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Abstract

Partial differential equations are powerful tools for used to characterizing various physical
systems. In practice, measurement errors are often present and probability models
are employed to account for such uncertainties. In this paper we present a Monte
Carlo scheme that yields unbiased estimators for expectations of random elliptic partial
differential equations. This algorithm combines a multilevel Monte Carlo method
(Giles (2008)) and a randomization scheme proposed by Rhee and Glynn (2012),
(2013). Furthermore, to obtain an estimator with both finite variance and finite expected
computational cost, we employ higher-order approximations.
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1. Introduction

Elliptic partial differential equations are classic equations used to describe various static
physical systems. In practice such systems are not usually described precisely; for instance,
imprecision could be due to microscopic heterogeneity or measurement errors of parameters. To
account for this, we introduce uncertainty to the system by letting certain coefficients contain
randomness. To be precise, let U ⊂ Rd be a simply connected domain. We consider the
following differential equation concerning u : U → R:

−∇ · (a(x)∇u(x)) = f (x) for x ∈ U. (1.1)

Here f (x) is a real-valued function and a(x) is a strictly positive function. Just to clarify the
notation, ∇u(x) is the gradient of u(x) and ‘∇·’ is the divergence of a vector field. For each a

and f , we solve u subject to certain boundary conditions that are necessary for the uniqueness
of the solution. This will be discussed in the sequel. Randomness is introduced to the system
through a(x) and f (x). Thus, the solution u as an implicit functional of a and f is a real-valued
stochastic process living on U . More precisely, consider a probability space (�, F , P). The
functions a, f , and u are maps from U × � to R, where the function a is in fact almost surely
strictly positive. In the rest of this paper we omit the second argument in a(x, ω), f (x, ω),
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and u(x, ω), and write a(x), f (x), and u(x) instead that satisfy (1.1) and boundary conditions
almost surely. Throughout this paper, we consider d ≤ 3 to be sufficient for most physical
applications.

Of interest is the distributional characteristics of {u(x) : x ∈ U}. The solution is typically
not in an analytic form of a and f, and, thus, closed-form characterizations are often infeasible.
In this paper we study the distribution of u via Monte Carlo simulation. Let C(Ū) be the set of
continuous functions on Ū . For a real-valued functional

Q : C(Ū) → R

satisfying certain regularity conditions, we are interested in computing

wQ = E[Q(u)] =
∫

Q(u(·, ω))P(dω).

The expectation in the above display is taken with respect to the uncertainty in the random
fields a(x) and f (x). Such problems appear often in the studies of physical systems; see, for
instance, [5] and [6].

The contribution of this paper is the development of an unbiased Monte Carlo estimator of
wQ with finite variance. Furthermore, the expected computational cost of generating such an
estimator is finite. The analysis strategy is a combination of a multilevel Monte Carlo method
and a randomization scheme. The multilevel Monte Carlo method is a recent advancement in the
simulation and approximation of continuous processes [4], [8], [9]. The randomization scheme
was developed by Rhee and Glynn [12], [13]. Under the current setting, a direct application
of these two methods leads to either an estimator with infinite variance or an infinite expected
computational cost. This is mostly due to the fact that the accuracy of regular numerical methods
of the partial differential equations is insufficient. More precisely, the mean squared error of
a discretized Monte Carlo estimator is proportional to the square of the mesh size [2], [15].
The technical contribution of this paper is to employ the finite element method with quadratic
isoparametric elements to solve partial differential equations (PDEs) under certain smoothness
conditions on a(x) and f (x), and to perform careful analysis of the numerical solver for (1.1).

1.1. Physics applications

Equation (1.1) has been widely used in many disciplines to describe time-independent
physical problems. The well-known Poisson equation or Laplace equation is a special case
when a(x) is a constant. In different disciplines, the solution u(x), and the coefficients a(x)

and f (x) have specific physical meanings. When the elliptic PDE is used to describe the
steady-state distribution of heat (as temperature), u(x) represents the temperature at x and the
coefficient a(x) represents heat conductivity. In the study of electrostatics, u is the potential (or
voltage) induced by electronic charges, ∇u is the electric field, and a(x) is the permittivity (or
resistance) of the medium. In groundwater hydraulics, u(x) is the hydraulic head (water level
elevation) and a(x) is the hydraulic conductivity (or permeability). The physical laws for the
above three problems to derive the same type of elliptic PDE are respectively called Fourier’s
law, Gauss’s law, and Darcy’s law. In classical continuum mechanics, (1.1) is known as the
generalized Hook’s law, where u describes the material deformation under the external force f .
The coefficient a(x) is known as the elasticity tensor.

In this paper we consider that both a(x) and f (x) possibly contain randomness. We elaborate
its physical interpretation in the context of a material deformation application. In the model
of classical continuum mechanics the domain U is a smooth manifold denoting the physical
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Unbiased sampling of random elliptic partial differential equations 1009

location of the piece of material. The displacement u(x) depends on the external force f (x),
boundary conditions, and the elasticity tensor {a(x) : x ∈ U}. The elasticity coefficient a(x) is
modeled as a spatially varying random field to characterize the inherent heterogeneity and
uncertainties in the physical properties of the material (such as the modulus of elasticity;
cf. [11] and [14]). For example, metals, which lend themselves most readily to the analysis by
means of the classical elasticity theory, are actually polycrystals, i.e. aggregates of an immense
number of anisotropic crystals randomly oriented in space. Soils, rocks, concretes, and ceramics
provide further examples of materials with very complicated structures. Thus, incorporating
randomness in a(x) is necessary to account for the heterogeneities and uncertainties under many
situations. Furthermore, there may also be uncertainty contained in the external force f (x).

The rest of the paper is organized as follows. In Section 2 we present the problem settings
and some preliminary materials for the main results. In Section 3 we present the construction
of the unbiased Monte Carlo estimator for wQ and a rigorous complexity analysis. In Section 4
we include numerical implementations. Technical proofs and a detailed definition of finite
element methods are included in the appendices.

2. Preliminary analysis

Throughout this paper, we consider (1.1) living on a bounded domain U ⊂ Rd with a twice
differentiable boundary denoted by ∂U . To ensure the uniqueness of the solution, we consider
the Dirichlet boundary condition

u(x) = 0 for x ∈ ∂U . (2.1)

We let both exogenous functions f (x) and a(x) be random processes, that is,

f (x, ω) : U × � → R and a(x, ω) : U × � → R,

where (�, F , P) is a probability space. To simplify notation, we omit the second argument and
write a(x) and f (x). As an implicit function of the input processes a(x) and f (x), the solution
u(x) is also a stochastic process living on U . We are interested in computing the distribution of
u(x) via a Monte Carlo simulation. In particular, for some functional Q : C(Ū) → R satisfying
certain regularity conditions that will be specified in the sequel, we compute the expectation

wQ = E[Q(u)]
by a Monte Carlo simulation. The notation Ū is used to denote the closure of domain U and
C(Ū) is used to denote the set of real-valued continuous functions on Ū .

Let Ẑ be an estimator (possibly biased) of EQ(u). The mean square error

E(Ẑ − wQ)2 = var(Ẑ) + {E[Ẑ] − wQ}2

consists of a bias term and a variance term. For the Monte Carlo estimator in this paper, the bias
is removed via a randomization scheme combined with a multilevel Monte Carlo method. To
start with, we present the basics of the multilevel Monte Carlo method and the randomization
scheme.

2.1. Multilevel Monte Carlo

Consider a biased estimator of wQ denoted by Zn. In the current context, Zn is the estimator
corresponding to some numerical solution based on a certain discretization scheme, for instance,
Zn = Q(un), where un is the solution of the finite element method. The subscript n is a generic
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index of the discretization size. The detailed construction of Zn will be provided in the sequel.
As n → ∞, the estimator becomes unbiased, that is, E(Zn) → wQ. The multilevel Monte
Carlo method is based on the following telescope sum:

wQ = E[Z0] +
∞∑
i=0

E[Zi+1 − Zi]. (2.2)

One may choose Z0 to be some simple constant. Without loss of generality, we choose Z0 ≡ 0
and, thus, the first term vanishes. The advantage of writing wQ as the telescope sum is that
one is often able to construct Zi and Zi+1 carefully such that they are appropriately coupled
and the variance of Yi = Zi+1 − Zi decreases fast as i tends to ∞. The coupling is commonly
done by constructing Zi+1 and Zi with the same sample path ω (that is, the same a(·, ω) and
f (·, ω)). The specific choices of our Yi and Zi in this paper are given in Section 3.2. Let

�i = E[Zi+1 − Zi]
be estimated by

�̂i = 1

ni

ni∑
j=1

Y
(j)
i ,

where Y
(j)
i , j = 1, . . . , ni are independent replicates of Yi . The multilevel Monte Carlo

estimator is

Ẑ =
I∑

i=1

�̂i, (2.3)

where I is a large integer truncating the infinite sum (2.2).

2.2. An unbiased estimator via a randomization scheme

In the construction of the multilevel Monte Carlo estimator (2.3), the truncation level I is
always finite and, therefore, the estimator is always biased. In what follows we present an
estimator with the bias removed. It is constructed based on the telescope sum of the multilevel
Monte Carlo estimator and a randomization scheme that was originally proposed by Rhee and
Glynn [12], [13].

Let N be a positive, integer-valued random variable that is independent of {Zi}i=1,2,.... Let
pn = P(N = n) be the probability mass function of N such that pn > 0 for all n > 0. The
following identity holds trivially:

wQ =
∞∑
i=1

E[Zn − Zn−1] =
∞∑

n=1

E[Zn − Zn−1; N = n]
pn

= E
[
ZN − ZN−1

pN

]
.

Here E[X; B] = E[X1B ] with X a random variable and 1B the indicator function of an event B.
Therefore, an unbiased estimator of wQ is given by

Z̃ = ZN − ZN−1

pN

. (2.4)

Let Z̃i , i = 1, . . . , M be independent copies of Z̃. The averaged estimator

Z̃M = 1

M

M∑
i=1

Z̃i

is unbiased for wQ with variance var(Z̃)/M if finite.
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We provide a complexity analysis of the estimator Z̃. This consists of the calculation of the
variance of Z̃ and of the computational cost to generate Z̃. We start with the second moment

E[Z̃2] = E
[
(ZN − ZN−1)

2

p2
N

]
=

∞∑
n=1

E(Zn − Zn−1)
2

pn

. (2.5)

In order to have a finite second moment, the sequence E(Zn − Zn−1)
2/pn needs to tend to 0

no slower than n−1. Thus, we would like to choose the random variable N such that

pn > nE(Zn − Zn−1)
2 for all sufficiently large n. (2.6)

Furthermore, pn must also satisfy the natural constraint that

∞∑
n=1

pn = 1,

which suggests pn < n−1 for sufficiently large n. Combining with (2.6), we have

n−1 > pn > nE(Zn − Zn−1)
2. (2.7)

Note that we have not yet specified a discretization method; thus, (2.7) can typically be met by
appropriately indexing the mesh size. For instance, in the context of solving a PDE numerically,
we may choose the mesh size converging to 0 at a super exponential rate with n (such as
e−n2

) and, thus, E(Zn − Zn−1)
2 decreases sufficiently fast to allow quite some flexibility in

choosing pn. Thus, constraint (2.7) alone can always be satisfied and it is not intrinsic to the
problem. It is the combination with the following constraint that forms the key issue.

We now compute the expected computational cost for generating Z̃. Let cn be the compu-
tational cost for generating Zn − Zn−1. Then the expected cost is

C =
n∑

i=1

pncn. (2.8)

In order to have C finite for sufficiently large n,

pn < n−1c−1
n . (2.9)

Based on the above calculation, if the estimator Z̃ has a finite variance and a finite expected
computation time, then pn must satisfy both (2.7) and (2.9), which suggests that

E(Zn − Zn−1)
2 < n−2c−1

n . (2.10)

That is, we must be able to construct a coupling between Zn and Zn−1 such that (2.10) holds.
In Section 3 we provide a detailed complexity analysis for the random elliptic PDE, illustrating
the challenges and presenting the solution.

2.3. Function spaces and norms

In this section we present a list of notation that will be frequently used in later discussions.
Let U ⊂ Rd be a bounded open set. We define the following spaces of functions:

Ck(Ū) = {u : Ū → R | u is k-time continuously differentiable over Ū }.
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That is, u ∈ Ck(Ū) means that all the kth partial derivatives of u are continuous over Ū . We
have

Lp(U) =
{
u : U → R

∣∣∣∣
∫

U

|u(x)|p dx < ∞
}
,

L
p
loc(U) = {u : U → R | u ∈ Lp(K) for any compact subset K ⊂ U},

C∞
c (U) = {u : U → R | u is infinitely differentiable with a compact support that is a

subset of U}.
Definition 2.1. For u, w ∈ L1

loc(U) and a multiple index α, we say that w is the α-weak
derivative of u, and write Dαu = w if

∫
U

uDαφ dx = (−1)|α| ∫
U

wφ dx for all φ ∈ C∞
c (U),

where Dαφ in the above expression denote the usual α-partial derivative of φ.

If u ∈ Ck(Ū) and |α| ≤ k then the α-weak derivative and the usual partial derivative
are the same. Therefore, we can write Dαφ for both continuously differentiable and weakly
differentiable functions without ambiguity.

We further define the norms ‖ · ‖Ck(Ū) and ‖ · ‖Lp(U) on Ck(Ū) and Lp(U), respectively, as

‖u‖Ck(Ū) = sup
|α|≤k, x∈Ū

|Dαu(x)|

and

‖u‖Lp(U) =
(∫

U

|u|p dx

)1/p

.

We proceed to the definition of the Sobolev spaces Hk(U) and Hk
loc(U):

Hk(U) = {u : U → R | Dαu ∈ L2(U) for all multiple index α such that |α| ≤ k},
Hk

loc(U) = {u : U → R | u|V ∈ Hk(V ) for all V � U}.
For u ∈ Hk(U), the norm ‖u‖Hk(U) and the semi-norm |u|Hk(U) are defined as

‖u‖Hk(U) =
( ∑

|α|≤k

‖Dαu‖2
L2(U)

)1/2

and

|u|Hk(U) =
( ∑

|α|=k

‖Dαu‖2
L2(U)

)1/2

. (2.11)

We define the space H 1
0 (U) as

H 1
0 (U) = {u ∈ H 1(U) : u(x) = 0 for x ∈ ∂U}.

On the space H 1
0 (U), the norm ‖ · ‖H 1(U) and the semi-norm | · |H 1(U) are equivalent.

2.4. Finite element method for PDEs

We briefly describe the finite element method for PDEs. The weak solution u ∈ H 1
0 (U) to

(1.1) under the Dirichlet boundary condition (2.1) is defined through the variational form

b(u, v) = L(v) for all v ∈ H 1
0 (U), (2.12)
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where we define the bilinear and linear forms as

b(u, v) =
∫

U

a(x)∇u(x) · ∇v(x) dx and L(v) =
∫

U

f (x)v(x) dx,

and use the dot notation for the vector inner product. When the coefficients a and f are
sufficiently smooth, say, infinitely differentiable, the weak solution u becomes a strong solution.
That is, u is the solution of (1.1). The key step of the finite element method is to
approximate the infinite-dimensional space H 1

0 (U) by some finite-dimensional linear space
Vn = span{φ1, . . . , φLn}, where Ln is the dimension of Vn. The approximate solution un ∈ Vn

is defined through the set of equations

b(un, v) = L(v) for all v ∈ Vn. (2.13)

Both sides of the equations are linear in v. Then (2.13) is equivalent to b(un, φi) = L(φi) for
i = 1, . . . , Ln. We further write un = ∑Ln

i=1 diφi as a linear combination of the basis functions.
Then (2.13) is equivalent to solving the linear equations

Ln∑
j=1

djb(φj , φi) = L(φi) for i = 1, . . . , Ln. (2.14)

The basis functions φ1, . . . , φLn are often chosen such that (2.14) is a sparse linear system.
That is, the order of the number of nonzero b(φj , φi) is O(Ln). Such a sparse linear system
can be solved using an iterative method with a computational cost of the order O(Ln log(Ln))

as Ln → ∞; see [10, Chapter 5] for more details.
Several choices of Vn have been studied for elliptic PDEs. For example, the Vn may consist

of all the piecewise-linear functions over a triangularization of U . Such a linear element method
was adopted in [2] and [4] to construct multilevel Monte Carlo estimators for random elliptic
PDEs.

In this paper our choice ofVn is a function space induced by quadratic isoparametric elements,
which is suitable when U has a smooth boundary. The intuitive explanation of isoparametric
elements is given in Subsection 3.1.2, and the precise definition will be delayed to Appendix C.
The advantage of using quadratic isoparametric elements over the linear elements is twofold.
First, the quadratic approximation provides a better convergence rate when the solution has
a higher-order regularity (‖u‖H 3(D) < ∞). Second, isoparametric triangularization provides
a better approximation for the boundary ∂U , yielding a better approximation of the solution.
For more details of finite element methods for elliptic PDEs, we refer the reader to [3] and the
references therein.

3. Main results

In this section we present the construction of Z̃ and its complexity analysis. We use a finite
element method to solve the PDE numerically and then construct Zn. To illustrate the challenge,
we start with the complexity analysis of Z̃ based on a usual finite element method with linear
basis functions, with which we show that (2.7) and (2.9) cannot be satisfied simultaneously.
Thus, Z̃ either has infinite variance or has an infinite expected computational cost. We improve
upon this by means of quadratic approximation under smoothness assumptions on a and f .
The estimator Z̃ thus can be generated in constant time and has a finite variance.
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3.1. Finite element method

3.1.1. Piecewise-linear basis functions. A popular choice of Vn is the space of piecewise-linear
functions defined on a triangularization Tn of U . In particular, Tn is a partition of U ; that is,
each element of Tn is a triangle partitioning U . The maximum edge length of the triangles is
proportional to 2−n and Vn is the space of all the piecewise-linear functions over Tn that vanish
on the boundary ∂U . The dimension of Vn is Ln = O(2dn). Detailed construction of Tn and
piecewise-linear basis functions are provided in Appendix C.

Once a set of basis functions has been chosen, the coefficients di are solved according to the
linear equations (2.14) and the numerical solution is given by un(x) = ∑Ln

i=1 diφi(x). For each
functional Q, the biased estimator is Zn = Q(un). It is important to note that, for different n,
un are computed based on the same realizations of a and f . Thus, Zn and Zn−1 are coupled.

We now proceed to verifying (2.10) for linear basis functions. The dimension of Vn is of
the order Ln = O(2dn), where d = dim(U). We consider the case when Q is a functional
that involves weak derivatives of u. For instance, Q could be in the form q(| · |H 1(U)) for some
smooth function q and Z = Q(u), where | · |H 1(U) is defined as in (2.11).

According to Proposition 4.2 of [2], under the conditions that E[1/minx∈U ap(x)] < ∞,
E[‖a‖p

C1(Ū)
] < ∞, and E[‖f ‖p

L2(U)
] < ∞ for all p > 0, E(Zn − Zn−1)

2 = O(2−2n) if
un and un−1 are computed using the same sample of a and f . Condition (2.10) becomes
n2−2(n−1) < n−12−dn| log 2−nd |−1. A simple calculation yields that the above inequality
holds only if d = 1. Therefore, it is impossible to pick pn such that the estimator Z̃ has a finite
variance and a finite expected computational cost using the finite element method with linear
basis functions if d ≥ 2. The one-dimensional case is not of great interest given that u can be
solved explicitly. To establish (2.10) for higher dimensions, we need a faster convergence rate
of the PDE numerical solver.

3.1.2. Quadratic isoparametric elements. We improve the accuracy of the finite element method
by means of quadratic isoparametric elements, whose precise definition is given in Appendix C,
under smoothness conditions on a(x) and f (x). Classic results (see, e.g. [3, Chapter VI]) show
that if the solution u of the PDE is smooth enough and U has a smooth boundary ∂U , then the
accuracy of the finite element method can be improved by means of isoparametric elements.
We obtain similar results for random coefficients.

In this paper we let Vn be defined as in (C.1) below with a mesh size of O(2−n). We explain
the space Vn intuitively. In general, the construction of Vn consists of two steps.

1. Partition the space U into small and curved triangles. We will refer to this partition as
Tn, whose precise definition is given in Appendix C.

2. For each T ∈ Tn, we need to define a linear space of functions over T , denoted by PT .
Then we put the spaces PT for T ∈ Tn together and define Vn = {v ∈ C(Ū) : v|∂U =
0 and v|T ∈ PT for T ∈ Tn}.

Step 1 is usually done by certain mesh generating algorithms and step 2 is done through
isoparametric mapping of a reference element. We provide a graphical illustration of the
construction in the next example.

Example 3.1. Let U = B(0, 1) = {(x, y) : x2 + y2 < 1}. For simplicity, we restrict our
illustration to a subset U ′ = B(0, 1) ∩ R2+. The analysis on U \ U ′ can be done similarly. The
left diagram of Figure 1 shows a possible choice of the partition when n = 1. The right diagram
of Figure 1 shows a refinement of the partition when n = 2. In this example, if T ∈ Tn does not
have an edge (possibly curved) lying on the boundary of U (e.g. the black region in Figure 1)
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Figure 1: Isoparametric triangularization for Example 3.1 when n = 1 (left) and n = 2 (right).

then T is a triangle; if an edge of T lies on the boundary (e.g. the gray region in Figure 1) then
T has a curved boundary along ∂U . We can see that if we only allow a partition using straight
triangles, it is not possible to have U exactly covered due to its curved boundary.

Now we explain how to define a linear space on each T ∈ Tn. Typically, this is done by the so-
called isoparametric mapping from a reference element. The procedure is as follows. First, we
take the simplex T̂ = {(x, y) : x, y ≥ 0, x + y ≤ 1} to be the reference element, and define the
space P̂ to be the space containing all quadratic functions over T̂ . Then, for each T ∈ Tn shown
in Figure 1, there is an invertible quadratic function FT : T̂ → R2 such that T = FT (T̂ ). Now,
we define a linear space PT over T as PT = {v : T → R : v(x) = v̂(F−1

K (x)) for some v̂ ∈ P̂ }.
Of note, when T is a triangle, the linear space PT contains all quadratic functions over T ; when
T is curved, then PT is induced by, but is not necessarily, the space of quadratic functions.

With the finite-dimensional space Vn constructed, we obtain an approximate solution un by
solving (2.13) with Vn.

3.1.3. Isoparametric numerical integration. The numerical solution un in (2.13) requires the
evaluation of the integrals

b(w, v) =
∑
T ∈Tn

∫
T

a(x)∇w(x) · ∇v(x) dx and L(v) =
∑
T ∈Tn

∫
T

f (x)v(x) dx.

For the evaluation of these integrals, we apply a quadrature approximation which approximates
the integral in the form of

∫
T

φ(x) dx by
∑M

l=1 wl,T φ(bl,T ) for some prespecified weights wl,T

and points bl,T for a positive integer M and 1 ≤ l ≤ M . The precise choices of wl,T and
bl,T are given in Appendix C. We point out that the choices of wl,T and bl,T depend on the
isoparametric triangularization only, and are independent of the integrand φ(·). By setting the
function φ to be a(x)∇w(x) · ∇v(x), and f (x)v(x), we approximate the bilinear form b(w, v)

and the linear form L(v) by their numerical approximations, denoted by b̃(w, v) and L̃(v),
respectively. Based on the numerical integration, we define ũn such that

b̃n(ũn, v) = L̃(v) for all v ∈ Vn. (3.1)

3.1.4. Error analysis for the isoparametric finite element method. In what follows we present
an upper bound of the convergence rate of ‖ũn − u‖H 1(U), where u is the solution to (2.12) and
ũn is the solution to (3.1).

Define the minimum and maximum of a(x) as amin = minx∈Ū a(x) and amax = maxx∈Ū a(x).

We make the following assumptions on the random coefficients a(x) and f (x).

(A1) amin > 0 almost surely and E[1/a
p
min] < ∞ for all p ∈ (0, ∞).

(A2) a is almost surely continuously twice differentiable and E[‖a‖p

C2(Ū)
] < ∞ for all p ∈

(0, ∞).
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(A3) f ∈ H 2(U) almost surely and E[‖f ‖p

H 2(U)
] < ∞ for all p ∈ (0, ∞).

(A4) There exist nonnegative constants p′ and κq such that, for all w1, w2 ∈ H 1
0 (U),

|Q(w1) − Q(w2)| ≤ κq max{‖w1‖p′
H 1(U)

, ‖w2‖p′
H 1(U)

}‖w1 − w2‖H 1(U).

With assumptions (A1)–(A4), we are able to construct an unbiased estimator for wQ = E[Q(u)]
with both finite variance and a finite expected computational time.

We start with the existence and the uniqueness of the solution. Note that a(x) is bounded
below by positive random variables amin and above by amax. According to [2, Lemma 2.1],
(2.12) has a unique solution u ∈ H 1

0 (U) almost surely satisfying

‖u‖H 1(U) ≤ κ
‖f ‖L2(U)

amin
. (3.2)

The next theorem establishes the convergence rate of the approximate solution ũn to the
exact solution u.

Theorem 3.1. Let ũn be the solution to (3.1). For dim(U) ≤ 3 with a three-time differentiable
boundary ∂U , if a(x) ∈ C2(Ū) and f (x) ∈ H 2(U), then we have

‖u − ũn‖H 1(U) = O

(
max(‖a‖C2(Ū), 1)12

min(amin, 1)11 ‖f ‖H 2(U)2
−2n

)
.

Proof. See Appendix A. �
3.2. Construction of the unbiased estimator

In this section we apply the results obtained in Subsection 3.1.2 to construct an unbiased
estimator with both finite variance and a finite expected computational cost through (2.4). We
start with providing an upper bound of E[Q(u) − Q(ũn)]2.

Proposition 3.1. Under assumptions (A1)–(A4), we have

E[Q(u) − Q(ũn)]2 = O(κq2−4n),

where u is the solution to (2.12), ũn is the solution to (3.1), and κq is the Lipschitz constant that
appeared in (A4).

The proof is a direct application of (3.2), Theorem 3.1, and (A4) and is therefore omitted.
We proceed to the construction of the unbiased estimator Z̃ via (2.4). Choose P(N = n) =
pn ∝ 2−(4+d)n/2. For each n, let ũn−1 and ũn be defined as in (3.1) with respect to the same
a and f . Note that the computation of ũn requires the values of a and f only on the vertices
of Tn. Then Zn−1 and Zn are given by Zn−1 = Q(ũn−1) and Zn = Q(ũn). With this
coupling, according to Proposition 3.1, we have E(Zn − Zn−1)

2 ≤ 2E[Q(ũn) − Q(u)]2 +
2E[Q(ũ

(2)
n−1) − Q(u)]2 = O(2−4n). According to (2.5), for d = dim(U) ≤ 3, we have

E[Z̃2] ≤ ∑∞
n=1 2−4n/2−(4+d)n/2 < ∞. Furthermore, (3.1) requires solving O(2dn) sparse

linear equations. The computational cost of obtaining un is O(n2dn). According to (2.8), the
expected cost of generating a single copy of Z̃ is

E[C] =
∞∑

n=1

pncn ≤
∞∑
i=1

n2dn2−(4+d)n/2 < ∞.

This guarantees that the unbiased estimator Z̃ has a finite variance and can be generated in a
finite expected time.
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3.2.1. Sampling of the random coefficients. In some cases, we also need to consider the compu-
tational complexity for simulating a and f in addition to the computational cost of solving the
PDE. For example, if log a(x) is modeled as a Gaussian random field then the computational
complexity for generating log a(x) over O(2dn) grid points is O(23dn) if the Cholesky decom-
position is adopted. This computational complexity is of a higher order than that of solving an
isoparametric finite element method with a grid size of 2−n, and the corresponding unbiased
estimator may not have a finite variance and finite computational cost at the same time.

If the random fields a and f can be approximated by {ak} and {fk} with a relatively low
computational cost, we can still achieve a similar error bound for the resulting numerical solver.
In Example 3.2, we show a situation where we can construct such an approximation for a(·).
Example 3.2. Assume that log a(x) = g(x) and that g(x) has the following expansion. For all
x ∈ U, g(x) = ∑∞

l=0λlWlφl(x), where W1, W2, . . . are independent and identically distributed
(i.i.d.) random variables following the standard normal distribution, {λl} is a sequence of
numbers that tend to 0 as l → ∞, and {φl} is a sequence of functions over U . To approximate
the Gaussian random field g(x), we could use the truncated field gk(x) = ∑k

l=0λlWlφl(x). The
computational cost for simulating gk(x) over O(2dn) grid points is of the order O(k × 2dn).
We can see that if k = kn grows at a speed no faster than O(n2dn) then the computational
complexity for generating gkn(x) is much smaller than the cost for simulating g(x) exactly.
The approximation accuracy of gk can be obtained via standard analysis of g(x) − gk(x) with
additional assumptions on the decaying speed of λl‖φl‖C2(Ū). For a more detailed analysis,
see, for example, [1].

We omit details of the precise requirement of λl and φl(x) and present the following results
under generic assumptions on an.

Theorem 3.2. Define
W̃n = 22n‖a − an‖C2(Ū).

We make the following additional assumptions on the sequence {an}.
• maxn E minx∈U(an(x), 1)−p < ∞ for all p > 0.

• maxn E‖an‖p

C2(Ū)
< ∞ for all p > 0.

• There exists a constant δ > 0 such that maxn EW̃ 2+δ
n < ∞.

• Simulating an(·) at the nodes of Tn requires a computational cost of the order O(n2dn).

Let the solution ūn be the solution to (3.1) with a(·) replaced by an(·) in the bilinear form b̃n.
Furthermore, let Zn = Q(ūn) and Zn−1 = Q(ūn−1) be constructed with the same sample
path ω. Then the unbiased estimator Z̃ constructed via (2.4) has a finite variance and a finite
computational cost.

Similar to the simulation of a(·), we could also approximate the random field f (·). The
analysis is similar and so we omit the details.

4. Simulation study

4.1. An illustrating example

We start with a simple example for which a closed-form solution is available and, therefore,
we are able to check the accuracy of the simulation. Let U =B(0, 1), f (x)=2eW1+W2x1+W3x2 ×
(2 + W2x1 + W3x2) and a(x) = eW2x1+W3x2 , where W1, W2, and W3 are i.i.d. standard normal
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Figure 2: Histograms of Monte Carlo samples of Z̃ and log Z̃ that are defined in Subsection 4.1.

random variables. In this example, the solution to (1.1) is

u(x1, x2) = eW1(1 − x2
1 − x2

2 ).

We are interested in the output functional Q(u) = |u|2
H 1(U)

, whose expectation is in a closed
form. We have

E|u|2
H 1(U)

= E[2πe2W1 ] = 2πe2 ≈ 46.4268.

Let pn = 0.875 × 0.125n and Zn = Q(ũn) for n > 0. Here we define Z0 = 0. Thus, the
estimator according to (2.4) is

Z̃ = ZN − ZN−1

pN

. (4.1)

We perform Monte Carlo simulation with M = 300 000 replications. The averaged estimator is
46.5572 with the standard deviation 0.8212. In Figure 2 we present the histograms of samples
of Z̃ and log Z̃.

4.2. Log-normal random field

In this example we let U = B(0, 1) and f (x) = 1 for all x ∈ B(0, 1), and we consider a
more complicated random field a(x). In particular, we let

log a(x1, x2) =
∞∑

m=1

1

2m
(W2m−1x

m
1 + W2mxm

2 ),

where W1, W2, . . . are i.i.d. standard normal random variables. It is not hard to verify that
a(x1, x2) satisfies assumptions (A1) and (A2). We further approximate the field a by

an(x1, x2) = exp

{ 3n∑
m=1

1

2m
(W2m−1x

m
1 + W2mxm

2 )

}
,

and compute the finite element solution based on this approximation. We let Zn = Q(ūn) as
discussed in Theorem 3.2 and take the same estimator (4.1) and functional Q as the previous
example. We perform Monte Carlo simulation for M = 300 000 replications. The averaged
estimator for the expectation EQ(u) is 0.4608 and the standard deviation is 0.0004 for the
averaged estimator. In Figure 3 we present the histogram of the Monte Carlo sample.
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Figure 3: Histogram of the Monte Carlo sample of Z̃ when log a has a Gaussian covariance.

Appendix A. Proofs of the theorems

In this section we provide technical proofs of Theorems 3.1 and 3.2. Throughout the proofs
we will use κ as a generic notation to denote large and not-so-important constants whose value
may vary from place to place. Similarly, we use ε as a generic notation for small positive
constants.

Before we start the main proof, we first present a proposition on the higher-order regularity
of the solution u, whose proof is given after the proofs of Theorems 3.1 and 3.2.

Proposition A.1. For dim(U) ≤ 3 with a (k + 1)-time differentiable boundary ∂U , if a(x) ∈
Ck(Ū) and f (x) ∈ Hk−1(U) for some positive integer k, then we have

‖u‖Hk+1(U) ≤ κ
max(‖a‖Ck(Ū), 1)k

2/2+9k/2−1

min(amin, 1)k
2/2+7k/2

(‖f ‖Hk−1(U) + ‖u‖L2(U)).

A.1. Proof of Theorem 3.1

We start with a useful lemma, which is essentially Theorem 43.1 of [3] with the constant
C = κ‖a‖C(Ū)/min(amin, 1) being explicit. We omit the details of the proof of this lemma.

Lemma A.1. It holds that

‖u − ũn‖H 1(U) ≤ κ
‖a‖C(Ū)

min(amin, 1)
2−2n{‖u‖H 3(U) + ‖a‖C2(Ū)‖u‖H 3(U) + ‖f ‖H 2(U)}.

Combining the above display with Proposition A.1 for k = 2, we have

‖u − ũn‖H 1(U) = O

(
2−2nκ(a, 2)

‖a‖2
C2(Ū)

min(amin, 1)
(‖f ‖H 2(U) + ‖u‖L2(U))

)
,

where κ(a, k) = (max(‖a‖Ck(Ū), 1)k
2/2+9k/2−1)/min(amin, 1)k

2/2+7k/2. That is,

‖u − ũn‖H 1(U) = O

(
2−2n

max(‖a‖C2(Ū), 1)12

min(amin, 1)10 (‖f ‖H 2(U) + ‖u‖L2(U))

)
. (A.1)

Thanks to (3.2), the above display can be further bounded by

‖u‖L2(U) ≤ κ
‖f ‖L2(U)

min(amin, 1)
.

We complete the proof by combining the above expression with (A.1).
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A.2. Proof of Theorem 3.2

We start with the inequality,

‖ūn − u‖H 1(U) ≤ ‖ūn − ũn‖H 1(U) + ‖ũn − u‖H 1(U).

The second term on the right-hand side of the above inequality is already bounded from above
by Theorem 3.1. That is,

‖ūn − u‖H 1(U) ≤ ‖un − ũn‖H 1(U) + O

(
2−2n

max(‖a‖C2(Ū), 1)12

min(amin, 1)11 ‖f ‖H 2(U)

)
. (A.2)

We proceed to an upper bound of the first term. Let b̄n be the bilinear form with a being replaced
by an in the bilinear form b̃n. Noting that ūn is obtained by replacing b̃n by b̄n in (3.1), we have

b̄n(ūn, w) = L̃n(w) = b̃n(ũn, w)

for all w ∈ Vn. Subtracting b̃n(ūn, w) on both sides, we arrive at

(b̄n − b̃n)(ūn, w) = b̃n(ũn − ūn, w), (A.3)

where we write (b̄n − b̃n)(v, w) = b̄n(v, w) − b̃n(v, w). Setting w = ũn − ūn in (A.3), we
arrive at

(b̄n − b̃n)(ũn, ũn − ūn) = b̃n(ũn − ūn, ũn − ūn). (A.4)

According to the same arguments as those given in [3, pp. 258–260], the right-hand side of
(A.4) is bounded from below by

b̃n(ũn − ūn, ũn − ūn) ≥ εamin‖ũn − ūn‖2
H 1(U)

. (A.5)

On the other hand, we have

|(b̄n − b̃n)(ūn, ũn − ūn)| ≤ ‖a − an‖C(Ū)‖ūn − ũn‖H 1(U)‖ūn‖H 1(U). (A.6)

Combining (A.4), (A.5), and (A.6), we arrive at

‖ũn − ūn‖H 1(U) ≤ κ
‖a − an‖C(Ū)‖ūn‖H 1(U)

amin
≤ κ2−2n

‖ūn‖H 1(U)

amin
W̃n. (A.7)

Because an satisfies assumptions (A1) and (A2), we can apply Theorem 3.1 to the solution ūn

and arrive at

‖ūn‖H 1(U) = O

(
max(‖an‖C2(Ū), 1)12

min(minx∈U(an(x)), 1)11 ‖f ‖H 2(U)

)
. (A.8)

Combining (A.2), (A.7), and (A.8), we arrive at

‖ūn − u‖H 1(Ū) = O

({
max(‖a‖C2(Ū), 1)12

min(amin, 1)11 + max(‖an‖C2(Ū), 1)12

min(minx∈U(an(x)), 1)11 min(amin, 1)
W̃n

}

× ‖f ‖H 2(U)2−2n

)
. (A.9)

The rest of the proof is similar to the analysis under Proposition 3.1; we omit the details.
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A.3. Proof of Proposition A.1

Proposition A.1 is similar to Theorem 5 of [7, Chapter 6.3], but we explicitly provide the
dependence of constants on a and f .

We prove Proposition A.1 by proving the following result for the weak solution w ∈ H 1
0 (U)

to a more general PDE:

−∇ · (A∇w) = f in U, w = 0 on ∂U. (A.10)

Here A(x) = (Aij (x))1≤i,j≤d is a symmetric positive definite matrix function in the sense that
there exist Amin > 0 satisfying

ξ�A(x)ξ ≥ Amin|ξ |2 (A.11)

for all x ∈ Ū and ξ ∈ Rd . Assume that Aij (x) ∈ Ck(Ū) for all i, j = 1, . . . , d. Then it is
sufficient to show that

‖w‖Hk+1(U) ≤ κr(A, k)(‖f ‖Hk−1(U) + ‖w‖L2(U)), (A.12)

where κr(A, k) = κ(max(‖A‖Ck(Ū), 1)k
2/2+9k/2−1/min(Amin, 1)k

2/2+7k/2) and ‖A‖Ck(Ū) =
max1≤i,j≤d ‖Aij‖Ck(Ū).

Let B0(0, r) denote the open ball {x : |x| < r} and let Rd+ = {x ∈ Rd : xd > 0}. We will
first prove that if U = B0(0, r) ∩ Rd+ and V = B0(0, t) ∩ Rd+, then, for all t and r such that
0 < t < r ,

‖w‖Hm+2(V ) ≤ κr,t,m+1
max(‖A‖Ck(Ū), 1)(m+1)2/2+9(m+1)/2−1

min(Amin, 1)(m+1)2/2+7(m+1)/2
(‖f ‖Hm(U) + ‖w‖L2(U)),

(A.13)
where κr,t,m+1 is a constant depending only on r , t , and m+1. The following lemma establishes
(A.13) for m = 0.

Lemma A.2. (Boundary H 2-regularity.) Assume that ∂U is twice differentiable and that A(x)

satisfies (A.11). Assume that Aij (x) ∈ C1(Ū) for all i, j = 1, . . . , d. Suppose further that
w ∈ H 1

0 (U) is a weak solution to the elliptic PDE with the boundary condition (A.10). Then
w ∈ H 2(U) and

‖w‖H 2(U) ≤ κ
max(‖A‖C1(Ū), 1)4

min(Amin, 1)4 (‖f ‖L2(U) + ‖w‖L2(U)).

We establish (A.13) by induction. Suppose that, for some m,

‖w‖Hm+1(W) ≤ κt,s,m

max(‖A‖Ck(Ū), 1)m
2/2+9m/2−1

min(Amin, 1)m
2/2+7m/2

(‖f ‖Hm−1(U) + ‖w‖L2(U)), (A.14)

where

W = B0(0, s) ∩ Rd+ and s = t + 1

2
.

Since w is a weak solution to (A.10), it satisfies the integration equation∫
D

∇w(x)�A(x)∇v(x) dx =
∫

D

f (x)v(x) dx for all v ∈ H 1
0 (U). (A.15)
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Let α = (α1, . . . , αd) be a multiple index with αd = 0 and |α| = m. We consider the multiple
weak derivative w̄ = Dαw and investigate the PDE that w̄ satisfies. For any v̄ ∈ C∞

c (W),
where C∞

c (W) is the space of infinitely differentiable functions that have compact support in
W , we substitute v = (−1)|α|Dαv̄ into (A.15). With some calculations, we have∫

W

(∇w̄(x))�A(x)∇v̄(x) =
∫

W

f̄ (x)v̄(x) dx,

where

f̄ = Dαf −
∑

β≤α, β �=α

(
α

β

)
[−∇ · (Dα−βA∇Dβw)]. (A.16)

Consequently, w̄ is a weak solution to the PDE

−∇ · (A∇w̄) = f̄ for x in W. (A.17)

Furthermore, we have the boundary condition w̄(x) = 0 for x ∈ ∂W ∩ {xd = 0}. By the
induction assumption (A.14) and (A.16), we have

‖f̄ ‖L2(W) ≤ ‖f ‖Hm(U)

+ κt,s,m

max(‖A‖Ck(Ū), 1)m
2/2+9m/2−1

min(Amin, 1)m
2/2+7m/2

‖A‖Cm+1(Ū)(‖f ‖Hm−1(U) + ‖w‖L2(U)).

(A.18)

According to the definition of w̄, we have

‖w̄‖L2(W) ≤ ‖w‖Hm(W). (A.19)

Applying Lemma A.2 to w̄ with (A.18) and (A.19), we have

‖Dαw‖H 2(V ) ≤ κt,s,mκ
max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

max(‖A‖Ck(Ū), 1)m
2/2+9m/2−1

min(Amin, 1)m
2/2+7m/2

× ‖A‖Cm+1(Ū)(‖f ‖Hm(U) + ‖w‖L2(U)). (A.20)

Because α is an arbitrary multi-index such that αd = 0 and |α| = m, (A.20) implies that
Dβw ∈ L2(W) for any multiple index β such that |β| ≤ m + 2 and βd = 0, 1, 2. We now
extend this result to the multiple index β, whose last component is greater than 2. Suppose
that, for all β such that |β| ≤ m + 2 and βd ≤ j , we have

‖Dβw‖H 2(V ) ≤ κ
(j)
r (‖f ‖Hm(U) + ‖w‖L2(U)), (A.21)

where κ
(j)
r is a constant depending on A, m, and j to be determined later. We establish the

relationship between κ
(j)
r and κ

(j+1)
r . For any γ that is a multiple index such that |γ | = m + 2

and γd = j + 1, we use (A.21) to develop an upper bound for ‖Dγ w‖H 2(V ). In particular, let
β = (γ1, . . . , γd−1, j − 1). According to remark (ii) after Theorem 1 of [7, Chapter 6.3], we
have

−∇ · (A∇(Dβw)) = f † in W almost everywhere, (A.22)

where

f † = Dβf −
∑

δ≤β,δ �=β

(
β

δ

)
[−∇ · (Dβ−δA∇Dδw)]. (A.23)

https://doi.org/10.1017/apr.2018.49 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.49


Unbiased sampling of random elliptic partial differential equations 1023

Note that

−∇ ·(A∇(Dβw)) = −AddDγ w+ sum of terms involves at most j times weak derivatives

of w with respect to xd and at most m + 2 times derivatives in total.

According to (A.21), (A.22), (A.23), and the above display, we have

‖Dγ w‖L2(U) ≤ κ
1

min(Amin, 1)
{‖A‖Cm+1(Ū)κ

(j)
r (‖f ‖Hm(U) + ‖w‖L2(U)) + ‖f ‖Hm(U)}.

Therefore,
‖Dγ w‖L2(U) ≤ κ

(j+1)
r (‖f ‖Hm(U) + ‖w‖L2(U)),

where

κ
(j+1)
r = κ

(j)
r

max(‖A‖Cm+1(Ū), 1)

min(Amin, 1)
. (A.24)

The above expression provides a relationship between κ
(j+1)
r and κ

(j)
r . According to (A.20),

κ(2)
r = κt,s,mκ

max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

max(‖A‖Ck(Ū), 1)m
2/2+9m/2−1

min(Amin, 1)m
2/2+7m/2

max(‖A‖Cm+1(Ū), 1).

Using (A.24) and the above initial value for the iteration, we have

κ(m+2)
r = κt,s,mκ

max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

max(‖A‖Ck(Ū), 1)m
2/2+9m/2−1

min(Amin, 1)m
2/2+7m/2

× max(‖A‖Cm+1(Ū), 1)

{
max(‖A‖Cm+1(Ū), 1)

min(Amin, 1)

}m

.

Consequently,

‖w‖Hm+2(V ) ≤ κt,s,mκ
max(‖A‖Ck(Ū), 1)m

2/2+11m/2+4

min(Amin, 1)m
2/2+9m/2+4

(‖f ‖Hm(U) + ‖w‖L2(V )).

Using induction, we complete the proof of (A.12) for the case where U is a half ball.
Now we extend the result to the case that U has a Ck+1 boundary ∂U . We first prove the

theorem locally for any point x0 ∈ ∂U . Because ∂U is (k+1)-time differentiable, with possible
relabeling of the x coordinates, there exist a function γ : Rd−1 → R and r > 0 such that

B(x0, r) ∩ U = {x ∈ B(x0, r) : xd > γ (x1, . . . , xd−1)}.
Let � = (�1, . . . , �d)� : Rd → Rd be a function such that

�i(x) = xi for i = 1, . . . , d − 1, �d(x) = xd − γ (x1, . . . , xd−1).

Let y = �(x) and choose s > 0 sufficiently small such that

U∗ = B0(0, s) ∩ {yd > 0} ⊂ �(U ∩ B(x0, r)).

Furthermore, let V ∗ = B0(0, s/2) ∩ {yd > 0} and set

w∗(y) = w(x) = w(�−1(y)).
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Some calculation shows that w∗ is a weak solution to the PDE

−∇ · (A∗(y)∇w∗(y)) = f ∗(y),

where A∗(y) = J (y)A(�−1(y))J�(y) and J (y) is the Jacobian matrix for � with Jij (y) =
∂�i(x)/∂xj |x=�−1(y), and f ∗(y) = f (�−1(y)). In addition, w∗ ∈ H 1(U∗) and w∗(y) = 0
for y ∈ ∂U∗ ∩ {yd = 0}. It is easy to check that A∗ is symmetric and that A∗

ij ∈ Ck(Ū) for all
1 ≤ i, j ≤ d. Furthermore, according to the definitions of J and �, all the eigenvalues of J (y)

are 1 and, thus, ζ�A∗(y)ξ ≥ Amin|J�(y)ξ |2 ≥ εAmin|ξ |2 for all ξ ∈ Rd . By substituting
U, V, A, and f with U∗, V ∗, A∗, and f ∗ in (A.13), we have

‖w∗‖H 2(V ∗) ≤ κr(A, k)(‖w∗‖L2(U∗) + ‖f ∗‖Hk−1(U∗)).

According to the definitions of w∗ and f ∗, the above display implies that

‖w‖H 2(�−1(V ∗)) ≤ κr(A, k)(‖w‖L2(U) + ‖f ‖Hk−1(U)).

Because U is bounded, ∂U is compact and, thus, can be covered by finitely many sets �−1(V ∗
1 ),

. . . , �−1(V ∗
K) that are constructed similarly as �−1(V ∗). We complete the proof by combining

the result for points around ∂U and Lemma A.3 below for interior points.

Lemma A.3. (Higher-order interior regularity.) Under the setting of Lemma A.2, we assume
that ∂U is Ck+1, Aij (x) ∈ Ck(U) for all i, j = 1, . . . , d, and f ∈ Hk−1(U), and that
w ∈ H 1(U) is one of the weak solutions to PDE (A.10) without a boundary condition. Then
w ∈ Hk+1

loc (U). For each open set V � U ,

‖w‖Hk+1(V ) ≤ κi(A, k)(‖f ‖Hk−1(U) + ‖w‖L2(U)),

where κi(A, k) = max(‖A‖Ck(Ū), 1)3k−1κ/min(Amin, 1)2k , with κ a constant depending on V .

This completes the proof of Proposition A.1.

Appendix B. Proof of the supporting lemmas

In this section we provide the proofs for the lemmas that are necessary for the proof of
Proposition A.1. We start with a useful lemma showing that w ∈ H 2

loc(U), which will be used
in the proof of Lemma A.2

Lemma B.1. (Interior H 2-regularity.) Under the setting of Lemma A.2, we further assume that
Aij (x) ∈ C1(Ū) for all i, j = 1, . . . , d, and f ∈ L2(U), and that w ∈ H 1(U) is one of the
weak solutions to the PDE (A.10) without a boundary condition. Then w ∈ H 2

loc(U). For each
open subset V � U , there exists κ depending on V such that

‖w‖H 2(V ) ≤ κ
max(‖A‖C1(U), 1)2

min(Amin, 1)2 (‖f ‖L2(U) + ‖w‖L2(U)),

where we define the norm ‖A‖C1(Ū) = max1≤i,j≤d ‖Aij‖C1(Ū).

Proof. Let h be a real number whose absolute value is sufficiently small. We define the
difference quotient operator as

Dh
k w(x) = w(x + hek) − w(x)

h
,
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where ek is the kth unit vector in Rd . According to Theorem 3 of [7, Chapter 5.8], if there
exists a positive constant κ such that ‖Dh

k w‖L2(U) ≤ κ for all h, then ∂w/∂xk ∈ L2(U) and
‖∂w/∂xk‖L2(U) ≤ κ . We use this theorem and seek for an upper bound of∫

V

|Uh
k ∇w|2 dx (B.1)

for k = 1, . . . , d for the rest of the proof.
We derive a bound of (B.1) by substituting an appropriate v into (A.15). Let W be an open

set such that V � W � U . We select a smooth function ζ such that

ζ = 1 on V, ζ = 0 on W c, 0 ≤ ζ ≤ 1.

We substitute
v = −D−h

k (ζ 2Dh
k w)

into (A.15), to obtain

−
∫

D

∇w�A∇[D−h
k (ζ 2Dh

k w)] dx = −
∫

D

f D−h
k (ζ 2Dh

k w) dx. (B.2)

We give a lower bound of the left-hand side of (B.2) and an upper bound of the right-hand side.
We use two basic formulae that are similar to integration by parts and the derivative of a product,
respectively. For any functions w1, w2 ∈ L2(U), such that w2(x) = 0 if dist(x, ∂U) < h, we
have ∫

D

w1D
−h
k w2 dx = −

∫
D

Dh
k w1w2 dx, Dh

k (w1w2) = wh
1Dh

k w2 + w2D
h
k w1,

where we define wh
1 (x) = w1(x + hek). Similarly, we define the matrix function Ah =

A(x + hek). Applying the above formulae to the left-hand side of (B.2), we have

−
∫

D

∇w�A∇[D−h
k (ζDh

k w)] dx

=
∫

D

Dh
k (∇w�A)∇(ζ 2Dh

k w) dx

=
∫

D

Dh
k (∇w�)Ah∇(ζ 2Dh

k w) + ∇w�Dh
k A∇(ζ 2Dh

k w) dx

=
∫

D

ζ 2Dh
k ∇w�AhDh

k ∇w dx

︸ ︷︷ ︸
J1

+
∫

D

2ζ(Dh
k ∇w�Ah∇ζ )Dh

k w + 2ζ(∇w�Dh
k A∇ζ )Dh

k w + ζ 2∇w�Dh
k ADh

k ∇w dx

︸ ︷︷ ︸
J2

.

Here J1 in the above expression has a lower bound of

J1 ≥ Amin

∫
D

ζ 2|Dh
k ∇w|2 dx

due to the positive definitiveness of A(x). The |J2| term is bounded above by

|J2| ≤ κ‖A‖C1(Ū)

(∫
D

ζ |Dh
k ∇w||Dh

k w| + ζ |∇w||Dh
k w| + ζ |∇w||Dh

k ∇w| dx

)
. (B.3)
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Expression (B.3) can be further bounded by

|J2| ≤ Amin

2

∫
D

ζ 2|Dh
k ∇w|2 dx+κ‖A‖C1(Ū)

(
1+‖A‖C1(Ū)

Amin

) ∫
W

|∇w|2+|Dh
k w|2 dx, (B.4)

thanks to the Cauchy–Schwarz inequality. According to Theorem 3 of [7, Chapter 5.8],∫
W

|Dh
k w|2 dx ≤ κ

∫
W

|∇w|2 dx. (B.5)

Therefore, (B.4) is bounded above by

|J2| ≤ Amin

2

∫
D

ζ 2|Dh
k ∇w|2 dx + κ2‖A‖C1(Ū)

(
1 + ‖A‖C1(Ū)

Amin

) ∫
W

|∇w|2 dx. (B.6)

Combining (B.3) and (B.6), the left-hand side of (B.2) becomes

−
∫

D

∇w�A∇[D−h
k (ζ 2Dh

k w)] dx

= J1 + J2

≥ J1 − |J2| (B.7)

≥ Amin

2

∫
D

ζ 2|Dh
k ∇w|2 dx − κ2‖A‖C1(Ū)

(
1 + ‖A‖C1(Ū)

Amin

) ∫
W

|∇w|2 dx.

We proceed to an upper bound of the right-hand side of (B.2). According to (B.5), we have∫
D

|D−h
k (ζ 2Dh

k w)|2 dx ≤ κ

∫
D

|∇(ζ 2Dh
k w)|2 dx

≤ κ

∫
W

4|Dh
k w|2|∇ζ |2ζ 2 + ζ 2|Dh

k ∇w|2 dx

≤ κ3
∫

W

|∇w|2 + ζ 2|Dh
k ∇w|2 dx. (B.8)

Applying Cauchy’s inequality to the right-hand side of (B.2), we have

−
∫

D

f D−h
k (ζ 2Dh

k w) dx ≤
∫

D

|f ||D−h
k (ζ 2Dh

k w)| dx

≤ 2κ3

Amin

∫
D

|f |2 dx + Amin

4κ3

∫
D

|D−h
k (ζ 2Dh

k w)|2 dx. (B.9)

Combining (B.8) and (B.9), we have

−
∫

D

f D−h
k (ζ 2Dh

k w) dx ≤ Amin

4

∫
W

ζ 2|Dh
k ∇w|2 dx+Amin

4

∫
W

|∇w|2 dx+ 2κ3

Amin

∫
W

|f |2 dx.

(B.10)
Combining (B.7) and (B.10), we have

∫
D

ζ 2|Dh
k ∇w|2 dx ≤ 8κ3

A2
min

∫
W

|f |2 dx+
[

1+4κ2‖A‖C1(Ū)

‖A‖C1(Ū) + Amin

A2
min

] ∫
W

|∇w|2 dx.

(B.11)
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Therefore,

∫
D

ζ 2|Dh
k ∇w|2 dx ≤ κ

max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

(∫
W

|f |2 dx +
∫

W

|∇w|2
)

. (B.12)

Now we give an upper bound of
∫
D

|∇w| by taking v = ζ̃ 2w in (A.15), where we choose ζ̃

to be a smooth function such that ζ̃ = 1 on W and ζ̃ = 0 on U c. Using similar arguments as
those for (B.12), we have

∫
W

|∇w|2 dx ≤ κ
max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

(∫
W

|f |2 dx +
∫

W

|∇w|2
)

. (B.13)

Taking (B.12) and (B.13) together gives

∫
D

ζ 2|Dh
k ∇w|2 dx ≤ κ

max(‖A‖C1(Ū), 1)4

min(Amin, 1)4

∫
D

|f |2 + |w|2 dx. (B.14)

We complete our proof by combining (B.14) for all k = 1, . . . , d. �
Proof of Lemma A.2. We first consider a special case when U is a half ball, that is,

U = B0(0, 1) ∩ Rd+.

Let V = B0(0, 1
2 ) ∩ Rd+, and select a smooth function ζ such that

ζ = 1 on B(0, 1
2 ), ζ = 0 on B(0, 1)c, 0 ≤ ζ ≤ 1.

For k = 1, . . . , d − 1, we substitute

v = −D−h
k (ζ 2Dh

k w)

into (A.15). Using the same arguments for deriving (B.11) as in the proof for Lemma B.1, we
obtain ∫

V

|Dh
k ∇w|2 dx ≤ κ

max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

∫
W

|f |2 + |∇w|2 dx.

The above display holds for arbitrary h, so we have

d∑
i,j=1, i+j<2d

∫
V

∣∣∣∣ ∂2w

∂xi∂xj

∣∣∣∣
2

dx ≤ κ
max(‖A‖C1(Ū), 1)2

min(Amin, 1)2

∫
W

|f |2 + |∇w|2 dx. (B.15)

We proceed to an upper bound for

∫
V

∣∣∣∣ ∂2w

∂xd∂xd

∣∣∣∣
2

dx.

According to remark (ii) after Theorem 1 of [7, Chapter 6.3], with the interior regularity obtained
by Lemma B.1, w solves (A.10) almost everywhere (a.e.) in U . Consequently,

Add

∂2w

∂xd∂xd

= −
d∑

i,j=1, i+j<2d

Aij

∂2w

∂xi∂xj

−
d∑

i,j=1

∂Aij

∂xj

∂w

∂xi

− f a.e.
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Note that Add ≥ Amin, so the above display implies that
∣∣∣∣ ∂2w

∂xd∂xd

∣∣∣∣ ≤ κ
‖A‖C1(Ū)

Amin

( d∑
i,j=1, i+j<2d

∣∣∣∣ ∂2w

∂xi∂xj

∣∣∣∣ + |∇w| + |f |
)

.

Combining the above display with (B.15), we have

‖w‖H 2(V ) ≤ κ
max(‖A‖C1(Ū), 1)2

min(Amin, 1)2 (‖|∇w|‖L2(U) + ‖f ‖L2(U)).

According to (B.13), the above display implies that

‖w‖H 2(V ) ≤ max(‖A‖C1(Ū), 1)4

min(Amin, 1)4 (‖w‖L2(U) + ‖f ‖L2(U)).

Similar to the proof for Proposition A.1, this result can be extended to the case where U has a
twice differentiable boundary; we omit the details. �

Proof of Lemma A.3. We use induction to prove Lemma A.3. When k = 1, Lemma B.1
gives

‖w‖H 2(V ) ≤ κi(A, 1)(‖f ‖L2(U) + ‖w‖L2(U)).

Suppose that, for k = 1, . . . , m, Lemma A.3 holds. We intend to prove that, for k = m + 1,

‖w‖Hm+2(V ) ≤ κi(A, m + 1)(‖f ‖Hm(U) + ‖w‖L2(U)).

By induction assumption, we have w ∈ Hm+1
loc (U) and, for any W such that V � W � U ,

‖w‖Hm+1(W) ≤ κi(A, m)(‖f ‖Hm−1(U) + ‖w‖L2(U)).

Denote by α = (α1, . . . , αd)� a multiple index with |α| = α1 + · · · + αd = m. With similar
arguments as for (A.17), w̄ = Dαw is a weak solution to PDE (A.17) without a boundary
condition. Similar to the derivation for (A.20), w ∈ Hm+2(V ) and

‖w‖Hm+2(V ) ≤ κi(A, 1)κi(A, m) max(‖A‖Cm+1(Ū), 1)(‖f ‖Hm(U) + ‖w‖L2(U)).

We complete the proof by induction. �

Appendix C. Isoparametric finite element method

In this section we present the precise definition of the finite element method being used. For
more details, see [3] and the references therein.

Finite element triplet. The triplet (T , P, �) is called an element if T is a Lipschitz domain in
Rd ; P is a space of functions over T with a finite dimension M; and � is a set of linear forms
η1, . . . , ηM with the following P -unisolvent property: given any real numbers α1, . . . , αM ,
there exists a unique p ∈ P such that ηi(p) = αi, 1 ≤ i ≤ M .

Degree of freedom. By the definition of P -unisolvent, there exists p1, . . . , pM ∈ P such that
ηi(pj ) = δij for 1 ≤ i, j ≤ M . Consequently, for all p ∈ P , the following holds:

p =
M∑
i=1

ηi(p)pi.

Then η1, . . . , ηM are called the degree of freedoms of the finite element and p1, . . . , pM are
called the basis functions of P .
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Lagrange element. If there exist a1, . . . , aM such that ηi(p) = p(ai) for all 1 ≤ i ≤ M , then
the finite element is called a Lagrange finite element. In other words, if (T , P, �) is a Lagrange
finite element and p ∈ P , then p is completely determined by its value at the nodes a1, . . . , aM .
Throughout this paper, we will consider only Lagrange elements.

Affine-equivalence. Let (T , P, {p(ai); 1 ≤ i ≤ M}) and (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤ M}) be two
Lagrange finite elements. They are called affine equivalent if there exists an invertible linear
operator BT : T̂ → T and bT ∈ Rd such that

• FT : T̂ → T , FT (x̂) = BT x̂ + bT ,

• ai = FT (âi), 1 ≤ i ≤ M , and

• pi(x) = p̂i(F
−1
T (x)), 1 ≤ i ≤ M .

The mapping FT is called the affine mapping.

Isoparametric equivalent elements. A Lagrange finite element (T , P, {p(ai); 1 ≤ i ≤ M})
is called isoparametric equivalent to (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤ M}) if there exists an invertible
mapping F : x̂ ∈ T̂ → F(x̂) = (Fi(x̂))di=1 such that Fi ∈ P̂ , 1 ≤ i ≤ M, and

• T = F(T̂ ),

• P = {p = p̂ ◦ F−1; p̂ ∈ P̂ }, and

• ai = F(âi) for 1 ≤ i ≤ M .

In particular, when F is a linear mapping, these two finite elements are affine equivalent.

d-simplex. The set {(x1, . . . , xd) : ∑d
i=1 xi = 1, xi ≥ 0, i = 1, . . . , d} is called a d-simplex.

When d = 1, 2, 3, the d-simplex is a line segment, triangle, and a tetrahedron, respectively.

Isoparametric family and reference element. Consider a class of Lagrange finite elements
indexed by T , F = {(T , PT , {pT (ai,T ); 1 ≤ i ≤ M})}. It is called an isoparametric family if
there exists a finite element (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤ M}) such that all (T , PT , {pT (ai,T ); 1 ≤
i ≤ M}) ∈ F is isoparametric equivalent to (T̂ , P̂ , {p̂(âi); 1 ≤ i ≤ M}). The finite element
(T̂ , P̂ , {p̂(âi); 1 ≤ i ≤ M}) is called the reference element. For ease of notation, we sometimes
omit the index T in PT and ai,T , and write the element as (T , P, {p(ai); 1 ≤ i ≤ M}).
Choice of the reference element. Throughout this paper, we consider the reference element T̂

to be the d-simplex. In addition, the space P̂ is chosen to be the space of quadratic polynomials
over T̂ . The dimension of P̂ is dim(P̂ ) = d(d − 1)/2 + d. The degree of freedom is chosen
as follows:

(i) âi is the vector with the ith entry being 1 and all other entries being 0, and

(ii) âij = 1
2 (âi + âj ) is the midpoint of âi and âj for 1 ≤ i, j ≤ d.

Triangularization of a domain. With the reference element specified, we can generate a family
of finite elements that are isoparametric equivalent to the reference element and form a partition
of a domain of interest. If a partition is not possible, we may choose to partition the domain
approximately. We elaborate on the requirement on the partition.

If a domain is a polygon, we can define a triangularization based on affine-equivalent
elements only. However, when the domain U is curved with a smooth boundary, it is not possible
to partition Ū into triangles. Indeed, if an affine family with a mesh size of maxT ∈Tn diam(T ) =
O(2−n) is used to approximately cover the space U , that is, only a straight triangle is in use, then
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the error rate of the finite element method ‖un − u‖H 1(U) is known to be at most O(2−3/2n),
even with quadratic basis functions; see [3, p. 268] for more details. In this case, isoparametric
triangularization can be used to ensure the convergence rate of ‖un − u‖H 1

0 (U) = O(2−2n),
when a and f are deterministic functions with sufficient smoothness. The precise definition of
an isoparametric triangularization of a domain U is given as follows. Let {(T , PT , �T ) : T ∈
Tn} be a family of finite elements that are isoparametric equivalent to the reference element
(T̂ , P̂ , {p̂(âi), i = 1, . . . , M}) with maxT ∈Tn diam(T ) = O(2−n) satisfying the following
requirements.

(a) Ū = ⋃
T ∈Tn

T .

(b) For any T ∈ Tn, the corresponding degrees of freedom ai and aij are either inside the
domain U or on the boundary ∂U for all 1 ≤ i, j ≤ M .

(c) For T , T ′ ∈ Tn, T �= T ′, int(T ) ∩ int(T ′) = ∅, where int(T ) denotes the interior of the
triangle T .

(d) If T �= T ′ but T ∩ T ′ �= ∅, then T ∩ T ′ is either a point or a common edge of T and T ′.

Here, the edges and vertices of an isoparametric element is the image of the corresponding
isoparametric mapping of the edges and vertices of the reference element, respectively.

Remark C.1. Among the requirements (a)–(d), (b) and (d) are standard assumptions and can
be satisfied by many applications of interest. Assumption (a) requires that the domain U is
covered exactly by the isoparametric elements, which can be satisfied when the boundary ∂U

is piecewise quadratic. It is also possible, but may require more tedious analysis, to extend our
result to the case where ∂U is smooth but not piecewise quadratic. We omit the details for the
simplicity of the presentation. For the analysis of such a case when a and f are deterministic,
see [3, Chapter VI].

Regular isoparametric family. Define

hT = diam(T ) and ρT = sup{diam(S) : S is a ball in Rd and S ⊂ T }
for each T ∈ Tn. The isoparametric family {(T , P, �), T ∈ Tn} is called regular if it satisfies
the following two conditions.

• There exists a constant σ > 0 such that, for all n and all T ⊂ Tn,

ρT ≥ σhT .

• For each T ∈ Tn, let ãij = 1
2 (ai + aj ) for all 1 ≤ i, j ≤ d and ai, aj being the vertices

of T . We assume that
‖aij − ãij‖ = O(2−2n)

uniformly for all T ∈ Tn.

Throughout the paper, we consider only the regular isoparametric family. In addition, we
assume that the inner elements are affine elements and only the boundary elements are other
isoparametric elements. That is, for a finite element (T , P, �) that is not on the boundary of
the domain, T is a triangle for d = 2 and a tetrahedron for d = 3.

The function space Vn. Based on the regular isoparametric family {(T , P, �), T ∈ Tn} defined
above, we are able to state the definition of the space Vn as

Vn = {v ∈ C(Ū) : v|T ∈ PT for each T ∈ Tn and v|∂D = 0}. (C.1)
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Isoparametric numerical integral. For isoparametric elements, the numerical integral is cal-
culated by first performing a quadrature approximation over the reference element, and then
transforming it to the isoparametric family. We first describe the integral approximation over
the reference element T̂ = {(x1, . . . , xd) : xi ≥ 0,

∑d
i=1 xi ≤ 1; 1 ≤ i ≤ d}. Typically, a

quadrature scheme for numerical integration is described in the following form. For a function
φ̂ : T̂ → R, the integral

∫
T̂

φ̂(x̂) dx̂ is approximated by
∑M

l=1 ŵl φ̂(b̂l) for some weights ŵl > 0,
points b̂l , l = 1, . . . , M , and a positive integer M . In order to control the numerical error of
the finite element method, we assume that the ŵl and b̂l are exact for quadratic functions.
That is, if φ̂ is a quadratic function over T̂ then

∫
T̂

φ̂(x̂) dx̂ = ∑M
l=1 ŵl φ̂(b̂l). The choice

of such a quadrature scheme is not unique. For example, a popular choice for d = 2 is
M = 3, b1 = (0.5, 0), b2 = (0, 0.5), b3 = (0.5, 0.5), and w1 = w2 = w3 = 1

6 . We proceed to
the numerical integration over an isoparametric element T with an isoparametric mapping FT .
The standard approximation for the integral in the form

∫
T

φ(x) dx is based on the change of
variable, where the weights are defined as wl,T = ŵlJ (FT )(b̂l,T ), bl,T = FT (b̂l), and J (FT )

denotes the Jacobian of the mapping FT .
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