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ON THE STRENGTH OF TWO RECURRENCE THEOREMS

ADAMR. DAY

Abstract. This paper uses the framework of reverse mathematics to investigate the strength of two
recurrence theorems of topological dynamics. It establishes that one of these theorems, the existence of an
almost periodic point, lies strictly betweenWKL and ACA (working over RCA0). This is the first example
of a theorem with this property. It also shows the existence of an almost periodic point is conservative over
RCA0 for Π

1
1-sentences.

§1. Introduction. Dynamical systems are studied by different branches of math-
ematics in many different forms. In the simplest setting, a dynamical system (X,T )
is comprised of a set X and a transformation T : X → X . By placing different
requirements on X and T , structure can be added to the system that will influence
its behavior.
Central to the analysis of a dynamical system is the analysis of the orbits of
points in the system. If the dynamical system has certain global properties, then this
guarantees the existence of points with certain orbits.

Theorem 1.1 (Birkhoff’s recurrence theorem). Let X be a compact topological
space and T : X → X a continuous transformation. Then there exists x ∈ X and a
sequence n1, n2, . . ., such that

lim
i
T ni (x)→ x.

Such an x is called a recurrent point of the system (X,T ). Comparable results
hold if we place a probability measure on the space X and require that T be a
measure-preserving transformation.
The standard proof of Birkhoff’s recurrence theorem shows the existence of a
point x with the following stronger property (see for example [6, Theorem 2.3.4]).
For every neighborhood N of x, there is a bound b, such that for all n, there is a
k < b with Tn+k(x) ∈ N . Such a point x is called an almost periodic point of the
system (X,T ).
The objective of this paper is to analyze the reverse mathematical strength of
the existence of recurrent points and almost periodic points. The motivation for
this work lies not just in the intrinsic interest of Birkhoff’s recurrence theorem but
in the fact that this is the simplest of a family of recurrence theorems that have
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widespread applications. In this respect, Birkhoff’s recurrence theorem is similar
to Ramsey’s theorem and the reverse mathematical study of Ramsey’s theorem has
been remarkable fruitful. Two examples will illustrate the importance of recurrence
theorems. Firstly, Furstenberg’s multiple recurrence theorem, a theoremofmeasure-
preserving systems can be used to prove Szemeredi’s theorem. A second example,
which has been studied from a reverse mathematical perspective, is the Auslander–
Ellis theorem. This theorem states that if X is a compact metric space, with metric
d , andT : X → X is a continuous transformation, then for any point x, there exists
a point y such that:

(i) y is an almost periodic point of the system.
(ii) (∀ε)(∃n)(d (Tn(x), T n(y)) < ε).
Blass, Hirst, and Simpson have shown that ACA+0 proves the Auslander–Ellis
theorem [2]. It is an open question as to whether or not it follows from ACA0
[4]. The Auslander–Ellis theorem can be used to prove Hindman’s theorem.
Hindman’s theorem states that if the integers are colored with finitely many col-
ors, then there exists an infinite set S such that {n : n is a finite sum of elements
of S} is homogenous. Blass, Hirst, and Simpson also showed that the strength
of Hindman’s Theorem lies between ACA+0 and ACA0 [2]. Recent work, partic-
ularly of Towsner, has shed further light on the difficult question of calibrating
the strength of Hindman’s theorem [1, 7–9]. The reverse mathematics of topolog-
ical dynamical systems has also been studied by Friedman, Simpson, and Yu [3].
Friedman, Simpson, and Yu investigated the strength of Sharkovsky’s theorem.
We will make use of their results on the orbits of points in models of 2nd order
arithmetic.
In this paper, we will investigate topological dynamical systems where X is a
closed subset of Cantor space and T is a continuous transformation. This is a
very important class of topological dynamical systems because subsets of natural
numbers can be coded as elements of Cantor space. The proof ofHindman’s theorem
via the Auslander–Ellis theorem uses such systems. In the next section we will
develop and formalize two principles.

(i) RP: Every topological dynamical systemonCantor space contains a recurrent
point.

(ii) AP: Every topological dynamical system on Cantor space contains an almost
periodic point.

In Section 3, we will show that over RCA0, RP is equivalent toWKL. This is perhaps
a little surprising because the set of recurrent points of a system may not be closed.
The principal AP is more unusual. In Section 4, we analyze the standard proof of
the existence of an almost periodic point and show this requires ACA0 to carry out.
However, from the perspective of reverse mathematics, this proof is not optimal.
In fact, over RCA0, the principle AP lies strictly between WKL and ACA. This is
the first natural example of a principle with this property. The separation between
AP andWKL is established in Section 5, and the separation between ACA and AP
is established in Section 6. Note that this also separates AP from ACA in terms of
proof-theoretic strength.
Harrington proved that WKL0 is conservative for Π11-sentences over RCA0. In
Section 7, we show that RCA0 + AP also has this property.
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The PA degrees are those Turing degrees that contain a complete extension
of Peano Arithmetic. This is a very well-studied upwards-closed class of Turing
degrees. From a computability-theoretic perspective, the proof that the principle AP
lies strictly between WKL and ACA establishes the existence of another interesting
upwards-closed strict subclass of the PA degrees. In Section 8, we conclude with a
number of open questions.

1.1. Notation. Let �, � ∈ 2<N and let X ∈ 2N. The length of the string � is
denoted by |�|. We will write � � � if � is an initial segment of � and � ≺ � if � is
a strict initial segment of �. We will write � ≺ X if � is an initial segment of X . We
will denote the empty string by �. The set of extensions of � in 2N is denoted by ���.
If U ⊆ 2<N then we will denote by �U � the set

⋃
�∈U ���. For each n, {0, 1}n will

denote all strings in 2<N of length n. The string �� is the concatenation of � with �.
If i ∈ N, then �i denotes the string � repeated i times, e.g., �3 = ���. X �i is the
string of length i that is an initial segment of X . By �N we mean the element of 2N

obtained by repeating � infinitely many times i.e., limi �i .

§2. Topological dynamics in RCA0. A standard definition of a topological
dynamical system on Cantor space is the following.

Definition 2.1. A pair (C,F ) is a topological dynamical system on 2N if C is a
nonempty closed subset of 2N, and F : C → C is a continuous transformation.
Sometimes F is required to be a homeomorphism but we will not consider that
possibility here. From now on, we will often refer to a topological dynamical system
as simply a system.
We need to consider how we encode a system inside a model of 2nd order arith-
metic. The standard approach to encoding a closed set is to regard it as the set
of infinite paths through a tree in 2<N. For now, we will denote a tree in 2<N

by a capital roman letter e.g., C . The set of infinite paths in C will be denoted
by [C ]. The approach we take for encoding a continuous transformation is also
standard.

Definition 2.2. Let C be a tree in 2<N. A function f : C → C encodes a
continuous partial transformation of [C ] if

(i) f is total.
(ii) f is order preserving.

Wewill alsomake the assumption that iff : C → C encodes a continuous partial
transformation of [C ], then f(�) = � and for all � ∈ 2<N \ {�}, |f(�)| < |�|. This
assumption results in no loss of generality and will simplify some proofs.

Definition 2.3. A function f : C → C encodes a continuous transformation of
[C ] if

(i) f encodes a continuous partial transformation of [C ].
(ii) For all X ∈ [C ], for all l , there exists an m, such that |f(X �m)| > l .
Let f encode a continuous transformation of [C ]. We will denote by F : [C ]→
[C ] the function encoded by f i.e., for all X ∈ [C ], F (X ) = limm∈N f(X �m).
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It is impossible to discuss recurrent points and almost periodic points without
discussing orbits. Given a function f : C → C encoding a continuous partial
transformation of [C ], define f : C × N → C by

f(�, k) =

{
� if k = 0,
f(f(�, k − 1)) if k > 0.

When convenient, we will write fk(�) for f(�, k). Observe that f1 = f. The
function fk is total because it has been defined by primitive recursion from f. It is
order preserving by Π1-induction on k for the formula

(∀k)(∀�, �, �, �)((� � � ∧ � = fk(�) ∧ � = fk(�))→ � � �).
Hence RCA0 proves that if f : C → C encodes a continuous partial transformation
of [C ], then for all k, fk : C → C encodes a continuous partial transformation
of [C ]. However, the following theorem establishes that the analogous result does
not hold for continuous transformations.

Theorem 2.4 (RCA0 – Friedman, Simpson and Yu [3]). The following are
equivalent:
(i) The disjunction of Σ02-induction andWKL.
(ii) For all k ∈ N and all continuous transformations F : 2N → 2N, F k is a
continuous transformation from 2N to 2N.

Given this result, the following definition is perhaps the most natural way to
formalize a dynamical system in RCA0.

Definition 2.5 (RCA0). A pair (C,f), where C is a tree in 2<N and f : C → C
is a function, encodes a system if

(i) [C ] 
= ∅.
(ii) For all k, fk encodes a continuous transformation of [C ].

Condition (ii) of Definition 2.5 is ensured if f encodes a uniformly continuous
transformation of [C ].

Definition 2.6. A function f : C → C encodes a uniformly continuous
transformation of [C ] if

(i) f encodes a continuous partial transformation of [C ].
(ii) For all l , there exists an m, such that for all � ∈ {0, 1}m ∩C , |f(�)| > l .
Lemma 2.7 (RCA0 – Friedman, Simpson and Yu [3]). If f : C → C encodes a
uniformly continuous transformation of [C ], then for all k ∈ N, fk : C → C encodes
a uniformly continuous transformation of [C ].
Lemma 2.8 (RCA0). If (C,f) encodes a system then for all k and all X ∈ [C ],

F (F k(X )) = F k+1(X ).
Proof. Fix a k andX ∈ [C ]. For any l , there exists someml such thatF k(X ) �l �
fk(X �ml ). Hence

F (F k(X )) = lim
l
f(F k(X ) �l ) = lim

l
f(fk(X �ml ))

= lim
l
fk+1(X �ml ) = F k+1(X ). 
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The orbit ofX underF is the sequence
〈
F k(X ) : k ∈ N

〉
.Note that this is uniform

and hence ⊕k∈NF
k(X ) exists by recursive comprehension in any model of RCA0

that includes X and f.

§3. Recurrent points. We call X a recurrent point of a topological dynamical
system (C,f), if X ∈ [C ] and

(∀n, c)(∃k)(F n+k(X ) � X �c).
We call X an almost periodic point of a topological dynamical system (C,f), if
X ∈ [C ] and

(∀c)(∃b)(∀n)(∃k < b)(F n+k(X ) � X �c).
This leads to two principles. First RP is the principle that every topological
dynamical system on 2N contains a recurrent point. The second AP is the principle
that every topological dynamical system on 2N contains an almost periodic point.
Over RCA0 we have the obvious implication that AP implies RP because an almost
periodic point is a recurrent point.
The following theorem would be trivial if condition (i) in Definition 2.5, was
replaced by requiring the treeC to be infinite. Given such aC , we could simply take
(C,f) be our system where f encodes the identity transformation. Any recurrent
point of this system would have to be an element of [C ] hence provingWKL.
Theorem 3.1. Over RCA0, RP impliesWKL.
Proof. Let T be an infinite computable tree in 2<N. We will regard T as a com-
putable tree in 3<N (i.e., a computable subtree of 3<N such that nonode ofT contains
a 2). We will define a system on 3N such that any recurrent point of the system is a
path on T . As 3N is computably homeomorphic to 2N, this is sufficient to prove the
theorem. The idea behind the following definition off is that ifX ∈ 3N is a path on
T , then F (X ) = X . IfX is not a path on T , then the orbit ofX moves in increasing
lexicographical order searching for a path on T , looping around if it extends 2. The
extra branching of 3N allows us to move the orbit of F (X ) if X is not a path on T .
Define the following function f : 3<N → 3<N. First f(�) = �. Second if |�| > 0,
let n = |�| − 1. If � ∈ T , let f(�) = � �n. If � 
∈ T , then let � be the shortest initial
segment of � such that � 
∈ T . Because T is a subtree of 2<N, if � contains a 2, then
� must end with 2. Define

f(�) =

⎧⎪⎨⎪⎩
�10N �n if � = �0 ∨ � = �02,
�20N �n if � = �1 ∨ � = �12,
0n if � = 2.

Because f is uniformly continuous, it is not difficult to verify that (3N, f) is a
system. Let≤lex be the lexicographical ordering on finite strings. (Recall that under
this ordering� ≤lex � if� � � or�(i) < �(i) for the least i where these strings differ.)
The following claim establishes that if X is not a path in T , then the only way for
X to be recurrent is for some element in the orbit of X to extend the string 2.
Claim. Let n > 0. Let �0, �1, . . . , �n be a finite sequence of strings such that
�0 � �n, for all i < n, f(�i) = �i+1 and �n 
∈ T . Then for some k < n, 2 � �k .
Proof. Consider S = {i ≤ n : �i ≤lex �n ∧ �i 
∈ T}. The set S is not empty as
it contains n. Hence S has a least element l . Now l 
= 0 as �0 is a strict extension
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of �n. Let k = l − 1. First �k 
∈ T as otherwise f(�k) = �l ∈ T . By minimality of
l we have that �k 
≤lex �n and in particular �k 
≤lex �l . Now because �k 
∈ T , the
definition of f implies that �k � 2 (if �k 
� 2, then �l = f(�k) ≥lex �k). 
The next claim means that if X ∈ [T ] and Y is lexicographically less than X ,
then f(Y ) is also lexicographically less than X .

Claim. If |�| > |�|, � <lex �, and � ∈ T then f(�) <lex �.
Proof. If � ≺ �, then � ∈ T and so f(�) is an initial segment of � and the
result holds. Otherwise let � be the longest common initial segment of � and �. So
�0 � �. Because � is on the tree, either f(�) extends �0 or f(�) = �10j for some
j. However as |�| > |�| ≥ |f(�)| this implies that in either case f(�) <lex �. 
Wenowuse these claims to establish a contradiction. Essentially ifR is a recurrent
point not in [T ] then the orbit of R has to loop around (1st claim) but this orbit
cannot pass any path in [T ] (2nd claim). Let R be a recurrent point for this system.
Assume R 
∈ [T ]. Take � ≺ R such that � 
∈ T . As R is a recurrent point, there
exists a sequence �0, . . . , �n such that � � �n � �0 ≺ R and f(�i) = �i+1. By the
1st claim for some k < n, 2 � �k .
Let � ∈ T such that for all i ≤ n, |�| > |�i |. Now �k+1 is a string of all 0’s, and

|�k+1| < |�|. Hence �k+1 <lex �. It follows that �n <lex � by inducting over the 2nd
claim. Now as �0 � �n and �n 
� � because �n 
∈ T , this implies that �0 <lex �.
But this is impossible. If �0 <lex � then again by inducting over the 2nd claim, for
all i , �i <lex � and so �i 
� 2. This contradicts the fact that�k � 2.HenceR ∈ [T ]. 
Theorem 3.2. Over RCA0,WKL implies RP.

Proof. Let (C,f) be a system. We can define the set of recurrent points of this
system,R, as follows.

R = {X ∈ [C ] : (∀c)(∃n, l > c)(fn(X �l) � X �c)}.
This shows that R is Π02 in C ⊕ f. In order to prove that WKL implies RP, it is
sufficient to show there is a nonempty Π01(C ⊕ f) class contained in R. We will
construct a sequence of finite sets of strings 〈Ui : i ∈ N〉 and let ⋂i�Ui� ∩ [C ] be
our Π01(C ⊕f) class. We will ensure that if X ∈ �Ui � ∩ [C ], then for some n, l > i ,
fn(X �l) � X �i , hence if X ∈ ⋂

i�Ui � ∩ [C ], then X ∈ R and so X is a recurrent
point of (C,f).
The difficulty with defining Ui , is that it is possible that �Ui� ∩ [C ] might be
empty. To avoid this occuring, we will ensure that for all i , there is an si such that,⋃
n<si
F−n(�Ui �) ⊇ [C ]. This means that �Ui � cannot be removed entirely from [C ]

because otherwise [C ] would either be empty or, for some X ∈ [C ], there would be
some n such that F n(X ) 
∈ [C ]. In either case (C,f) would not be a system. In the
construction, the sets �Vi� are an approximation to the preimages of �Ui�. The idea
is to wait until �Vi� covers the whole space.
Let U0 = V0 = {�} and si = 0.We will assume that we are givenUi and Vi , both
finite sets of strings and si a number such that:

(i) (∀� ∈ Ui)(∃n)(i ≤ n ≤ si ∧ fn(�) � � �i).
(ii) (∀� ∈ Vi)(∃n ≤ si)(∃� ∈ Ui)(fn(�) � �).
(iii) �Vi� ⊇ [C ].
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These conditions hold trivially for the case i = 0.We inductively defineUi+1[s] and
Vi+1[s] as follows.

Ui+1[s] = {� ∈ 2<N : ((∃� ∈ Ui)(� � �))∧
(∃n)((i ≤ n ≤ s) ∧ (fn(�) � � �i))}.

Vi+1[s] = {� ∈ 2<N : (∃n ≤ s)(∃� ∈ Ui+1[s])(fn(�) � �)}.
These definitions imply that:

(i) �Ui+1[s]� ⊆ �Ui�.
(ii) �Ui+1[s]� ⊆ �Ui+1[s + 1]�.
(iii) �Vi+1[s]� ⊆ �Vi+1[s + 1]�.

Claim.

⋃
s�Vi+1[s]� ⊇ [C ].

Proof. By applying bounding, there is some h > max{|�| : � ∈ Vi} such that
(∀� ∈ {0, 1}h ∩ C )(∀m ≤ si)(|fm(�)| ≥ i + 1).

Take X ∈ [C ]. By the pigeon-hole principle there is some � ∈ {0, 1}h and j, k ∈ N

such that F j(X ) ∈ ��� andF j+k(X ) ∈ ���. We can also ensure that k ≥ i+1.Now
applyingWKL, we know that � extends some element of Vi . From the definition of
Vi , thismeans that for somem ≤ si ,fm(�) extends some � ∈ Ui . LetY = F j+m(X )
so Y � fm(�) � �. Further F k(Y ) = F j+k+m(X ) � fm(�) � � as well. Finally,
Y �i+1= F k(Y ) �i+1 because |fm(�)| ≥ i +1. Take l such thatfk(Y �l ) � fm(�).
ThusY �l∈ Ui+1[max{k, l}] andX ∈ �Vi+1[s]�where s > max{j+m,k, l} is large
enough such that fj+m(X �s) � Y �l . 
Hence by compactness, there is some least si+1 such any string of length si+1
in C extends some element of Vi+1[si+1]. We define Ui+1 = Ui+1[si+1] and
Vi+1 = Vi+1[si+1]. Note that �Ui+1� is a closed set in Cantor Space. Fix i . Take
any X ∈ [C ]. We know that X ∈ �Vi� and hence there exists some n ≤ si such
that F n(X ) ∈ �Ui �. Hence �Ui� ∩ [C ] 
= ∅. Thus 〈�Ui � ∩ [C ] : i ∈ N〉 is a nested
sequence of nonempty closed sets and so byWKL contains an element R, which is
a recurrent point of (C,f). 

§4. Minimal systems. We now investigate the principle AP. The standard proof
that every topological dynamical system has an almost periodic point uses the
existence of minimal systems. In order to define a minimal system, we need to
introduce the notion of a subsystem. Let (C,f) be a system and let D be a subtree
of C . If (D,f �D) is a system, then we call (D,f �D) a subsystem of (C,f). We
call a system (C,f)minimal, if for any subsystem (D,f �D) of (C,f), we have that
[D] = [C ].
The following lemma shows that this definition of subsystem is not restrictive.

Lemma 4.1 (RCA0). Let (C,f) and (D, g) be systems. Suppose that [D] ⊆ [C ]
and for all X ∈ [D], G(X ) = F (X ). Then there is an E ⊆ C such that (E,f �E) is
a subsystem of (C,f), and [D] = [E].
Proof. Let E = {� ∈ D ∩ C : (∀k < |�|)(fk(�) ∈ D ∩ C )}. Note that if
X ∈ [D], then for all k, F k(X ) = Gk(X ) ∈ [D]. Hence X ∈ [E] and so [D] = [E].
This also shows that [E] is not empty. Finally if � ∈ C \E, then for some k < |�|we
have that fk(�) 
∈ D (if � 
∈ D, then take k = 0). Now if f(�) = � then |�| > |�|
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and so |�| > k + 1. As fk+1(�) 
∈ D, it follows that � 
∈ E and so the range of f �E
is contained in E. 
The following lemma and proposition are effective versions of standard results.
They are implicit in Lemmas 5.9 and 5.10 of Blass, Hirst, and Simpson [2]. Blass,
Hirst, and Simpson’s results are more general and apply to arbitrary compactmetric
spaces.

Lemma 4.2 (WKL0). Any point in a minimal system is almost periodic.

Proof. Let (D,f) be a minimal system and take any X ∈ [D]. Assume X is not
an almost periodic point. If so there exists some � ≺ X such that

(∀b)(∃n)(∀k ≤ b)F n+k(X ) 
� �. (4.1)

Define E = {� ∈ D : (∀k ≤ |�|)(fk(�) 
� �)}. Now as F 0(X ) = X � � we
know X 
∈ [E] and hence [E] � [D]. By the argument used in Lemma 4.1, we have
that for all � ∈ E,f(�) ∈ E. Now (E,f �E) cannot be a system because this would
contradict the minimality of (D,f). This means that [E] = ∅. ApplyingWKL, there
exists a b, such that E contains no string of length b. Hence for all Z ∈ [D] there is
some k < b with F k(Z) � �. This contradicts (4.1) and hence our assumption that
X is not an almost periodic point is incorrect. 
Classically, Zorn’s lemma to used to construct a minimal subsystem. This is not
necessary for systems in Cantor space because Cantor space contains a computable
basis of open sets. This allows us to show thatACA0 implies that any system contains
a minimal subsystem. To find a minimal subsystem simply enumerate the basis and
ask in order can any element be removed. In particular, let {�i}i∈N enumerate the
finite strings. Given a system (C,f) letC0 = C . If (Ci , f) has been defined, let Ci+1
be equal to {� ∈ Ci : (∀n ≤ |�|)(fn(�) 
� �i)} if the later set is infinite. Otherwise
let Ci+1 = Ci . After noting that Ci+1 is computable in f ⊕ Ci , it is not difficult to
verify that (

⋂
i Ci , f) is a minimal subsystem of (C,f). This gives us the following

result.

Proposition 4.3. ACA0 proves that any system contains an almost periodic point.

For the remainder of this section, and in the following section, we will work with
models of WKL0. In order to simplify the exposition of the proofs, we will work
with Π01 classes of reals in Cantor space, as opposed to trees in 2

<N. Recall that C
is a Π01 class in Cantor space if for some Σ

0
0 formula ϕ, we have that C = {X ∈

2N : (∀n)ϕ(X �n)}. We will denote by C [s] the set {X ∈ 2N : (∀n ≤ s)ϕ(X �n)}.
Theorem 4.4. Over WKL0, ACA is equivalent to statement that every system
contains a minimal subsystem.

Proof. The argument proceeding Proposition 4.3 shows that ACA0 proves that
every system contains a minimal subsystem. To show the other direction we will
work overWKL0 as our base system.
First we will show how to encode a single bit of ∅′ into a system. Let f be the
left-shift i.e., the mapping f : 2N → 2N defined by f(X )(i) = X (i + 1). Fix n, we
will define a Π01 class C such that given any minimal subsystem (D,f �D) of (C,f)
the set �01� ∩D is empty if and only if n 
∈ ∅′. In particular, if n 
∈ ∅′, then

C = {0i1N : i ∈ N} ∪ {1i0N : i ∈ N}.
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Observe that in this case, if (D,f �D) is a minimal subsystem of (C,f), then
D = {0N} or D = {1N}.
Let Si = {F n((0i1i)N) : n ∈ N}. Each Si is a minimal system with 2 · i elements.
For example,

S2 = {(0011)N, 011(0011)N, 11(0011)N, 1(0011)N}.
If n ∈ ∅′, then we will define C to be equal to Si for some i compatible with our
definition of C at the stage n enters ∅′. Formally, let t be∞ if n 
∈ ∅′ and let t be the
least s such that that n ∈ ∅′[s] otherwise. Let Es = {X ∈ 2N : (∃l ≤ s)(0l1s−l ≺
X ∨ 1l0s−l ≺ X )}. Define

C =

{⋂
s Es t =∞,
Si t = i <∞.

Observe that Si ⊆
⋂
s<i Es . Hence C is a Π

0
1 class. Let (D,f) be a minimal subsys-

tem of (C,f). To determine if n is in ∅′ wait until a stage s such that either n ∈ ∅′
or �01� ∩D[s] = ∅ (the existence of such an s when n 
∈ ∅′ requiresWKL).
In order to code all elements of ∅′, we use the uniformity in the definition above
to build a product system. Observe that if (C,f) and (D, g) are systems then so is
(C × D,f × g) where f × g(x, y) = (f(x), g(y)). Further if (x, y) is an almost
periodic point of (C ×D,f×g), then x is an almost periodic point of (C,f) and y
is an almost periodic point of (D, g). Given a minimal subsystem of (C ×D,f×g),
we know that every point is almost periodic. Hence the projection of these points
on the first coordinate are almost periodic points of C . Now let (C,f) be the
example above and let (D, g) be arbitrary.We know that when n 
∈ ∅′, thenC ∩ �01�
contains no almost periodic points. Hence we know that the projection of a minimal
subsystem of (C × D,f × g) on the first coordinate has empty intersection with
�01�. If, on the other hand n does enter ∅′, then take any almost periodic point (x, y)
in (C ×D,f × g). Because x is almost periodic in (C,f) for some k we have that
fk(x) � �01� and (f × g)k(x, y) projects on the first coordinate to fk(x). Hence
the projection of a minimal subsystem of (C ×D,f×g) on the first coordinate does
not have empty intersection with �01�. This arguments above hold for an infinite
product and so we can code all elements of ∅′ as detailed below.
For all n, let Cn be the set defined by the above construction. Let C = ΠnCn
(i.e., X ∈ C if and only if for all n, X [n] ∈ Cn where X [n] denotes the nth column
of X ). Let f be the mapping produced by applying the left-shift to each column.
Now if (D,f �D) is a minimal subsystem of (C,f) then we have that n 
∈ ∅′ if and
only if the set {X ∈ D : X [n] � �01�} is empty. Using WKL0, this set is empty if
and only if the associated tree is finite and we have provided a Σ01 definition of the
complement of ∅′. By relativizing this argument, we can give a Σ01(Z) definition of
the complement of Z′ for any Z in our model. This shows that any model ofWKL0
plus “every system contains a minimal subsystem” is a model of ACA. 

§5. Separating AP from WKL. We have seen that ACA0 proves AP. Further
RCA0 + AP proves WKL because any almost periodic point is a recurrent point.
In this section we will separate AP from WKL. We will show that there is a model
of WKL0 that is not a model RCA0 + AP. The natural numbers in this model will
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be the true natural numbers and so we will work with full induction. We will also
regard our closed sets as Π01 classes, as this simplifies the exposition.
The key to the separation is the following technical lemma. Let (C,f) be a system.
A point X ∈ C is called a periodic point of (C,f) if for some n, F n(X ) = X . Let
Orb(X ) be the orbit of X . Note that if X is a periodic point thenOrb(X ) is a finite
set.

Lemma 5.1. Let f be the left-shift on Cantor space. Let P ⊆ 2N be a Π01 class.
There is a Π01 class C , computable uniformly in an index for P such that (C,f) is a
system and either:

(i) C ∩ P = ∅; or
(ii) There is a nonemptyΠ01 class P̂ ⊆ P with the property that no element of P̂ is
an almost periodic point of (C,f).

Proof. The definition of C is simple. Let {Xi}i∈N be an enumeration of the
periodic points in (2N, f). Such an enumeration exists because any periodic point
is of the form �N for some finite string �. We let C = 2N unless at some least stage
s , we have that Orb(Xi) ∩ P = ∅ for some i < s . If so we let C = Orb(Xi) for the
least i for which this holds at stage s . The definition ofC is uniform because we can
refine C to Orb(Xi) at any point.
If C = Orb(Xi) for some periodic point Xi , then C ∩ P = ∅ and condition (5.1)
is meet. Hence we will consider the case that C = 2N. If there is some computable
point X ∈ P such that X is not almost periodic, then condition (5.1) holds by
defining P̂ = {X}. Hence we will assume that any computable point in P is almost
periodic.
We inductively define a sequence of finite strings �1, �2, . . . . The strings will have
the following properties. If i < j then �i � �j . For all i , 1i is a substring of �i+1 but
1i+1 is not. The string �1 = 0n for some n > 0.

(i) The sequence 10N is computable and not almost periodic. Hence 10N 
∈ P
and so there exists some n1 > 0 such that �10n1� ∩ P = ∅. Let �1 = 0n1 .

(ii) The sequence 11(�11)N is computable and not almost periodic (the subse-
quence 11 only occurs once). Hence 11(�11)N 
∈ P, and so there exists some
n2 > 0 such that �11(�11)n2� ∩ P = ∅. Let �2 = (�11)n2 .

(iii) Similarly 111(�2�111)N 
∈ P, and so there exists some n3 such that
�111(�2�111)n3� ∩ P = ∅. Let �3 = (�2�111)n3 .

(iv) In general we define �i+1 = (�i�i−1 . . . �11i)ni such that

�1i+1(�i�i−1 . . . �11i)ni � ∩ P = ∅.
Consider the periodic systems generated by (�i)N. Because C = 2N, for all i , there
is some Yi ∈ Orb((�i)N) ∩ P.
Claim. For all i , Yi(0) = 0.

Proof. Take any Yi . Let k ∈ N be the largest number such that 1k is an initial
segment of Yi . First k < i because any substring of 1’s in (�i)N has length less than
i . Further, by construction if 1k0 forms an initial sequence of Yi then 1k�k forms
an initial sequence of Yi , but �k was chosen so that �1k�k� ∩ P = ∅. Note here we
are using the fact that if i < j then �i � �j . Hence Yi(0) = 0. 
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Claim. Fix k. Let ck = 2k +
∑k
s=1 |�s |. Then for all i > k, Yi �ck contains 1k as

a substring.

Proof. Let � = �k . . . �1. We will show by induction that for i > k, �i is a
string of the form �1n1�1n2�1n3 . . . �1nl where each nj ≥ k for j ∈ {1, . . . , l}. First
�k+1 = (�k�k−1 . . . �11k)nk = (�1k)nk and is clearly of this form. Fix i ≥ k + 1 and
assume this holds for all j ∈ {k + 1, k + 2, . . . , i}. Then

�i+1 = (�i�i−1 . . . �11i)ni = (�i�i−1 . . . �k+1�1i )ni

and so has the desired property by induction. As Yi is a left-shift of (�i)N and
ck = |�|+ 2k, the claim holds. 
Let Y be an accumulation point of {Yi : i ∈ N}. Hence Y is an element of P
as P is closed. The sequence Y has the property that Y (0) = 0 and for all k, the
initial segment Y �ck contains a subsequence of 1k . Observe that the sequence {ci}
is computable. Now define P̂ ⊆ P to be the following Π01 class

{Z ∈ P : Z(0) = 0 ∧ (∀k)(1k is a substring of Z �ck )}.
If all the assumptions are met until this point, P̂ is nonempty and no element of P̂
is an almost periodic point. Hence condition (5.1) is met. 
In the proof of the following theorem we will make use of the fact that if P ⊆ 2N
is a Π01 class and f : 2

N → 2N is a total computable function, then both f(P) and
f−1(P) are Π01 classes.
Theorem 5.2. WKL0 does not prove AP.

Proof. Let f be the left-shift. Let {Qi}i∈N be a enumeration of all Π01 classes. It
follows from the uniformity of Lemma 5.1, that we can build a product system

(C, g) =
∏
e∈N

(Ce,f)

such that if Q is the eth Π01 class then either

(i) �e(Q) ∩ Ce = ∅ or
(ii) There is a nonempty Π01 class Q̂ ⊆ Q such that no element of �e(Q̂) is almost
periodic,

where �e is the projection on the eth coordinate. See Theorem 4.4 for an example of
how to encode such a product system. While Lemma 5.1 guarantees the existence
of a nonempty Π01 subset of �e(Q), no element of which is almost periodic, this can
be pulled-back along �e to obtain Q̂. We will show that there is a set of PA degree
that does not compute an almost periodic point of (C,f).

Construction. At stage 0, let P0 be a nonempty Π01 class of sets of PA degree.
At stage s + 1, let Φs be the s th Turing functional. If for some n the set {X ∈
Ps : ΦXs (n) ↑} is not empty, then let Ps+1 be this set for the least such n.
Otherwise, we have thatΦs is total on all elements ofPs . LetQ = Φs(Ps ). NowQ
is a Π01 class because there is a total functional that agrees with Φs on the elements
of Ps . Let e be an index forQ as a Π01 class. There are two possible outcomes. First
�e(Q) ∩ Ce = ∅ in which case let Ps+1 = Ps and note that no element of Ps+1
computes an element of C via Φs let alone an almost periodic element. The other
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possible outcome is that there is some nonempty Q̂ ⊆ Q such that no element of
�e(Q̂) is almost periodic in Ce (and hence no element of Q̂ is almost periodic in C ).
For this outcome let Ps+1 = {X ∈ Ps : ΦXs ∈ Q̂}. In this case, Ps+1 is a nonempty
Π01 class, no element of which computes an almost periodic point inC via Φs (again
we are making use of the fact that the projection of an almost periodic point is an
almost periodic point as discussed in Theorem 4.4).
By compactness there is some X ∈ ⋂

i Pi . This set X is of PA degree and X does
not compute an almost periodic point of (C, g). Now it is standard result that there
is a model ofWKL0, such that all sets in this model are Turing below X . This model
does not contain an almost periodic point for the system (C, g) and shows that
WKL0 does not imply AP. 

§6. Separating ACA from AP. In this section, we will show that there exists a
model of RCA0 + AP that is not a model of ACA. To achieve this, we will prove
that every topological dynamical system on Cantor space has an almost periodic
point that is low relative to the system. Because the main theorem of this section is
a separation result, we could make use of full induction. However, we will restrict
ourselves to Σ01 induction so that we can make use of these results in Section 7.
The objective is to construct an almost periodic point of a system while forc-
ing the jump. Let (C,f) be a system and let U be a c.e. set of strings. If there is
a subsystem (D,f �D) of (C,f) such that [D] ∩ �U � = ∅, then we can replace
our original system with (D,f �D). Any almost periodic point in (D,f �D)
is an almost periodic point of (C,f) and we know that such a point cannot
meet U .
If we cannot find such a subsystem, then we will show that for some b, for all
X ∈ [C ], there exists some k < b with F k(X ) ∈ �U �. We will use this fact to build a
new system (D, g) such that [D] ⊆ [C ] ∩ �U � and for all X ∈ [D], G(X ) = F k(X )
for some k < b. We will show that this gives us a certain recurrence property that
allows us to build an almost periodic point of (C,f) that meets U .
Let us look at a simple example that illustrates the idea. Consider the follow-
ing permutation on 6 elements (12)(3456). This is a topological dynamical system
when {1, 2, 3, 4, 5, 6} is given the discrete topology. Now suppose at some stage
the points 2, 3, and 6 are enumerated into some open set U . Our new system
becomes (2)(36). We form the new orbits by simply skipping over those elements
not in U . In the following definition we use f(�, k) instead of fk(�) to aid
readability.

Definition 6.1.

(i) Let f and g encode continuous transformations of C and D respectively
with D ⊆ C . Call g a piece-wise combination of iterates of f if for some
l, b there is a function j : {0, 1}l → {1, . . . , b} such that for all � ∈ D with
|�| ≥ l , g(�) = f(�, j(� �l )).

(ii) Let (C,f), (D, g) be systems. We say that (D, g) refines (C,f), written
(D, g) ≤ (C,f) if:
(a) D ⊆ C .
(b) g is a piece-wise combination of iterates of f.

Clearly if (D,f �D) is a subsystem of (C,f) then (D,f �D) ≤ (C,f).
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Lemma 6.2. (WKL0) Let (C,f), (D, g) be systems such that (D, g) ≤ (C,f). If
X ∈ [D], then (∃b)(∀n)(∃k ≤ b)F n+k(X ) ∈ [D].
Proof. Assume this fails for some X ∈ [D]. Let b witness that (D, g) ≤ (C,f)
i.e., {1, . . . , b} is range of the function j. Consider the set of n such that

{F n+1(X ), F n+2(X ), . . . , F n+b(X )} ∩ [D] = ∅.
This set is c.e. in X and nonempty by assumption. Hence it contains a least element
l . By minimality and the fact that F 0(X ) = X ∈ [D] we must have that F l (X ) ∈
[D] hence for some k ∈ {1, . . . , b}, G(F l (X )) = F k(F l (X )) and so F l+k(X ) =
G(F l (X )) ∈ [D] contradicting our assumption. 
Lemma 6.3. (WKL0) The refinement relation is transitive.

Proof. Let (E, h) ≤ (D, g) ≤ (C,f). Clearly E ⊆ C . Let j1 : {0, 1}l1 →
{1, . . . , b1} and j1 : {0, 1}l2 → {1, . . . , b2} be such that for all �, if |�| ≥ max{l1, l2}
then

(i) g(�) = fj1(��l1 )(�).
(ii) h(�) = gj2(��l2 )(�).

Let b3 = b1 · b2. Let l3 > l2 be sufficiently large such that for all � ∈ {0, 1}l3, for all
n < b2, |gn(�)| > l1.
Take any string � such that |�| ≥ l3. Let m = j2(� �l2). Then h(�) = gm(�).
Further

gm(�) = g ◦ gm−1(�)
= fj1(g

m−1(�)�l1 ) ◦ gm−1(�)
= fj1(g

m−1(�)�l1 ) ◦ fj1(gm−2(�)�l1 ) ◦ . . . ◦ fj1(g0(�)�l1)(�).
Hence h(�) = fn(�), where n =

∑m−1
i=0 j1(g

i (�) �l1). Becausem ≤ b2, we have that
n only depends on � �l3 . Further n ≤ b3. Hence h is a piece-wise combination of
iterates of f and so (E, h) ≤ (C,f). 
Lemma 6.4. (WKL0) Let (C,f) be a system and U a c.e. set. There is a system
(D, g) refining (C,f) such that either:

(i) [D] ∩ �U � = ∅; or
(ii) [D] ⊆ �U �.

Proof. Define

D0 = {� ∈ C : (∀n ≤ |�|)(∀� ∈ U [|�|])(f(�, n) 
� �)}.
To establish that D0 is a tree, let � and � ′ be any two strings such that � � � ′.
Assume � 
∈ D0. If � 
∈ C then because C is a tree � ′ 
∈ D0. If � ∈ C then for some
n ≤ |�| and � ∈ U [|�|], f(�, n) � �. Hence f(� ′, n) � � and � ∈ U [|� ′|]. Thus
� ′ 
∈ D0.
Claim. For all � ∈ D0, f(�) ∈ D0.
Proof of Claim. If f(�) 
∈ D0, then let � ′ = f(�). There is some n ≤ |� ′| and
� ∈ U [|� ′|] such that f(� ′, n) � �. Hence f(�, n + 1) � � ∈ U [|�|]. We have
that � 
∈ D0 because n + 1 ≤ |�| (here we use our assumption that |f(�)| < |�| if
� 
= �). 
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This claim establishes that if D0 is infinite, then (D0, f �D0 ) refines (C,f), and
by the definition of D0 with n = 0, we have that [D0] ∩ �U � = ∅.
Now consider the case that D0 is finite. Let s be least such that D0 contains no
string of length s . Define

D1 = {� ∈ C : (|�| < s) ∨ (∃� ∈ U [s](� � �))}.
We will show that D1 is infinite. Take any X ∈ [C ] and let � = X �s . As � 
∈ D0,
there is a k ≤ s such that fk(�) � � ∈ U [s]. Hence for all n, fk(X �n) ∈ D1.
Let l be such that if |�| = l , then |f(�)| ≥ s . Define j : {0, 1}l → {1, . . . , s + 1}
by

j(�) =

{
1 if � 
∈ C,
k where k ≥ 1 is least such that (∃� ∈ U [s])f(�, k) � � if � ∈ C.

Note that j(�) is well-defined because for � ∈ {0, 1}l we have that |f(�)| ≥ s and
so f(�) 
∈ D0. Hence for some k ∈ {0, . . . , s} we have that f(f(�), k) extends
some element of U [s]. Define a function g : 2<N → 2<N by

g(�) =

{
� if |�| < l,
f(�, j(� �l)) otherwise.

It follows from the definition of j and D1, that if � ∈ C , then g(�) ∈ D1. Hence
(D1, g �D1 ) is a system. Clearly, g is a piece-wise combination of iterates of f and
hence (D1, g �D1 ) ≤ (C,f). Finally [D1] ⊆ �U [s]�. 
The proof given of the proceeding lemma provides some more information that
we will make use of in Section 7. We state this as the following lemma.

Lemma 6.5. (WKL0) Consider the set

{� ∈ C : (∀n ≤ |�|)(∀� ∈ U [|�|])(f(�, n) 
� �)}.
Case (i) of Lemma 6.4 holds if this set is infinite. Case (ii) of Lemma 6.4 holds if this
set is finite, and further there is a (D, g) refining (C,f) such that for allX ∈ [C ] there
is a k with F k(X ) ∈ [D].
We make use of full induction for the following lemma.

Lemma 6.6. Any system (C,f) contains an almost periodic point X such that
X ′ ≤T (C ⊕ f)′.
Proof. We define a sequence of systems {(Ce,fe)}e∈N such that for all e,
(Ce+1, fe+1) ≤ (Ce,fe). Let (C0, f0) = (C,f). At stage e + 1, let Ue = {� ∈
2<N : Φ�e (e) ↓}. Let (Ce+1, fe+1) refine (Ce,fe) such that either [Ce+1] ∩ �Ue� = ∅
or [Ce+1] ⊆ �Ue�.
An examination of the proof of Lemma 6.4 shows that this sequence can be
constructed below (C ⊕ f)′. In Lemma 6.4, D0, D1, and g are defined uniformly
from C and f (the definition of D1 and g depend on D0 being finite). Further
(C ⊕f)′, can determine whether or notD0 is finite and hence decide how to refine
(C,f).
By compactness,

⋂
e[Ce ] is not empty. In fact

⋂
e [Ce ] contains a unique point X ,

because every finite set occurs as infinitely many c.e. sets Ue . Now X ′ ≤T (C ⊕f)′
because whether ΦXe (e) halts can be determined at stage e of the construction.
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We show that X is an almost periodic point of C . Fix � ≺ X . Now for some e,
��� ⊇ [Ce]. Thus by Lemmas 6.2 and 6.3, there is some bound b, such that for all
n, there is some k ≤ b such that F n+k(X ) ∈ [Ce ] ⊆ ���. Hence X is an almost
periodic point of (C,f). 
Using the standard approach, the previous proposition can be used to build an

-model of RCA0 and AP such that every real in the model is low. Hence we obtain
the following theorem.

Theorem 6.7. There is an 
-model of RCA0 and AP that is not a model of ACA.

§7. A conservation result. The goal for this section is to show that RCA0 +AP is
conservative over RCA0 for Π11-sentences. The following lemma is the key to doing
this. Instead of preserving Σ01-induction directly, it is easier to preserve the least
number principle. This next lemma allows us to refine (C,f) to a system (D, g)
such that everyX ∈ [D] preserves the least number principle for a fixed Σ00 formula.
Lemma 7.1 (WKL0). Let (C,f) be a system, P be a real, and ϕ be a Σ00 formula.
There is a system (D, g) refining (C,f) such that for all X ∈ [D], the following
formula holds

(∃n)(∃s)(ϕ(n,X �s , P))→
(∃l)((∃s)(ϕ(l, X �s , P) ∧ (∀m < l)(¬(∃s)(ϕ(m,X �s , P))))).

Proof. Let U = {� : (∃n)ϕ(n, �, P)}. Let (D, g) be a refinement of (C,f) guar-
anteed by Lemma 6.4. If [D]∩�U � = ∅, then we can take the system (D, g) to satisfy
the conclusion of this lemma. Otherwise, [D] ⊆ �U �. By applying compactness there
is some bound b, such that

[D] ⊆ �{� : (∃n ≤ b)ϕ(n, �, P)}�.
For all n, define the following sets

O(≤ n, ϕ) = {� : (∃m ≤ n)ϕ(m, �, P)},
O(< n,ϕ) = {� : (∃m < n)ϕ(m, �, P)},
C (≤ n, ϕ) = {� ∈ D : (∀i ≤ |�|)(∀� ∈ O(≤ n))(g(�, i) 
� �)},
C (< n,ϕ) = {� ∈ D : (∀i ≤ |�|)(∀� ∈ O(< n))(g(�, i) 
� �)}.

Intuitively, O(≤ n, ϕ) is the the open set of reals that add something less than or
equal to n, to the set defined by ϕ. The set C (≤ n, ϕ) is the closed set of reals
(represented as a tree) whose orbit never adds something less than or equal to n.
Similarly for O(< n,ϕ) and C (< n,ϕ). These definitions are designed to be used
with Lemma 6.5. Because of the uniformity in the above definitions, we have that
the following set is c.e. in P ⊕D ⊕ g

S = {n : C (≤ n, ϕ) is finite}.
Note that by finite, it is meant that the tree defined by C (≤ n, ϕ) is finite. As b ∈ S,
it follows by Σ01-induction that S has a least element l .
By Lemma 6.5, there is a system (E, h) such that (E, h) refines (D, g) and [E] ⊆

�O(≤ l, ϕ)�. Furtherwe have that for allX ∈ [D] there is a k such thatGk(X ) ∈ [E].
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Now we know that every element of [E] enumerates l into the set defined by ϕ.
However, we need to make sure that l is a minimal element. Now consider the set

Z = {� ∈ E : (∀i ≤ |�|)(∀� ∈ O(< l, ϕ))(h(�, i) 
� �)}.
If this set is finite, then if X ∈ [D], we have that Gk(X ) ∈ [E] for some k and
so for some j, Hj(Gk(X )) must extend some element of O(< l, ϕ). As h is a
piecewise combination of iterates of g, this implies that C (< l, ϕ) is finite. Thus
by compactness, for some m strictly less than l , C (≤ m,ϕ) is finite contradicting
the minimality of l . Hence the set Z is infinite and so by Lemma 6.5 there is a
a system (F, j) refining (E, h) (and consequently refining (C,f)) such that [F ] ∩
�O(< l, ϕ)� = ∅. If X ∈ [F ], then {m : (∃s)ϕ(m,X �s , P)} has least element l . 
Our second lemma ensures that the point we create will in fact be an almost
periodic point. The proof is complicated by the fact that we have limited induction.

Lemma 7.2 (WKL0). Let (C,f) be a system and i ∈ N. There is a subsystem
(D,f �D) of (C,f) and b ∈ N such that for all X ∈ [D]

(∀n)(∃k < b)(F n+k(X ) � X �i).
Proof. Fix i . Let E0, E1, . . . , En list the subsets of {0, 1}i in some computable
way, with the property that if Ek ⊆ Ej , then k ≤ j. This implies that E0 is the
empty-set and En is all binary strings of length i .
Now enumerate a setW by adding k toW for k ≤ n if the following tree is finite

{� ∈ C : (∀n ≤ |�|)(∀� ∈ Ek)(f(�, n) 
� �)}.
As [C ] 
= ∅, 0 
∈W but clearly n ∈W . By Σ01-induction and bounding, there is a
maximum element k+1 ∈W such that for all j with k+1 ≤ j ≤ n we have j ∈W .
Consider Ek , it is a maximal sized subset with the property that the following tree
is infinite.

D = {� ∈ C : (∀n ≤ |�|)(∀� ∈ Ek)(f(�, n) 
� �)}.
Observe that [D] ⊆ �{0, 1}i \ Ek�. Now if � ∈ {0, 1}i \ Ek , then let s� be the least
number such that

{� ∈ C : (∀n ≤ |�|)(∀� ∈ Ek ∪ {�})(f(�, n) 
� �)}
contains no strings of length s� . Hence for any X ∈ [D] there is some n ≤ s� such
that F n(X ) ∈ ���. In particular, this includes any element of [D] ∩ ���. The set
{(�, s�) : � ∈ {0, 1}i \ Ek} is also c.e. and hence by Σ01-bounding, there is some b
that bounds all elements of this set. 
Definition 7.3. LetM and M̂ be models of 2nd order arithmetic. CallM a full
first order submodel of M̂ ifM is a submodel of M̂ and they share the same first
order part.

Theorem 7.4 (Harrington – unpublished see [5]). LetM be a countable model
of RCA0. Then there exists a countable model M̂ ofWKL0 such thatM is a full first
order submodel of M̂.
Lemma 7.5. LetM be a countable model of WKL0 and let (C,f) be a system in

M. Then there exists a model M̂ ofWKL0 such thatM is a full first order submodel
of M̂ and M̂ contains an almost periodic point for the system (C,f).
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Proof. By Harrington’s theorem it is only necessary to find a model M̂ of RCA0
such thatM is a full first-order submodel of M̂ and M̂ contains an almost periodic
point for the system (C,f). LetM be the natural numbers insideM and let R be
the reals insideM. From outside of the model, let g : 
 → M and h : 
 → R be
bijections. Define C0 = C . Now inductively define Ce+1 as follows.

(i) If e = 2 · 〈n,m〉 + 1, then let Ce+1 be such that (Ce+1, fe+1) refines (Ce,fe)
as per Lemma 7.1 with ϕ the nth Σ00-formula and P = h(m).

(ii) If e = 2 · n+2 then let Ce+1 be such that (Ce+1, fe+1) refines (Ce,fe) as per
Lemma 7.2 with i = g(n).

Take R ∈ ⋂
e [Ce]. Let M̂ be the model obtained by adding all reals computable

in R ⊕ Y toM for any Y ∈ M. The odd stages in the construction of M̂ establish
that M̂ is a model of Σ01-induction because the least number principle is preserved
for Σ01-formulas.
We know that R is an almost periodic point of (C,f) because R ∈ [Ce+1] for
e = 2 · n + 2 establishes that there exists a b such that for all m, there is a k ≤ b
such that Fm+k(R) ∈ R �g(n). 
We can now iterate the previous lemma using standard arguments to obtain the
following theorem.

Theorem 7.6. LetM be a countablemodel of RCA0. Then there exists a countable
model M̂ of RCA0 + AP such thatM is an full first order submodel of M̂.
Standard arguments also give us the following corollary (see for example [5,
Corollary IX.2.6]).

Corollary 7.7. RCA0 + AP is conservative over RCA0 forΠ11-sentences.

§8. A subclass of PA degrees and open questions. Consider the Turing degrees
that can compute an almost periodic point for any computable system. This is an
upwards-closed subclass of the PA degrees. By Theorem 5.2, we know that this is a
strict subclass of the PA degrees. The following corollary shows that this subclass
does not coincide with those PA degrees greater than or equal to ∅′.
Corollary 8.1 (Corollary to Theorem 6.7). There is a set X of PA degree such
that X 
≥T ∅′ and X computes an almost periodic point for every computable system.
Proof. Let {Zi}i∈N be a listing of the ideal used to separate ACA from AP over

RCA0. Observe that no finite join of this sequence computes ∅′.
Construct X by at stage e defining sufficient columns of X to force that ΦXe 
= ∅′,
and then append Ze to an empty column of X . The set X bounds all elements of
the ideal so X is of PA degree. 
The PA degrees have been extensively studied. However, this subclass does not
appear to have been encountered before and it merits further investigation.

Question 8.2. Are there any other characterizations of this subclass?

Auseful answer toQuestion 8.2would give some indication as to how this subclass
is dispersed in the Turing degrees. As there are computably dominated sets of PA
degree, it is natural to ask the following question.
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Question 8.3. Does this subclass have a computably dominated element?

For this subclass to have a computably dominated element, it is necessary that
the following question has a positive answer.

Question 8.4. Does every computable system have an almost periodic point that
is computably dominated?

This paper has focused on topological dynamical systems in Cantor space. An
obvious next question is the following.

Question 8.5. Can the results in this paper be generalized to compact computable
metric spaces?

This last question was suggested by André Nies.

Question 8.6. Does the principle AP change for different topological spaces? For
example, is AP for topological dynamical systems on Cantor space the same as AP for
topological dynamical systems on the unit interval?
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