
Math. Proc. Camb. Phil. Soc. (2022), 173, 635–646 635
doi:10.1017/S0305004122000032

First published online 15 February 2022

Distinguishing endpoint sets from Erdős space
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Abstract

We prove that the set of all endpoints of the Julia set of f (z) = exp(z) − 1 which escape
to infinity under iteration of f is not homeomorphic to the rational Hilbert space E. As a
corollary, we show that the set of all points z ∈C whose orbits either escape to ∞ or attract
to 0 is path-connected. We extend these results to many other functions in the exponential
family.
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1. Introduction

The exponential family fa(z) = ez + a; a ∈C, is the most studied family of functions in the
theory of the iteration of transcendental entire functions. For any parameter a ∈C, the Julia
set J(fa) is known to be equal to the closure of the escaping set I(fa) := {z ∈C : f n

a (z) → ∞}
[8]. And when a belongs to the Fatou set F(fa) (e.g. when a ∈ (−∞, −1]), the Julia set J(fa)
can be written as a union of uncountably many disjoint curves and endpoints [6, 9]. A point
z ∈ J(fa) is on a curve if there exists an arc α : [−1, 1] ↪→ I(fa) such that α(0) = z. A point
z0 ∈ J(fa) is an endpoint if z0 is not on a curve and there is an arc α : [0, 1] ↪→ J(fa) with
α(0) = z0 and α(t) ∈ I(fa) for all t ∈ (0, 1]. The set of all endpoints of J(fa) is denoted E(fa).

The first to study the surprising topological properties of the endpoints was Mayer in 1988.
He proved that ∞ is an explosion point for E(fa) for all attracting fixed point parameters
a ∈ (−∞, −1) [16]. That is, E(fa) is totally separated but its union with ∞ is a connected
set. A similarly paradoxical result is due to McMullen 1987 and Karpinska 1999: If a ∈
(−∞, −1) then the Hausdorff dimension of E(fa) is two [17], but the set of curves has
Hausdorff dimension one [10].

Alhabib and Rempe extended Mayer’s result in 2016 by focusing on the endpoints of
I(fa). They proved that ∞ is an explosion point for the escaping endpoint set

Ė(fa) := E(fa) ∩ I(fa),

as well as for E(fa), for every Fatou parameter a ∈ F(fa). The set of non-escaping endpoints
E(fa) \ I(fa) is very different in this regard. Its union with ∞ is totally separated [9] and
zero-dimensional [13].

Conjugacy between escaping sets [19] implies that Ė(fa) and Ė(fb) are topologically equiv-
alent when a and b are Fatou parameters. The primary aim of this paper is to distinguish
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the space Ė(fa); a ∈ F(fa), from a certain line-free subgroup of the Hilbert space �2.
For comparison, the entire endpoint set E(fa) is homeomorphic to complete Erdős space
Ec := {x ∈ �2 : xn ∈R \Q for each n < ω} for every a ∈ (−∞, −1] [11]. The space Ė(fa) is
not homeomorphic to Ec [12], but has many of the same topological properties as (the plain)
Erdős space

E :=
{

x ∈ �2 : xn ∈Q for each n < ω
}

.

For example, Ė(fa) and E are both one-dimensional, almost zero-dimensional Fσδ-spaces
which are nowhere Gδσ ; see [12, 15]. Moreover Ė(fa) contains a dense copy of E in the
form of all endpoints that escape to infinity in the imaginary direction [14]. However, in this
paper we will show that the two spaces are not equivalent. This provides a negative answer
to [12, question 1] and suggests that Ė(fa) is a fundamental object between the ‘rational and
irrational Hilbert spaces’ E and Ec. It is still unknown whether Ė(fa) is a topological group,
or is at least homogeneous.

The key property distinguishing Ė(fa) from E will involve the notion of a C-set. A C-set in
a topological space X is an intersection of clopen subsets of X. Note that for every rational
number q ∈Q the set {x ∈E : x0 = q} is a nowhere dense C-set in E because the �2-norm
topology on E is finer than the zero-dimensional topology that E inherits from Qω. Thus E
can be written as a countable union of nowhere dense C-sets. On the other hand:

THEOREM 1·1. If a ∈ F(fa) then Ė(fa) cannot be written as a countable union of nowhere
dense C-sets.

COROLLARY 1·2. If a ∈ F(fa) then Ė(fa) ��E.

Our proof of Theorem 1·1 will involve constructing simple closed (Jordan) curves in C

whose intersections with J(f−1) are contained in I(f−1).

THEOREM 1·3. If a ∈ (−∞, −1] then each point of C can be separated from ∞ by a
simple closed (Jordan) curve in F(fa) ∪ I(fa).

Note that the curve in Theorem 1·3 avoids all non-escaping endpoints of J(fa).

COROLLARY 1·4. If a ∈ (−∞, −1] then F(fa) ∪ I(fa) is path-connected.

We observe that F(f−1) ∪ I(f−1) is simply the set of all points z ∈C such that f n
−1(z) → 0

or f n
−1(z) → ∞.

2. Preliminaries
2.1. Outline of paper

We will prove Theorem 1·1 and Corollary 1·2 for the particular mapping

f (z) := f−1(z) = ez − 1.

The proof for all other Fatou parameters will then follow from the conjugacy [19, theorem
1·2]. Theorem 1·3 and Corollary 1·4 will essentially follow from the case a = −1 as well.

Instead of working directly in the Julia set J(f ) ⊂C, we will work in a topologically
equivalent subset of R2 known as a brush. In this section we will give the definition of a
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brush and its connection to exponential Julia sets. We will then define a specific brush which
is homeomorphic to J(f ), together with a mapping which models f .

In Section 3 we will prove three easy lemmas for the model mapping. In Section 4 we
will show that certain endpoint sets in brushes cannot be written as countable unions of
nowhere dense C-sets, given the existence of certain Jordan curves. In Section 5 we will
prove Theorem 1·1 by showing that such curves exist with respect to our model of Ė(f ).
Theorem 1·1 is strengthened by Remark 6·2 in Section 6. Finally, the proofs of Theorem 1·3
and Corollary 1·4 are given in Section 7.

2.2. Brushes and Cantor bouquets

Let P=R \Q. A brush is a closed subset of R2 of the form

B =
⋃
y∈Y

[ty, ∞) × {y},

where Y ⊂ P and ty ∈R. The endpoints of B are the points 〈ty, y〉.
When a ∈ (−∞, −1], the Julia set J(fa) is a Cantor bouquet [1, 2] which is homeomor-

phic to a brush with a dense set of endpoints. For all other Fatou parameters, J(fa) is a
pinched Cantor bouquet that is homeomorphic to a brush modulo a closed equivalence
relation on its set of endpoints; see [19, corollary 9·3] and [3]. The relation establishes a one-
to-one correspondence between endpoints of J(f ) and equivalence classes of endpoints of
B [13, section 3·2].

2.3. Brush model of J(f)

We will now define a mapping F and a brush J(F ) that model f and J(F ). These objects
were studied extensively in [2, 19].

Let Zω denote the space of integer sequences s = s0s1s2 · · · in the product (or lexico-
graphic order) topology. Define F : [0, ∞) ×Zω →R×Zω by

〈t, s〉 −→ 〈F(t) − 2π |s0|, σ (s)〉,
where F(t) = et − 1 and σ is the shift map on Zω; i.e.

σ (s0s1s2 · · · ) = s1s2s3 · · · .

For each x = 〈t, s〉 ∈ [0, ∞) ×Zω put T(x) = t and s(x) = s. The integer sequence s(x) is
called the external address of x.

Define

J(F ) = {
x ∈ [0, ∞) ×Zω : T

(Fn(x)
) ≥ 0 for all n ≥ 0

}
.

Continuity of F implies that J(F ) is closed in [0, ∞) ×Zω. Now let

S= {
s ∈Zω : there exists t ≥ 0 such that 〈t, s〉 ∈ J(F )

}
,

and for each s ∈ S put ts = min{t ≥ 0 : 〈t, s〉 ∈ J(F )}. Then

J(F ) =
⋃
s∈S

[ts, ∞) × {s}.
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Fig. 1. Three endpoints and curves in J(f ) (left) and in J(F) (right).

Finally, Zω can be identified with P using an order isomorphism between Zω in the lexico-
graphic ordering and P in the real ordering [2, observation 3·2]. Under this identification,
J(F ) ⊂R× P. Hence J(F ) is a brush. See Figure 1.

The restrictions F � J(F ) and f � J(f ) are topologically conjugate [19, section 9]. Hence
J(F ) is homeomorphic to J(f ), and the action of F on J(F ) captures the essential dynamics
of f on J(f ); see also [2, p.74].

3. Lemmas for F
In order to prove Theorem 1·1 we need a few basic lemmas regarding the model above.

Define F−1(t) = ln (t + 1) for t ≥ 0, so that F−1 is the inverse of F. For each n ≥ 1, the n-fold
composition of F−1 is denoted F−n.

LEMMA 3·1 (Iterating between double squares) Let x ∈ J(F ). If k ≥ 5 and

T
(
F2k2

(x)
)

≥ Fk2
(1),

then T(Fn(x)) ≥ Fk(1) for all n ∈ [2(k − 1)2, 2k2].

Proof. Suppose k ≥ 5 and T(F2k2
(x)) ≥ Fk2

(1). Let n ∈ [2(k − 1)2, 2k2]. Then there exists
i ≤ 4k − 2 such that n = 2k2 − i. We have

Fi(T
(Fn(x)

)) = Fi
(

T
(
F2k2−i(x)

))
≥ T

(
F i

(
F2k2−i(x)

))
= T

(
F2k2

(x)
)

≥ Fk2
(1).

Applying F−i to each side of the inequality shows that

T
(Fn(x)

) ≥ Fk2−i(1) > Fk(1),

where we used the fact k2 − i > k for all k ≥ 5 and i ≤ 4k − 2.

LEMMA 3·2 (Forward stretching). Let x, y ∈ J(F ). If s(y) = s(x) and T(y) > T(x), then for
every n ≥ 1 we have T(Fn(y)) ≥ Fn(T(y) − T(x)).

Proof. Suppose s(y) = s(x) and T(y) > T(x). Let ε = T(y) − T(x) and δ = T(Fn(y)) −
T(Fn(x)). Note that δ > 0. So T(y) ≤ T(x) + F−n(δ) by [2, observation 3·9]. Therefore
δ ≥ Fn(ε). We have

T
(Fn(y)

) ≥ T
(Fn(y)

) − T
(Fn(x)

) = δ ≥ Fn(ε) = Fn(T(y) − T(x))

as desired.
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Lemma 3·1 implies that T(Fn(x)) → ∞ if the double square iterates T(F2k2
(x)) increase

at a sufficient rate. Lemma 3·2 will be used to show that T(F2k2
(x)) increases at that rate for

certain points x ∈ J(F ).

LEMMA 3·3 (Logarithmic orbit). F−n(1) < 3/n for all n ≥ 1.

Proof. The proof is by induction on n. If n = 1 then we have F−n(1) = F−1(1) = ln(2) < 3 =
3/n. Now suppose the inequality holds for a given n. Then

F−(n+1)(1) = F−1(F−n(1)) < F−1(3/n) = ln

(
3

n
+ 1

)
<

3

n + 1

by calculus.
Although the series

∑∞
k=1 F−k(1) diverges, Lemma 3·3 implies that

∑∞
k=1 F−k2

(1)
converges (to something less than π2/2).

4. Jordan curve lemma

The following topological lemma will also be required to prove Theorem 1·1. Recall that
a C-set in a space X is an intersection of clopen subsets of X.

LEMMA 4·1. Let

B =
⋃
y∈Y

[ty, ∞) × {y}

be a brush, and let E = {〈ty, y〉 : y ∈ Y} denote the set of endpoints of B. Suppose Ẽ ⊂ E and
Ẽ ∪ {∞} is connected. If there exists an open set U ⊂R2 such that:

(i) U ∩ Ẽ �=∅;

(ii) ∂U is a simple closed curve; and

(iii) ∂U ∩ E ⊂ Ẽ,

then Ẽ cannot be written as a countable union of nowhere dense C-sets.

Proof. Suppose that Ẽ, U, and β := ∂U satisfy all of the hypotheses. Let

A := {y ∈ Y : β contains an interval of [ty, ∞) × {y}}.
Since every collection of pairwise disjoint arcs of a simple closed curve is countable,
A is countable. So Ẽ ∩ (R× A) is countable. Observe also that since B is closed in R× Y
and Y ⊂ P, the space E has a neighbourhood basis of C-sets of the form E ∩ (−∞, t] × W,
where t ∈R and W is clopen in Y . By [4, theorem 4·7] and the assumption that Ẽ ∪ {∞} is
connected, we see that Ẽ \ (R× A) ∪ {∞} is connected.

Now aiming for a contradiction, suppose that Ẽ = ⋃{Cn : n < ω} where each Cn is a
nowhere dense C-set in Ẽ. Let V be the unbounded component of R2 \ β. Since Ẽ \ (R× A)
∪{∞} is connected,

τ := U ∩ Ẽ ∩ V ∩ Ẽ ∩ Ẽ \ (R× A)
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Fig. 2. Construction of clopen set in Lemma 4·1.

is non-empty. Note also that τ is a relatively closed subset of

β ∩ Ẽ \ (R× A) = β ∩ E \ (R× A),

which is a Gδ-subset of E. And E is a Gδ-subset of R× P because B is closed and B \ E
is the union of countably many closed sets B + 〈1/n, 0〉. Therefore τ is completely metris-
able. By Baire’s theorem there is an open rectangle (x1, x2) × (y1, y2) and n < ω such that
∅ �= τ ∩ ((x1, x2) × (y1, y2)) ⊂ Cn. Let

〈ty, y〉 ∈ τ ∩ ((x1, x2) × (y1, y2)).

See Figure 2.
Since y /∈ A, there exist x3 ∈ (ty, x2) and y3, y4 ∈ (y1, y2) ∩Q such that y3 < y < y4 and

{x3} × [y3, y4] ⊂R2 \ β. Without loss of generality, assume {x3} × [y3, y4] ⊂ V . Note that
U ∩ Ẽ ∩ ((x1, x3) × (y3, y4)) �=∅ because

〈ty, y〉 ∈ U ∩ Ẽ ∩ ((x1, x3) × (y3, y4)).

Further, Cn ∪ (Ẽ ∩ (R× A)) is nowhere dense in Ẽ, so there exists

z ∈ U ∩ Ẽ ∩ ((x1, x3) × (y3, y4)) \ (Cn ∪ (R× A)).

Since z is an endpoint and B is closed in R× Y , we can find y5, y6 ∈ (y3, y4) ∩Q and x4 > x1

such that y5 < y6, z ∈ (x4, ∞) × (y5, y6), and

({x4} × [y5, y6]) ∪ ([x4, ∞) × {y5, y6}) ∩ B =∅.

Further, since z /∈ Cn there is a relatively clopen subset O of Ẽ \ (R× A) such that z ∈ O and
Cn ∩ O =∅. Then

U ∩ O ∩ ([x4, x3] × [y5, y6])

is a non-empty bounded clopen subset of Ẽ \ (R× A). This contradicts the previously
established fact that Ẽ \ (R× A) ∪ {∞} is connected.
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5. Proof of Theorem 1·1
As indicated in Section 2.2, we will identify Zω with P, so that

J(F ) ⊂R× P⊂R2.

Let E(F ) = {〈ts, s〉 : s ∈ S} denote the set of endpoints of J(F ). Define

I(F ) = {x ∈ J(F ) : T(Fn(x)) −→ ∞} and

Ẽ(F ) = I(F ) ∩ E(F ).

The conjugacy [19, theorem 9·1] shows that Ẽ(F ) � Ė(f ), and Ẽ(F ) ∪ {∞} is connected by
[2, theorem 3·4]. Thus to reach the conclusion that Ė(f ) cannot be written as a countable
union of nowhere dense C-sets, by Lemma 4·1 we only need to find a simple closed curve
β ⊂R2 such that:

(i) if U is the bounded component of R2 \ β then U ∩ Ẽ(F ) �=∅, and

(ii) β ∩ J(F ) ⊂ I(F ) (in particular, β ∩ E(F ) ⊂ Ẽ(F )).

The β that we construct will essentially be the boundary of a union of rectangular regions
in R2. We recursively define the collections of rectangles (or “boxes”) as follows. Choose
n sufficiently large so that (−n, n)2 ∩ Ẽ(F ) �=∅. For the sake of simplicity, let us assume
n = 1. Let B0 = {[−1, 1]2}.

CLAIM 5·1. There is a sequence of finite collections of boxes B1, B2, . . . such that for
every k ≥ 1 and B ∈ Bk:

(i) B = [a, b] × [c, d] for some a, b ∈R and c, d ∈Q with a < b and c < d;

(ii) b − a = F−k2
(1);

(iii) d − c ≤ F−k2
(1);

(iv) there exists B′ ∈ Bk−1 such that {a} × [c, d] ⊂ {b′} × [c′, d′];
(v) {a} × [c, d] ∩ J(F ) �=∅;

(vi) B ∩ B∗ =∅ for all B∗ ∈ Bk \ {B};
(vii) if s, ŝ ∈ [c, d] ∩Zω then s � 2k2 = ŝ � 2k2 (i.e. si = ŝi for all i < 2k2); and

(viii) for every B′ ∈ Bk−1 and x ∈ J(F ) ∩ {b′} × [c′, d′] there exists B ∈ Bk such that x ∈ B.

Proof. Suppose Bk−1 has already been defined. Let

K =
⋃

B′∈Bk−1

J(F ) ∩ {b′} × [c′, d′].

Since J(F ) is closed in R2 [2, theorem 3·3] and Bk−1 is finite, K is compact. Given a
segment of integers 〈s0, s1, ..., s2k2−1〉 of length 2k2, observe that the set {s ∈Zω : s � 2k2 =
〈s0, s1, ..., s2k2−1〉} is clopen and convex in the lexicographic ordering on Zω, and thus cor-
responds to the intersection of P with an interval whose endpoints are in Q. By compactness
of K, the projection

π1[K] = {y ∈R : [0, ∞) × {y} ∩ K �=∅}
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can be covered by finitely many of those intervals. Let I be a finite cover of π1[K] consisting
of such intervals. Let

−1 = q0 < q1 < q2 < · · · < qn = 1

be the increasing enumeration of all c’s and d’s used in Bk−1, together with the endpoints
of all intervals in I . If necessary, we can insert a few more rationals to obtain qi+1 − qi ≤
F−k2

(1) for each i < n. Since π1[K] is a compact set missing Q, we can also guarantee that
for every i < n − 1, [qi, qi+1] ∩ π1[K] =∅ or [qi+1, qi+2] ∩ π1[K] =∅.

Note that b′ is the same for each box B′ ∈ Bk−1 (in fact, b′ = 1 + ∑k−1
i=1 F−i2(1)). If {b′} ×

[qi, qi+1] ∩ J(F ) �=∅ then add the box [b′, b′ + F−k2
(1)] × [qi, qi+1] to the collection Bk. It

can be easily shown that defining Bk in this manner will satisfy conditions (i) through (viii).
Let B = ⋃{Bk : k < ω}. For each B = [a, b] × [c, d] ∈ B let

hB : {a} × [c, d] −→ ([a, b] × {c, d}) ∪ ({b} × [c, d])

be a homeomorphism with fixed points 〈a, c〉 and 〈a, d〉.
CLAIM 5·2. There is a continuous mapping

g : [0, 1] −→ [1, ∞) × [−1, 1]

such that g(0) = 〈1, −1〉, g(1) = 〈1, 1〉, and g[0, 1] ∩ J(F ) ⊂ I(F ).

Proof. The mapping g will be the pointwise limit of a uniformly Cauchy sequence of con-
tinuous functions. To begin, define g0(t) = 〈1, 2t − 1〉 for all t ∈ [0, 1]. Now suppose k ≥ 1 is
given and gk−1 has been defined. Let t ∈ [0, 1]. We set

gk(t) = gk−1(t)

if gk−1(t) is not in any member of Bk. Otherwise, by item (vi) there is a unique box
B = [a, b] × [c, d] ∈ Bk which contains gk−1(t). Inductively gk−1(t) is contained in some
element of B0 ∪ . . . ∪ Bk−1, so by (iv) we have gk−1(t) ∈ {a} × [c, d]. Put

gk(t) = hB(gk−1(t)).

The mapping gk defined in this manner is easily seen to be continuous.
Note that the image of gk is contained in [1, ∞) × [−1, 1], gk(0) = 〈1, −1〉, and gk(1) =

〈1, 1〉. To see that the sequence (gk) is uniformly Cauchy, fix ε > 0. Let N be such that∑∞
k=N 1/k2 < ε/5. For any t ∈ [0, 1], if gk(t) �= gk−1(t) then gk(t) and gk−1(t) belong to the

same element of Bk. Hence, by items (ii) and (iii), the distance between gk(t) and gk−1(t) is
at most

√
2F−k2

(1). Combined with Lemma 3·3 we have

|gk(t) − gk−1(t)| ≤ √
2F−k2

(1) <
√

2
3

k2
<

5

k2

for every k < ω and t ∈ [0, 1]. Thus for any i > j ≥ N and t ∈ [0, 1],

|gi(t) − gj(t)| ≤
i−1∑
k=j

|gk+1(t) − gk(t)| <
∞∑

k=N

5

k2
< ε.
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Fig. 3. Illustration of g0, g1 and g2.

This proves that (gk) is uniformly Cauchy. Therefore (gk) converges uniformly to
a continuous function g : [0, 1] → [1, ∞) × [−1, 1] which satisfies g(0) = 〈1, −1〉 and
g(1) = 〈1, 1〉.

It remains to show that g[0, 1] ∩ J(F ) ⊂ I(F ). Let x = g(t) ∈ g[0, 1] ∩ J(F ). By
Lemma 3·1 and the fact Fk(1) → ∞, to prove x ∈ I(F ) it suffices to show T(F2j2 (x)) ≥
Fj2(1) for all j ≥ 1. Fix j ≥ 1. To prove T(F2j2 (x)) ≥ Fj2(1), by continuity of T ◦F2j2 we only
need to show that every neighbourhood of x contains a point w such that T(F2j2 (w)) ≥ Fj2(1).

Let W be a neighbourhood of x. Observe that since c and d are rational in item (i), the
top and bottom edges of all boxes miss J(F ). So if gk(t) ∈ J(F ), then gk(t) belongs to the
right edge of an element of Bk. Then by the construction of gk+1 and items (iv) and (viii)
we get gk+1(t) �= gk(t). Since gk(t) → x, it follows that the sequence g0(t), g1(t), . . . is not
eventually constant. So for every k there exists B ∈ Bk such that gk(t) ∈ B. By (ii) and (iii),
the diameter of each box in Bk is at most

√
2F−k2

(1), which goes to 0 as k → ∞ (e.g. by
Lemma 3·3). Since gk(t) → x and x belongs to the interior of W, there exists k > j such that
W contains a box B(k) ∈ Bk. By (v) there exists w ∈ B(k) ∩ W ∩ J(F ).

By (iv), for each i < k there exists a unique B(i) ∈ Bi such that π1[B(k)] ⊂ π1[B(i)]. By
(iv) and (v) there exists y ∈ B(j) ∩ B(j − 1) ∩ J(F ). Then y is on the left edge of B(j). Let z
be the point on the right edge of B(j) such that s(z) = s(y) (see Figure 3). Then z ∈ J(F ), and
by (i) we have T(z) − T(y) = F−j2(1). Thus, by Lemma 3·2

T
(
F2j2(z)

)
≥ F2j2(T(z) − T(y)) = F2j2

(
F−j2(1)

)
= Fj2(1).

Note also that s(z) � 2j2 = s(w) � 2j2 because z and w are contained in the same horizontal
strip where the first 2j2 coordinates agree; see items (vii) and (iv). The preceding equations
together with T(z) ≤ T(w) imply that

T
(
F2j2(w)

)
≥ Fj2(1),

as desired.
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Fig. 4. Proof of Claim 5·2.

By [18, corollary 8·17] and [18, theorem 8·23], there is an arc α : [0, 1] ↪→ g[0, 1] such
that α(0) = g(0) = 〈1, −1〉 and α(1) = g(1) = 〈1, 1〉. Let β = ({−1} × [−1, 1]) ∪ ([−1, 1] ×
{−1, 1}) ∪ α[0, 1]. Then β is a simple closed curve, and by Claim 5·2 we have β ∩ E(F ) ⊂
Ẽ(F ). If U is the bounded component of R2 \ β then (−1, 1)2 ⊂ U, hence U ∩ Ẽ(F ) �=∅.
Now we can apply Lemma 4·1 to see that Ẽ(F ) cannot be written as a countable union of
nowhere dense C-sets. This concludes the proof of Theorem 1·1.

6. Remarks on Theorem 1·1
Remark 6·1. In the proof of Theorem 1·1 it is possible to show that g is one-to-one, so α = g.
And the curve β is just the boundary of

⋃
B.

Remark 6·2. The statement of Theorem 1·1 can be strengthened to: No neighbourhood in
Ė(f ) can be covered by countably many nowhere dense C-sets of Ė(f ). To see this, let x0 ∈R2

and ε > 0. Since J(F ) is closed, there is a box [a, b] × [c, d] ⊂ B(x0, ε/2) containing x0 such
that

({a} × [c, d] ∪ [a, b] × {c, d}) ∩ J(F ) =∅.

Begin the construction of the Bk’s with B0 = {[a, b] × [c, d]}, and choose l large enough so
that

∞∑
k=1

F−(l+k)2
(1) <

ε

2
.

Construct Bk with l + k replacing each k in items (ii), (iii) and (vii). By the arguments
in Claim 5·2, if x ∈ J(F ) lies in the limit of (gk) (constructed using the new Bk’s), then
T(F2n2

(x)) ≥ Fn2
(1) for all n > l and consequently x ∈ I(F ). As in Claim 5·2 we can con-

struct an arc α such that β := ({a} × [c, d] ∪ [a, b] × {c, d}) ∪ α is a simple closed curve in
B(x0, ε), the bounded component of R2 \ β contains x0, and β ∩ J(F ) ⊂ I(F ). Lemma 4·1
now shows that B(x0, ε) cannot be covered by countably many nowhere dense C-sets of
Ẽ(F ).
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Remark 6·3. As argued in Section 1, Theorem 1·1 implies that the escaping endpoint set
Ė(fa) is not homeomorphic to Erdős space E (Corollary 1·2).

7. The space F(fa) ∪ I(fa) when a ∈ (−∞, −1]

We are now ready to prove Theorem 1·3 and Corollary 1·4. Fix a ∈ (−∞, −1].

Proof of Theorem 1·3. Let z ∈C. By [19, section 9] and [2, theorem 2·8], there is a
homeomorphism ϕ : R2 →C such that ϕ[J(F )] = J(fa) and ϕ[I(F )] = I(fa). Let x = ϕ−1(z).
We have shown that there is a Jordan curve β ⊂ (R2 \ J(F )) ∪ I(F ) around x; see Remark
6·2, or simply begin the construction in Section 6 with B0 = {[−n, n]2} where n ∈N is such
that x ∈ (−n, n)2. Then ϕ[β] ⊂ F(fa) ∪ I(fa) is a Jordan curve which separates z from ∞.

In the proof below we will make use of two well-known facts: (a) F(fa) is path-connected
and (b) each component of J(fa) is contained in I(fa), with the possible exception of its
endpoint.

Proof of Corollary 1·4. Let z0, z1 ∈ F(fa) ∪ I(fa). We will find a path in F(fa) ∪ I(fa) from
z0 to z1. There are three cases to consider.

The case z0, z1 ∈ F(fa) is trivial since F(fa) is path-connected.
The next case is that z0 ∈ F(fa) and z1 ∈ I(fa). Let β be a simple closed curve around the

point z1, such that β ∩ J(fa) ⊂ I(fa) (apply Theorem 1·3). Let γ be the component of J(fa)
containing z1. There exists z2 ∈ β \ J(fa) and z3 ∈ γ ∩ β. There are paths α1 ⊂ F(fa) from z0

to z2, α2 ⊂ β from z2 to z3, and α3 ⊂ γ from z3 to z1. It is clear that α3 can be constructed
to avoid the endpoint of γ , so that α3 ⊂ I(fa). Then α1 ∪ α2 ∪ α3 ⊂ F(fa) ∪ I(fa) contains a
path from z0 to z1.

The third and final case z0, z1 ∈ I(fa) can be handled by connecting each point z0 and z1 to
a third point of F(fa), as was done the second case.

Acknowledgements. We thank the referee for their careful reading and helpful sugges-
tions.
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