation:

∂c
∂t

+ ∂c
∂z
vz + ∂c

∂r
vr + 1

r
∂c
∂θ
vθ = 1

Pe

(
1
ε

∂2c
∂z2 + 1

r
∂

∂r

(
r
∂c
∂r

)
+ 1

r2
∂2c
∂θ2

)
. (A19)

Surfactants can adsorb and desorb at both the top and bottom air–liquid interfaces,

j∗n1 = (
j∗ads − j∗des

) |h∗
1

= nbulk to h1 · J∗ = −n1 · (−D∇∗c∗)|h∗
1
, (A20)

j∗n2 = (
j∗ads − j∗des

) |h∗
2

= nbulk to h2 · J∗ = −n2 · (−D∇∗c∗)|h∗
2
, (A21)

where j∗des and j∗ads are desorption and adsorption fluxes at the interface. Non-dimensionalize
to get

1
S1

(
−1
ε

∂c
∂z

+ ∂c
∂r
∂h1

∂r
+ 1

r
∂c
∂θ

1
r
∂h1

∂θ

)∣∣∣∣
h1

= Peβjn1, (A22)

1
S2

(
−1
ε

∂c
∂z

+ ∂c
∂r
∂h2

∂r
+ 1

r
∂c
∂θ

1
r
∂h2

∂θ

)∣∣∣∣
h2

= −Peβjn2. (A23)

It is interesting to note that at O(1) the governing equation and the boundary conditions
for c(0) are

∂2c(0)

∂z2 = 0 and
∂c(0)

∂z

∣∣∣∣∣
h(0)1 ,h(0)2

= 0, (A24a,b)

and it follows that
c(0) = c(0)(t, r, θ). (A25)

The transport of adsorbed surfactants is defined by

∂Γ ∗
i

∂t∗
+ ∇∗

s · (Γ ∗
i u∗

s,i)+ Γ ∗
i (∇∗

s · ni)(u∗ · ni)− Ds∇∗2
s Γ

∗
i = j∗ni. (A26)

Non-dimensionalize the above equation to get

∂Γ1

∂t
+ ε∇s · (Γ1us,1)+ εΓ1κ1

(
−uz + ur

∂h1

∂r
+ uθ

1
r
∂h1

∂θ

)∣∣∣∣
h1

− ε

PeS
∇2

s,1Γ1 = jn1

(A27)
and

∂Γ2

∂t
+ ε∇s · (Γ2us,2)+ εΓ2κ2

(
uz − ur

∂h2

∂r
− uθ

1
r
∂h2

∂θ

)∣∣∣∣
h2

− ε

PeS
∇2

s,2Γ2 = jn2.

(A28)

Expressions for the surface gradient operator (∇s,i·), the surface Laplacian operator (∇2
s,i),

the mean curvatures (κi) and the surface velocities (us,i) can be found in the geometry
section. For a surfactant that follows the Langmuir isotherm, jni = α (c(Γi − 1)− Γ/La).
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Instability of surfactant films

A.1.4. Stress balance
Stress balances account for the jump in the stress across the interfaces. We can neglect the
contribution of the gas phases because they are generally 1000 times less viscous than the
liquid phase. In other words, the following simplifications can be applied:

ni · (σ − σ i) · ni = γi

Ca
(∇ · ni) ⇒ ni · σ · ni = γi

Ca
(∇ · ni) ; (A29)

t j
i · (σ − σ i) · ni = − 1

εCa
t j
i · ∇γi ⇒ t j

i · σ · ni = − 1
Ca

t j
i · ∇sγi. (A30)

Here γi is the local surface tension on interface i, σ = −Pδ + τ is the total stress, i =
1, 2 represents the interfaces and j = 1, 2 represents the surface tangent directions. In this
model we neglect the deformation of the lower surface. As a result, only the normal stress
balance on the top interface will be considered from this point onward.

For an incompressible Newtonian fluid, the components of the viscous stress tensor, τ ,
in the cylindrical coordinate in our chosen scale are

τzz = 2ε
∂vz

∂z
, (A31)

τrr = 2ε
∂vr

∂r
, (A32)

τθθ = 2ε
(
vr

r
+ 1

r
∂vθ

∂θ

)
, (A33)

τzr = τrz = ε1/2
(
∂vr

∂z
+ ε

∂vz

∂r

)
, (A34)

τzθ = τθz = ε1/2
(
∂vθ

∂z
+ ε

1
r
∂vz

∂θ

)
, (A35)

τrθ = τθr = ε

(
1
r
∂vr

∂θ
+ r

∂

∂r

(vθ
r

))
. (A36)

A.1.5. The O(1) rearranged equations
Expand all variables, ψ = ψ(0) + εψ(1) + ε2ψ(2) + . . . , and extract the O(1) equation
from the governing equations. Here we document the results from rearranging the O(1)
equations. The mass and species balances are

∂h(0)

∂t
+ 1

r
∂

∂r
(rh(0) 〈vr〉(0))+ 1

r
∂

∂θ
(h(0) 〈vθ 〉(0)) = 0, (A37)

∂c(0)

∂t
+ 〈vr〉(0) ∂c(0)

∂r
+ 〈vθ 〉(0) 1

r
∂c(0)

∂θ
− 1

Pe

(
1
r
∂

∂r

(
r
∂c(0)

∂r

)
+ 1

r2
∂2c(0)

∂θ2

)

− 1
Pe

1
h(0)

(
∂h(0)

∂r
∂c(0)

∂r
+ 1

r
∂h(0)

∂θ

1
r
∂c(0)

∂θ

)
= − β

h(0)
(jn1 + jn2) , (A38)
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∂Γ
(0)

1
∂t

+ 1
r
∂

∂r
(rΓ (0)1 v(0)r |h(0)1

)+ 1
r
∂

∂θ
(Γ

(0)
1 v

(0)
θ |h(0)1

)

− 1
PeS

(
1
r
∂

∂r

(
r
∂Γ

(0)
1
∂r

)
+ 1

r2

∂2Γ
(0)

1
∂θ2

)
= jn1, (A39)

∂Γ
(0)

2
∂t

+ 1
r
∂

∂r
(rΓ (0)2 v(0)r |h(0)2

)+ 1
r
∂

∂θ
(Γ

(0)
2 v

(0)
θ |h(0)2

)

− 1
PeS

(
1
r
∂

∂r

(
r
∂Γ

(0)
2
∂r

)
+ 1

r2

∂2Γ
(0)

2
∂θ2

)
= jn2. (A40)

Integrate the momentum balance in the z direction with respect to z to get

∂P(0)

∂z
= −Bo

Ca
⇒ P(0) = −Bo

Ca
z + P(0)(t, r, θ). (A41)

Insert the above equation to the normal stress balance at O(1) to get

1
r
∂

∂r

(
r
∂h(0)1
∂r

)
+ 1

r2

∂2h(0)1
∂θ2 = −CaP(0) + Boh(0)1 . (A42)

The momentum balances at O(1) in r and θ are

∂v
(0)
r

∂z

∣∣∣∣∣
h(0)1

h(0)2

= h(0)
∂P(0)

∂r
, (A43)

∂v
(0)
θ

∂z

∣∣∣∣∣
h(0)1

h(0)2

= h(0)
1
r
∂P(0)

∂θ
, (A44)

and the tangential stress balances are

−∂v
(0)
r

∂z

∣∣∣∣∣
h(0)1

= − 1
εCa

∂ −Π
(0)
1

∂r
, + ∂v

(0)
r

∂z

∣∣∣∣∣
h(0)2

= − 1
εCa

∂ −Π
(0)
2

∂r
, (A45a,b)

−∂v
(0)
θ

∂z

∣∣∣∣∣
h(0)1

= − 1
εCa

1
r
∂ −Π

(0)
1

∂θ
, + ∂v

(0)
θ

∂z

∣∣∣∣∣
h(0)2

= − 1
εCa

1
r
∂ −Π

(0)
2

∂θ
. (A46a,b)

Combining the above we obtain

h(0)
∂P(0)

∂r
= 1
εCa

(
∂ −Π

(0)
1

∂r
+ ∂ −Π

(0)
2

∂r

)
, (A47)

h(0)
1
r
∂P(0)

∂θ
= 1
εCa

(
1
r
∂ −Π

(0)
1

∂θ
+ 1

r
∂ −Π

(0)
2

∂θ

)
. (A48)

Note that we need to know the surface velocities for the transport equations for the
adsorbed surfactants. Here we shall derive some expressions that relate v(0)r |hi and v(0)θ |hi
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Instability of surfactant films

to pressure, depth-averaged velocities and surface tension gradients. Let us focus on the
radial direction equations (for the azimuthal direction, just change the subscripts and the
derivatives). At O(1) the radial direction momentum balance is

∂2v
(0)
r

∂z2 = ∂P(0)

∂r
. (A49)

Let v(0)r |h1 ≡ vr,s1, v(0)r |h2 ≡ vr,s2, and integrate the above equation twice with respect to
z, to get

v(0)r = 1
2
∂P(0)

∂r
(z − h(0)1 )(z − h(0)2 )+ vr,s1

z − h(0)2
h(0)

+ vr,s2
h(0)1 − z

h(0)
. (A50)

Integrating once more we obtain

〈vr〉(0) = −(h
(0))2

12
∂P(0)

∂r
+ 1

2
(vr,s1 + vr,s2). (A51)

Now we can relate the surface velocities to the pressure gradient via the tangential stress
balances in the radial direction, i.e.

∂v
(0)
r

∂z

∣∣∣∣∣
h(0)1

= +h(0)

2
∂P(0)

∂r
+ (
vr,s1 − vr,s2

)
/h(0) = + 1

εCa
∂ −Π

(0)
1

∂r
, (A52)

∂v
(0)
r

∂z

∣∣∣∣∣
h(0)2

= −h(0)

2
∂P(0)

∂r
+ (
vr,s1 − vr,s2

)
/h(0) = − 1

εCa
∂ −Π

(0)
2

∂r
, (A53)

vr,s1 − vr,s2 = 1
2

h(0)

εCa

(
∂ −Π

(0)
1

∂r
− ∂ −Π

(0)
2

∂r

)
. (A54)

Using (A51) and (A54), we obtain

v(0)r |h1 = vr,s1 = 〈vr〉(0) +
(
h(0)

)2
12

∂P(0)

∂r
+ 1

4
h(0)

εCa

(
∂ −Π

(0)
1

∂r
− ∂ −Π

(0)
2

∂r

)
, (A55)

v(0)r |h2 = vr,s2 = 〈vr〉(0) +
(
h(0)

)2
12

∂P(0)

∂r
− 1

4
h(0)

εCa

(
∂ −Π

(0)
1

∂r
− ∂ −Π

(0)
2

∂r

)
. (A56)

Similarly, in the azimuthal direction,

v
(0)
θ |h1 = 〈vθ 〉(0) +

(
h(0)

)2
12

1
r
∂P(0)

∂θ
+ 1

4
h(0)

εCa

(
1
r
∂ −Π

(0)
1

∂θ
− 1

r
∂ −Π

(0)
2

∂θ

)
, (A57)

v
(0)
θ |h2 = 〈vθ 〉(0) +

(
h(0)

)2
12

1
r
∂P(0)

∂θ
− 1

4
h(0)

εCa

(
1
r
∂ −Π

(0)
1

∂θ
− 1

r
∂ −Π

(0)
2

∂θ

)
. (A58)

Before proceeding with the rest of the derivation, some observations and simplifications
should be made regarding the symmetry in governing equations for the adsorbed surfactant
species. In this study it is assumed that surface curvature has no effect on the equilibrium
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distribution of the surfactant on the interfaces. As such, Γ1(t = 0) = Γ2(t = 0) = Γ0/Γ∞.
In the azimuthal direction both variables are subjected to the same boundary condition:
Γi(θ) = Γi(θ + 2π). In the radial direction, on both interfaces, it is assumed that as r →
∞, the surface adsorbed species approaches the same equilibrium value of Γ0/Γ∞. If one
were to solve for Γ (0)1 and Γ (0)2 , with the above initial and boundary conditions, the partial
differential equations will solve to Γ (0)1 = Γ

(0)
2 . This solution should not be surprising,

because with Γ (0)1 = Γ
(0)

2 , thenΠ(0)
1 = Π

(0)
2 and the surface velocities at the interfaces are

the same for both the radial and the azimuthal directions: v(0)r |h1 = v
(0)
r |h2 and v(0)θ |h1 =

v
(0)
θ |h2 . As a result, (A39) and (A40) are the same, except for the subscript. Furthermore,

because these two equations have the same initial and boundary conditions, their solutions
are identical. To save on computation time, we elect to combine the two variables into
a single variable governed by a single equation: Γ (0)1 = Γ

(0)
2 = Γ . For the rest of the

derivation, this simplification will be used.

A.1.6. The O(ε) equations
Note that in the absence of the surfactants (i.e. c(0) = 0 and Γ (0)i = 0) the pressure gradient
in the radial and azimuthal directions goes to zero, instead of the expected expressions for
a flow created by squeezing a clean bubble. Thus, we need to examine the O(ε) equations
to regularize the O(1) equations. We neglect the effect of O(1) Marangoni flows on the
O(ε) flow. Specifically, we apply the following simplifications:

v(0)r ≈ 〈vr〉(0) , v
(0)
θ ≈ 〈vθ 〉(0) , ∂v

(0)
z

∂z
≈ −1

r
∂

∂r

(
r 〈vr〉(0)

)
− 1

r
∂ 〈vθ 〉(0)
∂θ

. (A59a–c)

We further neglect the effects of the O(ε)Marangoni flows: φ(1) ≈ 0,Θ(1) ≈ 0. The mass
balance at O(ε) is

∂h(1)

∂t
+ 1

r
∂

∂r

(
rh(1) 〈vr〉(0)

)
+ 1

r
∂

∂r

(
rh(0) 〈vr〉(1)

)
+ 1

r
∂

∂θ

(
h(1) 〈vθ 〉(0)

)
+ 1

r
∂

∂θ

(
h(0) 〈vθ 〉(1)

)
= 0. (A60)

The O(ε) normal stress balance on the top interface goes to

1
r
∂

∂r

(
r
∂h(1)1
∂r

)
+ 1

r2

∂2h(1)1
∂θ2 = −CaP(1)

∣∣∣
h(0)1

+ Boh(1)1

− 2Ca

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)
. (A61)

The O(ε) momentum balances are

∂P(1)

∂z
= ∂2v

(0)
z

∂z2 ⇒ P(1) = ∂v
(0)
z

∂z
+ P(1)(t, r, θ) ≈ P(1)(t, r, θ); (A62)
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∂P(1)

∂r
= ∂2v

(1)
r

∂z2 + ∂

∂r

(
1
r
∂

∂r

(
r 〈vr〉(0)

))
+ 1

r2
∂2 〈vr〉(0)
∂θ2 − 2

r2
∂〈vθ 〉(0)
∂θ

, (A63)

1
r
∂P(1)

∂θ
= ∂2v

(1)
θ

∂z2 + ∂

∂r

(
1
r
∂

∂r

(
r 〈vθ 〉(0)

))
+ 1

r2
∂2 〈vθ 〉(0)
∂θ2 + 2

r2
∂〈vr〉(0)
∂θ

. (A64)

The O(ε) tangential stress balances are

∂v
(1)
r

∂z

∣∣∣∣∣
h(0)1

= 2
∂h(0)1
∂r

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)

+ h(0)1
∂

∂r

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)

+ 2
∂h(0)1
∂r

∂〈vr〉(0)
∂r

+ 1
r
∂h(0)1
∂θ

(
1
r
∂ 〈vr〉(0)
∂θ

+ r
∂

∂r

(
〈vθ 〉(0)

r

))
, (A65)

∂v
(1)
θ

∂z

∣∣∣∣∣
h(0)1

= 2
1
r
∂h(0)1
∂θ

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)

+ h(0)1
1
r
∂

∂θ

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)

+ 2
1
r
∂h(0)1
∂θ

(
〈vr〉(0)

r
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)

+ ∂h(0)1
∂r

(
1
r
∂ 〈vr〉(0)
∂θ

+ r
∂

∂r

(
〈vθ 〉(0)

r

))
. (A66)

Combining the above equations we obtain

∂P(1)

∂r
= 2

∂

∂r

(
1
r
∂

∂r

(
r 〈vr〉(0)

))
+ ∂

∂r

(
1
r
∂ 〈vθ 〉(0)
∂θ

)
+ 1

r2
∂2 〈vr〉(0)
∂θ2 − 2

r2
∂〈vθ 〉(0)
∂θ

+ 2
h(0)

∂h(0)

∂r

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ ∂〈vr〉(0)

∂r
+ 1

r
∂ 〈vθ 〉(0)
∂θ

)

+ 1
h(0)

1
r
∂h(0)

∂θ

(
1
r
∂ 〈vr〉(0)
∂θ

+ r
∂

∂r

(
〈vθ 〉(0)

r

))
, (A67)
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1
r
∂P(1)

∂θ
= 2

r2
∂2 〈vθ 〉(0)
∂θ2 + ∂

∂r

(
1
r
∂

∂r

(
r 〈vθ 〉(0)

))
+ 1

r
∂

∂θ

(
1
r
∂

∂r

(
r 〈vr〉(0)

))

+ 2
r2
∂〈vr〉(0)
∂θ

+ 2
h(0)

1
r
∂h(0)

∂θ

(
1
r
∂

∂r

(
r 〈vr〉(0)

)
+ 〈vr〉(0)

r
+ 2

r
∂〈vθ 〉(0)
∂θ

)

+ 1
h(0)

∂h(0)

∂r

(
1
r
∂ 〈vr〉(0)
∂θ

+ r
∂

∂r

(
〈vθ 〉(0)

r

))
. (A68)

A.1.7. Combine O(1) and O(ε) equations
To regularize the O(1) equations, we introduce the following set of combined variables:
ĥ = h(0) + εh(1), ĥ1 = h(0)1 + εh(1)1 , 〈̂vr〉 = 〈vr〉(0) + ε 〈vr〉(1), 〈̂vθ 〉 = 〈vθ 〉(0) + ε 〈vθ 〉(1)
and P̂ = P(0) + εP(1). The governing equations are as follows:

∂ ĥ
∂t

+ 1
r
∂

∂r

(
rĥ〈̂vr〉

)
+ 1

r
∂ ĥ〈̂vθ 〉
∂θ

= 0, (A69)

∂c(0)

∂t
+ 〈vr〉(0) ∂c(0)

∂r
+ 〈vθ 〉(0) 1

r
∂c(0)

∂θ
− 1

Pe

(
1
r
∂

∂r

(
r
∂c(0)

∂r

)
+ 1

r2
∂2c(0)

∂θ2

)

− 1
Pe

1

ĥ

(
∂ ĥ
∂r
∂c(0)

∂r
+ 1

r
∂ ĥ
∂θ

1
r
∂c(0)

∂θ

)
= −2β

ĥ
jn, (A70)

∂Γ (0)

∂t
+ 1

r
∂

∂r
(rΓ (0)vr,s)+ 1

r
∂

∂θ
(Γ (0)vθ,s)− 1

PeS

(
1
r
∂

∂r

(
r
∂Γ (0)

∂r

)
+ 1

r2
∂2Γ (0)

∂θ2

)
= jn,

(A71)

1
r
∂

∂r

(
r
∂ ĥ1
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Figure 14. Effects of varying the exponential factor, K, on linearized disturbance quantities at t = 4.05. For
this set of simulations, tstop = 3.11 and tini = 4. All other parameters used in the linear stability analysis are
the same as those in figure 8.
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A.2. Variations of the initial disturbance
The exponential factor K in (4.10) and (4.11) are varied for the case studied in figure 8. For
K = 50, K = 200 and K = 400, the gain for the six linearized disturbance quantities are
plotted over a range of wavenumbers (figure 14). For the three values of K examined,
there is no significant change in the most dangerous wavenumber that grows the
fastest.

A.3. Fourier transform of experimental rim locations
Figures 15(a) and 15(c) show the Fourier transform of the rim location for two experiments
conducted at different tstop values. The time rate of change in the prominent Fourier signals
are displayed in figures 15(b) and 15(d). The two fastest growing wavenumbers for each
experiment are used as validation data in figure 13.
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Figure 15. (a,c) Fourier transform of the rim location during symmetry breaking for experiment 1 (a) and
experiment 2 (c). (b,d) Time rate of change in the amplitude of the Fourier signals for selected wavenumbers
for experiment 1 (b) and experiment 2 (d). The experimental conditions are described in figure 13.

In figures 15(a) and 15(c) the last time step plotted corresponds to the time at which the
location of the rim stays within the field of view of the top camera. Beyond that time, the
location of the rim evolves beyond the field of view and R(θ) is not defined for θ ∈ [0, 2π),
which is required for the Fourier analysis used in this study.
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