BY DAVID S. LIPHAM

Department of Mathematics, Auburn University at Montgomery, Montgomery AL 36117, U.S.A.

e-mails: dlipham@aum.edu, dsl0003@auburn.edu

(Received 13 July 2020; revised 16 December 2021; accepted 09 December 2021)

Abstract

We prove that the set of all endpoints of the Julia set of $f(z) = \exp(z) - 1$ which escape to infinity under iteration of f is not homeomorphic to the rational Hilbert space \mathfrak{E} . As a corollary, we show that the set of all points $z \in \mathbb{C}$ whose orbits either escape to ∞ or attract to 0 is path-connected. We extend these results to many other functions in the exponential family.

2020 Mathematics Subject Classification: 37F10 (Primary); 30D05, 54F50 (Secondary)

1. Introduction

The exponential family $f_a(z) = e^z + a$; $a \in \mathbb{C}$, is the most studied family of functions in the theory of the iteration of transcendental entire functions. For any parameter $a \in \mathbb{C}$, the Julia set $J(f_a)$ is known to be equal to the closure of the escaping set $I(f_a) := \{z \in \mathbb{C} : f_a^n(z) \to \infty\}$ [8]. And when *a* belongs to the Fatou set $F(f_a)$ (e.g. when $a \in (-\infty, -1]$), the Julia set $J(f_a)$ can be written as a union of uncountably many disjoint curves and endpoints [6, 9]. A point $z \in J(f_a)$ is on a *curve* if there exists an arc $\alpha : [-1, 1] \hookrightarrow I(f_a)$ such that $\alpha(0) = z$. A point $z_0 \in J(f_a)$ is an *endpoint* if z_0 is not on a curve and there is an arc $\alpha : [0, 1] \hookrightarrow J(f_a)$ with $\alpha(0) = z_0$ and $\alpha(t) \in I(f_a)$ for all $t \in (0, 1]$. The set of all endpoints of $J(f_a)$ is denoted $E(f_a)$.

The first to study the surprising topological properties of the endpoints was Mayer in 1988. He proved that ∞ is an explosion point for $E(f_a)$ for all attracting fixed point parameters $a \in (-\infty, -1)$ [16]. That is, $E(f_a)$ is totally separated but its union with ∞ is a connected set. A similarly paradoxical result is due to McMullen 1987 and Karpinska 1999: If $a \in (-\infty, -1)$ then the Hausdorff dimension of $E(f_a)$ is two [17], but the set of curves has Hausdorff dimension one [10].

Alhabib and Rempe extended Mayer's result in 2016 by focusing on the endpoints of $I(f_a)$. They proved that ∞ is an explosion point for the *escaping endpoint set*

$$\dot{E}(f_a) := E(f_a) \cap I(f_a),$$

as well as for $E(f_a)$, for every Fatou parameter $a \in F(f_a)$. The set of non-escaping endpoints $E(f_a) \setminus I(f_a)$ is very different in this regard. Its union with ∞ is totally separated [9] and zero-dimensional [13].

Conjugacy between escaping sets [19] implies that $\dot{E}(f_a)$ and $\dot{E}(f_b)$ are topologically equivalent when *a* and *b* are Fatou parameters. The primary aim of this paper is to distinguish

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Cambridge Philosophical Society.

D. S. LIPHAM

the space $\dot{E}(f_a)$; $a \in F(f_a)$, from a certain line-free subgroup of the Hilbert space ℓ^2 . For comparison, the entire endpoint set $E(f_a)$ is homeomorphic to *complete Erdős space* $\mathfrak{E}_c := {\mathbf{x} \in \ell^2 : x_n \in \mathbb{R} \setminus \mathbb{Q} \text{ for each } n < \omega}$ for every $a \in (-\infty, -1]$ [11]. The space $\dot{E}(f_a)$ is not homeomorphic to \mathfrak{E}_c [12], but has many of the same topological properties as (the plain) *Erdős space*

$$\mathfrak{E} := \left\{ \mathbf{x} \in \ell^2 : x_n \in \mathbb{Q} \text{ for each } n < \omega \right\}.$$

For example, $\dot{E}(f_a)$ and \mathfrak{E} are both one-dimensional, almost zero-dimensional $F_{\sigma\delta}$ -spaces which are nowhere $G_{\delta\sigma}$; see [12, 15]. Moreover $\dot{E}(f_a)$ contains a dense copy of \mathfrak{E} in the form of all endpoints that escape to infinity in the imaginary direction [14]. However, in this paper we will show that the two spaces are not equivalent. This provides a negative answer to [12, question 1] and suggests that $\dot{E}(f_a)$ is a fundamental object between the 'rational and irrational Hilbert spaces' \mathfrak{E} and \mathfrak{E}_c . It is still unknown whether $\dot{E}(f_a)$ is a topological group, or is at least homogeneous.

The key property distinguishing $\dot{E}(f_a)$ from \mathfrak{E} will involve the notion of a C-set. A *C-set* in a topological space X is an intersection of clopen subsets of X. Note that for every rational number $q \in \mathbb{Q}$ the set $\{\mathbf{x} \in \mathfrak{E} : x_0 = q\}$ is a nowhere dense C-set in \mathfrak{E} because the ℓ^2 -norm topology on \mathfrak{E} is finer than the zero-dimensional topology that \mathfrak{E} inherits from \mathbb{Q}^{ω} . Thus \mathfrak{E} can be written as a countable union of nowhere dense C-sets. On the other hand:

THEOREM 1.1. If $a \in F(f_a)$ then $\dot{E}(f_a)$ cannot be written as a countable union of nowhere dense C-sets.

COROLLARY 1.2. If $a \in F(f_a)$ then $\dot{E}(f_a) \not\simeq \mathfrak{E}$.

Our proof of Theorem 1.1 will involve constructing simple closed (Jordan) curves in \mathbb{C} whose intersections with $J(f_{-1})$ are contained in $I(f_{-1})$.

THEOREM 1.3. If $a \in (-\infty, -1]$ then each point of \mathbb{C} can be separated from ∞ by a simple closed (Jordan) curve in $F(f_a) \cup I(f_a)$.

Note that the curve in Theorem 1.3 avoids all non-escaping endpoints of $J(f_a)$.

COROLLARY 1.4. If $a \in (-\infty, -1]$ then $F(f_a) \cup I(f_a)$ is path-connected.

We observe that $F(f_{-1}) \cup I(f_{-1})$ is simply the set of all points $z \in \mathbb{C}$ such that $f_{-1}^n(z) \to 0$ or $f_{-1}^n(z) \to \infty$.

2. Preliminaries

2.1. Outline of paper

We will prove Theorem $1 \cdot 1$ and Corollary $1 \cdot 2$ for the particular mapping

$$f(z) := f_{-1}(z) = e^z - 1.$$

The proof for all other Fatou parameters will then follow from the conjugacy [19, theorem 1.2]. Theorem 1.3 and Corollary 1.4 will essentially follow from the case a = -1 as well.

Instead of working directly in the Julia set $J(f) \subset \mathbb{C}$, we will work in a topologically equivalent subset of \mathbb{R}^2 known as a brush. In this section we will give the definition of a

brush and its connection to exponential Julia sets. We will then define a specific brush which is homeomorphic to J(f), together with a mapping which models f.

In Section 3 we will prove three easy lemmas for the model mapping. In Section 4 we will show that certain endpoint sets in brushes cannot be written as countable unions of nowhere dense C-sets, given the existence of certain Jordan curves. In Section 5 we will prove Theorem 1.1 by showing that such curves exist with respect to our model of $\dot{E}(f)$. Theorem 1.1 is strengthened by Remark 6.2 in Section 6. Finally, the proofs of Theorem 1.3 and Corollary 1.4 are given in Section 7.

2.2. Brushes and Cantor bouquets

Let $\mathbb{P} = \mathbb{R} \setminus \mathbb{Q}$. A *brush* is a closed subset of \mathbb{R}^2 of the form

$$B = \bigcup_{y \in Y} [t_y, \infty) \times \{y\},\$$

where $Y \subset \mathbb{P}$ and $t_y \in \mathbb{R}$. The *endpoints* of *B* are the points $\langle t_y, y \rangle$.

When $a \in (-\infty, -1]$, the Julia set $J(f_a)$ is a *Cantor bouquet* [1, 2] which is homeomorphic to a brush with a dense set of endpoints. For all other Fatou parameters, $J(f_a)$ is a *pinched Cantor bouquet* that is homeomorphic to a brush modulo a closed equivalence relation on its set of endpoints; see [19, corollary 9.3] and [3]. The relation establishes a one-to-one correspondence between endpoints of J(f) and equivalence classes of endpoints of *B* [13, section 3.2].

2.3. Brush model of J(f)

We will now define a mapping \mathcal{F} and a brush $J(\mathcal{F})$ that model f and $J(\mathcal{F})$. These objects were studied extensively in [2, 19].

Let \mathbb{Z}^{ω} denote the space of integer sequences $\underline{s} = s_0 s_1 s_2 \cdots$ in the product (or lexicographic order) topology. Define $\mathcal{F} : [0, \infty) \times \mathbb{Z}^{\omega} \to \mathbb{R} \times \mathbb{Z}^{\omega}$ by

$$\langle t, \underline{s} \rangle \longmapsto \langle F(t) - 2\pi |s_0|, \sigma(\underline{s}) \rangle,$$

where $F(t) = e^t - 1$ and σ is the shift map on \mathbb{Z}^{ω} ; i.e.

$$\sigma(s_0s_1s_2\cdots)=s_1s_2s_3\cdots.$$

For each $x = \langle t, \underline{s} \rangle \in [0, \infty) \times \mathbb{Z}^{\omega}$ put T(x) = t and $\underline{s}(x) = \underline{s}$. The integer sequence $\underline{s}(x)$ is called the *external address* of *x*.

Define

$$J(\mathcal{F}) = \left\{ x \in [0, \infty) \times \mathbb{Z}^{\omega} : T(\mathcal{F}^n(x)) \ge 0 \text{ for all } n \ge 0 \right\}.$$

Continuity of \mathcal{F} implies that $J(\mathcal{F})$ is closed in $[0, \infty) \times \mathbb{Z}^{\omega}$. Now let

$$\mathbb{S} = \left\{ \underline{s} \in \mathbb{Z}^{\omega} : \text{ there exists } t \ge 0 \text{ such that } \langle t, \underline{s} \rangle \in J(\mathcal{F}) \right\},\$$

and for each $\underline{s} \in \mathbb{S}$ put $t_{\underline{s}} = \min\{t \ge 0 : \langle t, \underline{s} \rangle \in J(\mathcal{F})\}$. Then

$$J(\mathcal{F}) = \bigcup_{\underline{s} \in \mathbb{S}} [t_{\underline{s}}, \infty) \times \{\underline{s}\}.$$

Fig. 1. Three endpoints and curves in J(f) (left) and in $J(\mathcal{F})$ (right).

Finally, \mathbb{Z}^{ω} can be identified with \mathbb{P} using an order isomorphism between \mathbb{Z}^{ω} in the lexicographic ordering and \mathbb{P} in the real ordering [2, observation 3.2]. Under this identification, $J(\mathcal{F}) \subset \mathbb{R} \times \mathbb{P}$. Hence $J(\mathcal{F})$ is a brush. See Figure 1.

The restrictions $\mathcal{F} \upharpoonright J(\mathcal{F})$ and $f \upharpoonright J(f)$ are topologically conjugate [19, section 9]. Hence $J(\mathcal{F})$ is homeomorphic to J(f), and the action of \mathcal{F} on $J(\mathcal{F})$ captures the essential dynamics of f on J(f); see also [2, p.74].

3. Lemmas for \mathcal{F}

In order to prove Theorem 1.1 we need a few basic lemmas regarding the model above. Define $F^{-1}(t) = \ln (t + 1)$ for $t \ge 0$, so that F^{-1} is the inverse of F. For each $n \ge 1$, the *n*-fold composition of F^{-1} is denoted F^{-n} .

LEMMA 3.1 (Iterating between double squares) Let $x \in J(\mathcal{F})$. If $k \ge 5$ and

$$T\left(\mathcal{F}^{2k^2}(x)\right) \ge F^{k^2}(1),$$

then $T(\mathcal{F}^n(x)) \ge F^k(1)$ for all $n \in [2(k-1)^2, 2k^2]$.

Proof. Suppose $k \ge 5$ and $T(\mathcal{F}^{2k^2}(x)) \ge F^{k^2}(1)$. Let $n \in [2(k-1)^2, 2k^2]$. Then there exists $i \le 4k-2$ such that $n = 2k^2 - i$. We have

$$F^{i}(T(\mathcal{F}^{n}(x))) = F^{i}(T(\mathcal{F}^{2k^{2}-i}(x))) \ge T(\mathcal{F}^{i}(\mathcal{F}^{2k^{2}-i}(x))) = T(\mathcal{F}^{2k^{2}}(x)) \ge F^{k^{2}}(1).$$

Applying F^{-i} to each side of the inequality shows that

$$T\left(\mathcal{F}^n(x)\right) \ge F^{k^2 - i}(1) > F^k(1),$$

where we used the fact $k^2 - i > k$ for all $k \ge 5$ and $i \le 4k - 2$.

LEMMA 3.2 (Forward stretching). Let $x, y \in J(\mathcal{F})$. If $\underline{s}(y) = \underline{s}(x)$ and T(y) > T(x), then for every $n \ge 1$ we have $T(\mathcal{F}^n(y)) \ge F^n(T(y) - T(x))$.

Proof. Suppose $\underline{s}(y) = \underline{s}(x)$ and T(y) > T(x). Let $\varepsilon = T(y) - T(x)$ and $\delta = T(\mathcal{F}^n(y)) - T(\mathcal{F}^n(x))$. Note that $\delta > 0$. So $T(y) \le T(x) + F^{-n}(\delta)$ by [2, observation 3.9]. Therefore $\delta \ge F^n(\varepsilon)$. We have

$$T(\mathcal{F}^{n}(y)) \ge T(\mathcal{F}^{n}(y)) - T(\mathcal{F}^{n}(x)) = \delta \ge F^{n}(\varepsilon) = F^{n}(T(y) - T(x))$$

as desired.

Lemma 3.1 implies that $T(\mathcal{F}^n(x)) \to \infty$ if the double square iterates $T(\mathcal{F}^{2k^2}(x))$ increase at a sufficient rate. Lemma 3.2 will be used to show that $T(\mathcal{F}^{2k^2}(x))$ increases at that rate for certain points $x \in J(\mathcal{F})$.

LEMMA 3.3 (Logarithmic orbit). $F^{-n}(1) < 3/n$ for all $n \ge 1$.

Proof. The proof is by induction on *n*. If n = 1 then we have $F^{-n}(1) = F^{-1}(1) = \ln(2) < 3 = 3/n$. Now suppose the inequality holds for a given *n*. Then

$$F^{-(n+1)}(1) = F^{-1}(F^{-n}(1)) < F^{-1}(3/n) = \ln\left(\frac{3}{n} + 1\right) < \frac{3}{n+1}$$

by calculus.

Although the series $\sum_{k=1}^{\infty} F^{-k}(1)$ diverges, Lemma 3.3 implies that $\sum_{k=1}^{\infty} F^{-k^2}(1)$ converges (to something less than $\pi^2/2$).

4. Jordan curve lemma

The following topological lemma will also be required to prove Theorem 1.1. Recall that a *C-set* in a space X is an intersection of clopen subsets of X.

LEMMA $4 \cdot 1$. Let

$$B = \bigcup_{y \in Y} [t_y, \infty) \times \{y\}$$

be a brush, and let $E = \{\langle t_y, y \rangle : y \in Y\}$ denote the set of endpoints of B. Suppose $\tilde{E} \subset E$ and $\tilde{E} \cup \{\infty\}$ is connected. If there exists an open set $U \subset \mathbb{R}^2$ such that:

- (i) $U \cap \tilde{E} \neq \emptyset$;
- (ii) ∂U is a simple closed curve; and
- (iii) $\partial U \cap E \subset \tilde{E}$,

then \tilde{E} cannot be written as a countable union of nowhere dense C-sets.

Proof. Suppose that \tilde{E} , U, and $\beta := \partial U$ satisfy all of the hypotheses. Let

 $A := \{y \in Y : \beta \text{ contains an interval of } [t_y, \infty) \times \{y\}\}.$

Since every collection of pairwise disjoint arcs of a simple closed curve is countable, *A* is countable. So $\tilde{E} \cap (\mathbb{R} \times A)$ is countable. Observe also that since *B* is closed in $\mathbb{R} \times Y$ and $Y \subset \mathbb{P}$, the space *E* has a neighbourhood basis of C-sets of the form $E \cap (-\infty, t] \times W$, where $t \in \mathbb{R}$ and *W* is clopen in *Y*. By [4, theorem 4·7] and the assumption that $\tilde{E} \cup \{\infty\}$ is connected, we see that $\tilde{E} \setminus (\mathbb{R} \times A) \cup \{\infty\}$ is connected.

Now aiming for a contradiction, suppose that $\tilde{E} = \bigcup \{C_n : n < \omega\}$ where each C_n is a nowhere dense C-set in \tilde{E} . Let V be the unbounded component of $\mathbb{R}^2 \setminus \beta$. Since $\tilde{E} \setminus (\mathbb{R} \times A) \cup \{\infty\}$ is connected,

$$\tau := \overline{U \cap \tilde{E}} \cap \overline{V \cap \tilde{E}} \cap \tilde{E} \setminus (\mathbb{R} \times A)$$

Fig. 2. Construction of clopen set in Lemma 4.1.

is non-empty. Note also that τ is a relatively closed subset of

$$\beta \cap E \setminus (\mathbb{R} \times A) = \beta \cap E \setminus (\mathbb{R} \times A),$$

which is a G_{δ} -subset of E. And E is a G_{δ} -subset of $\mathbb{R} \times \mathbb{P}$ because B is closed and $B \setminus E$ is the union of countably many closed sets $B + \langle 1/n, 0 \rangle$. Therefore τ is completely metrisable. By Baire's theorem there is an open rectangle $(x_1, x_2) \times (y_1, y_2)$ and $n < \omega$ such that $\emptyset \neq \tau \cap ((x_1, x_2) \times (y_1, y_2)) \subset C_n$. Let

$$\langle t_{\mathbf{y}}, \mathbf{y} \rangle \in \tau \cap ((x_1, x_2) \times (y_1, y_2)).$$

See Figure 2.

Since $y \notin A$, there exist $x_3 \in (t_y, x_2)$ and $y_3, y_4 \in (y_1, y_2) \cap \mathbb{Q}$ such that $y_3 < y < y_4$ and $\{x_3\} \times [y_3, y_4] \subset \mathbb{R}^2 \setminus \beta$. Without loss of generality, assume $\{x_3\} \times [y_3, y_4] \subset V$. Note that $U \cap \tilde{E} \cap ((x_1, x_3) \times (y_3, y_4)) \neq \emptyset$ because

$$\langle t_y, y \rangle \in \overline{U \cap \tilde{E}} \cap ((x_1, x_3) \times (y_3, y_4)).$$

Further, $C_n \cup (\tilde{E} \cap (\mathbb{R} \times A))$ is nowhere dense in \tilde{E} , so there exists

$$z \in U \cap \tilde{E} \cap ((x_1, x_3) \times (y_3, y_4)) \setminus (C_n \cup (\mathbb{R} \times A)).$$

Since *z* is an endpoint and *B* is closed in $\mathbb{R} \times Y$, we can find $y_5, y_6 \in (y_3, y_4) \cap \mathbb{Q}$ and $x_4 > x_1$ such that $y_5 < y_6, z \in (x_4, \infty) \times (y_5, y_6)$, and

$$(\{x_4\}\times[y_5,y_6])\cup([x_4,\infty)\times\{y_5,y_6\})\cap B=\varnothing.$$

Further, since $z \notin C_n$ there is a relatively clopen subset O of $\tilde{E} \setminus (\mathbb{R} \times A)$ such that $z \in O$ and $C_n \cap O = \emptyset$. Then

$$U \cap O \cap ([x_4, x_3] \times [y_5, y_6])$$

is a non-empty bounded clopen subset of $\tilde{E} \setminus (\mathbb{R} \times A)$. This contradicts the previously established fact that $\tilde{E} \setminus (\mathbb{R} \times A) \cup \{\infty\}$ is connected.

5. Proof of Theorem $1 \cdot 1$

As indicated in Section 2.2, we will identify \mathbb{Z}^{ω} with \mathbb{P} , so that

$$J(\mathcal{F}) \subset \mathbb{R} \times \mathbb{P} \subset \mathbb{R}^2.$$

Let $E(\mathcal{F}) = \{ \langle t_s, \underline{s} \rangle : s \in \mathbb{S} \}$ denote the set of endpoints of $J(\mathcal{F})$. Define

$$I(\mathcal{F}) = \{x \in J(\mathcal{F}) : T(\mathcal{F}^n(x)) \longrightarrow \infty\} \text{ and}$$
$$\tilde{E}(\mathcal{F}) = I(\mathcal{F}) \cap E(\mathcal{F}).$$

The conjugacy [19, theorem 9.1] shows that $\tilde{E}(\mathcal{F}) \simeq \dot{E}(f)$, and $\tilde{E}(\mathcal{F}) \cup \{\infty\}$ is connected by [2, theorem 3.4]. Thus to reach the conclusion that $\dot{E}(f)$ cannot be written as a countable union of nowhere dense C-sets, by Lemma 4.1 we only need to find a simple closed curve $\beta \subset \mathbb{R}^2$ such that:

- (i) if U is the bounded component of $\mathbb{R}^2 \setminus \beta$ then $U \cap \tilde{E}(\mathcal{F}) \neq \emptyset$, and
- (ii) $\beta \cap J(\mathcal{F}) \subset I(\mathcal{F})$ (in particular, $\beta \cap E(\mathcal{F}) \subset \tilde{E}(\mathcal{F})$).

The β that we construct will essentially be the boundary of a union of rectangular regions in \mathbb{R}^2 . We recursively define the collections of rectangles (or "boxes") as follows. Choose *n* sufficiently large so that $(-n, n)^2 \cap \tilde{E}(\mathcal{F}) \neq \emptyset$. For the sake of simplicity, let us assume n = 1. Let $\mathscr{B}_0 = \{[-1, 1]^2\}$.

CLAIM 5.1. There is a sequence of finite collections of boxes $\mathcal{B}_1, \mathcal{B}_2, \ldots$ such that for every $k \ge 1$ and $B \in \mathcal{B}_k$:

(i) $B = [a, b] \times [c, d]$ for some $a, b \in \mathbb{R}$ and $c, d \in \mathbb{Q}$ with a < b and c < d;

(ii)
$$b - a = F^{-k^2}(1);$$

(iii)
$$d - c \le F^{-k^2}(1)$$
;

- (iv) there exists $B' \in \mathscr{B}_{k-1}$ such that $\{a\} \times [c, d] \subset \{b'\} \times [c', d'];$
- (v) $\{a\} \times [c, d] \cap J(\mathcal{F}) \neq \emptyset;$
- (vi) $B \cap B^* = \emptyset$ for all $B^* \in \mathscr{B}_k \setminus \{B\}$;
- (vii) if $\underline{s}, \hat{\underline{s}} \in [c, d] \cap \mathbb{Z}^{\omega}$ then $\underline{s} \upharpoonright 2k^2 = \hat{\underline{s}} \upharpoonright 2k^2$ (i.e. $s_i = \hat{s}_i$ for all $i < 2k^2$); and
- (viii) for every $B' \in \mathscr{B}_{k-1}$ and $x \in J(\mathcal{F}) \cap \{b'\} \times [c', d']$ there exists $B \in \mathscr{B}_k$ such that $x \in B$.

Proof. Suppose \mathscr{B}_{k-1} has already been defined. Let

$$K = \bigcup_{B' \in \mathscr{B}_{k-1}} J(\mathcal{F}) \cap \{b'\} \times [c', d'].$$

Since $J(\mathcal{F})$ is closed in \mathbb{R}^2 [2, theorem 3.3] and \mathscr{B}_{k-1} is finite, *K* is compact. Given a segment of integers $\langle s_0, s_1, ..., s_{2k^2-1} \rangle$ of length $2k^2$, observe that the set $\{\underline{s} \in \mathbb{Z}^{\omega} : \underline{s} \upharpoonright 2k^2 = \langle s_0, s_1, ..., s_{2k^2-1} \rangle\}$ is clopen and convex in the lexicographic ordering on \mathbb{Z}^{ω} , and thus corresponds to the intersection of \mathbb{P} with an interval whose endpoints are in \mathbb{Q} . By compactness of *K*, the projection

$$\pi_1[K] = \{ y \in \mathbb{R} : [0, \infty) \times \{ y \} \cap K \neq \emptyset \}$$

D. S. LIPHAM

can be covered by finitely many of those intervals. Let \mathcal{I} be a finite cover of $\pi_1[K]$ consisting of such intervals. Let

$$-1 = q_0 < q_1 < q_2 < \cdots < q_n = 1$$

be the increasing enumeration of all *c*'s and *d*'s used in \mathscr{B}_{k-1} , together with the endpoints of all intervals in \mathcal{I} . If necessary, we can insert a few more rationals to obtain $q_{i+1} - q_i \leq F^{-k^2}(1)$ for each i < n. Since $\pi_1[K]$ is a compact set missing \mathbb{Q} , we can also guarantee that for every i < n - 1, $[q_i, q_{i+1}] \cap \pi_1[K] = \emptyset$ or $[q_{i+1}, q_{i+2}] \cap \pi_1[K] = \emptyset$.

Note that b' is the same for each box $B' \in \mathscr{B}_{k-1}$ (in fact, $b' = 1 + \sum_{i=1}^{k-1} F^{-i^2}(1)$). If $\{b'\} \times [q_i, q_{i+1}] \cap J(\mathcal{F}) \neq \emptyset$ then add the box $[b', b' + F^{-k^2}(1)] \times [q_i, q_{i+1}]$ to the collection \mathscr{B}_k . It can be easily shown that defining \mathscr{B}_k in this manner will satisfy conditions (i) through (viii).

Let $\mathscr{B} = \bigcup \{\mathscr{B}_k : k < \omega\}$. For each $B = [a, b] \times [c, d] \in \mathscr{B}$ let

 $h_B: \{a\} \times [c,d] \longrightarrow ([a,b] \times \{c,d\}) \cup (\{b\} \times [c,d])$

be a homeomorphism with fixed points $\langle a, c \rangle$ and $\langle a, d \rangle$.

CLAIM 5.2. There is a continuous mapping

$$g: [0,1] \longrightarrow [1,\infty) \times [-1,1]$$

such that $g(0) = \langle 1, -1 \rangle$, $g(1) = \langle 1, 1 \rangle$, and $g[0, 1] \cap J(\mathcal{F}) \subset I(\mathcal{F})$.

Proof. The mapping g will be the pointwise limit of a uniformly Cauchy sequence of continuous functions. To begin, define $g_0(t) = \langle 1, 2t - 1 \rangle$ for all $t \in [0, 1]$. Now suppose $k \ge 1$ is given and g_{k-1} has been defined. Let $t \in [0, 1]$. We set

$$g_k(t) = g_{k-1}(t)$$

if $g_{k-1}(t)$ is not in any member of \mathscr{B}_k . Otherwise, by item (vi) there is a unique box $B = [a, b] \times [c, d] \in \mathscr{B}_k$ which contains $g_{k-1}(t)$. Inductively $g_{k-1}(t)$ is contained in some element of $\mathscr{B}_0 \cup \ldots \cup \mathscr{B}_{k-1}$, so by (iv) we have $g_{k-1}(t) \in \{a\} \times [c, d]$. Put

$$g_k(t) = h_B(g_{k-1}(t))$$

The mapping g_k defined in this manner is easily seen to be continuous.

Note that the image of g_k is contained in $[1, \infty) \times [-1, 1]$, $g_k(0) = \langle 1, -1 \rangle$, and $g_k(1) = \langle 1, 1 \rangle$. To see that the sequence (g_k) is uniformly Cauchy, fix $\varepsilon > 0$. Let N be such that $\sum_{k=N}^{\infty} 1/k^2 < \varepsilon/5$. For any $t \in [0, 1]$, if $g_k(t) \neq g_{k-1}(t)$ then $g_k(t)$ and $g_{k-1}(t)$ belong to the same element of \mathscr{B}_k . Hence, by items (ii) and (iii), the distance between $g_k(t)$ and $g_{k-1}(t)$ is at most $\sqrt{2}F^{-k^2}(1)$. Combined with Lemma 3.3 we have

$$|g_k(t) - g_{k-1}(t)| \le \sqrt{2}F^{-k^2}(1) < \sqrt{2}\frac{3}{k^2} < \frac{5}{k^2}$$

for every $k < \omega$ and $t \in [0, 1]$. Thus for any $i > j \ge N$ and $t \in [0, 1]$,

$$|g_i(t) - g_j(t)| \le \sum_{k=j}^{i-1} |g_{k+1}(t) - g_k(t)| < \sum_{k=N}^{\infty} \frac{5}{k^2} < \varepsilon.$$

642

Fig. 3. Illustration of g_0 , g_1 and g_2 .

This proves that (g_k) is uniformly Cauchy. Therefore (g_k) converges uniformly to a continuous function $g:[0,1] \rightarrow [1,\infty) \times [-1,1]$ which satisfies $g(0) = \langle 1,-1 \rangle$ and $g(1) = \langle 1,1 \rangle$.

It remains to show that $g[0, 1] \cap J(\mathcal{F}) \subset I(\mathcal{F})$. Let $x = g(t) \in g[0, 1] \cap J(\mathcal{F})$. By Lemma 3·1 and the fact $F^k(1) \to \infty$, to prove $x \in I(\mathcal{F})$ it suffices to show $T(\mathcal{F}^{2j^2}(x)) \ge F^{j^2}(1)$ for all $j \ge 1$. Fix $j \ge 1$. To prove $T(\mathcal{F}^{2j^2}(x)) \ge F^{j^2}(1)$, by continuity of $T \circ \mathcal{F}^{2j^2}$ we only need to show that every neighbourhood of x contains a point w such that $T(\mathcal{F}^{2j^2}(w)) \ge F^{j^2}(1)$.

Let *W* be a neighbourhood of *x*. Observe that since *c* and *d* are rational in item (i), the top and bottom edges of all boxes miss $J(\mathcal{F})$. So if $g_k(t) \in J(\mathcal{F})$, then $g_k(t)$ belongs to the right edge of an element of \mathcal{B}_k . Then by the construction of g_{k+1} and items (iv) and (viii) we get $g_{k+1}(t) \neq g_k(t)$. Since $g_k(t) \to x$, it follows that the sequence $g_0(t), g_1(t), \ldots$ is not eventually constant. So for every *k* there exists $B \in \mathcal{B}_k$ such that $g_k(t) \in B$. By (ii) and (iii), the diameter of each box in \mathcal{B}_k is at most $\sqrt{2}F^{-k^2}(1)$, which goes to 0 as $k \to \infty$ (e.g. by Lemma 3·3). Since $g_k(t) \to x$ and *x* belongs to the interior of *W*, there exists k > j such that *W* contains a box $B(k) \in \mathcal{B}_k$. By (v) there exists $w \in B(k) \cap W \cap J(\mathcal{F})$.

By (iv), for each i < k there exists a unique $B(i) \in \mathcal{B}_i$ such that $\pi_1[B(k)] \subset \pi_1[B(i)]$. By (iv) and (v) there exists $y \in B(j) \cap B(j-1) \cap J(\mathcal{F})$. Then y is on the left edge of B(j). Let z be the point on the right edge of B(j) such that $\underline{s}(z) = \underline{s}(y)$ (see Figure 3). Then $z \in J(\mathcal{F})$, and by (i) we have $T(z) - T(y) = F^{-j^2}(1)$. Thus, by Lemma 3.2

$$T\left(\mathcal{F}^{2j^2}(z)\right) \ge F^{2j^2}(T(z) - T(y)) = F^{2j^2}\left(F^{-j^2}(1)\right) = F^{j^2}(1).$$

Note also that $\underline{s}(z) \upharpoonright 2j^2 = \underline{s}(w) \upharpoonright 2j^2$ because z and w are contained in the same horizontal strip where the first $2j^2$ coordinates agree; see items (vii) and (iv). The preceding equations together with $T(z) \le T(w)$ imply that

$$T\left(\mathcal{F}^{2j^2}(w)\right) \ge F^{j^2}(1),$$

as desired.

Fig. 4. Proof of Claim $5 \cdot 2$.

By [18, corollary 8.17] and [18, theorem 8.23], there is an arc α : [0, 1] \hookrightarrow g[0, 1] such that $\alpha(0) = g(0) = \langle 1, -1 \rangle$ and $\alpha(1) = g(1) = \langle 1, 1 \rangle$. Let $\beta = (\{-1\} \times [-1, 1]) \cup ([-1, 1] \times \{-1, 1\}) \cup \alpha[0, 1]$. Then β is a simple closed curve, and by Claim 5.2 we have $\beta \cap E(\mathcal{F}) \subset \tilde{E}(\mathcal{F})$. If *U* is the bounded component of $\mathbb{R}^2 \setminus \beta$ then $(-1, 1)^2 \subset U$, hence $U \cap \tilde{E}(\mathcal{F}) \neq \emptyset$. Now we can apply Lemma 4.1 to see that $\tilde{E}(\mathcal{F})$ cannot be written as a countable union of nowhere dense C-sets. This concludes the proof of Theorem 1.1.

6. Remarks on Theorem $1 \cdot 1$

Remark 6.1. In the proof of Theorem 1.1 it is possible to show that g is one-to-one, so $\alpha = g$. And the curve β is just the boundary of $\bigcup \mathcal{B}$.

Remark 6.2. The statement of Theorem 1.1 can be strengthened to: *No neighbourhood in* $\dot{E}(f)$ can be covered by countably many nowhere dense C-sets of $\dot{E}(f)$. To see this, let $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$. Since $J(\mathcal{F})$ is closed, there is a box $[a, b] \times [c, d] \subset B(x_0, \varepsilon/2)$ containing x_0 such that

$$(\{a\} \times [c,d] \cup [a,b] \times \{c,d\}) \cap J(\mathcal{F}) = \emptyset.$$

Begin the construction of the \mathscr{B}_k 's with $\mathscr{B}_0 = \{[a, b] \times [c, d]\}$, and choose *l* large enough so that

$$\sum_{k=1}^{\infty} F^{-(l+k)^2}(1) < \frac{\varepsilon}{2}.$$

Construct \mathscr{B}_k with l + k replacing each k in items (ii), (iii) and (vii). By the arguments in Claim 5.2, if $x \in J(\mathcal{F})$ lies in the limit of (g_k) (constructed using the new \mathscr{B}_k 's), then $T(\mathcal{F}^{2n^2}(x)) \ge F^{n^2}(1)$ for all n > l and consequently $x \in I(\mathcal{F})$. As in Claim 5.2 we can construct an arc α such that $\beta := (\{a\} \times [c, d] \cup [a, b] \times \{c, d\}) \cup \alpha$ is a simple closed curve in $B(x_0, \varepsilon)$, the bounded component of $\mathbb{R}^2 \setminus \beta$ contains x_0 , and $\beta \cap J(\mathcal{F}) \subset I(\mathcal{F})$. Lemma 4.1 now shows that $B(x_0, \varepsilon)$ cannot be covered by countably many nowhere dense C-sets of $\tilde{E}(\mathcal{F})$. *Remark 6.3.* As argued in Section 1, Theorem 1.1 implies that the escaping endpoint set $\dot{E}(f_a)$ is not homeomorphic to Erdős space \mathfrak{E} (Corollary 1.2).

7. The space $F(f_a) \cup I(f_a)$ when $a \in (-\infty, -1]$

We are now ready to prove Theorem 1.3 and Corollary 1.4. Fix $a \in (-\infty, -1]$.

Proof of Theorem 1.3. Let $z \in \mathbb{C}$. By [19, section 9] and [2, theorem 2.8], there is a homeomorphism $\varphi : \mathbb{R}^2 \to \mathbb{C}$ such that $\varphi[J(\mathcal{F})] = J(f_a)$ and $\varphi[I(\mathcal{F})] = I(f_a)$. Let $x = \varphi^{-1}(z)$. We have shown that there is a Jordan curve $\beta \subset (\mathbb{R}^2 \setminus J(\mathcal{F})) \cup I(\mathcal{F})$ around x; see Remark 6.2, or simply begin the construction in Section 6 with $\mathscr{B}_0 = \{[-n, n]^2\}$ where $n \in \mathbb{N}$ is such that $x \in (-n, n)^2$. Then $\varphi[\beta] \subset F(f_a) \cup I(f_a)$ is a Jordan curve which separates z from ∞ .

In the proof below we will make use of two well-known facts: (a) $F(f_a)$ is path-connected and (b) each component of $J(f_a)$ is contained in $I(f_a)$, with the possible exception of its endpoint.

Proof of Corollary 1.4. Let $z_0, z_1 \in F(f_a) \cup I(f_a)$. We will find a path in $F(f_a) \cup I(f_a)$ from z_0 to z_1 . There are three cases to consider.

The case $z_0, z_1 \in F(f_a)$ is trivial since $F(f_a)$ is path-connected.

The next case is that $z_0 \in F(f_a)$ and $z_1 \in I(f_a)$. Let β be a simple closed curve around the point z_1 , such that $\beta \cap J(f_a) \subset I(f_a)$ (apply Theorem 1.3). Let γ be the component of $J(f_a)$ containing z_1 . There exists $z_2 \in \beta \setminus J(f_a)$ and $z_3 \in \gamma \cap \beta$. There are paths $\alpha_1 \subset F(f_a)$ from z_0 to z_2 , $\alpha_2 \subset \beta$ from z_2 to z_3 , and $\alpha_3 \subset \gamma$ from z_3 to z_1 . It is clear that α_3 can be constructed to avoid the endpoint of γ , so that $\alpha_3 \subset I(f_a)$. Then $\alpha_1 \cup \alpha_2 \cup \alpha_3 \subset F(f_a) \cup I(f_a)$ contains a path from z_0 to z_1 .

The third and final case $z_0, z_1 \in I(f_a)$ can be handled by connecting each point z_0 and z_1 to a third point of $F(f_a)$, as was done the second case.

Acknowledgements. We thank the referee for their careful reading and helpful suggestions.

REFERENCES

- [1] J. M. AARTS and L. G. OVERSTEEGEN. The geometry of Julia sets. *Trans. Amer. Math. Soc.* **338** (1993), no. 2, 897–918.
- [2] N. ALHABIB and L. REMPE-GILLEN. Escaping endpoints explode. *Comput. Methods Funct. Theory* 17, 1 (2017), 65–100.
- [3] M. ALHAMED, L. REMPE and D. SIXSMITH. Geometrically finite transcendental entire functions, preprint https://arxiv.org/abs/2003.08884.
- [4] J. J. DIJKSTRA and D. S. LIPHAM. On cohesive almost zero-dimensional spaces, to appear in *Canad. Math. Bull.*
- [5] J. J. DIJKSTRA and J. VAN MILL. Erdős space and homeomorphism groups of manifolds. Mem. Amer. Math. Soc. 208 (2010), no. 979.
- [6] R. L. DEVANEY and M. KRYCH. Dynamics of exp(z). Ergodic Theory Dynam. Systems 4 (1984), 35–52.
- [7] P. ERDŐS, The dimension of the rational points in Hilbert space. Ann. of Math. (2) **41** (1940), 734–736.
- [8] A. E. EREMENKO and M. Y. LYUBICH. Dynamical properties of some classes of entire functions. Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020.
- [9] V. EVDORIDOU and L. REMPE-GILLEN. Non-escaping endpoints do not explode. Bull. London Math. Soc. 50(5) (2018) pp. 916–932.

D. S. LIPHAM

- [10] B. KARPIŃSKA. Hausdorff dimension of the hairs without endpoints for λ exp z. C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), 1039–1044.
- [11] K. KAWAMURA, L. G. OVERSTEEGEN and E. D. TYMCHATYN. On homogeneous totally disconnected 1-dimensional spaces. *Fund. Math.* 150 (1996), 97–112.
- [12] D. S. LIPHAM. A note on the topology of escaping endpoint. *Ergodic Theory Dynam. Systems.* 41(4), 1156–1159.
- [13] D. S. LIPHAM. The topological dimension of radial Julia set. *Computational Method Funct. Theory*, to appear.
- [14] D. S. LIPHAM. Erdős space in Julia sets, preprint https://arxiv.org/pdf/2004.12976.pdf.
- [15] D. S. LIPHAM. Another almost zero-dimensional space of exact multiplicative class 3, preprint https://arxiv.org/abs/2010.13876.
- [16] J. C. MAYER. An explosion point for the set of endpoints of the Julia set of exp(z). Ergodic Theory Dynam. Systems 10 (1990), 177–183.
- [17] C. MCMULLEN. Area and Hausdorff dimension of Julia sets of entire functions. *Trans. Amer. Math. Soc.* 300 (1987), 329–342.
- [18] S. B. NADLER JR.. Continuum theory: an introduction. *Pure Appl. Math.*, vol. 158 (Marcel Dekker, Inc., New York, 1992).
- [19] L. REMPE. Topological dynamics of exponential maps on their escaping sets. *Ergodic Theory Dynam Systems* 26(6) (2006), 1939–1975.