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LARGE CARDINALS BEYOND CHOICE

JOAN BAGARIA, PETER KOELLNER, ANDW. HUGHWOODIN

Abstract. The HOD Dichotomy Theorem states that if there is an extendible cardinal,
�, then either HOD is “close” to V (in the sense that it correctly computes successors of
singular cardinals greater than �) or HOD is “far” from V (in the sense that all regular
cardinals greater than or equal to � are measurable in HOD). The question is whether the
future will lead to the first or the second side of the dichotomy. Is HOD “close” to V , or
“far” from V ? There is a program aimed at establishing the first alternative—the “close”
side of the HOD Dichotomy. This is the program of inner model theory. In recent years the
third author has provided evidence that there is an ultimate inner model—Ultimate−L—and
he has isolated a natural conjecture associated with the model—the Ultimate-L Conjecture.
This conjecture implies that (assuming the existence of an extendible cardinal) that the first
alternative holds—HOD is “close” to V . This is the future in which pattern prevails. In this
paperwe introduce a verydifferent program,one aimed at establishing the second alternative—
the “far” side of the HOD Dichotomy. This is the program of large cardinals beyond choice.
Kunen famously showed that if AC holds then there cannot be a Reinhardt cardinal. It has
remained open whether Reinhardt cardinals are consistent in ZF alone. It turns out that there
is an entire hierarchy of choiceless large cardinals of which Reinhardt cardinals are only the
beginning, and, surprisingly, this hierarchy appears to be highly ordered and amenable to
systematic investigation, as we shall show in this paper. The point is that if these choiceless
large cardinals are consistent then the Ultimate-L Conjecture must fail. This is the future
where chaos prevails.

Set theory is presently at a critical crossroads, one in which we are faced with
two alternative, radically different possible pictures of V . The story begins
with the inner models L and HOD.
In many respects the inner models L and HOD are at opposite ends of
the inner model spectrum. L is the most slender of inner models, while in
some sense, HOD is the broadest; L is given by iterating a local notion of
definability, while HOD is given by a notion of definability that is coupled
into V ; L cannot accommodate modest large cardinals, while HOD can
accommodate all traditional large cardinals; and, finally, there are simple
sets, like 0#, which are not set-generic over L, while every set is set-generic
over HOD.
These last two characteristics ofL turnon the existence of 0#. They are part
of the picture revealed by 0#. For example, by a result of Silver, if 0# exists,
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then every uncountable cardinal is an inaccessible cardinal in L. On the
other hand, if 0# doesn’t exist, then the picture is quite different. For Jensen
showed that if 0# doesn’t exist, thenL “covers”V and, in particular, singular
cardinals are singular in L, and L correctly computes successors of singular
cardinals. Combining these two results we have the following theorem—the
L Dichotomy Theorem—which presents us with two alternative, radically
different possibilities, with 0# being the “switch” that determines which
alternative holds:1

Theorem 1 (Silver, Jensen). Exactly one of the following holds:
(1) For every singular cardinal �, � is singular in L and (�+)L = �+.
(2) Every uncountable cardinal is an inaccessible cardinal in L.
The first alternative is one in which L is “close” to V , in that it correctly
computes much of the cardinal structure ofV . The second alternative is one
in which L is “far” from V , in that it radically fails to capture the cardinal
structure of V , thinking, for example, that �1 is an inaccessible cardinal.
The third author proved a similar dichotomy theorem for HOD—the
HOD Dichotomy Theorem—a weak version of which is the following.2

Theorem 2 (Woodin). Suppose that κ is an extendible cardinal. Then
exactly one of the following holds:
(1) For every singular cardinal � > κ, � is singular inHOD and (�+)HOD =
�+.

(2) Every regular cardinal � � κ is a measurable cardinal in HOD.
In the first alternative HOD is “close” to V , and in the second alternative,
HOD is “far” from V .
There is an important foundational difference between the two
dichotomies. In the case of the L Dichotomy, granting modest large car-
dinals, we know which side of the dichotomy we are on; in particular, if 0#

exists then we are on the “far” side of the dichotomy. But in the case of the
HOD Dichotomy, no traditional large cardinal axiom can force us into the
“far” side of the dichotomy (since every traditional large cardinal axiom is
compatible with V=HOD). So perhaps we are on the “close” side of the
HOD Dichotomy and perhaps this is even provable assuming traditional
large cardinals. Or perhaps there are new large cardinals, including a higher
analogue of 0#, one which does for HODwhat 0# does for L, forcing us into
“far” side of the HOD Dichotomy.
There is a program aimed at establishing the first alternative—the “close”
side of the HOD Dichotomy. This is the program of inner model theory.
Recent work of the third author has shown that if inner model theory
reaches the level of one supercompact cardinal then it “goes all the way.”
There is a candidate for this “ultimate inner model” (Ultimate-L) and one
can formulate, in relatively simple terms, the axiom that characterizes this
model. Moreover, there is a natural conjecture (the Ultimate-L Conjecture)
concerning the existence ofUltimate-L. The point, for our present purposes,

1See [11] and [2].
2See [5], Section 7.1 and [7], Section 3.
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is that if the Ultimate-L Conjecture holds, then (assuming that there is an
extendible cardinal with a huge cardinal above it) the first side of the HOD
Dichotomy must hold. In this future, HOD is “close” to V and there is no
higher analogue of 0#.
In this article we shall introduce a very different program, one aimed at
the second alternative—the “far” side of the HOD Dichotomy. This is the
program of large cardinals beyond choice.
In order tomotivate this program it will be useful to say a few words about
the traditional large cardinal hierarchy.
Recall that a natural template for formulating large cardinal axioms is to
assert that there is a non-trivial elementary embedding j : V → M , where
M is a transitive class. The critical point, crit(j), of the embedding is the
first ordinal moved by the embedding, and it is generally the large cardinal
associated with the embedding. It follows immediately that for any such
embedding, if κ is the critical point, thenM resembles V to the extent that
(Vκ+1)M = Vκ+1. It is this degree of resemblance which is responsible for the
strong reflection properties that hold atκ. For example, it readily implies that
there are many inaccessible cardinals below κ, manyMahlo cardinals below
κ, and so on. To obtain embeddings with greater strength one demands
that M resemble V to a higher degree. For example, if one demands that
(Vκ+2)M = Vκ+2 then it follows that there are many measurable cardinals
below κ. In the limit, it is natural to consider, as Reinhardt did in his
dissertation,3 the “ultimate axiom,” where one demands full resemblance,
by positing a non-trivial elementary embedding j : V → V . Let us call the
critical point of such an embedding a Reinhardt cardinal.
Kunen famously showed that if Reinhardt cardinals exist then AC fails.
Since ZFC is generally the accepted background theory, this was taken to
show that Reinhardt cardinals simply do not exist.4 But it has remained a
longstanding open question whether Reinhardt cardinals are inconsistent in
the context ofZF alone. In this articlewewill investigate the hierarchyof such
“choiceless” large cardinal axioms, a hierarchy that starts with a Reinhardt
cardinal, passes upward through strong forms of Reinhardt cardinals, and
passes further still through strong forms of Berkeley cardinals.
The above large cardinals are, of course, inconsistent with AC. However,
each of the choiceless large cardinals has a “HOD-analogue” that is for-
mulated in the context of ZFC. The relevance of all of this to the HOD
Dichotomy is the following: If the choiceless large cardinals are consistent,
then the Ultimate-L Conjecture must fail, and so we will have lost our main
reason for believing that the “close” side of the HOD Dichotomy must
hold. Moreover, if the HOD-analogues of the choiceless large cardinals
exist, then there is indeed a higher analogue of 0# and the “far” side of the
HOD Dichotomy must hold.
We are thus faced with two radically different, mutually incompatible
ways in which future might unfold, granting traditional large cardinals. In

3[10].
4See [9] for the original proof, and see [8] for two alternative proofs.
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the first future the Ultimate-L Conjecture holds, Ultimate-L exists, inner
model theory succeeds, HOD is “close” to V , and large cardinals beyond
choice are inconsistent.5 In the second future, large cardinals beyond choice
are consistent, their HOD-analogues exist, HOD is “far” fromV , Ultimate-
L does not exist, and inner model theory as we know it fails at the level of
supercompact cardinals.
Here is an overview of the article: In Section 1 we discuss some metamath-
ematical preliminaries; in Section 2 we introduce the Reinhardt hierarchy
and establish some results concerning it; in Section 3we introduce the Berke-
ley hierarchy and establish some results concerning it and its relationship to
the Reinhardt hierarchy; in Section 4 we summarize what is known about
the hierarchy of large cardinals beyond choice; in Section 5 we show that
the degree of the failure of AC is connected to the question of the cofinality
of the least Berkeley cardinal; in Section 6 we show that the question of the
cofinality of the least Berkeley cardinal is independent of ZF and our large
cardinal assumptions; in Section 7 we review the recent advances in inner
model theory; finally, in Section 8 we return to the above discussion of the
HOD Dichotomy and we describe in more detail the two possible futures
that lie before us.6

§1. Metamathematical preliminaries. Throughout this article we work in
ZF, unless otherwise noted. In this section we shall discuss some metamath-
ematical subtleties that arise in the choiceless setting and we will introduce
some of the basic notions that figure in what follows.

1.1. Traditional large cardinals. In the choiceless setting some care is
needed when formulating traditional large cardinal notions. To begin with,
some of the traditional formulations do not even make sense without AC.
Moreover, when one reformulates a traditional large cardinal notion in the
choiceless setting, there are often several options, and formulations that are
equivalent under AC can come apart, and even split into notions of different
strength. For this reason it will be useful at the outset to discuss some of the
subtleties and state our official definitions.
The need for reformulation is apparent right at the start, with strongly
inaccessible cardinals. In the context of AC, a cardinal κ is strongly inac-
cessible iff it is regular and for all α < κ, |Vα | < κ. But this does not make
sense without AC since without AC there is no guarantee that Vα admits
a well-ordering. However, in the context of AC, a cardinal κ is strongly
inaccessible (as we have just defined it) iff for all α < κ there does not exist
a function f : Vα → κ with range unbounded in κ. And this formulation
does make sense without AC. We shall take this as our official definition.

Definition 1.1. A cardinal κ is strongly inaccessible if for all α < κ there
does not exist a function f : Vα → κ with range unbounded in κ.
5More precisely, most of the large cardinals beyond choice are inconsistent.
6Acknowledgment. We are grateful to Raffaella Cutolo, Gabriel Goldberg, and an

anonymous referee for helpful comments.
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Notice that in our present choiceless setting, ifκ is strongly inaccessible, we
still have that 〈Vκ,Vκ+1〉 |= ZF2, where here ZF2 is the second-order version
of ZF (with second-order Separation, Collection, and Replacement) and, in
writing ‘〈Vκ,Vκ+1〉 |= ZF2’ we are interpreting the second-order variables
as ranging over the full powerset of Vκ, that is, Vκ+1.
New subtleties arise with some of the stronger large cardinal notions that
we shall employ, most notably with supercompact and extendible cardinals.
For these we need the following technical notion.7

Definition 1.2. Suppose V� ≺Σ1 V . Then V� ≺Σ∗1 V if for all α < �, for
all a ∈ V� , and for all Σ0-formulas ϕ(x, y), if there exists b ∈ V such that

Vαb ⊆ b and V |= ϕ[a, b],
then there exists b ∈ V� such that

Vαb ⊆ b and V |= ϕ[a, b].
Remark 1.3. Under AC, V� ≺Σ∗1 V if and only if V� ≺Σ1 V .
The definition of a supercompact cardinal that wewill use in the choiceless
setting will bemodeled onMagidor’s formulation of supercompact cardinals
in the AC setting. In the choiceless setting, the large cardinals given by
Magidor’s formulation will be called ‘weakly supercompact’ cardinals:

Definition 1.4. A cardinal κ is weakly supercompact if for all � > κ and
for all a ∈ V� , there exists �̄ < κ and ā ∈ V�̄ , and an elementary embedding

j : V�̄+1 → V�+1
with crit(j) = κ̄ such that κ̄ < κ, j(κ̄) = κ and j(ā) = a.

In the context of AC this notion is equivalent to the following notion, which
is the one we will need in what follows:

Definition 1.5. A cardinal κ is supercompact if for all � > κ such that
V� ≺Σ∗1 V , for all a ∈ V� , there exists �̄ < κ and ā ∈ V�̄ , and an elementary
embedding

j : V�̄+1 → V�+1
with crit(j) = κ̄ such that κ̄ < κ, j(κ̄) = κ, j(ā) = a, and V�̄ ≺Σ∗1 V .
Similarly, the definition of an extendible cardinal in the choiceless setting
will be modeled on the standard formulation. In the choiceless setting, the
large cardinals given by the standard formulation will be called ‘weakly
extendible’ cardinals:

Definition 1.6. A cardinal κ is weakly extendible if for all α there exists
and α′ and an elementary embedding

j : Vκ+α → Vj(κ)+α′
such that crit(j) = κ and α < j(κ).

7For the motivation behind this notion see [5].
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In the context of AC this notion is equivalent to the following notion, which
is the one we shall need in what follows:

Definition 1.7. Let A be the class of � such that V� ≺Σ∗1 V . Then κ is
extendible if κ is A-extendible, that is, for all α there exists an α′ and an
elementary embedding

j : Vκ+α → Vj(κ)+α′
such that crit(j) = κ, α < j(κ), and for all � < α, j(A ∩ Vκ+�) =
A ∩ Vj(κ)+j(�).
1.2. Large cardinals beyond choice. The above large cardinal notions are
simply the traditional large cardinal notions reconfigured for the choiceless
setting. Ultimately, however, our real interest is in large cardinal notions
that actually imply the failure of AC.
We shall consider two stretches of the hierarchy of large cardinals beyond
choice. The first stretch is the Reinhardt hierarchy, consisting of Reinhardt
cardinals, super Reinhardt cardinals, and totally Reinhardt cardinals. The
second stretch is the Berkeley hierarchy, consisting of Berkeley cardinals,
club Berkeley cardinals, and limit club Berkeley cardinals. We will give the
definitions in subsequent sections but here it will be useful to say something
about our background theory.
The large cardinals in the Berkeley hierarchy all admit of a first-order
definition and so their formulation takes place in ZF. This is also true of
totally Reinhardt cardinals. However, the notion of a Reinhardt cardinal
and the notion of a super Reinhardt cardinal do not admit a first-order
definition in the language of ZF since they involve proper class embeddings
in an essential way. There are standard ways of dealing with this. One
approach is to work in the conservative extension NBG (without choice) of
ZF. Here one has recourse to proper classes and although one does not have
recourse to the full definition of truth (which would be required to assert
the statement that j is elementary) one can capture the scheme expressing
that “j is elementary” in terms of the statement asserting that “j is a cofinal
Δ0-elementary embedding.”
In what follows we shall work in ZF, except for the cases where we employ
notions like that of a Reinhardt cardinal or that of a super Reinhardt car-
dinal, in which case the reader should understand us to be working in the
conservative extension NBG (without choice).

1.3. Three grades of reflection. We are interested in the relative strength of
these notions. In the first instance one is interested in consistency strength.
But in general when one shows that one large cardinal axiom is stronger
than another, one gets much more than greater consistency strength; one
actually gets that the one large cardinal axiom implies that there are rank
initial segments of the universe that satisfy the other large cardinal axiom.
The following three grades of “reflection” will figure in what follows:

Definition 1.8. Suppose that Φ1 and Φ2 are large cardinal notions.
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• Φ1 reflects Φ2 if for all κ such that Φ1(κ) there exists κ̄ < κ such that
Φ2(κ̄).

• Φ1 rank-reflects Φ2 if for all κ such that Φ1(κ) there are κ̄ < � � κ
such that 〈V�, V�+1〉 |= ZF2 + Φ2(κ̄).

• Φ1 strongly rank-reflects Φ2 if for all κ such that Φ1(κ) there are κ̄ <
� < κ such that 〈V�, V�+1〉 |= ZF2 + Φ2(κ̄).

§2. The Reinhardt hierarchy. The first large cardinal beyond choice that
we shall discuss is the one that Reinhardt introduced.

Definition 2.1. A cardinal κ is Reinhardt if there exists a non-trivial
elementary embedding j : V → V such that crit(j) = κ.
This large cardinal notion canbe strengthened in a naturalway, by employing
the template used to define strong cardinals.

Definition 2.2. A cardinal κ is super Reinhardt if for all ordinals 	 there
exists a non-trivial elementary embedding j : V → V such that crit(j) = κ
and j(κ) > 	.

This large cardinal notion can in turn be strengthened by employing the
template used to define Woodin cardinals.

Definition 2.3. LetA be a proper class. A cardinal κ isA-super Reinhardt
if for all ordinals 	 there exists a non-trivial elementary embedding j :
V → V such that crit(j) = κ, j(κ) > 	, and j(A) = A, where j(A) =⋃
α∈On j(A ∩ Vα). A cardinal κ is totally Reinhardt if for each A ∈ Vκ+1,

〈Vκ,Vκ+1〉 |= ZF2 + “There is an A-super Reinhardt cardinal.”
It is immediate that totally Reinhardt cardinals rank-reflect super Rein-
hardt cardinals. It turns out that super Reinhardt cardinals strongly
rank-reflect Reinhardt cardinals.

Theorem 2.4. Suppose that κ is a super Reinhardt cardinal. Then there
exists � < κ such that

〈V�, V�+1〉 |= ZF2 + “There is a Reinhardt cardinal.”
Proof. Let j : V → V be a non-trivial elementary embedding with
crit(j) = κ. Let κ0 = κ and, for n < �, let κn+1 = j(κn). Let

	 = sup{κn : n < �}.
Notice that j(	) = 	.
Sinceκ is superReinhardt, there exists a non-trivial elementary embedding
j′ : V → V with crit(j′) = κ and j′(κ) > 	. Notice that j′(κ) is a limit of
inaccessible cardinals (since, by reflection via j′, κ is a limit of inaccessible
cardinals). Let �0 be the least inaccessible above 	. Since �0 is definable from
	 and since j(	) = 	, we have that j(�0) = �0. So

〈V�0, V�0+1〉 |= ZF2 + “κ is a Reinhardt cardinal,”
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as witnessed by j�V�0 . Finally, since �0 < j′(κ), by applying (j′)−1, there
exists � < κ such that

〈V�, V�+1〉 |= ZF2 + “there is a Reinhardt cardinal,”
as desired. 	
Thus, we have a proper hierarchy: Totally Reinhardt cardinals rank
reflect super Reinhart cardinals, and super Reinhardt cardinals strongly
rank-reflect Reinhardt cardinals.
Moreover, it should be noted that (in terms of consistency strength) this
hierarchy starts above the traditional large cardinal hierarchy:
Theorem 2.5 (Goldberg). Assume DC and that κ is a Reinhardt cardinal.
Then there is a forcing extension V [G ] such that V [G ]κ |= ZFC+ I0.8
Question 1. Do totally Reinhardt cardinals strongly rank-reflect super
Reinhardt cardinals?
Question 2. Do super Reinhardt cardinals reflect Reinhardt cardinals?

§3. The Berkeley hierarchy. Let us now proceed onward and upward.
3.1. Proto-Berkeley cardinals.

Definition 3.1. For a transitive set M , let E (M ) be the set of all non-
trivial elementary embeddings j :M →M .
Definition 3.2. An ordinal � is a proto-Berkeley cardinal if for all
transitive setsM such that � ∈M there exists j ∈ E (M ) with crit(j) < �.

The idea is that a proto-Berkeley cardinal � is so large that it “shatters”
any transitive set that contains it; more precisely, it forces any such set to
be nonrigid, as witnessed by an elementary embedding with critical point
less than �. For example, if � is a proto-Berkeley cardinal then, as a special
case, for any 	 > � there is an elementary embedding j : V	 → V	 with
crit(j) < �. But we have much more. For example, now we can fold j itself
into a new transitive set to obtain j′ : 〈V	, j〉 → 〈V	, j〉 with crit(j′) < �,
and so on.
Notice that if �0 is the least proto-Berkeley cardinal then every ordinal
greater than �0 is also trivially a proto-Berkeley cardinal. These other proto-
Berkeley cardinalsmerely inherit their proto-Berkeleyness from �0, and—for
example, in the case of �0 + 1—need not be significantly larger than �0. To
isolate a non-degenerate notion it is instructive to examine the first non-
degenerate case, �0, and isolate a key feature that distinguishes it from the
degenerate cases.
We will need the following trivial lemma.
Lemma 3.3. For any set a there exists a transitive setM such that a ∈ M
and a is definable (without parameters) inM .
Proof. Let 	 be such that a ∈ V	, and let

M = V	 ∪
{{〈a, x〉 : x ∈ V	}

}
.

8See [3].
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It is straightforward to see that M is transitive. Moreover, a is definable
(without parameters) inM as the first element in each of the pairs belonging
to the set of highest rank. 	
This lemma enables us to give the following reformulation of the notion of
a proto-Berkeley cardinal, something that will be useful later.

Lemma 3.4. The following are equivalent:

(1) � is a proto-Berkeley cardinal.
(2) For all sets a, for all transitive M such that a, � ∈ M , there exists
j ∈ E (M ) such that j(a) = a and crit(j) < �.

Proof. (2)→ (1). Immediate: Take a = ∅.
(1)→ (2). Let a be a set and letM be a transitive set such that a, � ∈M .
By Lemma 3.3 letM ′ be such that a andM are definable inM ′. Since � is a
proto-Berkeley cardinal, there exists j′ : M ′ →M ′ with crit(j′) < �. Since
a andM are definable inM ′, j′(a) = a and j′(M ) =M . So j′�M ∈ E (M )
is our desired embedding. 	
But our real interest in Lemma 3.3 is that it enables one to prove the
following:

Theorem 3.5. Let �0 be the least proto-Berkeley cardinal. Then for all
transitive setsM such that �0 ∈M , and for all 
 < �0, there exists j ∈ E (M )
such that


 < crit(j) < �0.

Proof. Suppose for contradiction that the statement of the theorem fails.
So there is a transitive setM such that �0 ∈M and there are ordinals 
 < �0
such that there does not exist j ∈ E (M ) with 
 < crit(j) < �0. Ranging over
all suchM let 
0 < �0 be the least ordinal such that there exists a transitive
M such that �0 ∈M and there does not exist j ∈ E (M ) with


0 < crit(j) < �0.

LetM0 be one suchM . We claim that 
0 is a proto-Berkeley cardinal, which
implies that 
0 = �0, a contradiction.
LetM be any transitive set such that 
0 ∈M . LetM ′ be such that

〈M0,M, 
0〉 is definable inM ′.

Since �0 ∈M ′ there exists j′ ∈ E (M ′) with crit(j′) < �0. SinceM0,M , and

0 are definable inM ′, j′ fixesM0,M , and 
0. Since j′ fixesM0, it follows
that j′�M0 ∈ E (M0). Moreover, crit(j′�M0) � 
0 (by the definition of 
0).
But j′(
0) = 
0. So,

crit(j′�M0) < 
0.
Similarly, since j′ fixes M , it follows that j′�M ∈ E (M ). And we have
just shown that crit(j′�M ) < 
0. But M was any transitive set such that

0 ∈ M . So we have shown that 
0 is a proto-Berkeley cardinal, which is a
contradiction. 	
This theorem is really just the first instance of something more general.
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Definition 3.6. Suppose α ∈ On. An ordinal � is an α-proto-Berkeley
cardinal if for all transitive setsM such that � ∈ M there exists j ∈ E (M )
with α < crit(j) < �. Let �α be the least α-proto-Berkeley cardinal.

Theorem 3.7. Suppose α ∈ On. Then for all transitive sets M such that
�α ∈M and for all 
 < �α there exists an elementary embedding j :M →M
such that


 < crit(j) < �α.

Proof. The proof is almost exactly the same as the proof of Theorem
3.5. 	
To summarize: If �0 is the least proto-Berkeley cardinal then every ordinal
� > �0 is a proto-Berkeley cardinal. But the key feature distinguishing �0
from most of these other degenerate proto-Berkeley cardinals is that in the
case of �0 the critical points of the witnessing embeddings are cofinal in �0.
The next proto-Berkeley cardinal sharing this feature is the least �0-proto-
Berkeley cardinal, and so on. This motivates the definition of a Berkeley
cardinal.

3.2. Berkeley cardinals.

Definition 3.8. A cardinal � is a Berkeley cardinal if for every transitive
setM such that � ∈M , and for every ordinal 
 < �, there exists j ∈ E (M )
with 
 < crit(j) < �.

Remark 3.9. Notice that:

(1) For all α ∈ On, the least α-proto-Berkeley cardinal, �α, is a Berkeley
cardinal.

(2) If � is a limit of Berkeley cardinals, then � is a Berkeley cardinal. In
other words, the class of Berkeley cardinals is closed. (Note that the
limit Berkeley cardinals are not among the �α .)

(3) If � is a Berkeley cardinal, then for all limit ordinals 	 > �, V	 thinks
that � is a Berkeley cardinal.

(4) The property “� is a Berkeley cardinal” is aΠ2 property. Hence, if 	 is a
limit ordinal such that V	 ≺Σ2 V, thenV	 is correct in its identification
of the Berkeley cardinals below 	.

Let us now turn to the question of how, in terms of strength, Berkeley
cardinals are related to the large cardinals in the Reinhardt hierarchy. We
begin with a simple observation involving extendible cardinals.

Theorem 3.10. Suppose �0 is the least Berkeley cardinal. Then there are no
extendible cardinals � �0.
Proof. Assume for a contradiction that � � �0 is extendible. It is a stan-
dard result thatV� ≺Σ3 V and this result carries over to the choiceless setting.
Since V satisfies that there is a Berkeley cardinal, namely �0, and since the
notion of being a Berkeley cardinal is Π2, it follows by Σ3-elementarity that
V� also satisfies that there is a Berkeley cardinal. But V� is correct in its
computation of Berkeley cardinals. Thus, there is a Berkeley cardinal below
�, which is a contradiction. 	
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So Berkeley cardinals do not reflect extendible cardinals. It follows that they
do not reflect super Reinhardt cardinals. Nevertheless, as we will now show,
they strongly rank-reflect both extendible cardinals andReinhardt cardinals.
We will need the following lemma.

Lemma 3.11. Let �0 be the least Berkeley cardinal. Then, for a tail of limit
ordinals 	, if j ∈ E (V	) is an elementary embedding with crit(j) < �0, then
(1) j(�0) = �0, and
(2) {α < �0 : j(α) = α} is cofinal in �0.
Proof. (1). The key point is that for a tail of limit ordinals 	,V	 recognizes
that �0 is the least Berkeley cardinal: To see this, note first that the least
Berkeley cardinal is also characterized as the least proto-Berkeley cardinal.
Now, for each � < �0, since � is not a proto-Berkeley cardinal there exists
M� such that � ∈ M� and there does not exist j ∈ E (M�) with crit(j) < �.
Let �� be least such that V�� contains such a counterexample,M� . Let 	 be
a limit ordinal such that 	 > �0 and 	 > �� , for all � < �0. Since 	 is a limit
ordinal greater than �0, V	 thinks that �0 is a Berkeley cardinal (by Remark
3.9(3)).Moreover,V	 thinks that any � < �0 is not a proto-Berkeley cardinal
since it has all of the counterexamplesM� . In other words, for any such 	,
V	 recognizes that �0 is the least proto-Berkeley cardinal, and hence that it
is the least Berkeley cardinal.
Finally, if 	 is in the above tail, then for any j ∈ E (V	) with crit(j) < �0 we
must have j(�0) = �0, as �0 is definable in V	 as the least Berkeley cardinal.
(2). Let 	 be in the above tail and suppose that j ∈ E (V	) is such that
crit(j) < �0. Assume, for a contradiction, that (2) fails. Let


0 = sup{α < �0 : j(α) = α}
and, for i < �, let 
i+1 = j(
i ). It follows that

�0 = sup{
i : i < �}.
LetM0 be a witness inV	 to the fact that 
0 is not a proto-Berkeley cardinal;
that is, letM0 be a transitive set such that 
0 ∈M0 and there is no j ∈ E (M0)
with crit(j) < 
0. For i < �, letMi+1 = j(Mi ). Notice that by elementarity
Mi+1 is a witness that 
i+1 is not a proto-Berkeley cardinal.
Now, for a tail of limit ordinals 	,

〈Mi : i < �〉 ∈ V	.
It follows (from Lemma 3.4) that for some such 	 there exists j′ ∈ E (V	)
such that

j′(〈Mi : i < �〉) = 〈Mi : i < �〉
and crit(j′) < �0. Let i be such that crit(j′) < 
i . We have j′(Mi ) =Mi and
so j′�Mi ∈ E (Mi ) and is such that crit(j′�Mi) < 
i . But this contradicts
the fact thatMi is a witness that 
i is not a proto-Berkeley cardinal. 	
Remark 3.12. The same proof shows that the result holds for the second
Berkeley cardinal, the third Berkeley cardinal, and so on. More generally,
if α is such that for a tail of limit ordinals 	, α is definable in V	, then the
result holds for �α, where that �α is the least α-proto Berkeley cardinal.
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We shall now show that Berkeley cardinals strongly rank-reflect Reinhardt
cardinals and, moreover, that they strongly rank-reflect Reinhardt cardinals
in conjunction with the large cardinals in the traditional large cardinal
hierarchy. Inorder tobe specificwe shall take as our traditional large cardinal
notion that of an�-huge cardinal, but the proof readily generalizes to other
traditional large cardinal notions.

Definition 3.13. A cardinal κ is �-huge if there exists a 	 > κ and a
non-trivial elementary embedding j : V	 → V	 such that κ = crit(j) and
	 = κ�(j), where

κ�(j) = sup
n<�
κn,

where κ0 = crit(j) and κn+1 = j(κn), for all n < �.

Theorem 3.14. Suppose that �0 is the least Berkeley cardinal. Then there
exists � < �0 such that

〈V�, V�+1〉 |= ZF2 + “there exists a Reinhardt cardinal, as witnessed by j,
and there is an �-huge cardinal above κ�(j).”

Proof. By Lemma 3.11, for a tail of limit ordinals � , if j ∈ E (V�) is such
that crit(j) < �0, then j(�0) = �0 and {α < �0 : j(α) = α} is cofinal in �0.
Fix such a � in this tail and, using the fact that �0 is a Berkeley cardinal, let
j ∈ E (V�) be such that crit(j) < �0. Let κ = crit(j) and 	 = κ�(j).
The restriction of j to some suitable V� (for � < �0) will be our witness
that 〈V�, V�+1〉 thinks that κ is a Reinhardt cardinal. We seek such a local
environment 〈V�, V�+1〉 and an �-huge cardinal in this environment which
is above 	.
Since �0 is a Berkeley cardinal there are embeddings j′′ ∈ E (V�) with
	 < crit(j′′) < �0 and, since � is in the tail chosen above, for any such j′′

we also have that 	′′ =df κ�(j′′) < �0. Thus there are plenty of �-huge
cardinals above 	 and below �0.
We now isolate the appropriate local environment 〈V�, V�+1〉. We have
shown (inV� ) that there are 	′′ with the property that there existsk ∈ E (V	′′)
such that 	 < crit(k) < �0 and κ�(k) = 	′′ < �0. (Just take 	′′ from the
previous paragraph and set k = j′′�V	′′ .) Working in V� , let 	′ be the least
such 	′′, let j′ ∈ E (V	) be one of the embeddings k associated with 	′, and
let � be the least strongly inaccessible above 	′. Notice that 	′ and � are
definable (in V�) from 	 and �0. Thus, since j(	) = 	 and j(�0) = �0, we
have j(	′) = 	′ and j(�) = �, so j�V� ∈ E (V�). Thus, the embeddings
j�V� ∈ E (V�) and j′ ∈ E (V	′) witness that

〈V�, V�+1〉 |= ZF2 +“there is a Reinhardt cardinal, as witnessed by j�V� ,
and there is an �-huge cardinal above κ�(j�V�).” 	

Question 3. Do Berkeley cardinals strongly rank-reflect super Reinhardt
cardinals?
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3.3. Club Berkeley cardinals. Let us now introduce a stronger version of
a Berkeley cardinal, one that rank-reflects super Reinhardt cardinals.

Definition 3.15. A cardinal � is a club Berkeley cardinal if � is regular
and for all clubs C ⊆ � and for all transitive M with � ∈ M there exists
j ∈ E (M ) with crit(j) ∈ C .
Theorem 3.16. Suppose � is a club Berkeley cardinal. Then � is a totally
Reinhardt cardinal.
Proof. Fix A ⊆ V�. We have to show that

〈V�, V�+1〉 |= ZF2 + “There is an A-super Reinhardt cardinal.”
Recall that (by Lemma 3.3) for arbitrary A ⊆ V� there are transitive sets
M such that V�+1 ∈M and A is definable inM . The main ingredient is the
following claim, which concerns suchM .

Claim. For all transitive setsM such that V�+1 ∈M and A is definable in
M , there exists κ < � such that for all α < � there exists j ∈ E (M ) such
that

(1) crit(j) = κ,
(2) j(κ) > α, and
(3) j(A) = A.

Proof. Suppose that the claim is false. LetM be a transitive set such that
V�+1 ∈M ,A is definable inM and such that for all κ < � there exists α < �
such that there does not exist j ∈ E (M ) with

(1) crit(j) = κ,
(2) j(κ) > α, and
(3) j(A) = A.

For each κ < �, let ακ be the least such α. Let

C = {� < � : ∀κ < � (ακ < �)}.
The set C is the set of “no crossover points.” Notice that since � is regular,
C is club in �. Since � is a club Berkeley cardinal there exists j ∈ E (M ) such
that

(1) crit(j) ∈ C ,
(2) j(C ) = C , and
(3) j(A) = A.

(To arrange (2) one uses the fact that C ∈ M (as V�+1 ∈ M ) and applies
the standard trick involving Lemma 3.4, where one passes to a transitive
set M ′ in which C and M are definable.) Now, κ = crit(j) ∈ C and so
j(κ) ∈ j(C ) = C . But since j(κ) ∈ C and κ < j(κ) we have (by the
definition of C ) that ακ < j(κ), which contradicts the definition of ακ. 	
Take any transitive setM as in the claim. It follows that

〈V�, V�+1〉 |= ZF2 + “There is an A-super Reinhardt cardinal,”
as witnessed by κ and the embeddings j�V� in the claim. 	
Question 4. Does a clubBerkeley cardinal rank-reflect aBerkeley cardinal?

https://doi.org/10.1017/bsl.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.28


296 JOAN BAGARIA, PETER KOELLNER, ANDW. HUGHWOODIN

3.4. Limit club Berkeley cardinals. We know that the least Berkeley cardi-
nal cannot be super Reinhardt. But it is of interest to ask whether some
Berkeley cardinal can be super Reinhardt. We now introduce an even
stronger notion of Berkeley cardinal, one which rank-reflects a Berkeley
cardinal that is also super Reinhardt.

Definition 3.17. A cardinal � is a limit club Berkeley cardinal if � is a club
Berkeley cardinal which is a limit of Berkeley cardinals.

Theorem 3.18. Suppose � is a limit club Berkeley cardinal. Then

〈V�, V�+1〉 |= ZF2 + “there is a Berkeley cardinal that is super Reinhardt.”
Proof. The proof is a variation of the proof of Theorem 3.16.

Claim. For all transitive sets M such that V�+1 ∈ M , and for all D ⊆ �
which are club in � there exists κ ∈ D such that for all α < � there exists
j ∈ E (M ) such that

(1) crit(j) = κ and
(2) j(κ) > α.

Proof. Suppose that the claim is false. LetM be a transitive set such that
V�+1 ∈ M and let D ⊆ � be club in � such that for all κ ∈ D there exists
α < � such that there does not exist j ∈ E (M ) with

(1) crit(j) = κ and
(2) j(κ) > α.

For each κ ∈ D, let ακ be the least such α. Let
C = {� < � : ∀κ ∈ D ∩ � (ακ < �)}

be the set of “no crossover points.” Notice that since � is regular, C is club
in �. Since � is a club Berkeley cardinal there exists j ∈ E (M ) such that

(1) crit(j) ∈ C ∩D,
(2) j(C ) = C , and
(3) j(D) = D.

(To arrange (2) and (3) one uses the fact that C,D ∈ M (as V�+1 ∈ M )
and applies the standard trick involving Lemma 3.4, where one passes to a
transitive set M ′ in which C , D, and M are definable.) Now, κ ∈ C ∩ D
and so j(κ) ∈ j(C ) ∩ j(D) = C ∩ D. This is a contradiction since by the
definition of C , for all κ ∈ j(κ) ∩D, ακ < j(κ). 	
It follows that

〈V�, V�+1〉 |= ZF2 + “there are stationarily-many super Reinhardt cardinals.”
Since the Berkeley cardinals below � are club in � (by Remark 3.9(2)), it
follows that

〈V�, V�+1〉 |= ZF2 + “there is Berkeley cardinal which is super Reinhardt,”
which completes the proof. 	

https://doi.org/10.1017/bsl.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.28


LARGE CARDINALS BEYONDCHOICE 297

§4. The choiceless hierarchy. The situation thus far looks like this:

Here ‘LCBC’ stands for ‘limit club Berkeley cardinal,’ ‘CBC’ stands for
‘club Berkeley cardinal,’ ‘BC’ stands for ‘Berkeley cardinal,’ ‘TR’ stands for
‘totally Reinhardt,’ ‘SR’ stands for ‘super Reinhardt,’ and ‘R’ stands for
‘Reinhardt.’ The arrows are to be interpreted as follows: ‘srr’ stands for
‘strongly rank-reflects,’ ‘rr’ stands for ‘rank-reflects,’ ‘r’ stands for ‘reflects,’
and an unlabeled arrow between X and Y means that ‘X is a Y .’

§5. Choice. The choiceless large cardinals are, of course, inconsistent
with AC. In the case of the weakest large cardinal in the choiceless
hierarchy—a Reinhardt cardinal—the conflict with AC is most transpar-
ently seen through a violation of Solovay’s theorem on splitting stationary
sets. It is reasonable to expect that as one strengths the choiceless large car-
dinal notion the violation of AC becomes more transparent. It turns out
that this expectation is borne out in the case of Berkeley cardinals.

Definition 5.1. Suppose � is an ordinal. Then �-DC is the statement that
for every nonempty set X and for every function F :<� X → P(X ) � {∅}
there exists a function f : � → X such that for all α < �, f(α) ∈ F (f�α).
It is well known that AC is equivalent to the statement that �-DC holds for
all �. So the principles �-DC provide us with a nice stratification of AC into
stronger and stronger fragments.

Definition 5.2. Let �0 be the least Berkeley cardinal. For any transitive
setM such that �0 ∈M , let κM = min{crit(j) : j ∈ E (M )}.
Lemma 5.3. Let �0 be the least Berkeley cardinal. Then for all 
 < �0 there
exists a transitive setM
 such that �0 ∈M
 and κM
 > 
, (that is, crit(j) > 

for all j ∈ E (M
)).
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Proof. Suppose for contradiction that the lemma fails. Let 
0 < �0 be the
least 
 such that κM � 
 for all transitive sets M with �0 ∈ M . We show
that 
0 is a proto-Berkeley cardinal, which is a contradiction: Let M be a
transitive set such that 
0 ∈ M . By Lemma 3.3, let M̂ be a transitive set
such that �0 ∈ M̂ and 
0 andM are definable in M̂ . Let j ∈ E (M̂ ) be such
that crit(j) � 
0. Since 
0 is definable in M̂ , j(
0) = 
0 and so crit(j) < 
0.
SinceM is definable in M̂ , j�M ∈ E (M ). Finally, sinceM was an arbitrary
transitive set containing 
0, this shows that 
0 is a proto-Berkeley cardinal,
which is a contradiction since �0 is the least proto-Berkeley cardinal. 	
Theorem 5.4. Suppose that �0 is the least Berkeley cardinal. Let � =
cof(�0). Then �-DC fails.
Proof. Let f : � → �0 be cofinal. For each � < �, let �� be least such that
V�� contains a transitive set M such that �0 ∈ M and κM > f(�). (This
ordinal exists, by Lemma 5.3.)
For each � < �, let

M̂� = {M ∈ V�� :M is transitive, �0 ∈M, and κM > f(�)}.
Assume for contradiction that �-DC holds. Using �-DC, let

〈M� : � < �〉
be such thatM� ∈ M̂� , for all � < �.
Now, by Lemma 3.3, letM ′ be a transitive set such that 〈M� : � < �〉 is
definable inM ′. Let j′ ∈ E (M ′) be such that crit(j′) < �0. So

j′(〈M� : � < �〉) = 〈M� : � < �〉.
It follows that if j′(�) = �, then j′(M�) = M� and so j′�M� ∈ E (M�),
which means crit(j′) � κM� > f(�). Thus, there cannot be cofinally many
� < � such that j′(�) = �, as this would imply crit(j′) � �0.
It follows that there exists

〈
i : i < �〉
such that 
i+1 = j′(
i ) and sup{
i : i < �} = �. Now, consider

〈M
i : i < �〉.
LetM ′′ be such that 〈M
i : i < �〉 is definable inM ′′ and let j′′ ∈ E (M ′′)
be such that crit(j′′) < �0. We have

j′′(〈M
i : i < �〉) = 〈M
i : < �〉.
Thus, for each i < �,

j′′(M
i ) =M
i
and so

j′′�M
i ∈ E (M
i ).

It follows that for each i < �, crit(j′′) � κM
i . Hence crit(j
′′) � �0, which

is a contradiction. 	
Remark 5.5. The proof actually shows that �-AC fails. We have chosen
to phrase matters (here and below) in terms of �-DC in part because in
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contrast to �-AC it provides a stratification of AC. (AC is not equivalent to
the statement that �-AC holds for all �.)

§6. Cofinality. The previous theorem shows that there is an intimate con-
nection between the cofinality of the least Berkeley cardinal and the degree
of the conflict AC—the smaller the cofinality, the greater the conflict. This
raises the question: What is the cofinality of the least Berkeley cardinal?
This looks like the sort of question that should have an easy answer.
Moreover, since the assumption that �0 has countable cofinality implies a
drastic failure of AC—the failure of countable choice—one might think that
it should be possible to simply rule out this possibility.
It turns out however that the question of the cofinality of the least Berke-
ley cardinal is independent of our background assumptions. Moreover, if
Berkeley cardinals are consistent, then it is also consistent that the least
Berkeley cardinal have countable cofinality, and so enforce the failure of
countable choice.
In an early version of this article we showed that if there is a club Berkeley
cardinal then there is a forcing extension where (in a rank initial segment)
the least Berkeley cardinal has countable cofinality, and there is a forcing
extension where (in a rank initial segment) the least Berkeley cardinal has
uncountable cofinality. The forcing construction involved Prikry forcing in
the choiceless setting and the proof was rather involved. Recently, Raffaella
Cutolo (a student of the second and third authors) found simpler proofs of
sharper results. We include an account of her refinement.

Theorem 6.1. Assume ZF + DC + BC. Then there is a forcing extension
V [G ] such that

V [G ] |= “cof(�0) = �1”
where �0 is the least Berkeley cardinal as computed in V [G ].
Proof. Work in V . Let �0 = (�0)V be the least Berkeley cardinal in V .
Since we are assuming DC, by Theorem 5.4 we have that cof(�0) � �1. If
cof(�0) = �1 then we are done. So assume cof(�0) > �1.
The Forcing: (P�0 ,�P�0

).
Let

S�0� = {α < �0 : cof(α) = �}
and

[S�0� ]
ℵ0 = {� ⊆ S�0� : |�| = ℵ0}.

The conditions of the forcing are of the form 〈�,C 〉 where � ∈ [S�0� ]ℵ0 is
closed and C is an �-club in �0. The ordering of conditions is given by

〈�2, C2〉 �P�0
〈�1, C1〉 ↔ (1) C2 ⊆ C1,

(2) �2 end-extends �1,

i.e., �1 ⊆ �2 and �2 ∩ sup(�1) = �1, and,
(3) �2 � �1 ⊆ C1.

This relation is clearly transitive and, by DC, it is easy to see that it is
countably closed (and hence that (�1)V [G ] = (�1)V ).
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Let G ⊆ P�0 be V -generic. Let

�G =
⋃{� : ∃C 〈�,C 〉 ∈ G}.

Claim 1. The following hold in V [G ].
(1) ot(�G ) = �1.
(2) For all C ∈ V , if C is an �-club in �0, then �G � C is bounded.
Proof. (1). Since each � is countable, we have ot(�G ) � �1. For the other
direction note that for each α < �1, each condition 〈�,C 〉 can be extended
to a condition 〈�′, C ′〉 such that ot(�′) > α; so, by genericity, ot(�G ) � �1.
(2). Suppose C ∈ V is an �-club in �0. The set {〈�,D〉 ∈ P�0 : D ⊆ C} is
dense in P�0 . If 〈�,D〉 ∈ G is in this set, then all further extensions 〈�′′, C ′′〉
are such that �′′ � � ⊆ C . So �G � C is bounded. 	
It follows that in V [G ], �G is a club in �0 of ordertype �1. So
(cof(�0))V [G ] � �1. The question is whether �0 is a Berkeley cardinal in
V [G ].

Claim 2. Suppose ϕ is a statement in the language of forcing with only
check names. Then either 1P�0 �P�0

ϕ or 1P�0 �P�0
¬ϕ.

Proof. The key claim is the following:

Subclaim. Suppose 〈�0, C0〉 is a condition. SupposeG is a generic through
〈∅, C0〉. Then there is a generic G�0 through 〈�0, C0〉 such that V [G�0 ] =
V [G ].
Proof. The point is that if D is dense below 〈�0, C0〉, then
D�0 =

{〈�′ ∪ �′′, C 〉 : ∃� such that 〈�,C 〉 ∈ D,
� � sup(�0) = �′′, �′ ⊆ sup(�0), and �′ ⊆ C

}

is dense below 〈∅, C0〉. Now, for G the generic in the statement of the claim,
let

G�0 =
{〈�0 ∪ �′′, C 〉 : ∃� such that 〈�,C 〉 ∈ G

and � � sup(�0) = �′′
}
.

We claim that G�0 is a generic through 〈∅, C0〉. For suppose D is dense
below 〈�0, C0〉. Then, since D�0 is dense below 〈∅, C0〉, G must hit D�0 . Let
〈�′∪�′′, C 〉 ∈ G∩D�0 . So there exists � such that 〈�,C 〉 ∈ D, ��sup(�0) =
�′′, and �′ ⊆ (sup(�0) ∩ C ). So 〈�0 ∪ �′′, C 〉 ∈ G�0 ∩D. So G�0 hits D.
Finally, since �0 ∈ V , we have that V [G�0 ] = V [G ]. 	
Either there exists a condition 〈�0, C0〉 such that

〈�0, C0〉 �P�0
ϕ

or there exists a condition 〈�1, C1〉 such that
〈�1, C1〉 �P�0

ϕ.

In the first case we have that 〈∅, C0〉 �P�0
ϕ, since for every generic through

〈�0, C0〉 there is an “equivalent” generic through 〈∅, C0〉. In the second
case, 〈∅, C1〉 �P�0

¬ϕ. But 〈∅, C0〉 and 〈∅, C1〉 are compatible conditions.
So every condition that decides ϕ must decide it in the same way. This
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implies that 1P�0 decides ϕ. (The reason is that the set {p ∈ P�0 : p �P�0

ϕ or p �P�0
¬ϕ} is dense. So in our case {p ∈ P�0 : p �P�0

ϕ} is dense or
{p ∈ P�0 : p �P�0

¬ϕ} is dense.) 	
Claim 3. 1P�0 �P�0

“�0 is a Berkeley cardinal.”
Proof. Suppose for contradiction that the claim fails. By Claim 2

1P�0 �P�0
“�0 is not a Berkeley cardinal.”

Let 〈�,C 〉 ∈ P�0 and  ∈ Name P�0 be such that
〈�,C 〉 �P�0

“ is a transitive set such that

�0 ∈  and ∃
 < �0 such that
¬∃j ∈ E () (
 < crit(j) < �0).”

Let 
 < �0 be least such that there exists 〈�0, C0〉 ≤ 〈�,C 〉 such that
〈�0, C0〉 �P�0

“¬∃j ∈ E () (
 < crit(j) < �0).”

Let 	 be a limit ordinal much larger than �0 such that  ∈ V	, V	 recognizes
that �0 is the least Berkeley cardinals, and V	 |= ZF∗, where ZF∗ is a
sufficiently large fragment of ZF to implement the “lifting of embeddings”
argument that we give below. Since �0 is a Berkeley cardinal inV , there exists
j ∈ E (V	) such that

(1) j(�0) = �0, j(
) = 
, j() = ,
(2) j([S�0� ]ℵ0) = [S

�0
� ]ℵ0 , j(P�0 ) = P�0 ,

(3) j(〈�0, C0〉) = 〈�0, C0〉, and
(4) 
 < crit(j) < �0.

Let
Cj = {α ∈ S�0� : j(α) = α}.

By the proof of Lemma 3.11(2), Cj is cofinal in �0. Moreover, Cj is an
�-club in �0. So have

〈�0, C0 ∩ Cj〉 �P�0
〈�0, C0〉.

Let G ⊆ P�0 be a V -generic filter such that 〈�0, C0 ∩ Cj〉 ∈ G . We wish to
show that j : V	 → V	 lifts to an elementary embedding j+ : V	[G ] →
V	[G ]. The restriction of this embedding to G will then give the desired
embedding from G into G with 
 < crit(j+) < �0.
Recall the following “lifting criterion” for elementary embeddings: Sup-
pose j : M → N is an elementary embedding of two transitive models
of (a sufficiently large fragment of) ZF. Let P ∈ M and suppose G ⊆ P

is M -generic and H ⊆ j(P) is N -generic. Then j lifts to and elementary
embedding j+ : M [G ] → N [H ] (with j+(G) = H ) iff j“G ⊆ H .9 In
our present case we have that j(P�0 ) = P�0 and we will show that in fact
j“G ⊆ G and hence that the embedding lifts to j+ : V	[G ]→ V	[G ].
It remains to show that j“G ⊆ G : Notice that for any 〈�,C 〉 ∈ P�0 if

〈�,C 〉 � 〈�0, C0 ∩ Cj〉 then j(�) = �. (Let � = �0��̄. We have j(�0) = �0
9The lifting criterion was used in Silver’s consistency proof of the failure of GCH at a

measurable. See [1, Section 9] for a modern account.
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by (3) above, and we have j(�̄) = �̄ since �̄ ⊆ Cj and j is the identity on
[Cj]ℵ0 .) Notice also that for all C ⊆ Cj , C ⊆ j(C ). So for any 〈�,C 〉 ∈ P�0
if 〈�,C 〉 � 〈�0, C0 ∩ Cj〉, then 〈�,C 〉 � j(〈�,C 〉).
Now suppose 〈�,C 〉 ∈ G . Let 〈�′, C ′〉 ∈ G extend both 〈�,C 〉 and

〈�0, C0 ∩ Cj〉. Since 〈�′, C ′〉 � 〈�0, C0 ∩ Cj〉, we have (by the above)
〈�′, C ′〉 � j(〈�′, C ′〉) and hence j(〈�′, C ′〉) ∈ G . Since 〈�′, C ′〉 � 〈�,C 〉,
by elementarity j(〈�′, C ′〉) � j(〈�,C 〉), and so j(〈�,C 〉) ∈ G . Thus,
j“G ⊆ G .
By the “lifting criterion” we have that j : V	 → V	 lifts to an elementary
embedding j+ : V	[G ]→ V	[G ]. Since j+(G) = G and j+() = , we have
j+(G) = G . Moreover, 
 < crit(j+) < �0. Therefore, j+�G : G → G is
an elementary embedding which contradicts the choice of 〈�0, C0〉 and  as
a counterexample to �0 being a Berkeley cardinal in V [G ]. 	
To summarize, we have thus shown that if G ⊆ P is V -generic then V [G ]
satisfies ZF+DC+BC and “�0 is a Berkeley cardinal with cof(�0) � �1”. If
�0 is the least Berkeley cardinal of V [G ] then we also have cof(�0)V [G ] � �1
(since the forcing is countably closed and so DC is preserved) and so we are
done.
However, we have not shown that �0 is the least Berkeley cardinal of V [G ]
and we do not know whether this is true. In any case, the difficulty is easily
handled by iterating the procedure. Let G0 = G . If �0 is the least Berkeley
cardinal of V [G0] then we are done. If �0 is not the least Berkeley cardinal in
V [G0] then let �1 < �0 be the least Berkeley cardinal inV [G0]. We now force
over V [G1] with the partial order P�1 . If G1 is P�1 -generic then V [G0][G1]
satisfies that �1 is a Berkeley cardinal and cof(�1) � �1. But again, we have
no guarantee that �1 is the least Berkeley cardinal of V [G0][G1]. So we
continue, defining �0 > �1 > �2 > · · · . The point is that at some finite stage
n this must stop. Letting n be the stage at which it stops, we have a model
V [G0] · · · [Gn] that satisfies ZF + DC + BC and where the least Berkeley
cardinal �n is such that cof(�n) = �1. 	

Remark 6.2. It is worth noting that the lifting argument in the above
proof could never succeed in the context of AC. The reason is that for all we
have said the least Berkeley cardinal with which we started could have been
regular, but under AC if a countably closed (more generally, proper) forcing
changes the cofinality of a regular cardinal to �1 then it must collapse it
to �1.10 Yet, in our choiceless context, as we have shown in Claim 3, we
have changed the cofinality of �0 to �1 while preserving the fact that it is a
Berkeley cardinal (and hence without collapsing it to �1).
The key choiceless feature that is being leveraged in the proof of Claim 3 is
the following: If there is a Berkeley cardinal �, then given any set a and any
	 such that �, a ∈ V	, one can find elementary embeddings j ∈ E (V	) which
fix a. (We applied this feature in the proof of Claim 3 when we obtained
j ∈ E (V	) satisfying (1)–(3).) This is an extremely powerful large cardinal
feature, one that cannot be had in the context of AC.

10See [4].
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Theorem 6.3. Assume ZF + BC. Then there is a forcing extension V [G ]
such that

V [G ] |= “cof(�0) = �.”
Proof. The proof is almost exactly the same. The only change is that now
in the definition of P�0 we use finite subsets of S

�0
� . The point is that in this

case we do not need DC. 	
Remark 6.4. The same proof also works for other cofinalities.

Thus, ‘ZF + BC’ is equiconsistent with ‘ZF + BC + cof(�0) = �’; and
‘ZF+DC+BC’ is equiconsistent with ‘ZF+DC+BC+cof(�0) = �1.’ So
the question arises: What is the relative consistency strength of ‘ZF + BC’
and ‘ZF + DC+ BC’?
Here is an intriguing idea: Large cardinal axioms are in tension with
axioms asserting that the universe is “orderly.” For example, if there is a
measurable cardinal, then V=L fails; if there is a supercompact cardinal κ,
then�	 fails for all 	 � κ; and, continuing this theme, if there is a Reinhardt
cardinal, then <	+-DC fails, where 	 is the limit of the critical sequence.11

Of course, in all of these cases the tension is too extreme—the principle of
order (V=L, �, <	+-DC) is outright inconsistent with the corresponding
large cardinal (measurable, supercompact, Reinhardt). But perhaps, one
can leverage the tension to obtain strength, without going over the edge into
inconsistency; that is, perhaps as one folds in more and more choice, one
can get stronger and stronger large cardinal principles, approximating, but
not reaching, inconsistency. In particular, perhaps the following sequence
of theories is strictly increasing in terms of consistency strength.

• ZF + BC+ cof(�0) = �
• ZF + BC+ cof(�0) = �1
• ZF + BC+ cof(�0) = �2

...
• ZF + BC+DC+ cof(�0) = �1
• ZF + BC+DC+ cof(�0) = �2
• ZF + BC+DC+ cof(�0) = �3

...
• ZF + BC+ �1-DC + cof(�0) = �2
• ZF + BC+ �1-DC + cof(�0) = �3
• ZF + BC+ �1-DC + cof(�0) = �4

...
• ZF + BC+DC+ cof(�0) = �0
• ZF + BC+ �1-DC + cof(�0) = �0
• ZF + BC+ �2-DC + cof(�0) = �0

...

11If there is a super Reinhardt cardinal κ, then there is a forcing notion which forces 	-DC
and preserves the fact that κ is a Reinhardt cardinal. (The forcing notion is that used in
Theorem 226 of [5].) But <	+-DC must of necessity fail.
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Question 5. Is the above hierarchy of statements increasing in consistency
strength?
Question 6. Is it possible for the least Berkeley cardinal to be regular?
The trouble is that these questions appear to be completely beyond the
reach current technology.

§7. Inner model theory. The key question is whether Berkeley cardinals
are even consistent. In fact, there are results which provide some rea-
son for thinking that Berkeley cardinals are not consistent. In order to
describe these results, and in order to situate our discussion of the two
futures, we need to say something about recent developments in inner model
theory.12

It will be helpful to return to our discussion of the HOD Dichotomy.

7.1. The HOD Dichotomy. The version of the HOD Dichotomy that we
stated in the introduction was a weak version of the official version. The
official version involves the following notion:

Definition 7.1. Let � be an uncountable regular cardinal. LetS�� = {α <
� : cof(α) = �}. Then � is �-strongly measurable in HOD if there exists
κ < � such that
(1) (2κ)HOD < � and
(2) There is no partition 〈Sα : α < κ〉 of S�� into stationary sets such that

〈Sα : α < κ〉 ∈ HOD.
The official version of the HOD Dichotomy is obtained by simply replacing
‘measurable in HOD’ with ‘�-strongly measurable in HOD’ in the weak
version:
Theorem 7.2 (The HOD Dichotomy Theorem). Suppose that κ is an
extendible cardinal. Then exactly one of the following hold.
(1) For every singular cardinal � > κ, � is singular inHOD and (�+)HOD =
�+.

(2) Every regular cardinal � � κ is �-strongly measurable inHOD.
As before, the first alternative is one in which HOD is “close” to V , in that
it correctly computes much of the cardinal structure of V , while the second
alternative is one in which HOD is “far” from V , in that it radically fails
to capture the cardinal structure of V , thinking, for example, that κ+ is
�-strongly measurable.
The connection between the weak version and the official version of the
HOD Dichotomy is given by the following easy lemma:
Lemma 7.3. Assume that � is �-strongly measurable inHOD. Then

HOD |= � is a measurable cardinal.
So the weak version of the HOD Dichotomy follows from the official
version.

12The results discussed in this section are due to the third author and are discussed in
further detail in [5] and [7].
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The importance of the official version is it makes it clear that the issue
in deciding which side of the dichotomy holds is whether or not there
can be “definable” partitions of S�� into stationary sets, as we shall now
explain.

Definition 7.4 (The HOD Hypothesis). There exists a proper class of
regular cardinals � which are not �-strongly measurable in HOD.

Unpacking the definitions, the HOD Hypothesis asserts that there are
arbitrarily large regular cardinals � such that for every κ < � such that
(2κ)HOD < � there is a partition 〈Sα : α < κ〉 ∈ HOD of S�� into sets which
are stationary in V . We know, by Solovay’s theorem on stationary splitting,
that there are always such partitions in V , but what the HOD Hypothesis
is asserting is that such splittings can be done “definably,” in the sense that
they exist in HOD.
There is a series of conjectures to the effect that the HOD Hypothesis is
provable from ZFC, or from ZFC plus various large cardinal axioms. The
Strong HOD Conjecture asserts that the HOD Hypothesis is provable from
ZFC. The HOD Conjecture asserts that the HOD Hypothesis is provable
from ZFC+“There is an extendible cardinal.” Notice that these conjectures
become more plausible as one strengthens the large cardinal assumption.
In what follows we shall focus on the following conjecture, which is more
plausible than the two we have just mentioned.

Definition 7.5 (The Weak HOD Conjecture). TheWeak HOD Conjec-
ture is the conjecture that

ZFC + “There is an extendible cardinal with a huge cardinal above”

proves the HOD Hypothesis.

It is important to note that the Weak HOD Conjecture is a Σ01-statement,
and so it is not going to run up against the rock of undecidability.13 If
this Σ01-statement holds, then, assuming large cardinals—in particular, an
extendible cardinal with a huge cardinal above—we must be in the first half
of the HOD Dichotomy, where HOD is “close” to V .
It is natural to ask why one might make such a conjecture. It posits that
in the presence of an extendible cardinal with a huge cardinal above one
can actually prove that there are arbitrarily large regular cardinals � such
that for every κ < � such that (2κ)HOD < � there is a partition 〈Sα : α <
κ〉 ∈ HOD of S�� into sets which are stationary in V . It is really quite
a surprising conjecture. In fact, when the second author was a graduate
student this conjecture was known by a different name. It was known as
“the silly conjecture.”
But it is not so silly anymore. The reason has to do with recent
developments in inner model theory.

13If it is independent, then it is false.
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7.2. Weak extender models. Inner model theory began, of course, with
Gödel’s L, but it entered the large cardinal hierarchy with Solovay’s L[U ].
Since then the holy grail of inner model theory has been an inner model of
a supercompact cardinal.
Prior to the actual construction of such a model it is hard to know what it
will look like. But one can isolate certain basic features that such a model is
expected to have. For example, an inner model N targeting a supercompact
cardinal κ should be such that the measures in N witnessing the supercom-
pactness of κ in N are “inherited” from the measures in V witnessing the
supercompactness of κ in V .

Definition 7.6. A transitive class N |= ZFC is a weak extender model
of the supercompactness of κ if for every 	 > κ there exists a κ-complete
normal fine measure U on Pκ(	) such that
(1) N ∩ Pκ(	) ∈ U and
(2) U ∩N ∈ N .
Each of these conditions is motivated by the case of L[U ] and the various
other inner models in a long progression. One would expect that an inner
model targeting a supercompact cardinal κ would have these features as
well, and hence be a weak extender model of the supercompactness of κ.
Weak extender models of the supercompactness of κ have features that
are quite remarkable. Recall that in general, when one constructs an inner
model for a given large cardinal, the existence of stronger large cardinals
implies that the model is “far” from V . (One constructs an L-like paradise
of understanding for a given large cardinal, only to have it revealed as
illusory—in the sense of being “far” from V—by the presence of stronger
large cardinals.) Remarkably, at the level of a supercompact cardinal the
situation completely changes.
Theorem 7.7. Suppose that N is a weak extender model the supercom-
pactness of κ. Then for every singular cardinal � > κ, � is singular in N and
(�+)N = �+.
In otherwordsN is “close” toV , regardless of which additional large cardinals
live in V . (So if there is an L-like paradise of understanding at this level,
then no large cardinal can reveal it to be illusory.)
It turns out that such an N actually absorbs all of the large cardinal
structure of V .
Theorem 7.8 (Universality). Suppose that N is a weak extender model of
the supercompactness of κ. Suppose that α > κ is an ordinal and

j : N ∩ Vα+1 → N ∩ Vj(α)+1
is an elementary embedding such that κ � crit(j). Then j ∈ N .
This theorem lies at the heart of a cluster of results which collectively show
that N captures the large cardinal structure of V . For example:
Theorem 7.9. Suppose that N is a weak extender model of the supercom-
pactness of κ and suppose that � > κ is supercompact. Then N is a weak
extender model of the supercompactness of �.
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Theorem 7.10. Suppose thatN is a weak extender model of the supercom-
pactness of κ and suppose that � > κ is extendible. Then � is extendible in
N .
And so on, up through the traditional large cardinal hierarchy. One gets
direct transference to N from V of each large cardinal, no matter how
strong.14

This was entirely unexpected. In general, in inner model theory when one
targets a given large cardinal, the resultingmodel captures that large cardinal
but fails to capture stronger large cardinals; indeed the existence of stronger
large cardinals typically implies that the model is “far” from V (in parallel
to the manner in which the existence of 0# implies that L is “far” from V ).
But in the case of a weak extender model of the supercompactness of κ is
completely different one is just targeting a single supercompact cardinal and
the resulting model is not only “close” to V with regard to its computation
of cardinal structure (above κ) but is also “close” to V in that (above κ)
it inherits all of the traditional large cardinals existing in V . This includes
large cardinals (like n-huge cardinals) which are far beyond the level of
supercompactness. In short, in the case of supercompact cardinals there is
an “ignition point” and the model “goes all the way.” This suggests that the
problem of inner model theory is reduced to the problem of finding an inner
model of a supercompact cardinal.

7.3. The HOD Dichotomy and weak extender models. The relevance of
weak extender models to the HODDichotomy is contained in the following
theorem:
Theorem 7.11. Suppose that κ is an extendible cardinal. Then the following
are equivalent.
(1) The HOD Hypothesis holds.
(2) There is a regular cardinal � � κ which is not �-strongly measurable in
HOD.

(3) No regular cardinal � ≥ κ is �-strongly measurable inHOD.
(4) There is a cardinal � � κ such that (�+)HOD = �+.
(5) HOD is a weak extender model of the supercompactness of κ.
(6) There is a weak extender model N for the supercompactness of κ such
that N ⊆ HOD.

(7) (Goldberg )There is a weak extender modelN for the supercompactness
of κ such that N |= “V=HOD.”15

It is this last equivalence which leads to the expectation that the HOD
Hypothesis actually holds. For, assuming large cardinals, it is natural to
expect that there is a weak extender model of the supercompactness of κ

14Notice that these results are stronger than the ones stated [5]. Here one obtains direct
transference of a large cardinal notion, whereas with the earlier results one had to assume a
(slightly) stronger larger cardinal property to transfer a given one.
15If one strengthens the background assumption of the theorem to ‘Suppose that there is a

proper class of extendible cardinals,’ then one can add ‘There is a weak extender modelN for
the supercompactness of κ such that N |= “The HOD Hypothesis”’ to the above sequence
of equivalences.
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and, given the course of inner model theory, it is natural to expect that such
a model satisfies V=HOD. The Weak HOD Conjecture is thus really just
that conjecture that ‘ZFC+“There is an extendible cardinal κ with a huge
cardinal above κ”’ proves that there is a weak extender model N of the
supercompactness of κthat satisfies V=HOD. That is why the Weak HOD
Conjecture is not silly anymore.

7.4. The Ultimate-L Conjecture. The notion of a weak extender model is
a very general notion. One would like a more specific target and hence a
more specific conjecture than the Weak HOD Conjecture.16

The trouble is that in the case of the canonical inner models M that
have been built to date, one is generally not in a position to even state
the axiom “V = M” prior to the actual construction of M , and, further-
more, the construction is generally so complex that the associated axiom is
not expressible in simple, readily understood terms. There is, however, one
exception, namely, the case of L.
For each ordinal α, let

Nα =
⋂{
M :M is transitive,M |= ZFC− Powerset, and OnM = α}.

Lemma 7.12. The following are equivalent:
(1) V=L.
(2) For each Σ2-sentence ϕ, if ϕ holds in V , then there exists a countable
ordinal α such that Nα |= ϕ.

So the axiom V=L could have been stated prior to actual the construction
of L, in terms of reflection of Σ2-truth into models of the form Nα for
countable α.
Curiously, at the opposite end of the spectrum, in the case of the candidate
for the ultimate inner model, one can also state the axiom prior to the actual
construction. The definition is motivated by the discovery that the HODs
of determinacy models turn out to be canonical (strategic) inner models.
Instead of the reflection of Σ2-truth intomodels of the formNα, the defintion
of Ultimate-L involves reflection of Σ2-truth into the HODs of determinacy
models.

Definition 7.13. “V=Ultimate-L” is the conjunction of the following
two statements:

(1) There is a proper class of Woodin cardinals.
(2) For each Σ2-sentence ϕ, if ϕ holds inV , then there exists a universally
Baire set A ⊆ R such that

HODL(A,R) |= ϕ.
The virtue of knowing the axiom “V=Ultimate-L” prior to the actual
construction of Ultimate-L is that one can start to mine the consequences
of the axiom before the construction is completed.

16In this subsection we will have to invoke some notions that are beyond the scope of this
article, but in the interest of providing the reader with a broad picture we will give a brief
account. For further details see [7].
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Theorem 7.14. Assume V=Ultimate-L. Then
(1) CH holds.
(2) The Ω Conjecture holds.
(3) V=HOD.
(4) V is the minimum universe of the Generic-Multiverse.17

The key question is whether (granting large cardinals) there are models of
“V=Ultimate-L” that are weak extender models for the supercompactness
of κ.”

Definition 7.15 (The Weak Ultimate-L Conjecture). The Weak
Ultimate-L Conjecture18 is the conjecture that

ZFC + “There is an extendible cardinal with a huge cardinal above”

proves: If κ is extendible and there is a huge cardinal above κ, then there
exists a weak extender model N of the supercompactness of κ such that

N |= “V=Ultimate-L.”
Notice that the Weak Ultimate-L Conjecture is a Σ01-statement, and so it
is not going to run up against the rock of undecidability. The point, for our
present purposes, is that the Weak Ultimate-L Conjecture implies the Weak
HODConjecture. (This is immediate from the definitions, Theorem 7.14(3),
and the equivalence of (1) and (7) in Theorem 7.11.) A great deal of work
has been done toward the construction of Ultimate-L and toward proving
the Weak Ultimate-L Conjecture. All of this points toward the first half
of the HOD Dichotomy, where HOD (and, in fact, Ultimate-L) is “close”
to V .

§8. Two futures. One virtue of the HOD Dichotomy Theorem is that it
presents us with a discrete set of possibilities for the universe of sets. There
are two, radically distinct, possibilities. EitherHOD is “close” toV , or HOD
is “far” fromV .Moreover, this is a theorem. The fact that there are just these
two possibilities is provable in ZFC+“there is an extendible cardinal.”19 One
would, of course, like to know which of the two possibilities actually holds.
Now, as we noted in the introduction, in contrast to the case of the L
Dichotomy, no traditional large cardinal axiom can force us into the second
side of the HOD Dichotomy, where HOD is “far” from V . So perhaps
the first side of the HOD Dichotomy holds. Perhaps HOD is “close” to V
and perhaps one can prove this assuming traditional large cardinal axioms.

17See [6] for a definition of ‘Generic-Multiverse’.
18The term ‘The Weak Ultimate-L Conjecture’ is used in [12] for a different conjecture.

It seemed appropriate to reclaim the terminology for the above conjecture, which is just the
Ultimate-L Conjecture, except with the ‘extendible with a huge cardinal above’ instead of
‘extendible.’
19There is of course a third possibility. It could be that ZFC+“there is an extendible

cardinal” is inconsistent—or, if consistent, at least something that is not justifiable, or even
something which is overturned by other considerations. In what follows we shall have nothing
more to say about this third possibility. Instead we will adopt ZFC along with traditional
large cardinal axioms.
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This is what the Weak Ultimate-L Conjecture (through implying the Weak
HODConjecture) asserts. The virtue of this conjecture is that it is a definite,
Σ01-statement. If this Σ

0
1-statement holds, then, assuming ZFC+“there is an

extendible with a huge cardinal above,” we are thrown into the first side of
the HOD Dichotomy, where HOD is “close” to V .
What about the second side of the HODDichotomy? We noted that there
is no traditional large cardinal axiom A such that ZFC + A proves that
HOD is “far” from V . In other words, there can be no Σ01-sentence of the
above form that forces us into the second side of the HOD Dichotomy,
where HOD is “far” from V . But as we shall now show, if large cardi-
nals beyond choice are consistent (Π01-facts), then the Weak Ultimate-L
Conjecture must fail, and so we will have lost our best candidate for a
Σ01-truth that throws us into the first side of the HOD Dichotomy. More-
over, if Berkeley cardinals are consistent, then we will be on the road to
new large cardinal axioms (namely, the HOD analogues we shall describe
below) which are consistent with AC and which do force us into the
“far” side of the HOD Dichotomy, and thus do for HOD what 0# does
for L.
Wewill thus be describing two tangible futures. In the first future theWeak
Ultimate-L Conjecture holds. In the second future Berkeley cardinals are
consistent, the Weak Ultimate-L Conjecture fails, and we are on the road
to new axioms that force us into the second side of the HOD Dichotomy,
where HOD is “far” from V .
In the remainder of this section we will describe, in a speculative fashion,
how these two futures might unfold.

8.1. The first future: The road to Ultimate-L. The first future is the future
where, to begin with, the Weak Ultimate-L Conjecture holds.
This is a definite Σ01-statement. Assuming ZFC+“there is an extendible
with a huge cardinal above” it implies that we are on the first side of the
HOD Dichotomy, where HOD is “close” to V . But it implies much more.
Let us begin with the implications for large cardinals beyond choice. It
turns out that the Weak Ultimate-L Conjecture wipes out almost all of the
large cardinals that we have been investigating. In particular, it wipes out
the existence of a Reinhardt cardinal with an �-huge cardinal above κ�(j),
where j is the witness to the Reinhardt cardinal, and so, as a corollary,
it wipes out super Reinhardt cardinals and (by Theorem 3.14) Berkeley
cardinals.
We will now give a sketch of this result. The proof requires three theorems
from [5], namely, Theorems 226, 228, and 229. In some cases we will need
slight variants of the theorems.
We will need the following slight variant of Theorem 226, which the proof
actually establishes.

Theorem 8.1 (ZF). Suppose that there exists j ∈ E (V	) with 	 = κ�(j).
Then there is a homogeneous partial order Q which is a Σ3-definable class in
V	 and such that if G ⊆ Q is V	-generic, then
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V	[G ] |= ZFC+“there is a proper class of extendible cardinals
and there is a proper class of huge cardinals.”

We will use Theorem 228 as it stands, and so it will be convenient to restate
it here.

Theorem 8.2 (ZF). Suppose that cof(	) = �, 	 is a limit of supercompact
cardinals and that for some set A ⊆ On,

	+ = (	+)L[A].

Then there is no non-trivial elementary embedding

j : V	+2 → V	+2.
Finally, we will need the following variant of Theorem 229.

Theorem 8.3 (ZF). Suppose that the Weak HOD Conjecture holds. Sup-
pose that there exists j ∈ E (V	) with 	 = κ�(j). Then there is a transitive
class N ⊆ V	 and a parameter X ∈ V	 such that the following hold:
(1) N |= ZFC.
(2) N is Σ2-definable in V	 from X .
(3) There is a partial order P ∈ N such that for all sets of ordinals A ∈ V	
there is an N -generic filter G ⊆ P such that A ∈ N [G ].

Proof. The proof is a minor modification of the proof of Theorem 229.
Let Q be the homogeneous partial order from Theorem 8.1. Let G ⊆ Q be
a V	-generic filter. So

V	[G ] |= ZFC+“there is a proper class of extendible cardinals
and there is a proper class of huge cardinals.”

So, by the Weak HOD Conjecture

V	[G ] |= The HOD Hypothesis.
The rest of the proof is the same. 	
With these theorems at hand we are now in a position to prove the main
result.

Theorem 8.4. Suppose that the Weak HOD Conjecture holds. Then there
cannot be a non-trivial elementary embedding j : V → V along with an
�-huge cardinal that is above κ�(j).

Proof. Suppose for contradiction that there is a Reinhardt cardinal κ0
as witnessed by j, and that there is an �-huge cardinal above κ�(j). Let
	0 = κ�(j). Let κ1 be the least �-huge cardinal above 	0 and let 	1 be the
least ordinal such that there exists k ∈ E (V	1) witnessing that κ1 is �-huge
(so 	1 = κ�(k)). Since κ1 and 	1 are definable from 	0, and since j(	0) = 	0,
we have that j(κ1) = κ1 and j(	1) = 	1.
By Theorem 8.3 there is a transitive class N ⊆ V	1 and a parameter
X ∈ V	1 such that
(1) N |= ZFC,
(2) N is Σ2-definable in V	1 from X , and
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(3) There is a partial order P ∈ N such that for all sets of ordinalsA ∈ V	1
there is an N -generic filter G ⊆ P such that A ∈ N [G ].

Let ϕ be a Σ2-formula defining some such N from some such parameter X .
Let α � 	0 be the least ordinal such that there exists a parameter X ∈ Vα
such that ϕ defines an N over V	1 from X which meets Conditions (1)–(3)
where Condition (3) is met for some P ∈ Vα. Pick such an X ∈ Vα and let
N be the model defined over V	1 with ϕ using X . The ordinal α is definable
from 	0 and so j(α) = α. Now, inV	1 there is a proper class of supercompact
cardinals, namely, the cardinals of the critical sequence 〈kn(κ1) : n < �〉. In
V	1 let 	 be the limit of the first �-many supercompact cardinals above α.
Notice 	 < 	1 since V	1 |= ZF. And notice that since 	 is definable from 	1
and α, we have that j(	) = 	.
In V	1 we have our Σ2-definable inner model N satisfying ZFC and (3)
with P ∈ Vα. Notice that by this version of (3) we have

	+ = (	+)N .

Since N satisfies ZFC, there exists a set of ordinals A ∈ N such that L[A]
codes up (V	+1)N . It follows that

	+ = (	+)(L[A])
V	1 .

We can now apply Theorem 8.2 inside V	1 to get that there does not exist a
j ∈ E (V	+2). On the other hand, since j(	) = 	we have j�V	+2 ∈ E (V	+2),
which is a contradiction. 	
Corollary 8.5. Assume that theWeakHODConjecture holds. Then there
cannot be a Berkeley cardinal.
Proof. This is an immediate consequence of Theorems 3.14 and 8.4. 	
In short, the Weak Ultimate-L Conjecture (and even the Weak HOD
Conjecture) wipes out almost all of the hierarchy of large cardinals beyond
choice, by provably showing that they are inconsistent. Although it is not
presently known that it rules out Reinhardt cardinals alone, as we have
just seen it rules out Reinhardt cardinals in the presence of standard large
cardinals (such as a proper class of �-huge cardinals) and so it arguably
rules out Reinhardt cardinals as genuine large cardinals. In any case, it
rules out super Reinhardt cardinals, Berkeley cardinals, and everything
beyond.
For this reason, someone who is convinced that the Weak Ultimate-L
Conjecture will hold—say, on the basis of developments in inner model
theory—might wonder about the utility of our project. For if the first future
holds then we have been investigating a series of large cardinal axioms that
are inconsistent. Nevertheless, even if the choiceless large cardinals turn out
to be inconsistent, we still think that there is some utility in investigating
them since it raises the prospect of obtaining “deeper” inconsistency proofs,
something we shall now describe.
There have been many purported proofs of the inconsistency of large
cardinal axioms. For example, quite frequently one finds purported proofs of
the inconsistency ofmeasurable cardinals. And, lower down, it has even been
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claimed—for example, by Edward Nelson—that PA (and even the weaker
PRA) is inconsistent. These proofs have not stood the test of time. The only
inconsistency proofs that have stood the test of time are rather simple ones,
like Kunen’s proof that Reinhardt cardinals are inconsistent (with AC).
But this raises an interesting question: Are there “deeper” inconsistency
proofs?20 Now, since the proof of an inconsistency is going to be easier
to find the stronger the assumption, instead of trying to show that PA is
inconsistent or that measurable cardinals are inconsistent (which we do not
believe) it makes sense to start much higher, with some outlandishly strong
hypothesis, show that it is inconsistent, and then work one’s way down.
The first future holds the promise of unearthing “deeper” inconsistency
proofs since at the moment it seems likely that the surest way to show that
Berkeley cardinals are inconsistent is to prove the Weak Ultimate-L Conjec-
ture or the Weak HOD Conjecture, and the proofs of these conjectures are
very likely going to be much “deeper” than Kunen’s inconsistency proof.
But instead of waiting for the Weak Ultimate-L Conjecture of the Weak
HOD Conjecture to be proved, it is of interest to formulate even stronger
large cardinal notions and see whether they can be shown to be inconsistent
in a relatively straightforward manner. Perhaps in doing this one will gain
insight into the weaker large cardinal notions and find more involved proofs
of their inconsistency. And, in the end, one might gain insight into the
Weak HOD Conjecture. What has happened so far is that the hierarchy
of large cardinals beyond choice has not led to notions that are readily
shown to be inconsistent. Indeed the only plausible scenario we have for
the inconsistency of any large cardinal beyond choice is through the Weak
Ultimate-L Conjecture. This is not to say that it won’t happen. It is just to
say that it hasn’t happened yet.21

In any case, the hope in the first future is this: The study of large cardinals
beyond choice leads to significant, new inconsistency results, and this in
turn leads to a deeper study of inconsistency, certifying consistency from
below, viamore andmore involved supporting considerations, and falsifying
consistency from above, viamore andmore involved considerations, thereby

20We would like to stress the need for the scare quotes around “deeper.” We do not wish to
give the impression that we think that the notion of one proof being “deeper” than another
is a completely clear one. And we do not pretend to have an analysis of this notion, one that
provides clear and precise, necessary and sufficient conditions. (It is rarely the case that such
an analysis can be given for a non-mathematical notion—even for such everyday notions as
the notion of a “chair”—but nevertheless such notions have utility and can even admit of
clear cases.) We are relying on the reader’s understanding of what it would take to have a
relatively clear case of an inconsistency proof that is “deeper” than the ones that we presently
have—just as, for example, it seems clear the proof of Fermat’s last theorem is “deeper” than
the proof that there are infinitely many primes (something that amounts to more than its
merely being a longer proof).
21There are ways in which it could happen. Here is one: Suppose that one could show

in ZF that the least Berkeley cardinal must be regular. Then, in light of the results on the
possible cofinalities of the least Berkeley cardinal, this would show that Berkeley cardinals
are inconsistent.
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probing the border between the consistent and the inconsistent large cardinal
axioms.
To summarize: The first future is the future where, to begin with, theWeak
Ultimate-LConjecture holds. Assume that traditional large cardinal axioms
hold; in particular, assume that there is an extendible cardinal κ with a huge
cardinal above. In this future:

(1) The Weak HOD Conjecture holds and so we are on the first side of
the HOD Dichotomy, where HOD is “close” to V .

(2) There is a weak extender modelN of the supercompactness of κ such
that

N |= “V=Ultimate-L.”
(3) This model, Ultimate-L, is itself “close” to V . It correctly computes
successors of singular cardinals above κ and it absorbs all traditional
large cardinals above κ.

(4) The model Ultimate-L satisfies
(a) CH,
(b) The Ω Conjecture,
(c) V=HOD, and
(d) V is the minimum of the Generic Multiverse.

(5) Reinhardt cardinals are inconsistent (assuming there is a proper class
of �-huge cardinals) and Berkeley cardinals are inconsistent.

(6) Assuming that the proof of the Weak Ultimate-L Conjecture is (as
seems virtually certain) “deeper” than the proof of Kunen’s theorem,
we will have obtained a “deeper” inconsistency result.

This is the future in which pattern prevails.
The above consequences follow from the truth of this Σ01-statement along
with traditional large cardinal axioms. But one can speculate further about
how this future might unfold.
The inner model Ultimate-L will quite likely, just like L, admit of a com-
plete analysis, and, given that Ultimate-L is provably “close” to V , this
analysis will give us great insight into V itself. But one could go further. For
we will have reached anL-like “paradise of understanding” which resembles
L in being completely understood but which differs from L in that no tradi-
tional large cardinal axiom can reveal it to be illusory, since it will be “close”
to V regardless of which traditional large cardinals exist in V . One might
use this feature as a basis for a case that V is actually equal to Ultimate-L.
To strengthen that case one might begin to “verify” certain consequences
of V=Ultimate-L by proving them from traditional large cardinal axioms.
And, going further, one might strengthen the case further by showing that
V=Ultimate-L is recoverable from some of its more intrinsically plausible
consequences (in parallel to the situation with ADL(R) and its intrinsically
plausible consequences). It would take us too far afield to explore the details
of this scenario. The point is that although this future is already known to
have profound consequences for our understanding of V , there is much
more potential beyond the six points above.
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Suppose that this development of the first future leads to a justification of
V=Ultimate-L. Let “LCA” stand for the non-precisely specifiable, open-
ended sequence of large cardinal axioms, and suppose that these axioms are
justified. Then:

(7) The theory ‘ZFC+V=Ultimate-L+“LCA”’ would arguably provide
us with a correct notion of “absolute provability.”

The axiom V=Ultimate-L would erase instances of “horizontal indepen-
dence” (that is, statements like CH which are shown to be independent
via the method of forcing and do not involve an increase in consistency
strength) and the open-ended sequence “LCA” would capture the instances
of “vertical independence” (that is, sentences statements that are indepen-
dent because they have high consistency strength). In this further unfolding
of the first future, in addition to having pattern, the search for new axioms
would be reduced to discovering stronger and stronger true large cardi-
nal axioms and, through this process, every undecided statement would in
principle be resolvable.

8.2. The second future: The road to a higher analogue of 0#. The second
future is the future where, to begin with, Berkeley cardinals are consistent
(a Π01 fact).
It might appear that there is an asymmetry between the conditions on
which each future is conditioned. For the first future is conditioned on a
Σ01-statement (the Weak Ultimate-L Conjecture), while the second is con-
ditioned on a Π01-statement (the consistency of a Berkeley cardinal). This
apparent asymmetry seems significant since the virtue of a Σ01-statement—
in contrast to a Π01-statement of high consistency strength—is that it can
admit of a definitive verification. But the asymmetry is merely apparent
since the Weak Ultimate-L Conjecture is vacuous if ZFC+ “there is an
extendible cardinal with a huge cardinal above” is inconsistent, and so the
first future is implicitly conditioned on a Π01-statement of high consistency
strength.
If large cardinals beyond choice are consistent, then, as we have seen, the
Weak HOD Conjecture fails, and hence the Ultimate-L Conjecture fails,
and this constitutes an anti-inner model theorem. We should stress that the
result isn’t about just a single inner model—Ultimate-L. It is much more
general. Inner model theory proceeds in a general setting, by assuming a
large cardinal hypothesis and then showing that one can build a canonical
inner model for that large cardinal. The failure of the Weak HOD Con-
jecture would show that even if one assumes that there is an extendible
cardinal κ with a huge cardinal above it (or even much stronger large cardi-
nal hypotheses) then one cannot show that there is a weak extender model
N of the supercompactness of κ such that N |= “V=HOD”. It is hard
to see what meaning there could be to inner model theory if it cannot be
executed even at this level of generality. So, in this scenario, not only would
the Weak Ultimate-L Conjecture be false, but we would also very likely be
faced the failure of inner model theory and the failure of the prospect of ever
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having detailed, fine-structural insight into V . This is the future in which
chaos prevails.
Finally, if large cardinals beyond are consistent then we are led to a whole
host of very basic questions that appear to be intractable. We have already
mentioned some such questions, which concern the cofinality of the least
Berkeley cardinal. But there are many others. For example:

Question 7. Which of the following propositions is stronger:

(1) There is a non-trivial elementary embedding j : V → V and an
extendible cardinal above κ�(j).

(2) There is a non-trivial elementary embedding j : V → V and an
extendible cardinal below crit(κ).

This is the kind question about large cardinals that is typically readily
answered but in the choiceless setting such answers are not forthcoming;
indeed, the answers seem to be beyond the reach of current technology. And
so, in the second future, there is a whole host of statements that could very
well be “absolutely undecidable.”
The consistency of large cardinals beyond choice does not strictly speaking
imply that we are on the second side of the HOD Dichotomy, but it opens
the way to a higher analogue of 0#, which does imply that we are on the
second side of the HOD Dichotomy, where HOD is “far” from V .
For a given inner model N of ZFC one can consider relativized versions
of the choiceless large cardinals in the context of ZFC. For example, a
cardinal κ isN -Reinhardt if there exists a non-trivial elementary embedding
j : N → N with crit(j) = κ; a cardinal κ is N -super Reinhardt if for all �
there exists a non-trivial elementary embedding j : N → N with crit(j) = κ
and j(κ) > �; a cardinal � is an N -Berkeley cardinal if for all transitive sets
M ∈ N such that � ∈M , and for every ordinal 
 < �, there exists j ∈ E (M )
with 
 < crit(j) < �; and so on.
In the case whereN=L all of the notions collapse—they are all equivalent
to the statement “0# exists”; in particular, the existence of an L-Berkeley
cardinal is equivalent to the existence of 0#. Let us focus on the other extreme,
the case whereN=HOD. These are the “HOD-analogues” of the choiceless
large cardinals. TheHOD-analogues, if consistent, would constitute a whole
new hierarchy of traditional large cardinal axioms, all formulated in the
context of ZFC. The point is that one can use the choiceless large cardinals
to obtain the consistency of the HOD-analogues by applying the forcing
construction used to prove Theorem 8.1.22

The relevance of this to our present discussion is that these new large
cardinals would provide us with a higher analogue of 0#. For just as the
existence of anL-Berkeley cardinal (equivalently, the existence of 0#) implies
that we are on the second side of the L Dichotomy, the existence of a

22It is of interest to ask whether this can be reversed—that is, whether one can obtain
models of the choiceless large cardinals from the HOD-analogues. (Perhaps the hierarchy of
HOD-analogues is cofinal (in terms of consistency strength) in the choiceless hierarchy, and
perhaps it provides a vantage point from which one might gain insight into the choiceless
hierarchy.)
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HOD-Berkeley cardinal provides implies that we are on the second side of
the HOD Dichotomy:

Theorem 8.6. Assume ZFC and that there is an extendible cardinal. Sup-
pose that there is aHOD-Berkeley cardinal. Then the second side of theHOD
Dichotomy holds, where HOD is “far” from V .

In fact, one does not have to appeal to the HOD Dichotomy Theorem or
the existence of an extendible to get this conclusion.

Theorem 8.7. Assume ZFC. Suppose that � is a HOD-Berkeley cardinal.
Then every regular cardinal � > � is �-strongly measurable inHOD.

In other words, if there is a HOD-Berkeley cardinal then HOD is “far” from
V .
In this development of the second future “V=Ultimate-L” would be
a higher analogue of “V=L” in the following sense: Just as the axiom
“V=L” is a limiting principle in that while it is consistent with “small”
large cardinals, it is obliterated by large cardinal axioms at the level of L-
Berkeley cardinals and beyond, so too the axiom “V=Ultimate-L” would
be a limiting principle in that while it is consistent with traditional large
cardinal axioms, it is obliterated by large cardinal axioms at the level of
HOD-Berkeley cardinals and beyond.
There is an even further, more radical way in which the second future
might unfold, though we admit that it is rather farfetched. One might go
beyond accepting the HOD-analogues and actually accept the correspond-
ing choiceless large cardinals and thereby reject AC. The advocate of this
development would view AC as a limiting principle, on part with the view of
“V=L” as a limiting principle much like V=L—just as “V=L” is violated
by modest large cardinals, so too, the view would maintain, AC is violated
by much stronger large cardinals. It is hard to see how one could make a
case for such a radical shift. There would have to be an extrinsic case for
choiceless large cardinals that was so strong it outweighed the case for AC.
It should be stressed that we are not endorsing this development as one that
is plausible. We mention it only for completeness.
To summarize: The second future is the future where, to begin with, large
cardinals beyond choice—in particular, Berkeley cardinals—are consistent.
In this future:

(1) The Weak HOD Conjecture fails.
(2) The Weak Ultimate-L Conjecture fails.
(3) Inner model theory as we know it fails. And it is very likely that
inner model theory in general fails and there can be no fine-structural
insight into V .

(4) There are basic statements concerning large cardinals beyond choice
that are completely out of reach of current technology and are good
candidates for “absolutely undecidable” statements.

If one assumes further that the HOD-analogues exist, then:

(5) The second side of the HOD Dichotomy holds: HOD is “far”
from V .

https://doi.org/10.1017/bsl.2019.28 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2019.28


318 JOAN BAGARIA, PETER KOELLNER, ANDW. HUGHWOODIN

This is the future where chaos prevails.
We don’t know which future will unfold—whether pattern or chaos will
prevail. But either way, it’s going to be interesting.
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