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In this paper we present a theoretical model to study sound scattering from flow
ducts with a semi-infinite lining surface covered by some equally spaced rigid splices,
which is of practical importance in the development of silent aeroengines. The key
contribution of our work is the analytical and rigorous description of axial liner splices
by incorporating Fourier series expansion and the Wiener–Hopf method. In particular,
we describe periodic variations of the semi-infinite lining surface by using Fourier
series that accurately represent the layout of rigid splices in the circumferential
direction. The associated matrix kernel involves a constant matrix and a diagonal
matrix. The latter consists of a series of typical scalar kernels. A closed-form solution
is then obtained by using standard routines of Wiener–Hopf factorisation for scalar
kernels. A couple of appropriate approximations, such as numerical truncations of
infinite Fourier series, have to be adopted in the implementation of this theoretical
model, which is validated by comparing favorably with numerical solutions from
a commercial acoustic solver. Finally, several numerical test cases are performed
to demonstrate this theoretical model. It can be seen that the proposed theoretical
model helps to illuminate the essential acoustic effect jointly imposed by axial and
circumferential hard–soft interfaces.
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1. Introduction
Acoustic liners are widely used in aeroengines to control noise emissions from

inlet and bypass flow ducts (Tester 1973; Rienstra & Eversman 2001; Rienstra &
Darau 2011). A couple of rigid strips are normally used to clamp lining surfaces
over an otherwise rigid inner duct wall (Regan & Eaton 1999). These axially running
strips, which are formally known as splices, excite acoustic scattering of different
circumferential modes (Bi et al. 2007), some of which are prone to cut-on and
could eventually compromise acoustic performance. It is important to clarify the
acoustic impacts of rigid splices in the presence of flows, although spliceless lining
surfaces just become possible for some of the most recent inlet designs. Until now,
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Rigid wall Lined wall

x

rIncident wave

Flow speed M

FIGURE 1. Sketch of the model problem in cylindrical coordinates (x, r, θ). The x
coordinate is aligned with the centre axis and is parallel to the walls. The r direction
is normal with respect to the walls at r = ±R0. The left half semi-infinite wall (x < 0)
is rigid and the right half semi-infinite wall (x> 0) is lined except for the N axial rigid
splices (grey lines, here N= 2). Here l denotes the width of the splices in the θ direction.
The background flow is presumably uniform with a normalised speed M.

the influence of splices has mainly been examined in terms of induced spinning
modes with respect to their numbers and width in the circumferential axis, using
either numerical simulations (McAlpine & Wright 2006; Tam, Ju & Chien 2008)
or analytical methods, such as mode matching (Fuller 1984; Elnady, Boden & Glav
2001; Yang & Wang 2008), multi-modal method (Bi et al. 2006), Green’s function
approach (Brambley 2009) and eigenmode analysis (Fuller 1984; Brambley, Davis
& Peake 2012). We should say that the above literature review is not exhaustive.
However, to the best of our knowledge, a theoretical model that illuminates scattering
from hard–soft interfaces in both axial and circumferential directions is still not
available. Hence, here we incorporate Fourier series expansion and the Wiener–Hopf
method together to develop this theoretical model, which is the main contribution of
this work.

The Wiener–Hopf method is a classical mathematical tool that could yield closed-
form analytical solutions for scattering problems (Noble 1958). Munt (1977), amongst
others, applied this method to predict far-field directivity patterns of spinning modal
radiations from cylindrical rigid ducts with jet flows. Rienstra (1984, 2003b, 2007)
extended this study to a semi-infinite lined cylindrical duct along with the provision
of a comprehensive analysis. Gabard & Astley (2006) gave a thorough theoretical
development for annular duct cases. Veitch & Peake (2008) elegantly demonstrated
the matrix Wiener–Hopf method for coaxial duct cases with staggered open ends. All
these works gradually enhanced the theoretical modelling capability for progressively
complicated set-ups of practical importance, but still only considered an impedance
discontinuity in the axial direction. The variance in the circumferential direction was
not studied previously by using the Wiener–Hopf technique. To address this issue, our
work endeavours to develop a theoretical model to enable the analytical study of liner
splices in flow ducts.

As shown in figure 1, the problem considered in this work contains impedance
discontinuities in both axial and circumferential directions. The semi-infinite lining
surface is covered by a couple of semi-infinite, axially running splices, which are
equally spaced in the circumferential direction. Similar geometrical set-ups with either
finite length (Regan & Eaton 1999; Duta & Giles 2006) or infinite length for splices
(Yang & Wang 2008) can be found in previous works. Spinning modal waves incident
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64 X. Liu, H. B. Jiang, X. Huang and S. Y. Chen

from fan-stator assemblies (which are not shown here) will propagate inside the duct
and impinge on the lining surface and rigid splices. The problem is described in
the cylindrical coordinate system. The remaining part of this paper is organised as
follows. We will first develop the theoretical model in § 2 to study scattering waves
from this semi-infinite lining surface with rigid splices by incorporating the Wiener–
Hopf method and Fourier series. Then, numerical cases will be conducted to validate
the proposed theoretical model, and more associated results will be discussed in § 3.
Finally, § 4 will summarise the present work.

2. The theoretical model
2.1. Statement of the problem

Here we study acoustic perturbations in a lined duct that contains a uniform mean
flow. Boundary layer and vorticity are omitted to enable the follow-up theoretical
developments with the Wiener–Hopf technique. If we assume much larger time scale
and length scale of fluid dynamics than the corresponding scales of acoustic waves,
sound propagation and scattering can be described using the linearised, convected
wave equation,

∂2φ

∂x2
+ 1

r
∂

∂r

(
r
∂φ

∂r

)
+ 1

r2

∂2φ

∂θ 2
−
(
∂

∂t
+M

∂

∂x

)2

φ = 0, r< ξs(x, θ, t), (2.1)

where φ is the acoustic potential, M is the Mach number of the presumably uniform
flow accommodated in the duct (M < 0 for inlet cases and M > 0 for bypass duct
cases), and ξs(x, θ, t) is the kinematic displacement of the hypothetical infinitely thin
vortex sheet developing along lining surfaces. We should mention that all variables
are non-dimensionalised using appropriate scales, such as mean flow density ρ0, the
speed of sound a0 and the duct radius R0.

From φ, we are able to obtain the sound pressure p, particle velocity v= (vx, vr, vθ)
and acoustic density ρ inside the duct by using the following formulations:

p= pi + ps =−
(
∂φ

∂t
+M

∂φ

∂x

)
, v=∇φ, ρ = p, (2.2a,b)

where the subscripts i and s denote incident and scattering waves, respectively.
We are interested in time-harmonic, axisymmetric incident waves

φi(x, r, θ, t)=ψi(x, r)eimθ−iωt, (2.3)

where m is the circumferential mode and ω is the angular frequency. Without loss of
generality, we primarily focus on right-directed incident waves of a single spinning
mode, i.e.

ψi(x, r)= Jm(αmnr)eiωµ+mnx, (2.4)

where Jm is the mth-order Bessel equation of the first kind, n is the radial mode, αmn
is the nth solution of the characteristic equation J′m(x)= 0 for the rigid wall condition,
and the normalised axial wavenumber for the incident wave is

µ+mn =
√

1− (1−M2)α2
mn/ω

2 −M
1−M2

. (2.5)

Multiple spinning modal waves can be analysed using linear superposition.
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Scattering from ducts with axial liner splices 65

It is appropriate to assume that scattering waves and vortex sheets from lining
surfaces and rigid splices also take harmonic forms as follows:

φs(x, r, θ, t)=ψs(x, r, θ)eimθ−iωt, ξs(x, θ, t)= ξ(x, θ)eimθ−iωt. (2.6a,b)

For brevity, the common factor exp(−iωt+ imθ) will be suppressed throughout the
rest of this paper. As a result, ψi is independent of θ . On the contrary, ψs and ξ are
still dependent on θ for their periodicity in the circumferential direction due to the
existence of the N circumferentially equally spaced, axially running, rigid splices.

As a summary, the problem contains the following boundary conditions.

(1) Rigid wall

∂ψi(x, r)
∂r

∣∣∣∣
r=1

= 0, ∀x; ∂ψs(x, r, θ)
∂r

∣∣∣∣
r=1

= 0, ∀ x 6 0. (2.7a,b)

(2) Pressure continuity

−iωψ(x, 1+, θ)=
(
−iω+M

∂

∂x

)
(ψs(x, 1−, θ)+ψi(x, 1−)), ∀ x > 0, (2.8)

which ensures sound pressure continuation across the upper (1+) and lower sides
(1−) of the infinitely thin vortex sheets. It should be noted that ψ(x, 1+, θ) =
ψs(x, 1+, θ).

(3) Kinetic displacement(
∂

∂t
+M

∂

∂x

)
ξ(x, θ)= ∂ψ(x, r, θ)

∂r

∣∣∣∣
r=1−
= ∂ψs(x, r, θ)

∂r

∣∣∣∣
r=1−

, ∀ x > 0, (2.9)

that is to say, the displacement speed of the vortex sheets equals the particle
velocity of sound waves.

(4) Impedance of the wall

p(x, 1+, θ)= Z(ω, θ)vn(x, 1+, θ)=−iωZ(ω, θ)ξ(x, θ), ∀ x > 0, (2.10)

where Z(ω, θ) is the acoustic impedance of the surface at the azimuthal angle
θ and frequency ω, vn is the normal particle velocity pointing into the lining
surface, and vn = vr = ∂ξ/∂t, which equals −iωξ for a time-harmonic ξ . The
boundary condition implicitly adopts the assumption of an infinitely thin vortex
sheet that permits certain approximations; in particular, the variation of sound
pressure within the vortex sheet is negligibly small. It is worthwhile to mention
that the physical existence of an infinitely thin vortex sheet shedding from a
hard–soft interface between rigid and lining surfaces is still arguable (Rienstra
1981; Koch & Möhring 1983; Quinn & Howe 1984). However, Rienstra (2003a,
2007) introduced a (hypothetical) vortex sheet to facilitate the follow-up analysis
within the theoretical framework of the Wiener–Hopf method. It should be easy
to understand that the resultant boundary condition for lining surfaces is actually
equivalent to the well-known Ingard–Myers boundary conditions (Ingard 1959;
Myers 1980). In addition, here we define Z(ω, θ) = Z(ω) for uniformly lined
regions and Z(ω, θ)=∞ for rigid splices, i.e.

p(x, 1+, θ)=−iωZ(ω)ξ(x, θ)H(θ), ∀ x > 0, (2.11)
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with

H(θ)=


γ + 1, if θ ∈ θR

1=
N−1⋃
q=0

(
2π

N
q,

2π

N
q+ l

)
,

1, if θ ∈ θL
1=

N−1⋃
q=0

(
2π

N
q+ l,

2π

N
(q+ 1)

)
,

(2.12)

where γ is infinite for the N rigid splices. Here the expression for (γ + 1) will
simplify the follow-up expression in (2.23); q ∈ Z is integer and represents the
sequence number of the N splices; and l is the central angle (also known as the
non-dimensional circumferential length, in radians) of each splice. The domains
in the θ direction of rigid splices and lining surfaces are denoted by θR and
θL, respectively. It is worthwhile to point out that a large numerical value (102,
normalised by the density and the speed of sound for steel) is assigned to γ
in our follow-up numerical implementations. The appropriateness of this value is
validated by comparing to simulation results.

(5) Edge condition. The model proposed here is primarily developed for outlet cases
with M > 0, since a spliceless inlet design is already possible. Hence, a Kutta
condition is imposed at the trailing edge x = 0 to ensure a finite fluid velocity
at the edge and to obtain a unique solution of the problem. Rienstra (1984)
and Gabard & Astley (2006) used a complex parameter to further describe
the amount of shedding vorticity and the excitation of the Kelvin–Helmholtz
instability wave. The current work is mainly focused on high-frequency spinning
modal waves and only the full Kutta condition is considered here for simplicity,
since the effect of the Kutta condition is especially significant for plane waves
at low frequencies. It should be straightforward to incorporate the complex
parameter later in our model for cases with the partial Kutta condition. In
addition, it should be mentioned that a backward-running hydrodynamic mode is
to be counted in the opposite direction for applications of the Kutta condition.
For inlet cases with M 6 0, we use the leading-edge condition instead. More
details will be given below after (2.41).

2.2. The Wiener–Hopf equation
Now we turn to theoretical developments by incorporating Fourier series and the
Wiener–Hopf method. The latter enables us to obtain rigorous solutions of wave
equations with a pair of idealised simple but mixed boundary conditions. Typically,
the first step of the Wiener–Hopf method is to transform wave equations into
Wiener–Hopf equations via Fourier transformation. The next step is to decompose the
associate Wiener–Hopf kernel using suitable factorisation methods, which should yield
decomposition results analytic and bounded on the upper and lower half complex
planes, respectively. Then, a closed-form solution would be available by applying
Liouville’s theorem. In this work, our theoretical model includes new features that
enable analytical studies of circumferential variance in duct acoustics. Hence, the
details of our theoretical developments are given below.

First, we define the conventional Fourier transform for a scattered acoustic field as

β(u, r, θ)=
∫ +∞
−∞

ψs(x, r, θ)e−iωux dx, (2.13)
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Scattering from ducts with axial liner splices 67

where u is the normalised wavenumber. It is easy to see that β and ψs are 2π-periodic
in the θ direction and therefore can be represented using Fourier series:

ψs(x, r, θ)=
+∞∑
κ=−∞

ψκ
s (x, r)eiκθ , β(u, r, θ)=

+∞∑
κ=−∞

βκ(u, r)eiκθ , (2.14a,b)

where (·)κ denotes the κth components.
Substituting (2.13) into (2.1), we have

1
r
∂

∂r

(
r
∂βκ

∂r

)
−
[
ω2λ2 − (m+ κ)

2

r2

]
βκ = 0 (2.15)

by rearranging integration and summation, where λ2 = (1− uM)2 − u2, λ= λ+λ− and
λ±=
√
(1− uM)∓ u, with the two branch cuts joining the branch points u±0 =±1/(1±

M) to infinity through the two half-planes, respectively. It is worthwhile to mention
that u±0 is dependent only on the Mach number M.

By taking account of the symmetry condition, we find that the solution βκ(u, r)
takes the following form:

βκ(u, r)= Aκ(u)Jm+κ(λωr), (2.16)

where Jm+κ is the (m + κ)th-order Bessel function of the first kind and Aκ(u) is
the associated amplitude. In other words, the scattered field consists of a series of
circumferential modes other than the original circumferential mode m of the incident
wave. As will be shown below, the scattered field is excited by the axially running
rigid splices. According to Noble (1958, pp. x), we can ensure the regularity of βκ
and consequently the regularity of β, which can then be split into two factorisation
functions β±, which are regular on the two half-planes, respectively. For this problem,
the two half-planes shown in figure 2 are defined as

R±: ±Im(u− u±0 ) <∓tan(ε)Re(u− u±0 ), (2.17)

where tan(ε) = Im(ω)/Re(ω). Here we use a complex frequency with a positive
imaginary part to analyse unstable and causality conditions. The intersection of the
two half-planes is a strip S (see figure 2) of finite thickness, where all βκ± and β±
are regular.

Now we turn to the key part of the theoretical developments and provide the
Wiener–Hopf equation related to our problem. First, we need to expand the vortex
sheet displacements into Fourier series as follows:

ξ(x, θ)=
+∞∑
κ=−∞

ξ κ(x)eiκθ . (2.18)

Then, by applying the conventional Fourier transform to (2.9) and adopting (2.16), we
have

Aκ(u)=− i(1− uM)
λJ′m+κ(λω)

Fκ
+(u), (2.19)

where

Fκ
+(u)=

∫ +∞
0

ξ κ(x)e−iωux dx, (2.20)
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Strip

Branch cut 

FIGURE 2. Schematic of the two complex half-planes R± and the overlapped strip S when
M= 0.3. The path of integration Γ will be slightly deformed around all possible acoustic
zeros and poles and the hydrodynamic zeros.

and the relation ξ(x, θ) = 0 when x < 0 is implicitly adopted during the above
derivation. In addition, here (·)+ denotes the regularity in the half-plane R+.
Theoretically speaking, (2.19) suggests that the scattered field could be expressed
by Fk

+(u), which can be further achieved by constructing the following important
definition:

G(u, θ) =
∫ +∞

0
−iωψ(1+, θ, x)e−iωux dx︸ ︷︷ ︸

I

−
∫ +∞

0

(
−iω+M

∂

∂x

)
ψs(1−, θ, x)e−iωux dx︸ ︷︷ ︸

II

−
∫ 0

−∞

(
−iω+M

∂

∂x

)
ψs(1−, θ, x)e−iωux dx︸ ︷︷ ︸

III

. (2.21)

This, in turn, can be simplified to the so-called Wiener–Hopf equation using the
following steps. First, from (2.2a,b) and (2.11), we have

term I=
∫ +∞

0
−p(x, 1+, θ)e−iωux dx=

∫ +∞
0

iωZ(ω)ξ(x, θ)H(θ)e−iωux dx, (2.22)

where H(θ) is periodic. To achieve the classical form of the Wiener–Hopf kernel
(see (2.35) below), we represent the Fourier expansion of H(θ) as H(θ)=∑+∞κ=−∞ hκ

exp(iκθ)+ 1, with

hκ =


N−1∑
q=0

e−iκq(2π/N)[γ (e−iκl − 1)]/(−2iκπ), if κ 6= 0,

γNl/2π, if κ = 0.

(2.23)
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Scattering from ducts with axial liner splices 69

From (2.23), we immediately find the following important relation:
N−1∑
q=0

e−iκq(2π/N) = 0, (2.24)

when κ 6= 0,±N,±2N, . . . . The algebraic developments related to (2.23) and (2.24)
are straightforward and are therefore omitted for brevity. It is worthwhile to emphasise
that hκ would exclusively describe the acoustic effects owing to the rigid splices.
Substituting (2.23) into (2.22), we have

term I= iωZ(ω)
+∞∑

κ1=−∞

+∞∑
κ2=−∞

hκ1Fκ2+ eiθ(κ1+κ2) + iωZ(ω)
+∞∑
κ=−∞

Fκ
+eiκθ . (2.25)

Next, according to (2.16), we have

terms II+ III=
+∞∑
κ=−∞

ω(1− uM)2

λ

Jm+κ(λω)
J′m+κ(λω)

Fκ
+eiκθ . (2.26)

We further define G+(u) as follows, and will be able to find its analytical expression,

G+(u)
1= terms I+ II= 1−µ+mnM

µ+mn − u
Jm(αmn), (2.27)

which is obtained by using the pressure continuity condition (2.8), and the definition of
the incident wave (2.4). Meanwhile, we define G−(u, θ)

1= term III, which is unknown
but still can be expanded into a Fourier series as G−(u, θ)=

∑+∞
κ=−∞ Gκ

−(u)e
iκθ .

Finally, we obtain the Wiener–Hopf kernel equation:

G−(u, θ)+G+(u) = iωZ(ω)
+∞∑

κ1=−∞

+∞∑
κ2=−∞

hκ1Fκ2+ eiθ(κ1+κ2)

+
+∞∑
κ=−∞

[
ω(1− uM)2

λ

Jm+κ(λω)
J′m+κ(λω)

+ iωZ(ω)
]

Fκ
+eiκθ . (2.28)

This leads to a system of linear equations by equating terms with the same exp(iκθ):

G−(u)+ G+(u)= (C + K (u))F+(u)= K̂ F+(u), (2.29)
with

G− = [. . . ,G−κ− , . . . ,G0
−, . . . ,Gκ

−], (2.30)
G+ = [. . . , 0, . . . , 0,G+, 0, . . . , 0, . . .], (2.31)

C = (C)ij = (iωZ(ω)hi−j), (2.32)
K = diag(K κ), (2.33)

F+ = [. . . , F−κ+ , . . . , F0
+, . . . , Fκ

+, . . .], (2.34)

where (C)ij is the entry in the ith row and jth column of the constant matrix C,
which is solely determined by the circumferential layout of liner splices, and diag(K κ)
represents a diagonal matrix with K κ (κ from −∞ to ∞) as the main diagonal entries,
where

K κ(u)= ω(1− uM)2

λ

Jm+κ(λω)
J′m+κ(λω)

+ iωZ(ω). (2.35)
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2.3. Kernel properties

In the classical Wiener–Hopf method, K̂ is the so-called Wiener–Hopf kernel, which
characterises the dispersion relations of the problem. However, our problem with liner
splices has a matrix kernel. Previous endeavours in matrix factorisations have mostly
been developed for matrix kernels of small size 2 (Veitch & Peake 2008). An effective
factorisation method for matrix kernels of a large size is still not available. However,
it is easy to see that our matrix kernel K̂ is quite special, involving a constant matrix
C and a diagonal matrix K . The latter can be split using existing scalar factorisation
techniques (Gabard & Astley 2006).

Before the development of analytical solutions for our problem, it is necessary
to discuss the properties of the diagonal matrix K . The poles and zeros of
K can be examined by solving det(K (u)) = ∏kK

κ . Given κ , the properties of
the corresponding K κ(u) in (2.35) should be exactly the same as scalar kernels
appearing in previous works (Rienstra 2003a, 2007), where the kernel properties have
been carefully examined using both low-frequency and high-frequency asymptotic
methods. In particular, the asymptotic expression at high frequency, Jm(x) ≈
exp(ix− imπ/2− iπ/4)/

√
2πx when (x→∞, Im(x) < 0), is only valid if m<O(x).

However, from the above Fourier series expansions, we already know that the splices
would excite scattering waves of various circumferential modes, m+ κ , where κ could
be any integer. To use this asymptotic expression given by Rienstra (2003a, 2007),
we have to suppose |m+ κ|< λω for any given κ as ω→∞.

The remaining manipulations, such as branch cuts and removal of unstable zeros,
are almost the same as in the previous works (Rienstra 2003a, 2007). Figure 2 shows
the two branch cuts, the two half-planes R± and the integral path Γ . It can be seen
that one branch cut is slightly above the abscissa axis and the other is slightly below
the abscissa axis. The integral path is slightly deformed to be a parabola (Gabard &
Astley 2006, appendix A) when ε→ 0 around any possible acoustic zeros and poles
and the hydrodynamic zeros. From (2.35) it is easy to see that K κ ∼O(u1) as |u|→∞
in the overlapped strip S.

2.4. Solutions
For each scalar K κ , we are able to obtain the corresponding factorisation by using the
readily available Cauchy-type integral formulations (Gabard & Astley 2006):

K κ = K κ
+

K κ
−
, (2.36)

where K κ
± and the corresponding reciprocals are regular and non-zero in R±,

respectively. Taking this all together, we have

K± = diag(K κ
±), K−1

± = diag(1/K κ
±). (2.37a,b)

Then, (2.29) is reformulated to

[C + K−1
− (u)K+(u)]F+(u)= G−(u)+ G+(u), (2.38)

which leads to

[K−(u)C + K+(u)]F+(u)= K−(u)G−(u)+ K−(u)G+(u) (2.39)
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by rearranging terms according to their regularity properties. More specifically, the
left-hand and right-hand sides should be regular in the two complex u planes, i.e.
R+ and R−, respectively. By definition, we know that K±(u) is regular and non-zero
in R±, respectively; and that F(u) is regular in R+ and G−(u) is regular in R−. On
the other hand, (2.27) suggests that G+(u) is regular in the whole u plane except
for the single pole µ+mn, which can be cancelled out by introducing an additional
term, −K−(µ+mn)G+(u), on both sides of (2.39). The first term on the left-hand side,
however, is still not regular in R+. To resolve this issue, we simply adopt the following
approximation:

K−(u)∼ K−(µ+mn), (2.40)

where the right-hand side is regular on the whole u plane, and can be regarded as
the simplest Taylor expansion of K−(u). The appropriateness of this approximation
for various case set-ups will be tested in the next section. We should say that
this undesirable approximation could compromise the modelling method for more
generic cases, such as azimuthally non-uniform liner studies, although all the rest
of the proposed modelling method is rigorous. However, we have to adopt this
approximation in the current work, since a generic factorisation method for a matrix
kernel with size larger than 2× 2 is still not available.

Substituting (2.40) into (2.39), we can obtain

[K−(µ+mn)C + K+(u)]F+(u)− K−(µ+mn)G+(u)
= K−(u)G−(u)+ [K−(u)− K−(µ+mn)]G+(u). (2.41)

To this end, the left- and right-hand sides of (2.41) should be regular on R+ and
R−, respectively. As a result, (2.41) is satisfied in the intersection strip of R±. By
analytical continuation, (2.41) defines an entire function E(u) that is regular on the
whole complex u plane.

According to Noble (1958) and K κ ∼O(u1), we have K κ
±(u, θ)∼O(u±1/2). If M> 0,

we apply a full Kutta condition (Gabard & Astley 2006) at (x, r)= (0, 1), resulting in
ψ(x, 1)=O(x3/2) as x→ 0, which transforms into Fκ

+(u)=O(u−5/2) as |u|→∞. For
inlet cases with M< 0, we use the leading-edge condition such that ψ(x, 1)=O(x1/2)
as x→ 0, which leads to Fκ

+(u)=O(u−3/2) as |u|→∞ (Gabard & Astley 2006). For
both cases, from (2.41) we have G−(u)6 O(u−1/2) and E(u)= 0 as |u|→∞.

To this end, we have

[K−(µ+mn)C + K+(u)]F+(u)= K−(µ+mn)G+(u). (2.42)

Solving the equation set we can obtain Fκ
+(u).

The scattered field can be solved by using the inverse Fourier transform for each
scattering mode, i.e.

ψκ
s (x, r)= ω

2πi

∫
Γ

(1− uM)Fκ
+(u)

λ

Jm+κ(λωr)
J′m+κ(λω)

eiωux du, (2.43)

where Γ is an integral path defined in the strip S. Eventually, we obtain the whole
scattered field by linear superposition as follows:

ψs(x, r, θ)=
∞∑

κ=−∞
ψκ

s (r, x)eiκθ . (2.44)

Given ψs(x, r, θ), the corresponding acoustic potential φs and sound pressure p can
be easily obtained by using (2.6) and (2.2a,b), respectively.
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FIGURE 3. Reconstructed H(θ) with different truncation numbers TN (from 10 to 250;
for clarity only two results are shown here). The original H(θ) is also shown here (the
solid line) as a comparison. The splice number is N= 2 and the splice width l= 0.06. For
clarity, only a part of H(θ) is shown. Here the region with the rigid splice is between
θ = 180◦ and 183.44◦.

3. Results and discussion
3.1. Validation

First, the infinite sum of Fourier series for H(θ) has to be truncated at a finite
number TN in the numerical implementation. As a result, the infinite matrix K̂ is
accordingly truncated to (2TN + 1)× (2TN + 1) dimensions. To examine the truncation
effect, the reconstructed H(θ) is shown in figure 3, which shows that a larger
number TN , such as 200, would yield a better reconstruction of H(θ). Therefore,
the truncation number TN is set to 200 in the following numerical calculations. In
addition to the classical Fourier series reconstruction, we have tested Fejér summation
to suppress the Gibbs phenomenon appearing at the jump discontinuity. Figure 3
shows that the corresponding reconstruction is smoothed by this treatment. However,
the follow-up numerical validations suggest that this smooth Fejér summation would
lead to undesirable solutions. As a result, the rest of this work adopts the classical
Fourier series summation.

We implement the whole theoretical model with MATLABr to obtain numerical
solutions on three-dimensional grids that consist of 256 × 64 × 721 grid points for
the geometrical domain of −2 6 x 6 2, 0 6 r 6 1 and 0 6 θ 6 2π. The computational
cost on a desktop with Intelr Core i5 processor at 3.30 GHz is about 700 s with
3.2 GB memory. As a comparison, a similar case set-up was solved by the typical
commercial finite element software ACTRANr using unstructured meshes with 3 ×
106 grid points on a computational server with Intel Core E5 processor at 2.50 GHz.
The computational cost is almost 58 000 s with 46 GB memory. It can be seen that
the theoretical model is much more computationally efficient by almost two orders of
magnitude.
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FIGURE 4. Comparison of instantaneous sound pressure at (x, r)= (0.3, 1) with respect
to θ , where (m, n)= (24, 1), Z(ω)= 2+ i at ω= 30, l= 0.06, N = 2 and (a) M = 0 and
(b) M= 0.3. The amplitude of the incident wave is set to 0.2. The solutions are obtained
by the theoretical Wiener–Hopf solver (denoted ‘WH’) and the ACTRAN solver (denoted
‘Numerical’), respectively. The arrows denote the regions with rigid splices.

To validate the theoretical model, we compare sound pressure profiles at (x, r) =
(0.3, 1), which is the wall surface close to the axial hard–soft interface, with and
without a background flow. Figure 4 shows the instantaneous solutions (with respect
to θ ) from the theoretical model and the numerical commercial solver. It can be
seen that the two solutions are almost identical, which helps to validate the current
theoretical model. To further quantify the difference, figure 5 shows some more
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FIGURE 5. The SPL results at (x, r)= (0.1, 1) (a,d), (0.2, 1) (b,e) and (0.3, 1) (c,f ). Other
set-ups are the same as those in figure 4.
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results of the corresponding sound pressure level (SPL), which is defined as

SPL= 20 log10
prms

2× 10−5
, (3.1)

where prms is the root mean square of sound pressure at (x, r) = (0.1, 1), (0.2, 1)
and (0.3, 1). It can be seen that the analytical results and the numerical results
agree very well in most regions, with the largest difference less than 0.7 dB. In
particular, the wiggles of the SPL results around the splices are well captured by the
theoretical model. We believe that this discrepancy between the numerical solver and
the theoretical model may possibly come from the approximation, (2.40), adopted in
the above theoretical developments.

Figures 4 and 5 also show that sound waves are less attenuated in the regions
with rigid splices than in the lined regions, which would therefore excite new
circumferential modes other than the modes of incident waves, and the new modes
should be related to the layout of splices in some way. More detailed analysis and
discussion will be given in § 3.3. It is worthwhile to mention that the non-dimensional
parameters are deliberately chosen in this work to represent typical design and
working conditions of aeroengines.

3.2. Scattered fields
Sound propagating in a lined duct with splices contains both incident and scattered
sound waves. The latter component is excited by various hard–soft interfaces in
the axial and circumferential directions and will propagate inside the duct in both
upstream and downstream directions. Both the incident and scattered waves will be
attenuated during the propagation along the lining surfaces. As an example, figure 6
shows the analytical solution of one instantaneous sound pressure field. Here the
cylinder accommodates an incident wave of a single spinning mode, (m, n)= (24, 1),
with a uniform subsonic flow. Figure 6 shows that the lining surface gradually
attenuates the propagating acoustic power. However, the hard–soft interface at x = 0
between the left rigid wall and the right lined wall would excite new spinning modes
in the radial direction, whilst the hard–soft interfaces in the θ direction between
the rigid splices and the lining surface would excite new spinning modes mainly
in the circumferential direction. In addition, figure 6(a) shows that the incident
wave is greatly attenuated beyond x = 0.5. Hence, the computational domain is set
to x ∈ [−0.6, 0.6] to save computational costs. Figure 6(b) compares the prediction
results from the analytical model and the numerical solver. Here we deliberately show
the two results between ±0.08 using 21 levels to highlight any possible difference.
Nevertheless, figure 6(b) suggests that the two results are almost identical.

Figure 7 shows analytical solutions of some instantaneous sound pressure fields
(with representative time within one period) of the (r, θ) cross-section at x = 0.1.
Here we show two different representative set-ups with N = 2 and 3, respectively. It
can be seen that the incident waves are still dominant in this cross-section. However,
scattering waves from axial and circumferential hard–soft interfaces are slightly visible,
which eventually result in various patterns across the whole cross-section. In particular,
figure 7(a–c) shows new patterns with various circumferential and radial modes. On
the other hand, figure 7(d–f ) shows more distinctive patterns inside the duct, which
clearly suggests the appearance of scattering waves with large radial mode numbers,
persistently evolving in the angular sectors corresponding to the three axial splices.
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FIGURE 6. (Colour online) (a) An instantaneous sound pressure field, with incident
spinning modes (m, n) = (24, 1), Mach number M = 0.3, impedance of lined surface
Z(ω)= 2+ i at ω= 30, splice width l= 0.06 and splice number N = 2. The amplitude of
the incident wave is set to 0.2. Here only one splice is visible, which is represented by
a thick, straight line. The sound pressure field is shown between ±0.02 using 21 levels
to make visible the largely attenuated waves in the lined region at x > 0. In contrast, the
wave patterns of the upstream-directed scattering waves due to splices are only slightly
visible between −2< x< 0. (b,c) Instantaneous sound pressure fields for x ∈ [−0.5, 0.5]
are shown between ±0.08 using 21 levels. It can be seen that the results from the WH
analytical model (b) and the numerical solver (c) have almost identical patterns.

Figure 7 clearly shows the apparent connections between these scattering wave
patterns inside the duct and the number of splices. To further examine this finding,
figure 8 shows the instantaneous sound pressure field of two different (x, r)
cross-sections. The number of splices is N = 2. The vertical dashed lines denote
the position of the axially hard–soft interface at x = 0. As marked in figure 8(c),
cross-section (a) is aligned with the centre of the rigid splice, and cross-section (b)
is placed most away from the two rigid splices. Figure 8(a,b) clearly shows that
scattered patterns mainly develop in the region with rigid splices. As a comparison,
figure 9 shows the sound pressure field of a typical duct case with a semi-infinite
lined region at x > 0 (Rienstra 2003a). Here the splices are absent and the other
parameters are still the same as those in figure 8. Contrary to the liner splice cases
in figure 8, the instantaneous sound pressure field for the uniformly lined duct is
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0.0200.004–0.004–0.012–0.020 0.012

(a) (b)

(c) (d )

(e) ( f )

FIGURE 7. Instantaneous sound pressure fields in the (r, θ) cross-section at x = 0.1.
(a,c,e) The set-up is (m, n)= (24, 1), ω= 30 (corresponding time period is 0.21) and Mach
number M= 0.5; and number of splices is N = 2, starting from θ = 0 and π: (a) t= 0.01,
(b) t= 0.03 and (c) t= 0.9. (b,d,f ) The set-up is (m, n)= (27, 1), ω= 32 (corresponding
time period is 0.19) and Mach number M= 0.3; and number of splices is N = 3, starting
from θ = 0, 2π/3 and 4π/3: (d) t= 0.10, (e) t= 0.14 and (f ) t= 0.15. Other parameters
are impedance Z = 2+ i and splice width l= 0.06. The contours are all shown between
±0.02 using 11 levels. The splices are illustrated by dark rectangles in each panel.
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FIGURE 8. (Colour online) An instantaneous sound pressure field of (x, r) cross-section,
with (m, n)= (27, 1), ω= 32, M= 0.3, Z= 2+ i, l= 0.06 and N= 2. The amplitude of the
incident wave is set to 0.2. The contour is shown here between ±0.02 using 21 levels.
The circumferential positions of (a) and (b) can be found in (c), where the splices are
illustrated by dark rectangles.

1.0

0

0.2

0.4

0.6

0.8

0 0.5 1.0 1.5 2.0–2.0 –1.5 –1.0 –0.5
x

r

FIGURE 9. (Colour online) The model set-up and display style are the same as figure 8
except for the splice width l= 0, i.e. without splices.

axisymmetric and free from redundant circumferential and radial modes. Therefore,
the effect of liner splices on scattered acoustic fields is clearly demonstrated here.
We should mention that the analytical solution shown in figure 9 is produced by
our current theoretical model by simply setting the width of splices l to zero. The
corresponding results are validated by our in-house numerical solver (Huang, Zhong
& Liu 2014; Liu, Huang & Zhang 2014) and ACTRAN, respectively.

3.3. Scattering modes and analysis
Further analysis is performed here to deepen the understanding of the effect of
liner splices. First, by carefully examining (2.23), (2.24) and (2.28), we would have
Fκ
+ = 0, and consequently ψκ

s = 0 when κ 6= 0, ±N, ±2N, . . . . In other words,
if the circumferential mode of an incident sound wave is m, the corresponding
circumferential modes of scattered fields in a lined duct with N splices are always m,
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FIGURE 10. Modal spectrum of instantaneous sound pressure level at x= 0.1 shown with
respect to circumferential and radial modes. The parameter set-ups are: (a) (m,n)= (24,1),
M= 0.5, Z= 2+ i at ω= 30, l= 0.06, N = 2; and (b) (m, n)= (27, 1), M= 0.3, Z= 2+ i
at ω= 32, l= 0.06, N = 3.

m± N, m± 2N, . . . . Therefore, (2.24) theoretically explains the famous Tyler–Sofrin
rule (Tyler & Sofrin 1962) that describes the mode selection appearing in scattering
waves due to rigid splices.

To clearly demonstrate this scattering mode selection, figure 10 shows the amplitude
of the modal spectrum for the whole SPL fields at x= 0.1. The case set-ups are the
same as the two previous ones in figure 7. It can be seen that various new radial
and circumferential modes are excited. Theoretically speaking, scattering waves with
a low circumferential mode number are inclined to cut-on and would therefore
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compromise noise control performance. On the other hand, scattering waves with
high circumferential and radial modes are prone to cut-off. Equation (2.24) already
predicts that the circumferential modes should be selected by the N splices, and here
N = 2 and 3. Exactly as the predictions, the non-zero value appears in every two
circumferential modes in figure 10(a), while the non-zero value appears in every three
circumferential modes in figure 10(b).

Figure 10 shows that the incident wave is still the dominant component in the
overall sound fields, and the amplitudes of scattering waves are relatively low by
at least 20 dB. This finding is consistent with the previous numerical investigations
by Tam et al. (2008). Another interesting finding is that the circumferential mode
number of scattering waves would not be much higher than the mode of incident
waves. For example, the circumferential mode of the incident wave is 27 for the
case in figure 10(b), whereas the largest number of non-zero circumferential mode
for scattering waves is 30. Beyond this number, scattering waves become absent.
A similar finding was given previously in a numerical study (Tester et al. 2006).
Normally, numerical simulations with insufficient grid resolution would fail to resolve
waves of high modes, which will be mirrored into the resolvable spectrum as an
aliasing, resulting in an overestimation of undesirable scattering due to liner splices.
We should mention that the spectrum analysis performed here uses 721 sampling
points in the circumferential direction, which should be more than enough to capture
scattered modes much higher than 30 if there is any. This finding should be helpful
in deciding the required number of grid points in the θ direction for numerical
simulations, even for a curved geometry of more practical importance.

After validating the proposed model, we are able to produce predictions for various
case set-ups rapidly. Figure 11 shows the axial distributions of transmission loss for
the lined splices with different width. It is not surprising that a wider splice (e.g.
with l= 0.3 and l= 1.0) would lead to a smaller transmission loss. On the other hand,
we can still identify the negative effect of the rigid splices even at l = 0.06, which
is already much smaller than the corresponding wavelength in the θ direction. The
theoretical model proposed in this work could easily explain this seemingly strange
issue. The appearance of the rigid splices would scatter new azimuthal modes in
addition to the modes of incident waves, even for the sub-wavelength splices. These
new azimuthal modes will satisfy the famous Tyler–Sofrin selection rule, which is
theoretically given by (2.23)–(2.24) in our model. It is easy to see that the scattered
sound waves of the lower azimuthal modes are more prone to cut-on and would be
less attenuated by the lining surface.

4. Summary

In this paper, we have developed a theoretical model for sound scattering from
a semi-infinite lined duct with subsonic uniform flows and axially running rigid
splices. The problem has been studied using the Wiener–Hopf method, which is
usually preferable for its mathematical rigour and elegance. The key achievement
of our work is the analytical description of axial liner splices using Fourier series
expansions, which results in a complicated Wiener–Hopf matrix kernel of infinite
size. After some appropriate approximation and truncations, the related Wiener–Hopf
equation can be solved using typical routines for ordinary scalar kernels.

The proposed theoretical model has been demonstrated here in various case
studies with representative set-ups. Both qualitative and quantitative studies have
been conducted in this work. The mode selection due to the number of liner splices
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FIGURE 11. Axial distribution of transmission loss. The case set-up is (m, n) = (24, 1),
Z = 2+ i at ω= 30, and (a) M= 0 and (b) M= 0.3. The number of the splices is N = 2
and the width of the splice is variable between 0 (no splice) and π (no liner).

has been clearly elucidated using our theoretical model. Therefore, the analytical
solutions should be able to help us to illuminate the inherent acoustic mechanisms
and noise control effects of axially running, rigid liner splices.

The most essential concept is to represent circumferentially periodic scattered
fields and liner splices using Fourier series expansions, and to establish the relations
between these Fourier series within the framework of the Wiener–Hopf method. Then,
given a circumferential layout of rigid splices, the corresponding Fourier coefficients
would be found and all the rest can be straightforwardly solved. The whole theoretical
development is (slightly) complicated but (largely) rigorous. The approximations that
we have to make for our theoretical model are summarised here: (1) the impedance
value of the rigid splices has to be finite to satisfy the Dirichlet condition; (2) the
infinite Fourier series has to be truncated in the follow-up numerical implementation;
and (3) the kernel matrix has to be approximated to enable an effective factorisation
that was originally developed for scalar kernel cases. In addition, the Wiener–Hopf
method requires semi-infinite boundary conditions, and thus cannot deal with liner
splices of finite length, for which either mode matching method or numerical solvers
should be considered.

Nevertheless, the concept behind this theoretical development is highly innovative,
which significantly extends the current capability of the Wiener–Hopf method for duct
radiation and scattering studies. Overall, the treatment by incorporating Fourier series
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and the Wiener–Hopf method is generic and should be applicable to problems with
circumferentially varying impedance as well. Hence, our theoretical model should be
beneficial for a host of new problems.
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