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This study explores thermal convection in suspensions of neutrally buoyant, non-colloidal
suspensions confined between horizontal plates. A constitutive diffusion equation is used
to model the dynamics of the particles suspended in a viscous fluid and it is coupled
with the flow equations. We employ a simple model that was proposed by Metzger,
Rahli & Yin (J. Fluid Mech., vol. 724, 2013, pp. 527–552) for the effective thermal
diffusivity of suspensions. This model considers the effect of shear-induced diffusion
and gives the thermal diffusivity increasing linearly with the thermal Péclet number
(Pe) and the particle volume fraction (φ). Both linear stability analysis and numerical
simulation based on the mathematical models are performed for various bulk particle
volume fractions (φb) ranging from 0 to 0.3. The critical Rayleigh number (Rac) grows
gradually by increasing φb from the critical value (Rac = 1708) for a pure Newtonian
fluid, while the critical wavenumber (kc) remains constant at 3.12. The transition from the
conduction state of suspensions is subcritical, whereas it is supercritical for the convection
in a pure Newtonian fluid (φb = 0). The heat transfer in moderately dense suspensions
(φb = 0.2–0.3) is significantly enhanced by convection rolls for small Rayleigh number
(Ra) close to Rac. We also found a power-law increase of the Nusselt number (Nu) with Ra,
namely, Nu ∼ Rab for relatively large values of Ra where the scaling exponent b decreases
with φb. Finally, it turns out that the shear-induced migration of particles can modify the
heat transfer.

Key words: Bénard convection, nonlinear instability, suspensions

1. Introduction

The natural convection in particle-laden flows has been widely studied. This is because
they are commonly encountered in many engineering, environmental and medical
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applications at different scales that range from fabrication or solidification processing of
composites (Fisher 1981; Mackie 2000), indoor pollutant transport (Dehbi et al. 2017),
radioactive aerosol particles in nuclear containment (Bosshard et al. 2014) to microfluidic
devices for DNA amplification (Krishnan, Ugaz & Burns 2002; Allen, Kenward &
Dorfman 2009). Moreover, the convection in a solvent with dispersed nanoscale particles
has been investigated in several studies since the presence of nanoparticles can cause
the enhancement of heat transfer by improving the thermal conductivity of mixtures
in engineering applications (e.g. heat exchanger, electronic cooling, solar energy, etc.)
(Kim, Kang & Choi 2004; Chang, Mills & Hernandez 2008; Nield & Kuznetsov 2010;
Abu-Nada 2011). Herein, we explore the behaviour of suspensions in a flow confined
between horizontal plates known as Rayleigh–Bénard convection (RBC) to understand
how flow transitions are affected by suspended particles where the mixing occurs at
very low Reynolds numbers. Rayleigh–Bénard convection of pure Newtonian fluids has
been studied extensively since it is an excellent model to explore both heat transfer and
thermally induced turbulence (Bodenschatz, Pesch & Ahlers 2000; Ahlers, Grossmann &
Lohse 2009). The stationary state of a horizontal fluid layer becomes unstable at a critical
value of Rayleigh number (Rac = 1707.8) to the perturbations of critical wavenumber
kc = 3.12 (Schlüter, Lortz & Busse 1965; Bodenschatz, Pesch & Ahlers 2000). At Rayleigh
number Ra, slightly larger than Rac, an array of straight convection rolls forms when the
lateral extension of the fluid system is large (Schlüter, Lortz & Busse 1965; Bodenschatz,
Pesch & Ahlers 2000). Surprisingly, there has been little work on instability and mixing
in suspensions of micron-sized particles (hydraulic diameter >1 µm) where complex
phenomena might occur due to the existence of inertial particles in the flow.

At low Reynolds numbers, the mixing occurs through molecular diffusion (Hinch 2003).
Several studies explored the suspensions of non-colloidal and non-Brownian particles in
shear flows that undergo a self-diffusion phenomenon, known as ‘shear-induced diffusion’
(Eckstein, Bailey & Shapiro 1977; Leighton & Acrivos 1987; Phillips, Armstrong & Brown
1992; Sierou & Brady 2004). In this case, the particles in the suspensions migrate from
regions with a higher shear rate to a lower shear rate at a low particle Reynolds number
(Leighton & Acrivos 1987; Phillips, Armstrong & Brown 1992). The shear-induced
particle diffusion plays a significant role in the behaviour of concentrated, non-colloidal
suspensions. It is also responsible for non-Newtonian rheological behaviours of the flow
(Denn & Morris 2014). The particle migration for various geometries has been examined
in detail by many researchers (Nott & Brady 1994; Lyon & Leal 1998a,b; Morris & Brady
1998; Subia et al. 1998; Morris & Boulay 1999; Fang et al. 2002; Miller & Morris 2006;
Dbouk et al. 2013; Mirbod 2016; Chun et al. 2019; Kang & Mirbod 2020).

By contrast, heat transfer phenomena in suspensions of micron-sized rigid particles
under the shear-induced diffusion have been attempted in a few studies. For example,
Ahuja (1975a,b) experimentally demonstrated the augmentation of the heat transfer in
a laminar Poiseuille flow (the Reynolds number Re > 1) with polystyrene suspensions.
The author showed that the effective thermal conductivity of flowing suspensions is
three times higher than the conductivity of stationary suspensions. Sohn & Chen (1981)
measured the effective thermal conductivity (ks) of neutrally buoyant solid–fluid mixtures
in a rotating Couette flow apparatus. They observed a significant improvement in the
effective conductivity (ks) and determined the dependence of ks on the particle Péclet
number (Pep = γ̇ d 2

p /αf ). They also proposed a power-law relationship (ks ∝ Pe 1/2
p )

for high Péclet numbers (300 < Pep < 2000). For this expression, γ̇ is the local shear
rate, dp is the particle diameter and αf is the thermal diffusivity of the fluid. Chung
& Leal (1982) verified the theoretical prediction that was previously obtained by Leal
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(1973) for a dilute sheared suspension at a low particle Péclet number where ks depends
on the particle volume fraction and the local Péclet number. They found a reasonable
agreement with the prediction, even for suspensions with a moderate volume fraction
(≤ 0.25) and a higher Péclet number (Pe ∼ O(1)). Later, Shin & Lee (2000) examined
the effects of the shear rate (≤ 900 s−1), particle size (25–300 µm) and particle volume
concentration (≤ 10 %) on ks. It was revealed that ks increases with the shear rate.
This increase depends on the size of the dispersed particles. They also proposed a new
correlation for the shear-rate-dependent thermal conductivity of suspensions, which is
strongly affected by the particle size and volume concentration during shear flow. The
effect of the shear-induced diffusion on the heat transfer in sheared suspensions of
non-Brownian particles at low Reynolds number was elucidated further by Metzger, Rahli
& Yin (2013). They examined the influence of the particle size, particle volume fraction
and the applied shear by the experiments and simulations; further, they obtained the
effective thermal diffusivity of the suspensions (αs). They found that αs is proportional
to the thermal Péclet number (Pe = γ̇ d 2

p /αo) and the particle volume fraction (φ), where
αo is the thermal diffusivity of the suspensions at rest. From this, they suggested a
simple correlation (αs/αo = 1 + 0.046φPe) based on the experimental and numerical
data. Recently, Dbouk (2018) employed this correlation in numerical modelling and a
simulation for a laminar forced-convection flow of non-colloidal suspensions to examine
the conjugate heat transfer in a rectangular channel. On the other hand, a suspension
modelling in a buoyancy-driven thermal convection has been considered lately by
Dbouk & Bahrani (2021). The authors developed transient mathematical formulations for
thermal convection in immersed granular beds of non-colloidal particles and studied the
destabilization of the beds observed in a recent experiment (Morize, Herbert & Sauret
2017). Nevertheless, to the best of our knowledge, there are no studies that are focused on
the flow behaviour and transition in RBC of non-colloidal, non-Brownian suspensions that
are affected by the shear-induced diffusion.

This study deals with RBC of a suspension of neutrally buoyant, non-colloidal, rigid,
spherical particles. We employ the effective diffusivity of suspensions (αs) proposed
by Metzger, Rahli & Yin (2013) that considers the heat transfer across the suspensions.
This work focuses on understanding the effect of the particles undergoing shear-induced
diffusion on the thermal convection at low Reynolds numbers. Both linear stability
analysis and numerical simulation are performed for concentrated suspensions. We predict
the critical states of the buoyancy-driven instability and determine the nature of the
bifurcation. In addition, this study presents the flow and particle concentration structures
of the thermal convection. This investigation also analyses the dynamics of the particles
that are interacting with the convective flow and the heat transfer rate.

This paper is organized as follows. In § 2, we formulate the physical problem and
governing equations together with control parameters. The linear stability analysis is
presented in § 3. Section 4 describes the numerical methods of the simulation and presents
obtained results. The discussion of the results is provided in § 5. The conclusions of this
work are given in § 6.

2. Problem formulation

We consider neutrally buoyant, non-colloidal, rigid monodisperse spherical particles
that are suspended in a viscous fluid. The suspensions are confined in the gap of
width d between the differently heated horizontal parallel plates (figure 1). We assume
that the suspension flow is uniform in a horizontal (spanwise) direction and perform
two-dimensional (2-D) analyses in a vertical plane. A temperature difference �T is
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Figure 1. Schematic diagram of the horizontal suspensions layer heated from the bottom.

imposed between the top and bottom walls and it is assumed to be small enough for the
validity of the Boussinesq approximation.

2.1. Governing equations
We model suspensions as a continuum characterized by particle volume fraction field φ.
The dimensional conservation equations of mass, momentum and energy for the flow of
suspensions are in the Boussinesq approximation given by

∇ · u = 0, (2.1)

ρo

[
∂u
∂t

+ ∇ · (uu)

]
= −∇p + ∇ · (2ηs(φ)S) − ρoβθg, (2.2)

ρoCp

[
∂θ

∂t
+ ∇ · (uθ)

]
= ∇ · (ks∇θ). (2.3)

Here, u, p and ρo are the velocity vector (u, v), pressure and the density of
the suspensions, respectively, S = (∇u + ∇uT)/2 is the strain rate tensor, g is the
gravitational acceleration (0, −g), θ denotes the temperature deviation from a reference
temperature To (i.e. θ = T − To), β is the volumetric thermal expansion coefficient, and
Cp and ks are the specific heat and thermal conductivity of suspensions, respectively.
The last term in the momentum equation (2.2) represents the Archimedean buoyancy
force acting on the suspensions under the assumption of the Boussinesq approximation
and ρ(θ) = ρo(1 − βθ) where ρo = ρ(To). We assume particles have the same thermal
expansion coefficient (β) with the suspending fluid resulting in the neutrally buoyant
suspension and neglect the dissipation. The viscosity of the concentrated suspensions
ηs(φ) depends on the particle volume fraction φ, and it can be described by using
Krieger’s empirical correlation (Krieger 1972), ηs(φ) = ηf (1 − φ/φm)−1.82. Here, ηf is
the viscosity of the suspending fluid, φm = 0.68 is the maximum volume fraction (Krieger
1972; Phillips, Armstrong & Brown 1992), and ρoCp = (1 − φ)(ρoCp)f + φ(ρoCp)p. We
assume that the volumetric specific heat ρoCp for the fluid and particles is the same, i.e.
(ρoCp)f = (ρoCp)p (Ardekani et al. 2018; Dbouk 2018), then the energy equation (2.3) is
simplified to

∂θ

∂t
+ ∇ · (uθ) = ∇ · (αs∇θ), (2.4)

where αs denotes the effective thermal diffusivity of the suspensions. To consider
the impact of the shear-induced particle diffusion on the transport of heat across the
suspensions, we employ a simple correlation for the thermal diffusivity αs/αo = 1 + cφ Pe
with c = 0.046 proposed by Metzger, Rahli & Yin (2013). This correlation is valid up to a
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moderate Péclet number (Pe ≤ 100) and for a low to a moderate particle volume fraction
(φ ≤ 0.4) (Metzger, Rahli & Yin 2013). We also assume that the increase in the thermal
diffusivity is isotropic, although the correlation was determined only in the shear-gradient
direction. Then, we compute the effective thermal diffusivity (αs) using the local particle
volume fraction and thermal Péclet number (i.e. local shear rate γ̇ ). The local Pe remains
in the range of Pe < 0.5 for all computations.

2.2. Conservation equation for suspensions
A constitutive model, namely the diffusive flux model (DFM) (Leighton & Acrivos 1987;
Phillips, Armstrong & Brown 1992), is employed to describe the dynamics of particles
in suspension. The dimensional conservation equation for non-colloidal particles can be
expressed as (Phillips, Armstrong & Brown 1992)

∂φ

∂t
+ u · ∇φ = −∇ · (Nc + Nη), (2.5)

where Nc and Nη are the particle fluxes that are caused by the spatial variation
in the collision frequency and the suspension viscosity, respectively, given by Nc =
−Kca2φ∇(γ̇ φ) and Nη = −Kηa2γ̇ φ2∇(ln ηs) (Phillips, Armstrong & Brown 1992; Subia
et al. 1998). Here, a is the radius of particles and γ̇ is the shear rate given by γ̇ = √

2S : S.
The diffusion coefficient Kc and Kη are the empirical constants that are determined by the
experiments. Throughout this study, Kc = 0.41 and Kη = 0.62 (Kc/Kη = 0.66) are employed
(Phillips, Armstrong & Brown 1992).

2.3. Control parameters and boundary conditions
The gap width d is chosen as the characteristic length scale. We also adopt the temperature
scale as �T, the velocity scale and the time scale as νo/d and d2/νo, respectively where
νo = ηf /ρo. Therefore, the physical dimensionless control parameters are the Rayleigh
number Ra = βg�Td3/νoαo, the Prandtl number Pr = νo/αo, the bulk particle volume
fraction φb, and the particle size ratio ε = a/d. In fact, the thermal diffusivity of the
suspensions αo depends on the particle volume fraction and the conductivities of both
particles and the suspending fluid (Shin & Lee 2000; Dbouk 2018). However, since we
assume that the thermal conductivity for both fluid and particles is the same, the diffusivity
αo is constant. Throughout this work, to focus on the impact of the particles in RBC, we
vary the Rayleigh number (Ra) for different bulk particle volume fraction (φb) ranging
from 0 to 0.3. The particle size is practically related to the effective thermal diffusivity
of suspension (αs) which defines the local diffusivity by reflecting the local thermal
Péclet number. We expect that the particle size affects the heat transfer; however, the
dimensionless particle radius ε is fixed at 0.02 in this study to focus to the effect of φb
on the convection and the heat transfer. We also maintain Pr = 7, i.e. the suspending fluid
is water at a room temperature.

The boundary conditions are given by

u = 0, θ = +0.5�T, (Nc + Nη) · ey = 0, at y = 0,

u = 0, θ = −0.5�T, (Nc + Nη) · ey = 0, at y = d,

u(x, y) = u(x + L, y),

θ(x, y) = θ(x + L, y),

φ(x, y) = φ(x + L, y).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.6)
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The no-slip condition is imposed at the bottom (y = 0) and top (y = d) of the walls, in
which both walls are kept at constant temperatures. The total flux of the particles is zero
at the walls, and the flow, temperature and particle volume fraction are all assumed to be
periodic in the x-direction.

3. Linear stability analysis

3.1. Linearized equations
When a small temperature difference is imposed on the system, the conductive state (ũ =
0) is established in the suspensions layer, where ũ is the flow velocity non-dimensionalized
by the velocity scale as ηf /dρo. The temperature and concentration of this base state can
be determined as

θ̃ = 0.5 − ỹ, φ̃ = Φb. (3.1)

Here, Φb is the particle volume fraction normalized by the maximum value φm = 0.68, i.e.
Φb = φb/φm and the tildes mean non-dimensionalized quantities by the aforementioned
scales.

We superimpose infinitesimal perturbations of the velocity ũ′ = (ũ′, ṽ′), the pressure p̃′,
the temperature θ̃ ′ and the concentration φ̃′ on the base state to conduct the linear stability
analysis, which allows the determination of critical states. The governing equations (2.1),
(2.2), (2.4) and (2.5) are linearized around the base state, then the perturbations are
developed into normal modes of complex growth rate s and wavenumber k (Drazin &
Reid, 2004) as

(ũ′, ṽ′, p̃′, θ̃ ′, φ̃′) = (û, v̂, p̂, θ̂, φ̂) exp(st + ikx). (3.2)

Here, the hatted quantities denote the complex amplitude of the perturbations. The
temporal behaviour of the perturbations is dictated by s = σ + iω, where σ is the growth
rate of the perturbations and ω is the frequency of the mode. The linearized governing
equations are then given by

ikû + ∂v̂

∂ ỹ
= 0, (3.3a)

sû = −ikp̂ + ηr(Φb)

(
d2

dỹ2 − k2

)
û, (3.3b)

sv̂ = −dp̂
dỹ

+ ηr(Φb)

(
d2

dỹ2 − k2

)
v̂ + Ra

Pr
θ̂ , (3.3c)

sθ̂ + v̂
dΘ

dỹ
= 1

Pr

(
d2

dỹ2 − k2

)
θ̂ − 4cφmΦbε

2
(

dû
dỹ

+ ikv̂
)

, (3.3d)

sφ̂ = Kcε
2φmΦ2

b

(
∂2

∂ ỹ2 − k2
)(

dû
∂ ỹ

+ ikv̂
)

. (3.3e)

The relative viscosity ηr in (3.3b) and (3.3c) related to the normalized volume fraction
as ηr(Φb) = ηs(Φb)/ηf = (1 − Φb)

−1.82. Because of the absence of fluid motion and
the concentration gradient in the base state, the perturbation of the particle flux Nη is
a third-order; thus, the linear dynamics of the present suspension system is independent of
the particle flux associated with the particle collision frequency.
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Figure 2. (a) Marginal stability curves and (b) the variation of the critical Rayleigh number (Rac) for the
particle size ratio ε = 0.02. Note that these results do not depend on the Prandtl number.

The solution of (3.3a–e) is subject to the linearized boundary condition defined as

û = v̂ = θ̂ = d2û

dỹ2 = 0 at ỹ = 0, 1. (3.4)

The condition on the second derivative of û has been derived from the zero-particle flux
condition at the walls.

We solve the eigenvalue problem formed by (3.3) and (3.4) using the Chebyshev spectral
method. The complex amplitudes (û, v̂, p̂, θ̂, φ̂) are formally expanded into Chebyshev
polynomials. Equations (3.3a–e) were evaluated at the set of Chebyshev–Gauss–Lobatto
collocation points, which gives a generalized eigenvalue problem in a matrix form
where this eigenvalue problem is solved by the generalized Schur decomposition (QZ
decomposition). The highest degree L of the considered Chebyshev polynomials is fixed
at L = 60. We find that a further increase in L has no effect on the results of the stability
analysis.

3.2. Critical states
The eigenvalue problem has been solved for a given set of parameters (Pr, Ra, ε, φb, Kc),
among which (ε, Kc) are fixed throughout the present investigation as mentioned earlier.
The eigenvalues and eigenvectors of (3.3a–e) are computed for various wavenumber k,
Rayleigh number Ra, Prandtl number Pr and bulk volume fraction φb. It is observed that
at any Ra there exist neutrally stable modes, i.e. modes with σ = 0, as known in stability
analyses of fluidized beds (Buyevich & Kapbasov 1996). However, by increasing Ra for a
given (k, φb), the growth rate of the most unstable mode remains zero until a certain value
of the Rayleigh number, Ram. Once Ra exceeds Ram, the growth rate σ starts increasing
from zero. We determined this threshold value Ram by extrapolating the behaviour of σ

at Ra > Ram (see the Appendix). A set of Ram for different values of k at fixed values of
(Pr, φb) provides the marginal stability curves Ram = Ram(k) (figure 2a). We found that
the marginal curves are independent of Pr and the marginally stable modes are stationary
(ω = 0) like the classical RBC (Drazin & Reid 2004). Indeed, by rescaling the time and
velocities in (3.3), it is possible to derive (3.3) into a set of equations where Pr is involved
only in the coefficients of the complex growth rate s; therefore, the marginally stable
stationary modes (s = 0) are independent of the Prandtl number.
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Note that the minimum value of the marginal stability curve provides the critical
parameters (kc, Rac) for a given set of (ε, φb, Kc), while the critical conditions do not
depend on Pr because of the independence of marginal conditions from Pr. We present
the variation in the critical Rayleigh numbers versus the bulk volume fraction of the
suspensions φb in figure 2(b). It can be observed that the suspended particles stabilize the
flow. Although Rac grows gradually by increasing φb from the critical value (Rac = 1708)

for a pure Newtonian fluid, the critical wavenumber (kc) remains constant at 3.12 (i.e.
λc = 2π/kc ∼= 2d), which is the value for pure fluids (Schlüter, Lortz & Busse 1965).

3.3. Energy analysis
We have evaluated an evolution equation, which governs the density of the kinetic
energy (k′ = ũ′

iũ
′
i/2) of the perturbation flow, in order to get insights into the instability

mechanism. The equations can be derived from the linearized momentum equations, given
by

d〈k′〉V

dt
= Ra

Pr
〈ṽ′θ̃ ′〉V︸ ︷︷ ︸
Bk′

+εk′, (3.5)

where the angle brackets 〈 〉V represent the averaging operation over the whole domain.
The terms on the right-hand side of (3.5) represent the contributions to the perturbation
flow energy of the different mechanisms, Bk′ is the power density generated by the
gravitational buoyancy that is analogous to the one in the classical Rayleigh–Bénard
convection and εk′ = −〈ηr(Φb)[∂ ũ′

i/∂ x̃j]2〉V is the contribution of the viscous energy
dissipation. Figure 3 shows the variations of the terms with φb. The kinetic energy of
the perturbation is created by the buoyancy, and it is balanced by the dissipation term
as demonstrated in the classical Rayleigh–Bénard instability. This result suggests that the
current instability could be regarded as the Rayleigh–Bénard instability of a single-phase
flow in which the viscosity is modified due to the existence of the suspended particles.
In fact, we may omit the variation of thermal diffusivity, since the rate of the variation
involves a small coefficient, 4cφmΦbε

2 ∼ 10−5. Then, one can cast (3.3b)–(3.3d) as

s∗û = −ikp̂∗ +
(

d2

dỹ2 − k2

)
û,

s∗v̂ = −dp̂∗

dỹ
+
(

d2

dỹ2 − k2

)
v̂ + Ra∗

Pr∗ θ̂
∗
,

s∗θ̂∗ + v̂
dΘ

dỹ
= 1

Pr∗

(
d2

dỹ2 − k2

)
θ̂

∗
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

Herein, the complex growth rate, the perturbation pressure and the perturbation
temperature have been rescaled as s∗ = s/ηr, p∗ = p/ηr, and θ̂∗ = ηrθ̂ , while the modified
Rayleigh and Prandtl numbers have been defined as Ra∗ = Ra/ηr(Φb) and Pr∗ = ηr Pr,
respectively. It should be noted that the equation set (3.6) is identical to the governing
equations of the classical Rayleigh–Bénard instability. Once the Ra rescales to Ra∗, all the
marginal curves in figure 2(a) merge into a single curve, which is identical to the marginal
curve of Rayleigh–Bénard instability. The critical Rayleigh number can then be given by
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Figure 3. Variation of the different power density terms of the critical states that are normalized by doubling
the perturbation kinetic energy 2〈k′〉V for various φb.

Ra∗
c = RaRB,c (= 1708), which implies that

Rac = RaRB,c · ηr(Φb) = 1708

(1 − φb/φm)1.82 . (3.7)

Comparisons of (3.7) with the linear stability analysis results show perfect agreements as
represented in figure 2(b). These results confirm that the thermal instability in suspension
can be assimilated as the Rayleigh–Bénard instability in a pure fluid with an effective
viscosity of ηf ηr(Φb). It should be emphasized that this exact analogy would not hold
when the local thermal Péclet number becomes significant. In fact, for large thermal Péclet
numbers, the variation of the effective thermal diffusivity αs is no longer negligible (e.g.
Sohn & Chen 1981); therefore, the last term in (3.3d) cannot be ignored. The third equation
of (3.6) should then be completed by a term representing the effect of thermal diffusivity
variation due to the flow shear.

4. Numerical simulation

4.1. Numerical methods
The governing equations (2.1), (2.2), (2.4), and (2.5) were discretized using a finite
volume method in the Cartesian grid system. A second-order central difference scheme
is used for the spatial discretization of the derivatives except for the convective term
(u · ∇φ) of the conservation equation for the particles (i.e. (2.5)) where we employed
the QUICK (quadratic upstream interpolation for convective kinematics) scheme for the
discretization. A hybrid scheme is used for the time advancement, the nonlinear terms
are explicitly advanced by a third-order Runge–Kutta scheme, and the other terms are
implicitly advanced by the Crank–Nicolson method (Kang & Yang 2011, 2012; Kang &
Mirbod 2020). A fractional-step method was applied for the time integration, then the
Poisson equation resulting from the second stage of the fractional-step method is solved
by a fast Fourier transform (FFT) (Kim & Moin 1985). The number of grid points is
256(x) × 128( y), the length of the domain is L = 8d (∼= 4λc) and the grid cells are uniform
in both directions. Hereafter, all quantities were normalized by the characteristic variables
(d, νo/d, d2/νo and �T) described in § 2.3, and the tilde in the dimensionless variables is
omitted for the sake of convenience.
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Figure 4. (a) The temporal evolution of the amplitude of the perturbation for Ra = 2290 (Ra* = 1714.38) and
φb = 0.1. (b) The growth rates of the perturbations close to Rac. We used a linear fitting curve to determine
the threshold value. The amplitude |A| was normalized by νo/d.

4.2. Onset of the instability
In the classical Rayleigh–Bénard system, convection rolls develop from a quiescent
conduction state through a supercritical bifurcation when the Rayleigh number Ra is larger
than the critical value (Ra ≥ Rac)). To characterize the critical states of the flow, we use
the Landau equation, which describes the evolution of the flow perturbation in its weakly
nonlinear regime, and it can be determined as (Landau & Lifshitz 1976; Guckenheimer &
Holmes 1983; Kang et al. 2017, 2019a,b)

dA
dt

= σ(1 + ic1)A − l(1 + ic2)|A|2A + · · · . (4.1)

Here, σ is the linear growth rate of the perturbation and l is the Landau constant, where the
sign of l indicates the nature of the bifurcation (i.e. supercritical versus subcritical). The
constant c1 and c2 are the linear and nonlinear dispersion coefficients. They both can be
determined from the linear stability analysis (Kang et al. 2017, 2019a,b). In this study, the
coefficients are zero (i.e. c1 = c2 = 0) because the critical modes are stationary (ω = 0)

as found in the linear stability analysis. We have also introduced the norm of the normal
velocity component at the middle of the gap to define the amplitude of the perturbation |A|
that can be stated as

|A| = 1
L

∫ L

0
|v(x, y = 0.5)| dx. (4.2)

A time history of the amplitude |A| for Ra = 2290 and φb = 0.1 is displayed with a
semilogarithmic scale in figure 4(a). As can be observed, there is a sharp drop at the initial
stage since a random noise of O(10−5) is provided in the flow field. However, an instability
is triggered after the decay, and the amplitude of the perturbation grows exponentially. This
yields a growth rate (σ ) for the most unstable mode defined from the slope of the linear
portion of the curve. By further increasing the time, the nonlinearity occurs at t ≈ 1800
and the amplitude is slowly saturated to a constant value. The growth rates computed for
several values of Ra for φb = 0.1 are presented in figure 4(b). Then, the threshold Rac
can be determined from the (σ, Ra) curve using linear extrapolation. We found the critical
Rayleigh number (Rac) is 2281.74 for φb = 0.1. This agrees well with the value (Rac =
2280.5) predicted by the linear stability analysis in § 3. In the same manner, the critical
values of Ra have been obtained for various φb ranging from 0 to 0.3 and reported with
those computed by the linear stability analysis in figure 5 that shows a good agreement.
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Figure 5. Critical Rayleigh numbers (Rac) versus the bulk particle volume fraction (φb). The black
long-dashed line indicates Rac = 1708 for a pure Newtonian fluid (i.e. φb = 0).

As predicted by the linear stability analysis and explained in § 3, Rac increases as the
suspensions become denser (i.e. as φb rises).

4.3. Nature of the instability
In (4.1), the sign of the Landau constant l determines the type of transition. The bifurcation
is supercritical (non-hysteretic) if l is positive (l > 0), while a negative value of l (l < 0)

indicates a subcritical (hysteretic) transition (Kang et al. 2017, 2019a,b). The sign of l can
be identified practically from the behaviour of the instantaneous growth rate d ln |A|/dt as
a function of |A|2 at a vanishing |A|2. The plot of d ln |A|/dt versus |A|2 at the threshold Rac
is depicted in figure 6. The intersection with the vertical axis provides the linear growth
rate (σ ) of the amplitude |A|, where the slope at the origin (i.e. |A|2 = 0) determines
the nonlinear bifurcation characteristics. Figure 6(a) reveals a supercritical bifurcation
for the convection in a pure fluid (φb = 0), whereas the transition from the conduction
state in suspensions (φb > 0) occurs through a subcritical bifurcation (l < 0) as shown
in figure 6(b). Higher-order terms are then required in the Landau model to describe the
saturation of the transition for the flow of suspensions (φb > 0) in more detail. We found
that the transition in the suspension layer is subcritical for all examined volume fractions
φb > 0. The subcritical bifurcation has also been observed in the thermal convection
for non-Newtonian fluids (Benouared, Mamou & Messaoudene 2014, Jenny, Plaut &
Briard 2015). Therefore, we could infer that the non-Newtonian behaviour in viscous
stresses arising from the dependence of effective viscosity on φ causes the change in the
transition nature. Indeed, the subcriticality observed in the present investigation seems
to be produced by the spatial variation of viscosity due to heterogeneous distribution of
particles as discussed in § 5.

4.4. Flow and concentration profiles
The flow, temperature and concentration fields at Ra larger than Rac are presented in
figure 7. Counter-rotating convection rolls are driven by the buoyancy and they are formed
between the two plates (figure 7a). These rolls cause a wavy distribution in the temperature
(figure 7b). Moreover, they lead to an interesting formation of particles in the concentration
field. As demonstrated in figure 7(c), the particles are accumulated in the core of the
vortices and the ring-shaped structures with a higher volume fraction are established.
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Figure 6. The derivative of the amplitude logarithm plotted against the square of the amplitude; (a) for
Ra = 1720 and φb = 0 and (b) for Ra = 2290 (Ra* = 1714.38) and φb = 0.1. The time derivative and amplitude
were non-dimensionalized using the characteristic variables as νo/d, d2/νo, respectively.

Figure 7(d) shows the contour of the local shear rate (γ̇ ) with the velocity vectors. The
vortices can cause a strong shear near the top and bottom walls; however, the shear is weak
in the core of the vortices as demonstrated in the Rayleigh–Bénard convection for a pure
fluid. This causes a gradient in the shear rate, then the particles can migrate toward the core
of the convection rolls where the local shear rate is low. However, the shear is strong at the
centre of the vortices, and eventually the particles accumulate more in its surroundings,
which leads to the ring-shaped structures that are illustrated in figure 7(c).

To support the above conjecture, we show the profiles of several variables in figure 8. In
figure 8(a), the location with v = 0 indicates the centre of the convection rolls. The distinct
local minima of φ are observed at the centre, in which two peaks appear along both sides
(figure 8b). These verify the ring-shape accumulation of the particles in the rolls as shown
in figure 7(c). Moreover, the sharp minima of φ are between the two vortices where the
normal velocity is either a maximum or minimum value. As displayed in figure 8(c), the
shear rate (γ̇ ) is maximum at the centre of the vortices. Consequently, the gradient of
the shear generates particle fluxes away from the centre towards the surroundings. On the
other hand, strong convective particle fluxes are created between two vortices (figure 8d).
These fluxes limit the stack of particles that are induced by the shear at the border between
the convection cells; moreover, they accelerate the particles accumulation at the core of
the rolls.

The characteristics of the particle migration and the accumulation stated above, when
the convection rolls arise, have been observed for various suspensions (φb > 0.1). It turns
out that the particles migrate more to the core of the vortices for higher concentrations
(figure 9). In addition, for a higher φb, the ring-shaped structures can be observed more
clearly (figure 9a,b) and the peaks of the volume fraction are sharper (figure 9c).

By further increasing the Rayleigh number (Ra), a transition to another mode occurs.
The suspension consists of the counter-rotating vortices of the smaller lateral extension
resulting in five pairs of cells where the vortices become more intensified (figure 10a).
This is the same as the classical RBC that the increasing Ra induces a long-wavelength
modulation in the horizontal direction leading to the Eckhaus instability of vortices
(Tuckerman & Barkley 1990; Kang et al. 2019a); as a result, the number of rolls jumps
due to the readjustment of vortices in the fixed domain. Moreover, the waviness in the
temperature distribution becomes stronger due to the intensified vortices (figure 10b). It
also causes a striking change in the concentration field of the particles. As presented
in figure 10(c), more particles are piled up in the core of the vortices. Particularly, the
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Figure 7. Contours of the (a) vorticity (ωz), (b) temperature (θ), (c) particle volume fraction (φ) and (d) the
local shear rate (γ̇ ) for Ra = 3230 (Ra* = 1713.54) and φb = 0.2. For clarity, the velocity vectors were plotted
for every four and eight grid points in the x- and y-directions, respectively. The vorticity and shear rate were
non-dimensionalized by νo/d2, and the temperature was normalized by �T.

ring-shaped structure in which particles are accumulated in the surroundings of the centre
of the rolls is not clearly detected any longer. This effect might be triggered by the shear.
The intensified vortices with a reduced size increase the local shear and its gradient
(figure 10d). Hence, the particle flux induced by the shear increases and then more particles
can migrate towards the core of the vortices.

On the other hand, the local concentration of the particles in the core of the rolls decays
by rising Ra as presented in figure 11. It can be precisely verified with the distribution of
the particle volume fraction (φ) in figure 12(a), where the value of φ at the core decreases
by increasing Ra. To obtain a better understanding of this behaviour, the profiles of the
local shear rate (γ̇ ) along the centerline of the gap are plotted in figure 12(b). The profiles
reveal a different feature from what is presented in figure 8(c). The local shear rates near
the boundary between the two counter-rotating vortices are larger than those of the core.
As stated above, this enhances the migration of the particles toward the core of the vortices.
In the core region, the small local maxima at the centre of the rolls are detected with an
increase in Ra as presented in the subplot of figure 12(b). Although the peak is small, the
gradient in the shear leads to the shear-induced migration toward its surroundings. For this
reason, fewer particles are accumulated in the core of the vortices as Ra rises.
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Figure 8. Profiles of (a) the normal velocity component (v), (b) the particle volume fraction (φ), (c) the local
shear rate (γ̇ ) and (d) the vertical particle flux (vφ) along the x-direction at the middle of the gap (y = 0.5)
for Ra = 3230 (Ra* = 1713.54) and φb = 0.2. The velocity and shear rate were normalized by νo/d and νo/d2,
respectively.

4.5. Heat transfer rate
To evaluate the heat transfer caused by the convective flow, the conserved heat current
(jth) yielded by averaging the energy equation (2.4) in the x-direction has been estimated
as follows (Kang et al. 2017):

jth = 1
L

∫ L

0

(
vθ − αs

∂θ

∂y

)
dx. (4.3)

Figure 13 shows the profiles of the heat current density (jth) for φb = 0.1. As can be
confirmed, jth has a constant value across the gap and it increases with the growth of
Ra. Then, the Nusselt number (Nu), defined as the ratio of the total heat transfer of the
convective flow to the conductive state, can be determined as (Yoshikawa et al. 2013;
Kang et al. 2017)

Nu = j th/j th
cond where j th

cond = ρCpαo�T/d. (4.4)

Figure 14(a) illustrates the variation of the Nusselt number with Ra for several φb values.
Above the onset of the instability, the heat transfer rate significantly increases due to the
vortices that are generated inside the layer. The Nu increases suddenly at the critical Ra
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Figure 9. Concentration fields at (a) Ra = 2290 (Ra* = 1714.38) for φb = 0.1, and at (b) Ra = 4940
(Ra* = 1713.04) for φb = 0.3. (c) The profiles of φ along the x-direction at the middle of the gap (y = 0.5)
for φb= 0.1 (Ra = 2290), φb= 0.2 (Ra = 3230), and φb= 0.3 (Ra = 4940). The profiles were shifted to fit the
phase.

for φb > 0, since the bifurcation is subcritical (Benouared, Mamou & Messaoudene 2014;
Jenny, Plaut & Briard 2015; Kang et al. 2017). For larger Ra, the Nusselt number grows
steadily with Ra. We found a power-law increase of the Nusselt number (Nu) with Ra,
namely, Nu ∼ Rab for relatively large values of Ra where the scaling exponent b decreases
with φb. On the other hand, the slope of the increasing Nu decays as the suspension volume
fraction φb increases. This is clearly noticed in the plot of Nu versus Ra − Rac as shown in
figure 14(b). At the threshold Rac, the Nusselt numbers for higher φb are larger; however,
Nu grows slowly by increasing Ra for higher concentrations. In figure 14(c), we also plot
the variations of Nu versus the modified Rayleigh number (Ra∗) defined, in § 3, as Ra∗ =
Ra/ηr(Φb). This figure reveals that the dynamics of suspensions play a critical role in the
resulting heat transfer in suspensions, although the instability occurs at Ra∗ = 1708.

5. Discussion

The critical Rayleigh number (Rac), in which the convection rolls are formed in the gap,
were predicted by both the linear stability analysis and numerical simulation. It turns
out that suspensions are more stable for higher particle volume fractions. To get a better
understanding on the stabilization mechanism, we have further evaluated the variation rate
of the kinetic energy in the flow of suspensions using the numerical simulation.
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Figure 10. Contours of the (a) vorticity (ωz), (b) temperature (θ), (c) particle volume fraction (φ), and (d) the
local shear rate (γ̇ ) for Ra = 5000 (Ra* = 2652.55) and φb = 0.2. For clarity, the velocity vectors were plotted
for every four and eight grid points in the x- and y-directions, respectively. The vorticity and shear rate were
non-dimensionalized by νo/d2, and the temperature was normalized by �T.
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Figure 11. Contours of the particle volume fraction (φ) for φb = 0.2; (a) Ra = 6000 (Ra* = 3183.05) and (b)
Ra = 12 000 (Ra* = 6366.11).

The dimensional transport equation for the kinetic energy (k = uiui/2) derived from the
momentum equation (2.2) is expressed as

Dk
Dt

= − 1
ρ

∂( pui)

∂xi︸ ︷︷ ︸
Πk

+ 1
ρ

∂

∂xj
(2ηs(φ)Sijui)︸ ︷︷ ︸

Dk

− 1
ρ

[
2ηs(φ)Sij

(
∂ui

∂xj

)]
︸ ︷︷ ︸

εk

−βθgiui︸ ︷︷ ︸
Bk

, (5.1)
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Figure 12. Profiles of (a) the particle volume fraction (φ) and (b) the local shear rate (γ̇ ) normalized by
νo/d2 along the x-direction at the middle of the gap (y = 0.5) for the various Ra values and φb = 0.2. Here,
Ra* = 4774.58 for Ra = 9000.
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Figure 13. Profiles of the heat current (jth) normalized by νo�T/d for φb = 0.1. Here, Ra* = 2245.92 for
Ra = 3000, Ra* = 4491.84 for Ra = 6000, and Ra* = 6737.76 for Ra = 9000.

where D/Dt = ∂/∂t + uj∂/∂xj and Sij = (∂ui/∂xj + ∂uj/∂xi)/2. This equation consists
of the pressure work (Πk), viscous diffusion (Dk), dissipation (εk) and the buoyant
production (Bk) terms.

The distributions for all the terms of the transport equation above the threshold Rac
are illustrated in figure 15 where they were averaged in the horizontal (x) direction.
The profiles are symmetric with respect to the centerline (y = 0.5) because of the
counter-rotating vortex cells with a mirror-symmetrical structure. The kinetic energy is
mainly generated by the buoyancy (Bk) in the middle of the gap and it is dissipated
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Figure 14. Variations of the Nusselt number (Nu) for various φb values: (a) Nu vs. Ra, (b) Nu vs. (Ra − Rac)

and (c) Nu vs. Ra∗. The solid lines represent the behaviour of ∼ Rab. The inset presents the log–log plot.

near the walls. The dissipation term (εk) is balanced by the viscous diffusion (Dk) near
both walls. The pressure work (Πk) and viscous diffusion (Dk) terms are cancelled out
when they are integrated over the whole fluid volume. Then, the dissipation (εk) and
buoyant production (Bk) terms only remain in (5.1); thus, the dynamic equilibrium in
the flow can be described by the balance between the buoyant production and the energy
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Figure 15. Profiles of each term for the kinetic energy balance equation that was averaged along the
x-direction; (a) Ra = 2290 (Ra* = 1714.38) for φb = 0.1 and (b) Ra = 3230 (Ra* = 1713.54) for φb = 0.2. The
values were normalized by ν 3

o /d4.

dissipation as

D〈k〉V

Dt
= 〈βθgv〉V + 〈εk〉V , where 〈X〉V = 1

Ld

∫ d

0

∫ L

0
X dx dy. (5.2)

This expression explains that the energy is produced by the buoyancy in the suspensions,
while the thermal convection occurs when the buoyancy force overcomes the viscous
dissipative force. By increasing φb, the dissipative force is intensified due to the increase
in the effective viscosity of suspensions, while the buoyancy force (ρβθg) acting on the
suspensions is uniform. Consequently, the particles stabilize the suspension flow, leading
to a higher critical Rayleigh number (Rac) as the concentration increases.

In addition, in § 4.3, the type of transition for the suspensions was determined by the
Landau constant (l), as displayed in figure 6. It was revealed that the transition in the
flow of the suspensions is subcritical while it is supercritical for a pure Newtonian fluid.
The subcritical nature of the transition in suspensions can be explained by considering
both flow and concentration profiles. When the velocity perturbation grows in the flow
of suspensions, the gradient in the shear rate leads to the particle migrations by the
shear-induced diffusion, resulting in particle-concentrated and particle-free zones, as
presented in figures 7 and 10. In particle-free zones, the effective viscosity is lower than
that of the homogeneous suspension. Consequently, the stabilizing viscous force becomes
weak and the local value of Rayleigh number turns out to be higher than that computed
by the bulk concentration φb. Once convection develops, the local Rayleigh number in
particle-free zones remains larger than the critical Rayleigh number Rac, although Ra
decreases below Rac. Indeed, the particle-free zones are coincident with the zones where
the thermal buoyancy drives fluid by ascending and descending motions as shown in
figures 7 and 10. An experimental analysis of suspensions in the RBC system would further
validate this statement.

We have further examined the total heat current (jth) to obtain the Nusselt numbers. It
has been shown that the heat current is constant across the gap. Meanwhile, the total heat
current (jth) of (4.3) can be divided into two contributions, convective j th

conv (= vθ) and
diffusive j th

diff (= −αs∂θ/∂y) transports. The distributions of each term are illustrated in
figure 16. It can be observed that above the threshold Rac the heat is mostly transferred
by the molecular diffusion (figure 16a). However, the convective term (j th

conv) becomes a
dominant contributor for the heat transfer, and this particularly occurs in the middle of the
gap as Ra grows (figure 16b). This is due to the strengthening convection rolls. In addition,
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Figure 16. Distributions of the total heat current (jth) and its components for φb = 0.2; (a) Ra = 3230
(Ra* = 1713.54) and (b) Ra = 8000 (Ra* = 4244.07). The values were normalized by νo�T/d.

the convective flow generated by the buoyancy is intensified by increasing Ra; therefore, it
strengthens the convective heat flux.

The Nusselt numbers (Nu) for various Ra values that are larger than Rac were computed
in figure 14 to estimate and understand the performance of the heat transfer in suspensions.
The most remarkable conclusion is that the heat transfer rate is enhanced above the
threshold Rac, where it is higher for higher particle concentrations, while the rate of
increase in Nu gradually decays as more particles are added into the fluid. This effect
can be also interpreted by the convective flow. As stated earlier, the sharp increase in
Nu at the critical Ra results from the subcritical convection because the convective flow
does not decay, even though Ra approaches the critical point. However, the intensity
of the convective flow above Rac decreases as the volume fraction of the suspension
increases because the higher viscosity of the suspensions enhances the viscous dissipation
of the momentum in the flow. Moreover, temperatures are more homogenized with a
higher effective thermal diffusion leading to less buoyancy and thus less convection.
Subsequently, as shown in figure 14(b), the heat transfer rates for higher concentrations
increase gradually with Ra at a moderately high Ra. To support this, the saturated values
of amplitude |A|, defined in (3.6), are plotted against Ra − Rac in figure 17. The value of
|A| represents the intensity of the convective flow that is established by the convection rolls.
As illustrated in the plot, the variations of |A| are consistent with those of Nu displayed in
figure 14(b). This then provides evidence for the role of convective flow.

The results of our numerical simulation have indicated that the observed dependence of
the heat transfer on particle concentration is closely related to the migration of particles.
In fact, the particle migration can affect not only the conductive heat transfer through the
heterogeneous distribution of thermal diffusivity αs but also the convective heat transfer
through the modification of convection flow produced due to non-uniform viscosity of
suspensions.

In the classical RB convection, a variety of flow patterns are observed for Ra > Rac,
depending not only on the distance from the criticality in Ra but also on the Prandtl number
(Krishnamurti 1973). The heat transfer also depends on Prandtl (Grossmann & Lohse
2000). As our results show, the nonlinear behaviour of thermal convection in suspensions
is distinct from the RB convection even at small particle volume fraction. The effective
viscosity and thermal diffusivity of suspensions are not enough to predict flows from the
analogy with the RB convection. Thorough investigations are thus necessary to elucidate
the effects of the Prandtl number on suspension thermal convection.
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Figure 17. Variations of the saturated amplitude |A| normalized by νo/d against Ra − Rac for the various φb.

6. Conclusion

Rayleigh–Bénard convection for the flow of non-colloidal, non-Brownian suspensions has
been numerically studied by both linear stability analysis and numerical simulation based
on a mathematical model. We employed a constitutive model known as DFM to describe
the dynamics of suspended particles and solved it with conservation equations for the
suspension flow. A simple correlation for the effective thermal diffusivity of suspensions,
which is linear with respect to the thermal Péclet number (Pe) and the particle volume
fraction (φ), has been employed to account for the shear-induced thermal diffusion in
suspensions. The impact of the particles on the stability, flow and heat transfer have been
investigated in detail for a wide range of bulk volume fractions φb ∈ [0 − 30%].

To predict the critical states of the instability, we employed the linear stability analysis
for the bulk particle volume fraction (φb) up to 30%, given particle size (ε) and Prandtl
number (Pr). The critical Rayleigh number (Rac), at which the transition from conductive
to convective states occurs, increases with φb. In contrast, the critical wavenumber (kc)
remains constant and is identical to the value for a pure Newtonian fluid (kc = 3.12).
We showed that the current instability analysis could be regarded as the Rayleigh–Bénard
instability of a single-phase flow in which the viscosity is modified due to the suspended
particles where the critical Rayleigh number for the suspension is given by Rac =
RaRB,c · ηr(φb) = 1708/(1 − φb/φm)1.82. We performed numerical simulation to confirm
the results of the linear stability analysis and to determine the nature of flow transition. To
obtain the critical values of Ra from numerical simulations, we used the Landau model
and we found that the results are consistent with those of the linear stability analysis.
The type of bifurcation has also been identified by the Landau model and it was found
that the transition arises through a subcritical bifurcation for the flow of the suspensions.
This marked contrast to the Rayleigh–Bénard instability in pure Newtonian fluids was
explained from the shear-induced particle migration and resulting low viscosity zones in
suspensions.

We also examined the flow, temperature and concentration fields above the Rac. At the
onset of the instability, counter-rotating convection rolls are built and the particles are
accumulated in the core of the rolls that form the ring-shaped structures in the particle
concentration field caused by the shear-induced particle migration. These ring-shaped
structures can be observed more clearly for higher φb. As Ra increases, more vortices
are developed with a decreased wavelength, resulting in more particles staying in the
core of the vortices. Although the ring-shaped feature, in the concentration field, is not
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Figure 18. Behaviour of the growth rates of the most unstable modes. (a) Growth rate surface σ = σ(k, Ra).
(b) Determination of the instability threshold Ram by extrapolation. The parameters are for Pr = 7, φb = 0.03,
ε = 0.02 and Kc = 0.41. The wavenumber is fixed at k = 3.12 in (b).

distinctly found, the shear-induced migration toward the surroundings of the vortex centre
still appears as Ra further increases. We then computed the variation of Nusselt number
(Nu) with Ra for different φb, to estimate the heat transfer in the suspensions. The heat
transfer rate is substantially enhanced by the convection rolls, and it rises steadily with Ra.
This effect decreases with particle volume fraction since the convective flow decays for
higher concentrations.

To get insights into the instability mechanism due to the existence of the particles,
we further examined an evolution equation of flow kinetic energy. The dissipative force
is intensified by increasing φb because the effective viscosity of suspensions increases.
The buoyancy force (ρβθg) on suspensions should then increase to overcome the viscous
energy dissipation. Consequently, the critical Rayleigh number Rac becomes larger for
higher concentrations. This might raise the question of the robustness of the continuum
models such as DFM in the instability analysis as it involves several constants and the
constitutive laws that were defined from experimental measurements and computational
analysis. Further studies with physical models that capture both the flow and particle
dynamics properly are needed to confirm the nature of the role played by the mechanisms
identified in this work.

The interests in heat transport of suspensions, such as in thermal systems of spacecraft
(Mulligan, Colvin & Bryant 1996), solar plant (Flamant et al. 2013), and electronic devices
for cooling (Dbouk 2019), make it natural to extend the stability study to suspension flow
systems where the present results might serve as a new method to control the suspension
flows and their pattern formation in engineering systems. The stability analysis carried out
in this study could also be useful in determining the adequacy of a constitutive rheological
model such as DFM in describing the free convection phenomenon. Experimental
investigations on suspension thermal convection are highly desirable. For example, the
impact of the subcritical instability on heat transfer, determined in the present study, needs
to be validated.
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Appendix. Determination of the instability thresholds

In the three-dimensional (3-D) space (k, Ra, σ ), the growth rate σ = σ(k, Ra) emerges
from the plane σ = 0 when Ra is large (figure 18a) where the emergence is sharp and
σ increases linearly with Ra. The instability threshold Ram for a given wavenumber k
can thus be estimated by linear extrapolation (figure 18b). This determination method is
beneficial to perform comparisons with experiments and a numerical simulation where
the instability thresholds are often determined by the extrapolation of the observed growth
rate behaviour.
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