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Suppose there are n players in an ongoing competition, with player i having value vi, and
suppose that a game between i and j is won by i with probability vi/(vi + vj). Consider
the winner plays competition where in each stage two players play a game, and the winner
keeps playing in the next game. We consider two models for choosing its opponent, analyze
both models as Markov chains, and determine their stationary probabilities as well as other
quantities of interest.
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1. INTRODUCTION

Suppose there are n players in an ongoing competition, with player i having a value
vi, i = 1, . . . , n. We suppose that at each stage two of the players play a game, and that,
independently of what has previously occurred, a game between i and j is won by i with
probability vi/(vi + vj). Supposing that the winner of a game plays in the next game, we
consider two different models for choosing its opponent. The first model supposes that the
n−2 players not involved in a game are waiting in an ordered line and that with proba-
bility p(j, k),

∑n−2
j=1

∑n−2
k=1 p(j, k) = 1, the player currently in queue position j is the next

opponent and, with the relative positions of the other n−3 players in queue remaining as
they are, the loser of the just finished game is put in queue position k. Our second model
supposes that each player has both a value and a queue weight, with player i having queue
weight wi. It supposes that if i1, . . . , in−2 are in queue, then the loser of the current game
joins the queue and ij is chosen as the next opponent with probability wij

/
∑n−2

k=1 wik
. We

analyze both models as Markov chains and determine their stationary probabilities as well
as other quantities of interest.

Aside from its inherent interest, the special case of the first model that always takes
the player who has been waiting in queue the longest as the next opponent can be applied
to the selection problem where we are interested in determining, under a constraint on
the number of games that can be played, which player has the largest value. One pol-
icy of interest is to utilize the preceding to choose successive game opponents, and to
then select the player who has the most wins after the prescribed number of games
have been played. (See Azizi, Cao, and Ross [2] for numerical results concerning this
method.)
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Models that assume that each player has a value and that one player will beat another
with a probability equal to its value divided by the sum of their values are known as
Bradley-Terry type models. Such models were originally proposed by Zermelo [13] and later
popularized by Bradley and Terry [3]. Such models have often been applied to sports. For
example, the World Chess Federation and the European Go Federation successfully adopted
this model for ranking players (see Hastie and Tibshirani [8]). Cattelan, Varin, and Firth
[6] developed a dynamic Bradley–Terry model to analyze the abilities of teams in sports
tournaments, and McHale and Morton [10] presented a Bradley–Terry model for forecast-
ing match results of men’s tennis. The Bradley–Terry model has also been assumed when
analyzing knockout tournaments, which are tournaments in which a single loss eliminates a
player and the tournament winner is the last player without a loss. Adler et al. [1] assumed
a Bradley–Terry model in analyzing a random knockout tournament, where the number of
matches in each round is fixed and the choice and pairings of the players in the round is
randomly determined from those still remaining; Cao and Ross [4] used such a model when
analyzing a winner plays knockout tournament in which players are initially randomly lined
up. The first two in line play a game, with the winner of a game then playing against the
next player in line. In both [1] and [4], bounds on the player’s tournament win probabilities
are obtained.

Statistical estimation of the player values, based on the results of previously played
games, has also been considered. For instance, Hunter [9] proposed an iterative procedure
for finding the maximum likelihood estimators. Bayesian estimation approaches have also
been studied. Guiver and Snelson [7] presented an Expectation–Propagation method to
approximate a posterior distribution, while Caron and Doucet [5] proposed a Gibbs sampler
for a Bayesian inference based on a suitable set of latent variables. Ross and Zhang [12]
utilized a post-stratification approach to explicitly determine posterior means.

2. QUEUE POSITION MODEL

Suppose that the n players are initially randomly put in a linear order, and the first two play
a game. After each game, with probability p(j, k) the player in queue position j leaves the
queue, then the loser joins queue position k and the relative positions of the other players
remain the same, where j, k = 1, 2, . . . , n − 2 and

∑n−2
j=1

∑n−2
k=1 p(j, k) = 1.

We can analyze the preceding as a Markov chain by letting the state be the sequence of
the players in queue. Because there are

(
n
2

)
choices for the 2 contestants and (n − 2)! possible

orderings for the n−2 in queue, there are
(
n
2

)
(n − 2)! states. For example, for i1, i2, . . . , in

being a permutation of 1, 2, . . . , n, the state (i1, i2, . . . , in−2) represents that players in−1, in
are in the current game, and ij is j th in line in queue, j = 1, . . . , n − 2. We assume that the
p(j, k) are such that the Markov chain is irreducible.

We first show that the stationary probability of each state is proportional to the sum
of strengths of the players in the current game. Let v =

∑n
j=1 vj .

Proposition 2.1: For (i1, i2, . . . , in) being a permutation of (1, 2, . . . , n), the stationary
probabilities are

πi1,i2,...,in−2 = c(vin−1 + vin
)

where c = 1/((n − 1)!v).
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Proof: The hypothesized stationary probabilities sum to 1 and satisfy the stationarity
equations

πi1,i2,...,in−2 =
∑ ∑

j<k
πi1,...ij−1,in−1,ij ,...,ik−1,ik+1,...,in−2

vin

vin
+ vik

p(j, k)

+
∑

k

πi1,...ik−1,in−1,ik+1,...,in−2

vin

vin
+ vik

p(k, k)

+
∑∑

j>k
πi1,...,ik−1,ik+1,...,ij ,in−1,ij+1,...,in−2

vin

vin
+ vik

p(j, k)

+
∑∑

j<k
πi1,...ij−1,in,ij ,...,ik−1,ik+1,...,in−2

vin−1

vin−1 + vik

p(j, k)

+
∑

k

πi1,...ik−1,in,ik+1,...,in−2

vin−1

vin−1 + vik

p(k, k)

+
∑∑

j>k
πi1,...,ik−1,ik+1,...,ij ,in,ij+1,...,in−2

vin−1

vin−1 + vik

p(j, k)

which proves the result. �

Corollary 2.2: In the stationary state,

(a) given the players in a game, all possible orderings of the n−2 in queue are equally
likely;

(b) given the winner of a game, its opponent in that game was equally likely to be any
of the other n−1 players.

Proof: The proof of (a) is immediate from Proposition 2.1. To prove (b), let Aij be the
event that the game is played by i and j, i �= j. Then, with Bi being the event that the
game is won by i,

P (Aij |Bi) =
P (Bi|Aij)P (Aij)∑

k �=i P (Bi|Aik)P (Aik)
=

vi

vi+vj
(vi + vj)∑

k �=i
vi

vi+vk
(vi + vk)

=
1

n − 1
. �

Corollary 2.3: Let Pi,j , P
w
i , P l

i , and Pi be, respectively, the steady-state probabilities that
the current game is between i and j, that the current game is won by i, that the current
game is lost by i, and that i is playing in the current game.

(a) Pi,j = (vi + vj)/((n − 1)v)
(b) Pw

i = vi/v.
(c) P l

i = (v − vi)/((n − 1)v).
(d) Pi = (v + (n − 2)vi)/((n − 1)v).

Proof: The proof of (a) follows from Proposition 2.1 by summing the stationary proba-
bilities over all (n − 2)! possible orderings of those in queue when i plays j. To prove (b)
and (c), note that Pi,j(vi/(vi + vj)) = vi/((n − 1)v) is the probability that i beats j, and
Pi,jvj/(vi + vj) = vj/((n − 1)v) is the probability that i loses to j, in the current game; the
results then follow upon summing this over all j �= i. Part (d) follows either by using that
Pi =

∑
j:j �=i Pi,j , or by using that Pi = Pw

i + P l
i . �
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A player alternates between waiting in queue and playing games. Let Qi
j denote the

amount of time player i spends in queue, after losing for the j th time, before it again plays
a game. Also, let Gi

j be the number of games that i plays until it loses, on its j th entrance
to a game from queue. Thus, for instance, the first time i begins to play it plays Gi

1 games,
winning the first Gi

1 − 1 of them and then losing the next, and then waits in queue for Qi
1

games, then plays Gi
2 games, and so on.

Proposition 2.4: For fixed i, Qi
j , j = 1, 2, . . . are independent and identically distributed.

The distribution of Qi
j is the same for all j, and E[Qi

j ] = n − 2.

Proof: Since the selection from queue only depends on the queue positions, rather than
the players in those positions, it is easy to see that the time that a player spends in queue
after a loss is independent of its earlier waiting times in queue, has the same distribution
for all players, and this distribution does not depend on v1, . . . , vn. So let us assume that
v1 = v2 = · · · = vn. Now, in this case, the proportion of games that are won by each player
is 1/n. But each time player i loses a game is a renewal, and so by renewal reward process
theory the proportion of games won by i is the expected number of games it wins when
it starts playing divided by the expected number of games between losses. Because it wins
each game it plays with probability 1/2, the mean number of games it plays before returning
to queue is 2, giving that

1
n

= Pw
i =

1
2 + E[Qi

j ]

which proves the result. �

Now, let Ḡi = limm→∞(
∑m

j=1 Gi
j/m). (It follows from renewal reward theory that Ḡi

exists and is almost surely constant.)

Proposition 2.5:

Ḡi =
(n − 2)vi + v

v − vi

Proof: If we say that a new cycle begins each time i leaves the queue, then the proportion
of games won by i during the first m cycles is

∑m
j=1(G

i
j − 1)/

∑m
j=1(G

i
j + Qi

j). Because this
converges to Pw

i as m → ∞, we see upon dividing numerator and denominator by m and
using Proposition 4 that vi/v = (Ḡi − 1)/(Ḡi + n − 2), which proves the result. �

Remark 2.6:

(1) The result that E[Qi
j ] = n − 2 also follows from Little’s formula of queuing theory,

(see [11]) which yields that the average number of players in queue (namely, n−2) is
equal to the average arrival rate to queue (namely, 1) times the average time that a
player spends in queue.

(2) If the protocol is that the loser (rather than the winner) plays in the next game, then
because the probability that i would lose in a game with j is 1/vi/(1/vi + 1/vj), it
follows that all results remain true when “winner” is replaced by “loser” and vi by
1/vi. For instance, the proportion of games in which i is the loser is 1/vi/(

∑
j 1/vj).

(3) We have supposed that the p(j, k) are such that the resulting Markov chain is irre-
ducible. If we supposed that after each game the player in queue position j plays
next with probability pj and that, independently of which position is chosen the loser
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of the game joins queue position k with probability qk (and the relative positions of
the other players remain the same), then the Markov chain will be irreducible if and
only if (p1 + q1)(pn−2 + qn−2) > 0.

3. QUEUE WEIGHT MODEL

As noted earlier, this model supposes that player i has a weight wi, i = 1, . . . , n, and that if
i1, i2, . . . , in−2 are in queue, then ij will be selected to play in the next game with probability
wij

/
∑n−2

k=1 wik
.

This model can be analyzed as a Markov chain by letting the state be the 2 players in
the current game. We say that the state is (i, j), if i and j are playing and i < j. We first
show that the Markov chain is time reversible and gives the stationary probabilities. Let
v =

∑n
j=1 vj and w =

∑n
j=1 wj .

Proposition 3.1: The Markov chain is time reversible and its stationary probabilities are

πi,j = c(vi + vj)(w − wi − wj)wiwj , i < j

where 1/c =
∑ ∑

i<j(vi + vj)(w − wi − wj)wiwj.

Proof: The hypothesized stationary probabilities sum to 1 and satisfy the time reversibility
equations

πi,j
vi

vi + vj

wk

w − wi − wj
= πi,k

vi

vi + vk

wj

w − wi − wk

which proves the result. �

We can prove the following corollary in the same manner as we did for Corollary 2.3.

Corollary 3.2: Let Pw
i , P l

i , and Pi be, respectively, the steady-state probabilities that the
current game is won by i, that the current game is lost by i, and that i is playing in the
current game.

(a) Pw
i = cviwi((w − wi)2 −

∑
j:j �=i w2

j ).

(b) P l
i = cwi

∑
j:j �=i vj(w − wi − wj)wj.

(c) Pi = cwi

∑
j:j �=i(vi + vj)(w − wi − wj)wj.

As in the preceding section, let Qi
j denote the amount of time player i spends in queue,

after losing for the j th time, before it again plays a game, and let Gi
j be the number

of games that i plays until it loses, on its j th entrance to a game from queue. Also, let
Q̄i = limm→∞(

∑m
j=1 Qi

j/m), and let Ḡi = limm→∞(
∑m

j=1 Gi
j/m).

Proposition 3.3:

(a) Ḡi = Pi/P l
i .

(b) Q̄i = (1 − Pi)/P l
i .

Proof: Because P l
i /Pi is the fraction of games played by i that i loses, it follows that

Pi/P l
i is the average number of games played by i between returns to queue. Thus, part (a)

is proved. Part (b) now follows because Pi = Ḡi/(Ḡi + Q̄i). �
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