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It is argued that standard impulse response analysis based on vector autoregressive
models has a number of shortcomings. Although the impulse responses are estimated
quantities, measures for sampling variability such as confidence intervals sometimes are
not provided. If confidence intervals are given, they often are based on bootstrap methods
with dubious theoretical properties. These problems are illustrated using two German
monetary systems. Proposals are made for improving current practice. Special emphasis
is placed on systems with cointegrated variables.
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1. INTRODUCTION

Impulse responses are standard tools in vector autoregressive (VAR) analyses. In
this context an economic system of interest is described by a VAR model that is
estimated from the available time-series data in unrestricted form or with vari-
ous types of structural and statistical restrictions imposed. There are a number of
problems related to commonly applied procedures. First, impulse responses are
computed from estimated coefficients and are therefore also estimates. Although
this fact is recognized in the literature, sometimes only the point estimates are
plotted and the relation of the variables involved is interpreted on the basis of
these point estimates without properly taking into account the estimation variabil-
ity [e.g., Sims (1992), Hendry and Mizon (1998), Pesaran and Shin (1998)]. In
another part of the literature, the estimation uncertainty of impulse responses is
assessed by setting up confidence intervals (CI’s). In many studies, however, it
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82 ALEXANDER BENKWITZ ET AL.

was found that the CI’s are rather wide and, hence, the impulse responses are not
very informative, so that nothing much can be said about the actual underlying
relations. Clearly, this reflects the substantial sampling variability in the estimated
VAR parameters, which in turn is a consequence of estimating these quantities in
a largely unrestricted model with many parameters.

Another potential problem in this context is that the CI’s for the impulse re-
sponses often are based on bootstrap methods. It has been argued by Benkwitz,
Lütkepohl, and Neumann (2000) (henceforth BLN) that the usual bootstrap pro-
cedure used in this context can fail completely by producing CI’s with actual
coverage probability of zero, regardless of the desired nominal confidence level.
In other words, the bootstrap CI’s may give a grossly distorted impression of the
range of likely impulse responses for a VAR model.

The purpose of this paper is to illustrate and discuss the importance of these
problems for applied work. We use two small German monetary systems and show
that it is crucial to take into account the estimation uncertainty when interpreting
impulse responses in the context of dynamic econometric models. We compare the
commonly used bootstrap methods for determining CI’s of impulse responses to
other methods that currently are not very popular in the macroeconometric litera-
ture but have been proposed in the bootstrap literature. We point out that a method
proposed by Hall (1992) is advantageous in some respects. Moreover, we show that
imposing restrictions on the short-term dynamics of a system can reduce the length
of the CI’s substantially, which in turn can lead to a more informative picture of
the dynamic interactions between the variables of the system under consideration.
In our analysis, we focus on vector error correction models (VECM’s) and we will
pay special attention to the treatment of cointegration relations.

The paper has the following structure. The general framework of the analysis
is presented in the next section and inference on impulse responses is considered
in Section 3. In particular, alternative methods for computing bootstrap CI’s for
impulse responses are discussed. These methods are applied and compared within
two small monetary systems for Germany in Section 4. Conclusions are drawn in
Section 5.

The following notation is used throughout:L(X) denotes the distribution of the
random variableX. The natural logarithm is abbreviated as ln and1 is the dif-
ferencing operator defined such that for a time-series variableyt ,1yt = yt − yt−1.
Nonstationary variables that become stationary upon differencing once are referred
to asI (1) variables. The indicator function is denoted byI(·).

2. ANALYSIS OF VAR PROCESSES

Many macroeconomic analyses are based on linear dynamic models of the type

A0yt = A1yt−1+ · · · + Apyt−p +9xt +4Dt + ut , (1)

whereyt = [y1t , . . . , yKt ]′ is a K -dimensional vector of observable endogenous
variables; theAi (i = 0, 1, . . . , p) are(K × K ) coefficient matrices;xt represents
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a vector ofN unmodeled observable variables;Dt contains all deterministic terms
such as seasonal dummy variables, intercept, and polynomial trend terms;9 and4
are also coefficient matrices; andut = [u1t , . . . ,uKt ]′ is a white-noise process, that
is, theut are serially uncorrelated or independent with zero mean and nonsingular
(positive definite) covariance matrix6u. The model (1) is somewhat more gen-
eral than the typical pure VAR model in that it may contain unmodeled variables
whereas in standard VAR analyses all stochastic variables are treated as endoge-
nous. We still refer to (1) as our basic VAR model. The maximum lag lengthp
of the endogenous variables usually is referred to as the order of the VAR process
and the process is briefly called a VAR(p). The process may be stationary or it
may containI (1) variables andr cointegrating relations, where 0< r < K . In the
latter case, it is often written as a VECM,

001yt = αβ ′yt−1+ 011yt−1+ · · · + 0p−11yt−p+1+9xt +4Dt + ut , (2)

where the0 j ( j = 0, 1, . . . , p− 1) are the short-run parameter matrices,α is the
(K × r ) loading matrix andβ is a(K × r )matrix containingr linearly independent
cointegration relations. In the examples in Section 4 the exogenous variablesxt

are stationary variables.
Regardless of the stationarity properties, the model in (1) or (2) summarizes the

instantaneous and intertemporal relations between the variables. The exact form
of these relations is usually difficult to see directly from the coefficients, espe-
cially if there are only just identifying restrictions on the short-term parameters
0i (i = 0, 1, . . . , p− 1). Therefore, impulse response functions often are com-
puted that represent the marginal responses of the endogenous variables of the
system to an impulse in one of the endogenous variables. These may be regarded
as conditional forecasts of the endogenous variables given that they have been zero
up to time 0 when an impulse in one of the variables occurs. Depending on the
kind of impulse hitting the system, there are various different impulse responses
that have been used for interpreting VAR models. For detailed discussions, see
Sims (1980, 1981), L¨utkepohl (1990, 1991), Watson (1994), and L¨utkepohl and
Breitung (1997). The important property of these quantities from the point of view
of our analysis is that they are particular nonlinear functions of the parameters of
the model in (1) or (2), for example,

φi j ,h = φi j ,h(A0, A1, . . . , Ap) = φi j ,h(α, β, 00, 01, . . . , 0p−1), (3)

whereφi j ,h represents the response of variablei to an impulse in variablej , h
periods ago. Precise formulas for different versions of impulse responses may be
found in Lütkepohl (1991, Ch. 2) or L¨utkepohl and Breitung (1997), for instance.
Because the VECM in (2) can always be written in the equivalent levels form in
(1) and vice versa and because our example models in Section 4 are VECM’s we
focus on the latter version in the following in order to minimize repetition. The
VECM is also the more convenient model form for discussing the treatment of
cointegration relations.
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3. INFERENCE ON IMPULSE RESPONSES

Usually the coefficients of the model in (2) are estimated by some standard pro-
cedure such as (pseudo) maximum likelihood (ML) or feasible generalized least
squares (GLS), possibly estimating the cointegration parameters in a first stage and
keeping them fixed in estimating the other parameters. Estimators of the impulse
responses then are obtained as

φ̂i j ,h = φi j ,h(α̂, β̂, 0̂0, 0̂1, . . . , 0̂p−1), (4)

where the ˆα, β̂, 0̂0, 0̂1, . . . , 0̂p−1 are the estimated VECM parameter matrices.
Under general assumptions, the resulting impulse responses have asymptotic nor-
mal distributions which may be used for constructing CI’s. In practice, bootstrap
methods often are used for this purpose because these methods occasionally lead to
more reliable small sample inference than CI’s based on standard asymptotic the-
ory. However, we want to emphasize that both approaches, standard asymptotics
and the bootstrap, are based on asymptotic arguments.

The analytical expressions of the asymptotic variances of the impulse response
coefficients are rather complicated. Using the bootstrap for setting up CI’s, the
precise expressions of the variances are not needed and, hence, deriving the an-
alytical expressions can be avoided. In the following, we discuss some methods
that have been proposed in this context.

The following bootstrap method is considered:

1. Estimate the parameters of the model in (2) by a suitable procedure.
2. Generate bootstrap residualsu∗1, . . . ,u

∗
T by randomly drawing with replacement from

the set of estimated and recentered residuals,{û1 − ū., . . . , ûT − ū.}, whereût =
0̂01yt− α̂β̂ ′yt−1− 0̂11yt−1−· · ·− 0̂p−11yt−p+1−9̂xt−4̂Dt , andū. = T−1

∑
ût .

3. Set(y∗−p+1, . . . , y
∗
0)= (y−p+1, . . . , y0) and construct bootstrap time series recursively

using the levels representation given in (1),

y∗t = Â−1
0

(
Â1y∗t−1 + · · · + Âpy∗t−p + 9̂xt + 4̂Dt + u∗t

)
, t = 1, . . . , T.

4. Reestimate the parameters00, 01, . . . 0p−1, 9,4, α, β from the generated data.
5. Calculate a bootstrap version of the statistic of interest, for example,φ̂∗i j ,h, based on

the parameter estimates obtained in Stage 4.

In Stage 4, where the bootstrap estimates are computed, there are two alternative
ways to do so. The first possibility is to use the same estimation method in each
bootstrap replication that was used in estimating the VECM coefficients from
the original data. In this procedure the cointegration matrixβ is reestimated for
each bootstrap sample. Alternatively, one may argue that theβ matrix is estimated
superconsistently from the original data and therefore is treated as known and fixed
in the bootstrap replications. We explore these two possibilities in the context of
the examples in Section 4.

In the following, we use the symbolsφ, φ̂T , andφ̂∗T to denote some general
impulse response coefficient, its estimator implied by the estimators of the model
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coefficients, and the corresponding bootstrap estimator, respectively. The subscript
T indicates the sample size.

The most commonly used method in setting up CI’s for impulse responses in
practice proceeds by usingγ /2- and(1− γ /2)-quantiles, for example,s∗γ /2 and
s∗(1−γ /2), respectively, of the bootstrap distributionL(φ̂∗T |y−p+1, . . . , y0, . . . , yT ;
x1, . . . , xT ), and defining

CIS =
[
s∗γ /2, s

∗
(1−γ /2)

]
.

The intervalCIS is the percentile confidence interval described, for example, by
Efron and Tibshirani (1993). Those authors point out, however, that it may not
have the desired coverage probability. This problem occurs, for example, ifφ̂T is a
biased estimator ofφ. In that case, the bootstrap distribution may be asymptotically
centered atφ plus a bias term and, hence,CIS is a(1− γ )100% CI for the latter
quantity and may have a grossly distorted level as aCI for φ. To fix this drawback,
modifications ofCIS have been proposed in the literature. In the context of impulse
response analysis, Kilian (1998) has suggested a method to reduce the problem.
In the bootstrap literature [see, e.g., Hall (1992)], other modifications have been
proposed, some of which are presented in the following.

Let t∗γ /2 andt∗(1−γ /2) be theγ /2- and(1− γ /2)-quantiles of

L
(
φ̂∗T − φ̂T

∣∣y−p+1, . . . , y0, . . . , yT ; x1, . . . , xT
)
,

respectively. According to the usual bootstrap analogy,

L(φ̂T − φ) ≈ L
(
φ̂∗T − φ̂T

∣∣y−p+1, . . . , y0, . . . , yT ; x1, . . . , xT
)
,

one gets the interval

CIH =
[
φ̂T − t∗(1−γ /2), φ̂T − t∗γ /2

]
.

Hall (1992) calls thisCI the “percentile interval.” Therefore, in the following
we refer to the method leading toCIH as Hall’s percentile method, whereas the
method underlyingCIS is referred to as the standard method. IfL[

√
T(φ̂∗T −

φ̂T ) | y−p+1, . . . , y0, . . . , yT ; x1, . . . , xT ] has the same limit distribution as
L[
√

T (φ̂T −φ)], then it follows immediately thatCIH has the correct size asymp-
totically; that is,Pr(φ ∈ C IH )→ 1− γ asT→∞ and, hence, Hall’s percentile
method is asymptotically correct.

It is well established in the bootstrap literature that the quality of the bootstrap
approximation of the distribution of a general statistic ˆµT , for example, can be
improved by reducing its dependence on the unknown distribution that governs
the data generating process. For example, with respect to the sample mean of
i.i.d. random variables it is well known that studentizing leads to a better rate
of approximation by the bootstrap [see, e.g., Hall (1992)]. Therefore, it may be
advantageous to use a studentized statistic(φ̂T − φ)/

√
v̂ar(φ̂T ) as a basis for

constructing confidence intervals. Hence in the present context it may be useful
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to determine a bootstrap quantile based on the statistic(φ̂∗T − φ̂T )/

√
v̂ar(φ̂∗T ). In

this approach, the variances also are estimated by a bootstrap; that is,

v̂ar(φ̂T ) =
1

B∗ − 1

B∗∑
i=1

(
φ̂
∗,i
T − φ̂∗T

)2

and

v̂ar
(
φ̂∗T
) = 1

B∗∗ − 1

B∗∗∑
i=1

(
φ̂
∗∗,i
T − φ̂∗∗T

)2
,

whereφ̂∗∗,iT is obtained by a double bootstrap. That is, pseudo-data are generated
according to a process obtained on the basis of the bootstrap systems parameters
and B∗ and B∗∗ are the respective numbers of bootstrap replications in the first
and second stages [see Hall (1992) for details].

Let t∗∗γ /2 andt∗∗(1−γ /2) be theγ /2- and(1− γ /2)-quantiles, respectively, of

L
[(
φ̂∗T − φ̂T

)/√
v̂ar
(
φ̂∗T
)∣∣y−p+1, . . . , y0, . . . , yT ; x1, . . . , xT

]
. (5)

Using these quantiles, we get the studentized Hall interval

C ISH =
[
φ̂T − t∗∗(1−γ /2)

√
v̂ar(φ̂T ), φ̂T − t∗∗γ /2

√
v̂ar(φ̂T )

]
,

which also has an asymptotically correct coverage probability if (5) andL[(φ̂T −
φ)/
√

v̂ar(φ̂T )] have identical proper limiting distributions.
A refinement of the previously considered intervals is based on the iterated

bootstrap. It also is described by Hall (1992). Again, a further layer of bootstrap
samples is drawn from each original bootstrap sample. Then, CI’s are computed
from each of the second-stage bootstrap samples and these CI’s are used to estimate
the actual coverage by checking how often the original estimate falls within these
intervals. For example, forCIH , let us denote theα-quantile of the second-stage
bootstrap from thei th bootstrap sample byt∗(2),iα and signify byI(·) the indicator
function. Then, the coverage probability is estimated as

1

B∗

B∗∑
i=1

I
(
φ̂T ∈

[
φ̂∗T − t∗(2),i(1−γ /2), φ̂

∗
T − t∗(2),iγ /2

])
. (6)

If this quantity differs from the nominal coverage probability 1− γ , a correction
term, for example, ˆv, is determined such that (6) has correct coverage probability
if v̂ is subtracted from the lower bound and added to the upper bound of each
interval. Then, the iterated CI becomes

C II H =
[
φ̂T − t∗(1−γ /2) − v̂, φ̂T − t∗γ /2+ v̂

]
.
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This procedure also can be iterated more than once; that is, third-stage bootstrap
samples can be drawn and used to estimate modifications and so on. In practice,
using more than one bootstrap iteration usually will be too demanding computa-
tionally and in the example in the next section we also use just one iteration. Of
course, iterated versions ofCIS andCISH could be computed in an analogous way.
In the next section we use the four different CI’s described in the foregoing for
analyzing the impulse responses of two German monetary systems.

4. ANALYSIS OF GERMAN MONETARY SYSTEMS

Brüggemann and Wolters (1998) (BW) and L¨utkepohl and Wolters (1998) (LW)
consider small models for the German monetary sector to investigate the channels
of monetary policy. LW use M3 as a measure of the money stock whereas BW
consider a system for the narrower measure M1. In both studies, impulse responses
are used to analyze the dynamic interactions of the variables in VECM’s that can
be represented in the form of (2). Neither study reports measures of sampling
variability for the impulse responses and both conclude that the impact of the
Bundesbank policy on inflation may have been quite limited because prices do
not react strongly to changes in the money stock and to changes in the interest
rate. In the following, we reconsider these results by checking the significance of
the effects observed in the aforementioned articles. Moreover, we demonstrate the
effects of using different methods for computing bootstrap CI’s. We begin with a
system presented by BW and then turn to one presented by LW.

4.1. M1 System

BW construct quarterly models for the period 1962:1–1989:4 and the extended
period 1962:1–1996:2 using seasonal unadjusted data. In the following, we con-
centrate on the model version for the extended period that includes German unifi-
cation in 1990 and allows for international price movements influencing domestic
prices. The following variables are included in the system:m1t is the logarithm
of (nominal)M1; yt is the logarithm of real GNP;pt is the logarithm of the GNP
deflator, hence,(m1− p)t is the logarithm of realM1 and1pt = pt − pt−1 is the
quarterly inflation rate;Rt is a long-term interest rate (“Umlaufsrendite”);pmt

is an import price index that is treated as an unmodeled variable reflecting the
openness of the German economy and capturing the effects of exchange rates.
The precise data sources are provided in the Appendix. In addition, there are a
number of deterministic variables in the model, such as seasonal dummies and a
shift dummy,S90q3t , that takes into account the level shifts inm1t andyt due to
the German unification. It is zero until 1990:2 and afterward, it has the value 1.

BW found that there is one cointegration relation between theI (1) variables
m1t , pt , yt , andRt . For the period from 1961:4 to 1996:2, they found the following
long-run money demand relation [see BW, Eq. (3.4)]

(m1− p)t = 1.105yt − 5.133Rt + 0.407S90q3t + ec1t . (7)
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TABLE 1. M1 system without deterministic terms, estimation
period 1962:1–1996:2

Right-hand-side
variables 1m1t 1pt 1yt 1Rt

ec1t−1 −0.115
(6.6)a

1m1t−1 0.036
(2.1)

1m1t−2 0.191
(3.0)

1m1t−3 0.117
(2.0)

1pt−1 −0.133
(2.6)

1pt−2 0.204 −0.284
(3.6) (3.0)

1pt−4 0.411 0.538
(5.4) (10.0)

1yt−2 −0.231 0.082 −0.431
(4.9) (3.7) (6.4)

1yt−3 0.113
(5.3)

1yt−4 0.457
(7.6)

1Rt−1 −0.884 0.240 0.192
(3.7) (2.4) (2.3)

1pmt−4 0.058
(2.4)

aAbsolute values oft-ratios in parentheses.

Here,ec1t stands for the deviations from the long-run relation. The estimated
VECM of BW is given in Table 1 except for deterministic terms. The model is es-
timated by Zellner’s seemingly unrelated regressions method. Note that the model
may be viewed as a reduced form because00 is an identity matrix. Moreover, the
instantaneous residual correlation is quite small and therefore no orthogonalization
is needed for computing meaningful impulse responses. This model is the result
of a specification procedure described in detail by BW. Their modeling procedure
involves regressing the first differences of each variable on lagged differences
of all the variables and the one-period lagged value of the error correction term.
The specification also includes seasonal dummies and other deterministic terms.
Lagged differences with insignificant coefficients are removed step by step starting
with specifications that contain differenced values up to the fourth lag. Regardless
of the t-values of the coefficients of the error correction term, this term was in-
cluded in the regressions until all insignificant lagged differences were eliminated.
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The error correction term was only eliminated if it turned out to be insignificant
in the model in which the other insignificant terms were eliminated already.

Because the model is in reduced form, a fully unrestricted version with full
rank error correction term may be estimated by considering the VAR form in (1)
with orderp= 5. We have used that model to compute impulse responses together
with all four versions of 95% bootstrap CI’s (CIS, CIH , CISH, CII H ). The results
based on 2,000 bootstrap replications are plotted in Figure 1.1 ForCISH, we used
200 bootstrap drawings for estimatinĝvar(φ̂∗T ). Clearly, in this case the differences
between the methods are not substantial. Because in most cases the CI’s are almost
symmetric around the estimated impulse response coefficients, it is not surprising
thatCIS andCIH are similar. Exceptions are, for instance, the responses ofp, m1,
and R to an own impulse and the response ofR to an impulse inm1. Also, the
CISH intervals are, in most cases, quite similar toCIH . An analogous result also
was obtained for other cases considered in the following. Therefore, we focus on
CIH because it has certain theoretical advantages overCIS (see BLN) and it is
much less computer intensive thanCISH andCII H .

A major problem with the intervals in Figure 1 is that they are rather wide
and, hence, the actual responses in the underlying system are quite uncertain if
the CI’s properly reflect the estimation variability. For example, based on the CI’s
in Figure 1, an impulse inm1 does not have a significant effect on the price
level. Moreover, an increase in the price level does not have a significant impact
on income. Thus, an impulse response analysis based on the full unrestricted
reduced-form model does not give a clear indication of the relations between the
variables. The results in Figure 1 also show the importance of computing CI’s
for the impulse responses because an interpretation that ignores the substantial
estimation uncertainty may be misleading.

An improvement in the estimation precision can be expected from taking into
account the restrictions imposed by BW. In Figure 2, the impulse responses and
correspondingCIH intervals that are shown are obtained for the restricted VECM
presented in Table 1. Here, the cointegration vector is reestimated in each bootstrap
replication. TheCIH intervals from the unrestricted VAR model are given for
comparison. Obviously, taking into account the restrictions results in a substantial
improvement in the precision, as expected. Now, the response ofm1 to an impulse
in the price levelp has become significant and the same holds for the response
of p to an impulse inm1, for instance. Thus, the present analysis sheds doubt on
the previous interpretation from BW that the impact of changes inm1 on the price
level may not be very strong.

Interestingly, in Figure 2, it can be seen that the impulse responses from the
model with restrictions are, in most cases, within the CI’s from the unrestricted
model, in particular, for low lags. On the other hand, the CI’s from the restricted
model do not always contain the estimates of the impulse responses from the
unrestricted model. Hence, estimating the impulse responses from an unrestricted
model not only increases the uncertainty in the estimates but also may lead to quite
different point estimates. There is more overlap between the CI’s if intervals are

https://doi.org/10.1017/S1365100501018041 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501018041


90 ALEXANDER BENKWITZ ET AL.

F
IG

U
R

E
1.

E
st

im
at

ed
im

pu
ls

e
re

sp
on

se
s

fo
r

fu
lly

un
re

st
ric

te
d

M
1

VA
R

sy
st

em
(s

ol
id

lin
e)

w
ith

95
%

C
I’s

:C
I S

(d
ot

te
d

lin
es

),C
I H

(b
ol

d
da

sh
ed

lin
es

),C
I S

H
(li

gh
td

as
he

d
lin

es
),C

I I
H

(d
ot

s
an

d
da

sh
es

).

https://doi.org/10.1017/S1365100501018041 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501018041


BOOTSTRAP CONFIDENCE INTERVALS 91

F
IG

U
R

E
2.

E
st

im
at

ed
im

pu
ls

e
re

sp
on

se
s

of
re

st
ric

te
d

V
E

C
M

fo
r

M
1

(s
ol

id
lin

e)
w

ith
95

%
C

I H
(d

as
he

d
lin

es
)

an
d

95
%C

I H
fr

om
fu

lly
un

re
st

ric
te

d
VA

R
sy

st
em

(d
ot

te
d

lin
es

).

https://doi.org/10.1017/S1365100501018041 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501018041


92 ALEXANDER BENKWITZ ET AL.

computed from the restricted VECM and a VECM where only the cointegration
restriction is imposed. These CI’s are shown in Figure 3, where it is seen that the
CI’s from the less restricted model are substantially wider than the CI’s from the
restricted model. The long-run development of the impulse responses from both
models is similar due to enforcement of the cointegration restriction. It also may
be worth noting that using the bootstrap for an unrestricted model may result in
singularities in the asymptotic distributions of the estimated impulse responses.
This in turn may lead to strongly distorted and, hence, unreliable bootstrap CI’s,
as pointed out by BLN. Thus, using a restricted model is also useful for removing
one source of problems for the bootstrap CI’s.

The question whether to fix the estimated cointegration relation in the bootstrap
or to reestimate it in each replication is addressed in Figure 4. In most cases,
there is nearly no difference in the CI’s. If there are differences, the CI’s based on
reestimated cointegration vectors tend to be larger. Of course, without a detailed
analysis it is difficult to interpret this result because the reduced length intervals
obtained by fixing the cointegration parameters may be the outcome of ignoring the
estimation variability in the cointegration vector. Hence, it may cover up the actual
estimation uncertainty that remains in the estimates. Without further knowledge of
the properties of the estimates, it may be preferable to reestimate the cointegration
parameters in each bootstrap replication.

4.2. M3 System

Using seasonal unadjusted data for the period 1976:1–1996:4, LW construct a quar-
terly model for M3. They include variables similar to those of BW in their model.
In addition to the variables defined in the context of the M1 model, they use the
following variables:m3t is the logarithm of (nominal) M3 and, hence,(m3− p)t
is the logarithm of real M3;(R− r )t is the difference between the long-term in-
terest rate and the own rate of M3, denoted byrt , so that this variable represents
the opportunity costs of holding M3 rather than longer-term bonds;dt (R− r )t
is identical to(R− r )t for the period 1994:3–1995:4 and is zero otherwise, and
dt (R− r )t is used to model a nonlinearity in the impact of the interest-rate differ-
ential on the demand for money in the period mentioned. The variable is treated
as a member of the group of unmodeled variables in (2). Again, there are some
additional deterministic variables such as seasonal dummies and dummies to take
care of the unification.

LW find that the variables(m3− p)t , yt , and1pt areI (1) and that there is one
cointegration relation between these variables of the form [see LW, Eq. (3.2)]

(m3− p)t = yt − 13.501pt + 0.14S90q3t + ec3t , (8)

which may be interpreted as an essential part of a long-run money demand rela-
tion. Here,ec3t represents the deviations from the long-run relation. The estimated
VECM of LW is given in Table 2, where deterministic terms are excluded as in
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TABLE 2.M3 system without deterministic terms, estimation period 1976:1–1996:4

Right-hand-side variables 1(m3− p)t 12 pt 1yt (R− r )t

ec3t−1 −0.111 0.044
(7.1)a (2.3)

1(m3− p)t−1 −0.058 0.269
(2.2) (3.2)

1(m3− p)t−2 0.172
(2.5)

1(m3− p)t−3 0.089
(2.8)

1(m3− p)t−4 −0.069
(2.0)

12 pt −1.262
(6.6)

12 pt−1 −1.086
(11.3)

12 pt−2 −1.044
(9.5)

12 pt−3 −0.747
(6.9)

12 pt−4 −0.251 −0.258
(2.8) (2.7)

1yt−1 −0.220 −0.323
(5.7) (3.7)

1yt−3 0.075
(2.2)

1yt−4 0.096 0.243
(3.6) (3.4)

(R− r )t−1 −0.568 0.836
(4.9) (12.2)

(R− r )t−3 0.427
(2.8)

(R− r )t−4 −0.406 −0.200
(2.8) (2.9)

1pmt−4 0.065 0.055
(2.6) (2.2)

dt (R− r )t −0.430
(7.6)

aAbsolute values oft-ratios in parentheses.
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Table 1. The estimation method used is iterated three-stage least squares. The
system is specified by first estimating the error correction term within a dynamic
single-equation model. Then this term is treated as an additional stationary vari-
able in specifying the system of equations. The systems specification procedure
starts from a VECM, where all equations except the money equation are in reduced
form. The latter equation initially containsec3t−1, all differences of the variables
up to lag-order 4 including unlagged12 pt , (R− r )t , 1yt , and1pmt as well as
dt (R− r )t , seasonal dummy variables, and further dummies to take care of the
German unification in 1990 and other special events. The other equations also
contain the lagged error correction term, four lags of the differenced endogenous
variables, the unlagged1pmt and four lags in addition. Moreover,dt (R− r )t as
well as deterministic terms are included in the initial equations. Analogous to the
M1 system, variables with insignificant coefficients then are eliminated succes-
sively according to the lowestt-values but always keeping the error correction
term in each equation until the end. Then, the error correction term is excluded if
its coefficient is not significant at the 5% level. More details of the specification
procedure are provided by LW. Notice that the instantaneous12 pt appears in the
1(m3− p)t equation and, hence, the model is a structural form in the sense that
00 is not the identity matrix if the model is written in form (2). Also note that the
instantaneous residual correlation is quite small, so that interpreting the residuals
as impulses to specific variables is justified.

If the model is rewritten so that it looks like (1) or (2), an impulse response
analysis can be carried out as described in Section 2. Since we now consider a
model in structural form, we compare againCIS andCIH to check whether a similar
result is obtained as in the reduced-form case. The impulse responses together with
approximate 95% CI’s are depicted in Figure 5 where the cointegration parameters
are reestimated in each bootstrap replication. The impulse responses are identical
to those in Figure 1 of LW. They still look a bit different because they have been
scaled in a different way. The scaling in our Figure 5 is adjusted to the width
of the CI’s. Thus, it is less arbitrary than the scaling used by LW. It is seen in
Figure 5 that the two types of CI’s are again very similar. The small differences
indicate that some of the underlying distributions may not be symmetric. Moreover,
Figure 5 reveals that impulses in money and the interest-rate differential may have
significant effects on the inflation rate. In other words, the Bundesbank’s policy
may have been more effective than suggested by Figure 1 of LW, thereby making
apparent the importance of providing measures for the estimation uncertainty of
the impulse responses as in Figure 5.

5. CONCLUSIONS

In this study we have illustrated some problems related to standard impulse re-
sponse analysis in VAR models and we have suggested alternative bootstrap pro-
cedures for CI’s. It has been demonstrated on the basis of two small monetary sys-
tems for Germany that it is very important to take into account that the commonly
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considered impulse responses are estimates and, hence, subject to some uncer-
tainty. This estimation uncertainty has to be taken into account in the interpretation
of the impulse responses. Plotting CI’s together with point estimates of the impulse
responses can provide a good picture of the uncertainty involved. In practice, in this
context CI’s often are based on bootstrap methods. We have argued that standard
bootstrap CI’s may be distorted and therefore may be misleading. Some alterna-
tives from the bootstrap literature are proposed and applied for analyzing the two
German monetary system examples. It is shown that the common practice of per-
forming an impulse response analysis on the basis of a largely unrestricted model
may not be very informative with respect to the actual relation of the variables
because the estimation uncertainty can be substantial. Imposing restrictions on the
parameters of the model on the basis of statistical criteria or a priori knowledge
can lead to substantial improvements in this respect.

Note, however, that there are a number of open questions regarding the properties
of the procedures used in this study. First, the asymptotic and small sample prop-
erties of bootstrap CI’s in the present context are not fully clear, especially if the
model contains cointegrated variables. Although there is a range of Monte Carlo
studies exploring the small sample properties of estimated impulse responses, most
of these studies focus on stationary VAR processes. Moreover, the underlying data
generation processes are necessarily quite limited compared to the wide range of
models that have been used in applied work. Hence, it is not clear whether the
simulation results are generalizable to a particular model under consideration in
empirical work. Second, as is common in the empirical literature, we have con-
structed CI’s for the individual impulse response coefficients. It may be more
plausible from a conceptual point of view to consider joint confidence regions
for the impulse response functions because not only individual impulse response
coefficients but the overall shape of some response is often of interest.

In conclusion, it is clear that there are a number of open problems surrounding
impulse response analysis in the context of VAR models. Despite these problems,
it is important to use the available tools for getting an impression of the uncertainty
underlying any specific analysis. Therefore it is surprising that some popular soft-
ware packages for dynamic econometric analysis either do not provide CI’s for
impulse responses (e.g., PcFiml) or provide such CI’s only for simple unrestricted
VAR’s (e.g., Eviews), thereby complicating the interpretation of the results.

NOTE

1. The computations were performed with a GAUSS program. We have checked the sensitivity
with respect to the number of bootstrap replications and found that very similar results are obtained if
at least 1,000 bootstrap replications are used. Therefore, the computationally very demanding iterated
bootstrap was computed with only 1,000 replications.
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APPENDIX: DATA SOURCES

Seasonal unadjusted quarterly data were used for the following variables taken from the
given sources. All data refer to West Germany until 1990:2 and to the unified Germany
afterward.

M1: nominal monthly values fromMonatsberichte der Deutschen Bundesbank. The
quarterly values are the values of the last month of each quarter. The variablem1 is
ln M1.

M3: nominal monthly values fromMonatsberichte der Deutschen Bundesbank. The
quarterly values are the values of the last month of each quarter. The variablem3 is
ln M3.

GNP: quarterly real gross national product fromDeutsches Institut für Wirtschafts-
forschung, Volkswirtschaftliche Gesamtrechnung. The variabley is ln GNP.

Price index: GNP deflator (1991=100) fromDeutsches Institut für Wirtschaftsforschung,
Volkswirtschaftliche Gesamtrechnung. The variablep is the logarithm of the price
index.
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Average bond rate (Umlaufsrendite) (R): monthly values fromMonatsberichte der
Deutschen Bundesbank. The quarterly value is the value of the last month of each
quarter.

Own rate of M3 (r ): the series was constructed from the interest rates of savings deposits
(rs) and the interest rates of 3-month time deposits(r t ) from Monatsberichte der
Deutschen Bundesbankas a weighted average as follows:

r =
{

0.24r t + 0.42rs for 1976:1–1990:2

0.30r t + 0.33rs for 1990:3–1996:4

The weights are chosen according to the relative shares of the corresponding compo-
nents of M3. The quarterly value is the value of the last month of each quarter.

Import price index: PM (1991 = 100) fromDeutsches Institut für Wirtschaftsforschung,
Volkswirtschaftliche Gesamtrechnung. The variablepm is the logarithm of PM.

The data can be obtained from the internet at

http://ise.wiwi.hu-berlin.de/oekonometrie/engl/data.html
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