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Abstract
This paper proposes an online robust self-learning terminal sliding mode control (RS-TSMC) with stability guar-
antee for balancing control of reaction wheel bicycle robots (RWBR) under model uncertainties and disturbances,
which improves the balancing control performance of RWBR by optimising the constrained output of TSMC. The
TSMC is designed for a second-order mathematical model of RWBR. Then robust adaptive dynamic programming
based on an actor-critic algorithm is used to optimise the TSMC only by data sampled online. The system closed-
loop stability and convergence of the neural network weights are guaranteed based on the Lyapunov analysis. The
effectiveness of the proposed algorithm is demonstrated through simulations and experiments.

1. Introduction
In recent years, there has been growing interest in the research of agile and high-speed mobile robots
designed for rugged or narrow terrain [1–4]. Among these, bicycle robots have emerged as a promising
platform due to their ability to achieve high-speed locomotion and agile manoeuvres on varied terrains.
Reaction wheel bicycle robots (RWBR) are a type of bicycle robot that relies on reaction wheels as
auxiliary balancing mechanisms. Compared to other auxiliary balancing mechanisms, such as control
moment gyroscopes [5, 6] and mass pendulums [7, 8], reaction wheels offer advantages such as simple
mechanism design and rapid response [9, 10].

Previous studies have investigated the effects of strategies on the RWBR balancing control. The
proportional-integral-derivative (PID) control was designed to stabilise the roll angle [11]. Linear
quadratic regulator (LQR) controller was used to achieve balancing control by approximating the lin-
earisation around the equilibrium point [12]. The control of RWBR presents significant challenges,
particularly in dealing with inherent uncertainties and disturbances. Traditional control methods often
struggle to address these complexities effectively, leading to suboptimal performance and limited adapt-
ability. To address these problems, various robust control strategies were proposed to balance the RWBR,
such as robust LQR [13] and disturbance observers [14]. Sliding mode control (SMC) has an excellent
ability to deal with uncertainties [15–17], which has been developed for balancing control of RWBR
[18–20]. However, the robustness of the sliding mode controller to uncertainties typically comes at the
cost of conservative control performance. This trade-off between robustness and control performance
remains an open problem.

Many researchers have been striving to combine SMC with other methods to tackle this challenge,
such as fuzzy control [18], adaptive control [21] and reinforcement learning [22–24]. A fuzzy sliding
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mode controller was designed to deal with impulse disturbance and system uncertainty in [18], but
the determination of fuzzy rules was rather complicated. In [21], an adaptive sliding mode controller
was proposed, which dynamically adjusts the parameters of the sliding mode controller to optimise the
performance of the control. This work only make monotonic adjustments in certain scenarios, which
may lead to excessively high system gain and more severe chattering. Our previous work has confirmed
that reinforcement learning can improve the control performance of the SMC online [22, 23], while this
combination cannot provide sufficient theoretical stability guarantee.

Adaptive dynamic programming (ADP) algorithm, a kind of reinforcement learning technique, has
been used to address various optimal control problems [25–29]. It not only improves control per-
formance while maintaining robustness but also provides theoretical stability guarantee. The linear
controller with the offline ADP algorithm was proposed to balance a bicycle robot in [25]. The online
ADP algorithm was studied to deal with the optimal control problem with known dynamics in [28]. Ref.
[26] proposed a method to adjust the sliding mode controller of ADP online to optimise the trajectory
tracking of mobile robots. However, its online optimisation was based on the prediction of the states of
the nominal model, which greatly limits the applicability under uncertainty. In order to directly utilise
online data for ADP solutions, researchers have conducted a significant amount of work, which has led
to the developments of two main methods. One involves using the model obtained from online data fit-
ting for online prediction [30]. The other directly uses online data to optimise the controller, including
integral reinforcement learning [31] and robust adaptive dynamic programming (RADP) [27].

To address above problems, we introduce RADP to optimise the TSMC online for balancing control
of RWBR. First, the nonlinear dynamics of RWBR with uncertainties and disturbances are established
and the terminal sliding mode controller is set. Then, the problem of optimising the TSMC with stabil-
ity constraints is formulated. An online actor-critic-based RADP algorithm is proposed to solve optimal
control problems. The stability and convergence of the proposed control strategy are proven. The algo-
rithm comparison in simulation demonstrates the advantages of the proposed control strategy. Prototype
experiments also validate the control strategy. The main contributions of this paper are summarised as
follows.

• An online robust actor-critic-based RADP algorithm with robust self-learning terminal sliding
mode control
(RS-TSMC) is proposed to optimise the control performance while maintain the robustness of
balancing controller for RWBR. The optimisation process is directly based on data collected
online without the need for system dynamics.

• The controller optimisation problem is transformed into solving the Hamilton–Jacobi–Bellman
(HJB) equation, and the system output generated by ADP is constraint according to the range of
TSMC parameters. Compared to [26], this mechanism improves the conditions for solving the
constrained HJB equation, providing a more flexible and adaptable strategy for designing control
strategies.

• Experimental studies conducted in simulation platform and on a prototype RWBR compared with
several recently proposed control strategies show the effectiveness of the algorithm proposed in
this paper.

The rest of the paper is organised as follows. The dynamics of the RWBR and the problem formu-
lation are given in Section 1. The online self-learning sliding mode control strategy is proposed with
the stability and convergence proof in Section 3. In Section 4, various simulation experiments are per-
formed, and the experimental results for a RWBR prototype are presented. The conclusion is addressed
in Section 5. The video of the simulation and the experiments of RWBR prototype are available at the
following website: https://github.com/ZhuXianjinGitHub/RSTSMC. (accessed on 30 August 2024).

Throughout the paper, ‖·‖ denotes the Euclidean norm, diag {·} represents a diagonal matrix, and ⊗
denotes the Kronecker product.
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Figure 1. Side view of the RWBR prototype.

Figure 2. Notations of the RWBR.

2. Problem formulation
In this section, the dynamic model of RWBR with uncertainty and disturbance is derived. We also intro-
duce the feedback transformation. In addition, a TSMC is designed. Furthermore, the online optimisation
problem for this controller is presented.

2.1. Dynamics model of RWBR
Figure 1 presents the prototype of RWBR, while Figure 2 shows notations. It can be seen that the RWBR
consists of five parts, including a rear wheel, body frame, reaction wheel, handlebar and a front wheel
(simplified as R, B, W, H and F, respectively) in Figure 2. The details of the notation are shown in
Table I.

Following [23], the roll dynamics of the RWBR is presented as follows:

Jϕ̈ + I2θ̈ − Mg sin(ϕ) = d1

I2ϕ̈ + I2θ̈ = τ + d2

(1)

where J = m1l2
1 + m2l2

2 + I1 + I2, M = m1I1 + m2I2, d1 and d2 represent unmodelled dynamics and
uncertainty.
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Table I. Diagram of bicycle structure.

Symbols Meanings
b Wheelbase
G Mass centre of the parts (R, B, H, and F)
c Distance from C2 to projection of G
l1 Height of the mass centre G
l2 Height of the mass centre of reaction wheelG
ϕ Roll angle of the RWBR
θ Angular velocity of the W
m1, I1 Mass and moment of inertia of the parts (R, B, H, and F)
m2, I2 Mass and moment of inertia of the part (W)
τ Torque for balancing control

To make full use of the known dynamics of the system, the dynamics parameters are divided into a
nominal part and an uncertainty part.

ΔJ = |J − JN | < ΔJ

ΔI2 = |I2 − I2N| < ΔI2

ΔM = |M − MN | < ΔM

(2)

where JN , I2N and MN are the nominal parameter values, ΔJ, ΔI2 and ΔM are the upper bounds of the
uncertainties ΔJ, ΔI2 and ΔM.

Further, equation (1) can be re-written as

(JN − I2N) ϕ̈ − MNg sin(ϕ) = −τ + d1N − d2N (3)

where d1N = d1 + ΔMg sin(ϕ) − ΔJϕ̈ − ΔI2θ̈ and d2N = d2 − ΔI2ϕ̈ − ΔI2θ̈ .

2.2. Design of TSMC controller
For the controller design, we first define ϕd as the reference roll angle. The ϕd, ϕ̇d and ϕ̈d can be obtained
as shown in our previous work [23]. Based on the Olfati–Saber transformation mentioned in [33], the
following state variables and the feedback transformation are classified.

ẋ1 = x2

ẋ2 = u + d∗ (4)

where x1 = ϕ − ϕd, x2 = ϕ̇ − ϕ̇d, u = I2N
(JN−I2N )

MNg sin (x1) − ϕ̈d − I2N
(JN−I2N )

τ and d∗ = I2N
(JN−I2N )

(d1N − d2N).

Assumption 1. Assuming d1 and d2 are bounded, it is can be get that d1N and d2N are bounded. Then,
it is can be easily proved that d∗ is bounded. Consider that |d∗| < L, and note that L is an unknown
constant.

The sliding mode surface s, the equivalent control ueq and the reaching control ur of TSMC are
designed according to [32]. The fractional-order terminal attractor replaces the sign item in the classical
sliding mode controller, which is beneficial to attenuate chattering.
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s = x2 + α0x1 + β0xq0/p0
1

ueq = −
(

α0ẋ1 + β0

d

dt
xq0/p0

1

)

ur = − (
α1s + β1sq1/p1

)
utsmc = ueq + ur

(5)

where αi > 0, βi > 0, qi and pi (qi < pi) (i = 0, 1) are positive odd integers.
By selecting appropriate gains, the system will converge to the sufficiently small neighbourhood of

the system equilibrium in finite time. According to [32], β1 = L|sq1/p1 | + γ and γ > 0, the sliding mode

variable will reach the neighbourhood |s| <
(

L
β1

)p1/q1

of the equilibrium in finite time ts.

ts = p1

α1 (p1 − q1)
ln

α1s (0)
(p1−q1)/p1 + γ

γ
(6)

Then, define ξs =
∣∣∣∣( L

β1

)p1/q1
∣∣∣∣ < L′,

ẋ1 = −α0x1 − β0xq0/p0
1 + L′ (7)

the system state x1 will converge to the sufficiently small neighbourhood |x1| <
(

L′
β0

)p0/q0

of the system
equilibrium in finite time tx1 the system equilibrium in finite time with β0 = L′∣∣∣xq0/p0

1

∣∣∣ + γ ′, γ ′ > 0.

tx1 = p0

α0 (p0 − q0)
ln

α0x1 (0)
(p0−q0)/p0 + γ ′
γ ′ (8)

Remark 1. The parameters α1 and β1 influence the reaching process of sliding mode variables. The larger
parameters can reduce the time required for convergence and improve the robustness of the controller
to uncertainties, while the burden of the actuator is increased and the performance of the controller is
more conservative. In this paper, the RADP is introduced to online tune parameters α1 and β1 of the
TSMC controller (5) with constraints κ = [Δα1, Δβ1]

T . The main motivation is to improve the control
performance while maintain stability and robustness.

Assumption 2. Assuming κ ∈K = {κi min � κi � κi max}, (i = 1, 2). K is set to guarantee the finite-time
convergence. K and L generally can be obtained through experiments. And the the stability proof is
given in [26].

3. Online robust self-learning TSMC
In this section, an online robust self-learning TSMC for RWBR is proposed to improve the control
performance and retain the robustness. First, the optimal control problems with stability constraints are
formulated. Then, an online actor-critic-based RADP algorithm is designed to approximate the HJB
solutions.

Define uadp as the self-learning part of the control, the output of the controller as follows:
u = utsmc + uadp

[κ1 min, κ2 min] ζ <
∣∣uadp

∣∣ < [κ1 max, κ2 max] ζ
(9)

where ζ = [
s, sq1/p1

]T .
Taking (9) into (4), the system can be written as

Ẋ = AX + Bu + D (10)
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where X =
[

x1

x2

]
, A =

[
0 1

0 0

]
, B =

[
0

1

]
and D =

[
0

d∗

]
.

The optimal problem is considered to be solved by minimising the value function Vc to obtain the
optimal policy function u. Vc is defined as

Vc =
∫ ∞

0

(
XTQX + r

(
utsmc + uadp

)2
)

dt, X (0) = X0 (11)

where Q is symmetric positive definite matrices and r is a positive constant. Taking the derivative of
(11) along the trajectory of (10), the following Hamiltonian function can be obtained

H = VT
cXẊ + XTQX + r

(
utsmc + uadp

)2 (12)

where VcX = ∂Vc
∂X

. Define V∗
c = min

U′
(Vc) to denote the optimal value function, which satisfies

0 = H∗ = min
uadp

{H} = V∗T
cX Ẋ + XTQX + r

(
utsmc + uadp

)2 (13)

where V∗
cX = ∂V∗

c
∂X

. Assuming the minimum of (13) exists and is unique, then we can obtain the optimal
control policy u∗

adp = arg min
uadp

{H} by ∂H
∂uadp

= 0, which is described as

u∗
adp = − 1

2r
V∗T

cX B − utsmc (14)

Taking (14) into (13),

0 = V∗T
cX Ẋ + XTQX + r

(
− 1

2r
V∗T

cX B − utsmc

)2

(15)

Traditionally, (15) is difficult to get the solution directly. The policy iteration algorithm [34] is adopted
to iteratively solve in traditional ADP by the following two steps:

a) given u(i), solve for the V (i)
c using

0 = V (i)T
cX Ẋ + XTQX + r

(
utsmc + uadp

(i)
)2

V (i)
c (0) = 0

(16)

b) update the control policy using

u(i+1)

adp = − 1

2r
V (i)T

cX B − utsmc (17)

where i = 1, 2, · · · denotes the iterations. When i → ∞, then Vc → V∗
c , uadp → u∗

adp.
It can be seen that the system dynamic is needed in (16) to get Ẋ. When there is a certain deviation

between the nominal model of the system and the actual scene, the optimisation effect based on the
nominal model of the system may be affected. In this paper, RADP [27] is used to solve the optimal
control problem only by data sampled online.

Consider an arbitrary control input u = utsmc + us and differentiate the value function V (i)
c .

V̇ (i)
c = V (i)T

cX

(
AX + B

(
utsmc + uadp

(i)
) + B

(
us − uadp

(i)
))

= −2r
(
utsmc + u(i+1)

adp

) (
us − uadp

(i)
) − XTQX − r

(
utsmc + uadp

(i)
)2

(18)

Integral (18) over an arbitrary interval as follows,

V (i)
c (Xt) − V (i)

c (Xt−T) =

−
∫ t

t−T

(
2r

(
utsmc + u(i+1)

adp

) (
us − uadp

(i)
) + XTQX + r

(
utsmc + uadp

(i)
)2

)
dτ

(19)
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The closed-loop stability of the system is ensured by (9). V (i)
c and the improved policy u(i+1)

adp can be
obtained in one calculation, and it does not need knowledge of the system dynamics.

The value function and the policy function are defined as neural network (NN),

V̂∗
c (X) = ŴT

c φ (X) (20)

û∗
adp (X) = ŴT

a ϕ (X) (21)

After inserting into (19),

ε (t) = ŴT
c (φ (xt) − φ (xt−T)) +∫ t

t−T

(
2r

(
utsmc + ŴT

a ϕ (X)
) (

us − ŴT
a ϕ (X)

)
+ XTQX + r

(
utsmc + ŴT

a ϕ (X)
)2

)
dτ

(22)

Under the gradient descent method, the updating laws for the weights of the critic NN and the actor
NN as follows,

˙̂Wc = −λ1

φ (xt) − φ (xt−T)

m2
s (t)

ε (t) (23)

˙̂Wa = −λ2

η (t)

m2
s (t)

ε (t) (24)

where η (t) = 2
∫ t

t−T ((rus) ⊗ ϕ (x)) dτ − ∫ t

t−T (ϕ (x) ⊗ r) ⊗ ϕ (x) dτvec
(

ŴT
a

)
, ms = (φ(xt) − φ(xt−T))T

(φ (xt) − φ (xt−T)) + ηTη + 1 and ms is used for normalization.

Remark 2. The differences between RS-TSMC proposed in this paper and self-TSMC (S-TSMC) in [26]
and R-TSMC (rosbust-TSMC) in [27] are listed as follows. First, the optimisation process in S-TSMC is
based on the state prediction of the nominal model, which is not conducive to the online application of the
algorithm. To address this problem, this paper employs an iterative form of RADP to optimise TSMC
using online data. Second, the optimisation in S-TSMC is performed directly for the state variable s,
which is not exactly equivalent to the optimisation for the state X. The optimisation objective in R-TSMC
considers only the part of the uadp and not the overall output of the controller. However, the optimisation
is directly based on the system state and controller output in RS-TSMC. Third, the optimisation solution
in S-TSMC is performed provided that the constraints of the HJB equations have a solution, whereas
R-TSMC does not consider the constraints, but RS-TSMC first solves the unconstrained problem of the
HJB and subsequently constrain the controller outputs.

The proposed control strategy schemes are illustrated in Algorithm 1 and Figure 3. The stability and
the convergence of the proposed control strategy are given in the Appendix.

Algorithm 1. Online robust self-learning TSMC for RWBR
1: Initialize state Ŵc (0), and Ŵa (0), compute X0 using (4).
2: Compute Vc (t) using (11).
3: Update Ŵc (t) and Ŵa (t) using (23)(24).
4: Compute utsmc using (5).
5: Compute ûadp using (21).
6: Compute ξmax and ξmin using (5), saturate ûadp satisfies (9).
7: Compute τ using (4) and propagate t, X (t).
8: Repeat 2-7.
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Figure 3. Schematic of control system.

Figure 4. Simulation environment of RWBR in Matlab Simscape.

4. Simulations and experiments
4.1. Simulations
In order to demonstrate the effectiveness of the RS-TSMC controllers proposed in this paper, two cases
built in a simulation platform shown in Figure 4 as one of our previous works [23]. And two recently
developed methods: S-TSMC [26] and R-TSMC [27] are used for comparison. The other simulation
factors are the same except for the distinction mentioned in Remark 2. The RWBR is placed on a curved
pavement with white noise. The nominal parameters of RWBR are JN = 0.0368, I2N = 0.0035 and MN =
0.2544. The true parameters of RWBR used for simulation are J = 0.033, I2 = 0.0040 and M = 0.2742.
The control period of the controllers is 0.01s. The other parameters are given as follows:

Q = diag {1, 1} , r = 1

α0 = 3, α1 = 2, β0 = 1, β1 = 1, q0 = q1 = 17 and p0 = p1 = 19

κ1 max = κ2 max = 0.8, κ1 min = κ2 min = −0.8

λ1 = 0.2, λ2 = 0.1

(25)

The activation functions of the critic NN and the actor NN are considered as

φ (X) =
[

x2
1, x2

2, x1x2, x4
1, x4

2, x2
1x2

2

]T

ϕ (X) =
[

x1, x2, x2
1, x2

2, x1x2, x4
1, x4

2, x2
1x2

2

]T
(26)
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Table II. Assessment of control performance under different cases.

RS-TSMC TSMC R-TSMC [27] S-TSMC [26]
Case 1 9.11 15.13 13.96 14.16
Improvement 1 39.79% – 7.73% 6.41%
Case 2 48.99 58.26 51.51 56.85
Improvement 2 15.91% – 11.59% 2.42%

Figure 5. ‖Ŵc‖ and ‖Ŵa‖ with respect to the time under RS-TSMC in case 1.

An overturning moment d2 is added to the system of RWBR. In case 1,

d2 = 0.02
∑

j

sin (jt) (27)

where j =
[

1, 3, 7, 11, 13, 15
]
. In case 2,

d2 = 0.02
∑

j

sin (jt) +

⎧⎪⎪⎨
⎪⎪⎩

0.2, t ∈ [10, 12) ∪ t ∈ [30, 32)

−0.2, t ∈ [20, 22) ∪ t ∈ [40, 42)

0, else

(28)

To clearly demonstrate the superiority of the proposed method, Vc defined in (11) are used to quantita-
tively estimate the performance, which are shown in Table II. As seen in this table, RS-TSMC reduced the
criteria by 39.79% in case 1 and by 15.91% in case 2 to TSMC. It is less than the other two recently devel-
oped methods (R-TSMC, S-TSMC), which implies that the proposed method can achieve better control
performance with less control effort. Then, details of the simulations of the two cases are discussed.

The simulation results of Case 1 are demonstrated in Figure 5 and Figure 6. Figure 5 gives the norms∥∥∥Ŵc

∥∥∥ and
∥∥∥Ŵa

∥∥∥ with respect to the time under RS-TSMC. As shown in Figure 5,
∥∥∥Ŵc

∥∥∥ converges after

12 s, and
∥∥∥Ŵa

∥∥∥ converges after 20 s. Figure 6 gives the states, the control output, and Vc of four methods.
As can be seen, the proposed method has the smallest value of Vc among the four controllers. In sum,
it can be concluded that the control performance of the proposed method (RS-TSMC) outperforms the
other three methods, which illustrates the superiority of the proposed method.

Figure 7 gives the norm
∥∥∥Ŵc

∥∥∥ and
∥∥∥Ŵa

∥∥∥ with respect to the time under RS-TSMC. The pulse per-

turbation has a significant effect on
∥∥∥Ŵc

∥∥∥ at 10 s. The
∥∥∥Ŵa

∥∥∥ shows regular changes with the pulse
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Figure 6. The states, output and Vc with respect to the time under four different algorithms in case 1.

Figure 7. ‖Ŵc‖ and ‖Ŵa‖ with respect to the time under RS-TSMC in case 2.
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Figure 8. The states, output and Vc with respect to the time under four different algorithms in case 2.

disturbance, indicating the regulation effect of the online learning algorithm on the controller output.
Figure 8 illustrates the simulation results in Case 2. Similarly, we can conclude that the better control
performance is reached and the less control effort is needed with the proposed method in this case.

4.2. Experiments
The RWBR prototype is used to verify the effectiveness of the proposed controller in this subsection.
We presented the experiment results of the proposed RS-TSMC controller. We also performed TSMC,
R-TSMC and S-TSMC for performance comparisons, which can be found in Figure 9. In the experimen-
tal studies, the TSMC algorithm works on ESP32 control board at 50 Hz and the optimising algorithm
works on a PC at 25 Hz. Wireless data transmission between ESP32 and PC is achieved via UDP com-
munication protocol. We consider the swing of the handlebars to generate disturbances for the control
of the roll angel. The other settings are the same as in the simulations.

Figure 9 demonstrates the experimental results. Within the first 10 s, it can be seen that the Vc of
the three optimisation algorithms is slightly higher than that in TSMC, which can also be seen from
the curves of x1, x2 and τ . The reasons may be as follows: 1) The experimental factors such as initial
roll Angle and initial roll angular velocity of RWBR are not completely consistent in different exper-
iments. 2) The processing power of RWBR and PC is limited. With the iterative optimisation of the
controller, it is only after 15 s that the three optimisation algorithms gradually outperform TSMC.
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Figure 9. The states, output and Vc with respect to the time under four different algorithms of RWBR
prototype.

The main reason lies in the fact that the control period in the RWBR prototype is much lower than
that in the simulation experiment. In addition, it is not difficult to find that RS-TSMC almost out-
performs the other two optimisation algorithms throughout the experiment. The proposed controller
(RS-TSMC) reduced the criteria by 21.79%, while R-TSMC and S-TSMC reduced by about 10% to
TSMC. The experimental results also validate the effectiveness and feasibility of the proposed control
strategy.

5. Conclusions
This paper proposes an online RS-TSMC with stability guarantee for balancing control of RWBR under
uncertainties, which improves the balancing control performance of RWBR by optimising the con-
strained output of TSMC. The robust adaptive dynamic programming (RADP) is used to optimise the
TSMC only based on data sampled online without system dynamic. The constraint on the parameters of
the sliding mode controller is utilised to derive the constraint on the control output at each time step to
maintain the stability of the closed-loop system. Experimental studies conduct a simulate platform and
on a prototype RWBR compared with several recently proposed control strategies show the effectiveness
of the algorithm proposed in this paper.
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Appendix
Define the errors W̃c = Wc − Ŵc and W̃a = Wa − Ŵa, W̃c, where Wc and Wa represent the ideal coefficients
of V∗

c and u∗
adp, εc and εa are the approximation errors.

V∗
c (X) = WT

c φ(X) + εc

u∗
adp(X) = WT

a ϕ(X) + εa

(29)

According to (19),

V∗
c (Xt) − V∗

c (Xt−T) = −
∫ t

t−T

(
2r

(
utsmc + u∗

adp

) (
us − uadp

∗) + XTQX + r
(
utsmc + uadp

∗)2
)

dτ (30)

Inserting (29) to (30): (
WT

c φ (Xt) + εc (t)
) − (

WT
c φ (Xt−T) + εc (t − T)

) =

−
∫ t

t−T

(
2r

(
utsmc + WT

a ϕ (X) + εa

) (
us − WT

a ϕ (X) − εa

) + XTQX + r
(
utsmc + WT

a ϕ (X) + εa

)2
)

dτ

(31)
Then substitude W̃c = Wc − Ŵc and W̃a = Wa − Ŵa to (22),

ε (t) = (
Wc − W̃c

)
(φ (xt) − φ (xt−T)) +∫ t

t−T

(
2r

(
utsmc + (

Wa − W̃a

)
ϕ(X)

) (
us −(

Wa − W̃a

)
ϕ(X)

) + XTQX + r
(
utsmc + (

Wa − W̃a

)
ϕ(X)

)2
)

dτ

(32)
Substract (32) from (31),

ε (t) = −
(

W̃c (φ (xt) − φ (xt−T)) + W̃aη (t) −
∫ t

t−T

rWaϕ (X) W̃aϕ (X) dτ − εHJB

)
(33)

where εHJB = − [εc (t) − εc (t − T)] − ∫ t

t−T

(
2rεa

(
us − WT

a ϕ (X)
) − rε2

a

)
dτ .
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Define the Lyapunov candidata Ly = 1
2λ1

W̃T
c W̃c + 1

2λ2
W̃T

a W̃a, its time derivative has,

L̇y = 1

λ1

W̃T
c

˙̃Wc + 1

λ2

W̃T
a

˙̃Wa

= ε (t)

m2
s (t)

(
W̃c (φ (xt) − φ (xt−T)) + W̃aη (t)

)

�−
∥∥∥∥ ρ (t)

ms (t)
W̃

∥∥∥∥
[∥∥∥∥ ρ (t)

ms (t)
W̃

∥∥∥∥ −
∥∥∥∥ εH

ms (t)

∥∥∥∥
]

(34)

where ρ (t) = [
φT (xt) − φT (xt−T) , ηT (t)

]T and W̃ = [
W̃T

c , W̃T
a

]T
.

Therefore L̇y � 0, if
∥∥∥ ρ(t)

ms(t)
W̃

∥∥∥ >

∥∥∥ εH
ms(t)

∥∥∥, since ‖ms (t)‖ > 1. This provides an effective practical bound
for

∥∥ρ (t) W̃
∥∥, since L decreases. According to the lemma 2 in [28], W̃c and W̃a are ultimately uniformly

bounded.
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