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Unsteady flow dynamics reconstruction from
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This article presents a reconstruction of the unsteady behaviour of a round jet at
a Reynolds number equal to 3300, from the sole knowledge of the time-averaged
flow field and one pointwise unsteady measurement. The reconstruction approach
is an application of the work of Beneddine et al. (J. Fluid Mech., vol. 798, 2016,
pp. 485–504) and relies on the computation of the dominant resolvent modes of the
flow, using a parabolised stability equations analysis. To validate the procedure, the
unsteady velocity field of the jet has been characterised by time-resolved particle
image velocimetry (TR-PIV), yielding an experimental reference. We first show that
the dominant resolvent modes are proportional to the experimental Fourier modes,
as predicted by Beneddine et al. (J. Fluid Mech., vol. 798, 2016, pp. 485–504).
From these results, it is then possible to fully reconstruct the unsteady velocity and
pressure fluctuation fields, yielding a flow field that displays good agreement with the
experimental reference. Finally, it is found that the robustness of the reconstruction
mainly depends on the location of the pointwise unsteady measurement, which
should be within energetic regions of the flow, and this robustness as well as the
quality of the reconstruction can be greatly improved by considering a few pointwise
measurements instead of a single one. The effects of other experimental parameters on
the reconstruction, such as the size of the interrogation window used for the TR-PIV
processing and the accuracy of the positioning of the sensors, are also investigated
in this paper.
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1. Introduction
1.1. Context of the study

A large quantity of work has been devoted to the improvement of measurement
methods, which are essential tools for the study of physical mechanisms. Nowadays,
most of the conventional methods in fluid mechanics, such as hot-wire probes or
microphones, are able to give an accurate pointwise time-resolved characterisation
of a given physical quantity of a flow. When the need for flow characterisation
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Unsteady flow dynamics reconstruction from mean flow and point sensors 175

goes beyond a single point, it is possible to use arrays of sensors, but this presents
material limitations to the spatial extent and resolution of the characterisation and
may be too intrusive to get a global flow field measurement. Alternatively, a single
sensor may be displaced to a large number of locations, yielding an arbitrarily dense
set of measurements, which are, however, uncorrelated due to their non-simultaneity.
Another, quite widely used, option consists of using particle image velocimetry (PIV),
which classically yields two or three instantaneous displacement components, by
acquiring and processing two images of the seeded flow separated by a very short
time interval. Due to technical constraints related to illumination (usually with pulsed
lasers) and camera imaging, the technique can still be considered as characterised by
a trade-off between accuracy and temporal resolution. Indeed, low-frame-rate lasers
have a high energy per pulse that guarantees a high signal-to-noise ratio in the images
and good measurement accuracy, but such traditional PIV systems cannot resolve the
unsteady flow behaviour. On the other hand, high-frame-rate systems (time-resolved
PIV, TR-PIV) can characterise frequencies up to 1 or 10 kHz, but at the cost of
a much lower signal-to-noise ratio, possibly hindering the accuracy unless specific
advanced processings are used (see for instance Lynch & Scarano (2013); Jeon,
Chatellier & David (2014); Yegavian et al. (2016)). Besides, it is worthwhile noticing
that this highest measurable frequency remains one or two orders of magnitude lower
than that of a hot-wire probe for instance, which can make a difference in the context
of high-speed flows.

In view of these limitations, it appears that reconstructing the time-resolved
flow field based on quantities measurable by pointwise sensors and/or traditional
low-frame-rate PIV can be of great interest. Several reconstruction techniques exist to
rebuild global information from pointwise measurements, and among them, stochastic
estimation (SE) is one of the most widely used in fluid mechanics. Initially introduced
by Adrian (1979) as a way to extricate the coherent structures in a turbulent flow,
this technique has been extensively used to obtain the instantaneous least-mean-square
error estimate of the velocity at various locations, with the sole information of the
velocity at a few other points (see for instance Adrian (1979), Tung & Adrian
(1980), Guezennec (1989), Cole & Glauser (1998) and Stokes & Glauser (1999)).
This requires access to simultaneous unsteady measurements at points of interest.
The method may also yield the estimation of the pressure, but requires the use
of a higher-order SE model than for the velocity estimation (see Naguib, Wark &
Juckenhöfel (2001); Murray & Ukeiley (2003); Hudy, Naguib & Humphreys (2007)),
for which the linear SE (LSE) gives satisfactory results. Other more advanced
methods, relying on similar techniques, have been introduced for instance by Tu
et al. (2013). They elaborated a three-step estimation approach for the unsteady field
that uses down-sampled TR-PIV snapshots and point sensors. Their method is based
on a variant of LSE, coupled with proper orthogonal decomposition (POD), Kalman
smoothing and Kalman filtering. They obtained satisfactory results for estimation of
the wake behind a flat plate at a Reynolds number of 3600, but at the cost of a
rather heavy processing of the data. Moreover, similarly to classical SE, this requires
a simultaneity between the PIV acquisition and the sensor data.

The SE, as well as any global estimation technique based on local measurements,
naturally relies on a certain degree of spatial correlation in the flow field and the
existence of coherent structures. It is now generally recognised that even fully
turbulent flows present such structures, which has been recently addressed by
Beneddine et al. (2016) from a stability point of view. Their work showed that
such structures relate to resolvent modes about the time-averaged flow field (mean
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flow). Prior to their study, the literature already presented several examples which
revealed a strong link between the mean field and the fully nonlinear dynamics of
a flow (see for instance Pier (2002), Ehrenstein & Gallaire (2005), Barkley (2006)
or Gudmundsson & Colonius (2011)). Based on that, Beneddine et al. (2016) have
shown that it is possible to estimate the frequency spectrum at any point of a flow
from the knowledge of the mean flow and a few pointwise measurements. The
analysis relied on a rank-1 approximation of the resolvent, and has been tested on a
high-Reynolds-number backward-facing step, using a tri-dimensional (3-D) unsteady
simulation. This study revealed that only the spectrum associated with the spatially
correlated behaviour was predicted (the uncorrelated turbulent motion was filtered
out by a POD-based technique). It also showed that cheaper techniques such as
a parabolised stability equations (PSE) analysis may be used to approximate the
dominant resolvent mode. Similar work has been conducted by Gòmez et al. (2016a),
who used resolvent modes to build a reduced-order model of a 3-D lid-driven cavity
at Re = 1200. Their model yielded a flow reconstruction that accurately compared
with direct numerical simulation (DNS) results. As with Beneddine et al. (2016),
their input data were the mean flow and a few local unsteady measurements. More
recently, Gòmez, Sharma & Blackburn (2016b) used the same model to estimate
aerodynamic forces from pointwise data, and they once again successfully compared
their results to DNS.

These reconstruction approaches rely on the ability of a mean flow stability model
to accurately describe wavepackets, which has been studied in a substantial number
of articles (Cavalieri et al. 2013; Jordan & Colonius 2013; Rodríguez et al. 2015;
Beneddine et al. 2016; Tissot et al. 2017). This large body of work shows that the
use of such a model could be, in some situations, an interesting alternative to TR-PIV.
Yet, to our knowledge, the only experimental demonstration that stability techniques
could be used to rebuild a flow field from pointwise measurements is a recent paper
by Sasaki et al. (2017). They considered an experimental turbulent round jet, and
measured pressure fluctuations near the shear layer with microphone rings located
at several streamwise locations. Using a PSE-based model and a given pressure
measurement, they accurately predicted the pressure fluctuations at the locations
of the other sensors. These successful reconstructions at a few pointwise locations
prove the usefulness of mean flow stability-based techniques for flow reconstruction.
Nonetheless, it raises several important questions for any further experimental use,
such as the choice of the input measurement position or the robustness of the results
regarding experimental uncertainties.

1.2. Contribution and scope of the study
This work presents a temporal reconstruction method, inspired by the theory
introduced by Beneddine et al. (2016), and investigates its accuracy and robustness
in an experimental context. The case that is considered for this study is a transitional
round jet at a Reynolds number Re= 3300. We focus on the reconstruction of the flow
field from the sole knowledge of the mean flow (which can be measured for instance
by classical non-time-resolved PIV or by a large number of pointwise probings) and
a few local unsteady measurements. This reconstruction is then used to assess the
impact of experimental uncertainties on the results. Note that this article does not
aim to predict the dynamics of the jet outside the time interval of the input data.
This puts the present study in stark contrast to estimation techniques such as that of
Guzmán Iñigo, Sipp & Schmid (2014), who were able to predict the linear dynamics
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of a flow from local measurements. In contrast to the present work, their model
relies on a prior learning of the dynamics, based on knowledge of the time-resolved
flow field.

This article is divided into four main sections. The first part details the reconstruction
procedure (§ 2). The second part is dedicated to a physical description of the jet
through the analysis of TR-PIV measurements, which will be considered as the
reference for assessing the performance of the approach (§ 3). The procedure is then
applied to rebuild the time-resolved flow field of the jet from only the mean flow
and a single pointwise measurement, and the accuracy of the results is assessed
(§ 4). Finally, a last section (§ 5) focuses on the robustness of the method in an
experimental context, and presents guidelines to improve it.

2. Reconstruction procedure
2.1. Description of the procedure

In a general situation, the unsteady velocity field u(x, t) of a flow can be equivalently
represented in the frequency domain by its Fourier modes û(x, ω). In the case of
parallel flows, McKeon & Sharma (2010) demonstrated that û(x, ω) is proportional to
the dominant resolvent mode about the mean flow, given that the resolvent operator
displays a clear separation of singular values. The more recent work of Beneddine
et al. (2016) extended this result to non-parallel flows, and they showed that from a
physical point of view, this separation relates to the existence of a strong instability
mechanism. Therefore, for a flow displaying such an instability mechanism, this
proportionality may be formalised, for instance in an axisymmetric framework and
for the axial velocity component ux, as

ûx(ω, x, r)≈Λ(ω)ũωx (x, r), (2.1)

with ûx the Fourier transform of the measured axial velocity, ũωx the axial velocity
component of the dominant resolvent mode at the frequency ω and Λ an unknown
complex-valued function of ω, which we will refer to as the amplitude function. By
assuming the knowledge of ûx at a given point (x0, r0), we obtain an evaluation of Λ
as

Λ(ω)= ûx(ω, x0, r0)/ũωx (x0, r0), (2.2)

yielding the prediction of ûx at any point of the domain (with (2.1)). Note that Λ may
only be computed if both the resolvent mode and ûx are known at the point (x0, r0),
which implies that this input point is within the domain where resolvent modes can
be computed (i.e. where the mean flow is known).

In practice, the computation of the singular vectors of the resolvent operator requires
knowledge of the mean flow over a wide region to correctly account for boundary
conditions. Alternatively, for weakly non-parallel flows, one may use PSE analyses
to obtain the dominant resolvent modes (see Beneddine et al. (2016)). This method,
detailed in appendix A, does not require the definition of any streamwise boundary
condition. It is therefore well suited to situations where the mean flow is measured
over a relatively narrow region. Moreover, such a method has very low computational
cost and does not require any advanced numerical algorithm. This motivated the use
of PSE for the reconstruction presented here. The final procedure that we followed
is graphically illustrated in figure 1. Note that the PSE technique cannot replace a
resolvent analysis in any situation. For instance, as explained in Towne & Colonius
(2015), it is only adapted to behaviours involving a single right-going wave, and it
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Mean velocity field Unsteady pointwise measurement within the field

Dominant resolvent modes Local spectrum

Fourier modes

Unsteady velocity and pressure
fluctuation fields

PSE DFT

Inverse DFT

Equation (2.2)

Experimental data

(dominant resolvent modes)

function

FIGURE 1. (Colour online) Graphical illustration of the reconstruction procedure.

may be unable to properly capture acoustic waves. In such a situation, a resolvent
analysis is required to perform the reconstruction.

The previous explanations arbitrarily focus on the axial velocity for the description
of the procedure. But the same relations hold for other flow quantities, and as shown
by Beneddine et al. (2016), the resulting Λ would not depend on which quantity is
used. We could therefore use another velocity component, the pressure or any other
quantity that is linearly dependent on these variables (such as the wall shear stress) to
compute Λ, and this Λ may then be used to reconstruct all the flow quantities. This
aspect is demonstrated in the case of the round jet studied here, in § 4.2 where both
the radial velocity and the pressure fluctuation field are reconstructed from the sole
knowledge of the axial velocity at one point.

Note that Λ can be set equal to zero over some given frequency range, as this
simply results in a frequency filtering of the reconstruction. This is useful for filtering
out very low-energetic frequencies, and thus avoid non-useful computations. Indeed,
the pointwise input measurement may have a rather high sampling frequency, such that
its discrete Fourier transform (DFT) would be defined for a set of discrete values ωi
that would go up to very high values. Resolvent modes can be computed for every ωi,
but it is likely that a large number of them would have a very weak contribution to the
dynamics (for instance the very high frequencies). Setting Λ= 0 for these frequencies
has a negligible impact on the final reconstruction.

Moreover, the reconstruction relies on the proportionality between Fourier and
resolvent modes, which is expected for frequencies dominated by one strong
convective instability mechanism (Beneddine et al. 2016). The unsteadiness of
the transitional jet studied in this paper entirely relates to the Kelvin–Helmholtz
mechanism. As a result, the proportionality occurs for all energetic frequencies (see
§ 4.1), allowing an accurate unfiltered reconstruction. But in other situations, an
instability mechanism may be dominant only for a limited frequency range Ω: one
may then set Λ(ω)= 0 for ω /∈Ω and build an accurate filtered reconstruction within
the frequency range Ω .
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It is important to stress that the present approach is applied here on a transitional jet.
In the case of higher-Reynolds-number flows, it may fail to provide a full temporal
reconstruction. In § 4.1, we will show that evaluating the Fourier modes by a DFT of
the present experimental data at every point yields fields that are indeed proportional
to the resolvent modes. This justifies that the reconstruction based on inverse DFT
provides accurate results. Yet if the Reynolds number were significantly higher, the
situation would be more complex. Indeed, Beneddine et al. (2016) showed that for
highly turbulent flows, even when a large separation of singular values is observed,
the resolvent modes are not proportional to the modes computed by DFT, but to the
spatially correlated part of the fluctuation field, which may be obtained by a POD-
based filtering. Since a simple inverse DFT of the POD-filtered spectrum would not
yield the original (unfiltered) signal, the present approach may not straightforwardly
reconstruct data in high-Reynolds-number turbulent flows. This is further discussed in
the conclusion.

2.2. Causality of the reconstruction
In the present procedure, the time ranges of the reconstructed and input signals are
the same, which raises the question of causality. This issue can be easily illustrated by
considering a purely advective system, where a quantity (for instance the velocity u) at
any time t and at two streamwise locations x1 and x2 is such that u(x2, t)=u(x1, t− τ),
where τ is a function of the convection velocity and the distance between the two
points. In such a system, knowing u(x1, t) for t ∈ [0, tf ] is not enough to reconstruct
u(x2, t) over the same time interval. The reconstruction at x2 would only be possible
for t ∈ [τ , tf + τ ]. The missing part (i.e. for t ∈ [0, τ ]) would require the knowledge
of u(x1, t) for t ∈ [−τ , 0].

In our approach, the reconstruction involves DFTs and inverse DFTs, which
periodises the signals such that this missing past information (u(x1, t) for t ∈ [−τ , 0])
comes from u(x1, t) for t ∈ [tf − τ , tf ]. As a result, the present method violates
causality by using future information to reconstruct past information. A limited part
of the reconstruction, close to the borders of the reconstructed time interval, is
therefore non-causal.

As shown in the next sections, the reconstruction is nonetheless satisfactory for the
whole time range [0, tf ]. This is due to the nature of the studied system, which is not
purely advective but is characterised (in the frequency range of interest) by organised
spatio-temporal large-scale structures, which allows one to determine (up to a certain
limit) information pertaining to t< 0 from information stemming from t> 0.

3. Characterisation of the application case
3.1. Experimental set-up and data processing

The experimental configuration studied in the present work (see figure 2) corresponds
to that of Yegavian et al. (2016). We have focused on a cold round jet at a Reynolds
number Re ≈ 3300 (based on the exit diameter of the nozzle D = 12 mm, the jet
exit velocity Ue = 4.0 m s−1 and the air viscosity at T = 15 ◦C). From now on, all
quantities are made non-dimensional by using Ue and D. The flow dynamics has
been characterised in a diametral plane of the jet by TR-PIV measurements, using
the experimental set-up and parameters presented in Yegavian et al. (2016). Note
that the coincidence of the laser sheet with a diametral plane has been ensured using
precision devices, such that these planes can be considered nearly perfectly parallel
(to within 3 × 10−3 radians) and separated by less than 9 × 10−3 non-dimensional
length units.
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y

x

FIGURE 2. (Colour online) Picture of the experimental set-up, displaying the round jet,
the high-speed laser and the camera. In the laser sheet plane, the streamwise direction is
denoted by x and the cross-stream direction by y.

The velocity field was measured from 10 000 snapshots taken at a frequency of
10 kHz (corresponding to 30 snapshots per non-dimensional time unit). Particles were
illuminated by a 2 mm thick laser sheet using a Litron LDY303HE laser that provides
an energy of 5 mJ per pulse. The snapshots have been processed using the FOLKI-
PIV software, based on a classical two-frame estimation technique (Champagnat et al.
2011). We used Gaussian interrogation windows of 19 × 19 pixels (corresponding
to a size of 0.09 × 0.09 in non-dimensional units) with a standard deviation σ = 4
pixels. Given the seeding density of our set-up (approximately 0.05 particle per pixel),
the choice of this interrogation window size yields a good trade-off between noise
and spatial resolution, in particular for the computation of the mean flow required
for our reconstruction technique. This is further discussed in § 5.3. Note that such a
seeding density is, however, low for planar PIV, and thus yields noisy instantaneous
velocity fields with the classical two-frame approach. However, Yegavian et al. (2016)
showed that an accurate estimation may be obtained in these conditions when using
the Lucas–Kanade fluid trajectory (LKFT) algorithm described in their paper, similar
to other advanced time-resolved algorithms such as the fluid trajectory correlation
technique (Lynch & Scarano 2013) or fluid trajectory evaluation based on an ensemble-
averaged cross-correlation (Jeon et al. 2014). Figure 3 compares snapshots obtained
with the two approaches, and the noise indeed appears strongly reduced when using
this alternative PIV processing.

We therefore have two sets of velocity estimations for the present study. The
two-frame noisy fields were used for the reconstruction procedure, both for
computation of the mean flow (figure 4) and for extracting the local input signal
necessary for the reconstruction (figure 5). On the other hand, the LKFT snapshots
were used as a comparison to evaluate the quality of the reconstruction. In the
following, we will refer to these sets of snapshots as the reconstruction set and the
reference set, respectively. Using such a reconstruction set shows that the procedure is
rather robust even in suboptimal experimental conditions. Moreover, to our knowledge,
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(a) (b)

FIGURE 3. (Colour online) Comparison between the instantaneous streamwise velocity
field at t = 50 obtained from (a) classical two-frame processing and (b) the LKFT
algorithm. Velocities are non-dimensionalised using the jet exit velocity. The pointwise
measurement and mean flow used in the reconstruction will be extracted or computed from
the classical processing, and will therefore be referred to as the ‘reconstruction set’. The
LKFT processing will be considered as the objective to attain, i.e. the ‘reference set’. The
nozzle position (schematically represented in the panels) has been used to set the origin
of the reference frame.

x
0 0.5 1.0 1.5

A

2.0 2.5

–0.5

0

0.5

y

FIGURE 4. (Colour online) Mean streamwise velocity field, computed from the
reconstruction set of snapshots. Point A (x0 = 2.5, y0 = 0.4) corresponds to the location
where the unsteady signal used for the reconstruction has been extracted (also extracted
from the reconstruction set). The nozzle position (schematically represented on the left of
the figure) has been used to set the origin of the reference frame. The figure displays ten
equally spaced contours ranging from 0 to 1.

the experimental studies based on stability theory seldom use raw PIV results. For
instance, the PSE analysis performed by Gudmundsson & Colonius (2011) uses a
mean flow computed from a Gaussian fitting of PIV measurements. As demonstrated
in the next sections, the present approach may be successfully used without any fitting
of the data acquired from classical measurement techniques, standard algorithms and
a rather poor experimental set-up.

3.2. Characterisation of the unsteady behaviour of the jet
The unsteady behaviour of the jet near field can be qualitatively observed in both
figures 3 and 6, where we see typical oscillations in the shear layer due to the
Kelvin–Helmholtz instability mechanism. A quantitative characterisation of the
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0

0.5

1.0

50

t
100 150 200

FIGURE 5. Streamwise velocity at point A (x0= 2.5, y0= 0.4) versus time, extracted from
the reconstruction set. The reconstruction presented in § 4.2 was done solely based on this
signal and the mean flow shown in figure 4.

0.5 1.0 1.5 2.0
x

2.5 0.5 1.0 1.5 2.0
x

2.5

0.6

0

–0.6

–0.5

0

0.5

y

(a) (b)

FIGURE 6. (Colour online) Instantaneous fluctuation field about the mean flow for an
arbitrary time t = 50 of (a) the streamwise velocity and (b) the cross-stream velocity
(reference set). The streamwise velocity is symmetric with respect to y = 0 while the
cross-stream velocity is antisymmetric, as expected from a round jet, known to be
dominated by axisymmetric fluctuations.

dynamics has been made by computing frequency spectra at several locations in
the jet from the reference velocity field. To obtain statistically converged spectra, the
temporal velocity signals were processed following the classical Welch’s algorithm:
the time series were divided into 49 bins of 600 snapshots with a 66 % overlap, the
final spectra being obtained by averaging the spectra of each bin. Close to the nozzle,
they display a clear peak around a Strouhal number St = 0.76 (see figure 7a). The
boundary layer momentum thickness near the nozzle was measured as θ ≈ 0.023, and
therefore the Strouhal number based on θ is approximately 0.009, which is consistent
with the existing work in the literature for low-Reynolds-number jets (see for instance
Gutmark & Ho (1983)). At later stages of the development of the shear layer, the
spectra become more broadband, and the energy shifts to lower frequencies. The
dominant frequency becomes close to St = 0.38, corresponding to a subharmonic of
the Kelvin–Helmholtz frequency (see figure 7b). This can be attributed to downstream
vortex pairing, as explained in Yegavian et al. (2016).

The global dynamics of round jets is known to be dominated by fluctuation
modes of azimuthal wavenumbers m = 0 and m = 1, the m = 0 mode being
dominant where the shear layer thickness is small with respect to the diameter
(see for instance Davoust, Jacquin & Leclaire (2012)). In the present article, the
investigated jet is measured rather near to the nozzle exit, and θ is approximately
0.023 near the nozzle, explaining the apparent axisymmetry of the fluctuations that
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10–1

St St
100 10–1 100

(a) (b)

FIGURE 7. (Colour online) Frequency spectrum of the streamwise velocity at (a) x= 1.0,
y = 0.3 and (b) x = 1.5, y = 0.25, computed from the PIV results (reference set). The
upstream spectrum (a) displays a clear peak at St= 0.76, linked to the Kelvin–Helmholtz
mechanism, while further downstream (b) displays a broader spectrum centred around
St = 0.38. This latter frequency is related to the typical downstream vortex pairing that
occurs in such flows.

can be clearly observed in the PIV snapshots (symmetric streamwise velocity field
and antisymmetric cross-stream velocity field; see figure 6). Consequently, for the
reconstruction procedure used in the rest of the study, we consider an axisymmetric
framework, which has been validated a posteriori by the agreement between the PIV
results and the axisymmetric PSE analysis (§ 4.1).

The axisymmetric assumption requires one to post-process the PIV velocity fields
in order to accurately determine the streamwise direction and the location of the
symmetry axis of the jet. To this end, the camera was carefully oriented to be
approximately aligned with this axis. The small remaining misalignment was corrected
by computing, for each streamwise location x0, the centre yc(x0) of the corresponding
mean streamwise velocity profile u(x0, y), defined as

yc(x0)=min
y

∫ 1

0
(u(x0, y+ ỹ)− u(x0, y− ỹ))2 dỹ. (3.1)

The jet axis was computed by linear regression over the computed points yc, and
then the velocity components were corrected with respect to this new orientation.
Finally, the symmetry of the field with respect to this computed axis was assessed
by evaluating the quantity

max
x,y
|u(x, y)− u(x,−y)|/max

x,y
|u(x, y)|. (3.2)

This relative measure of the symmetry of the jet was found to equal 0.039. This
low value ensures the relevancy of the axisymmetric assumption. The origin of the
new system of coordinates is chosen to be at the centre of the nozzle exit. Figure 4
presents the mean streamwise velocity field in this new frame of reference. Note that
since the new fields are slightly rotated with respect to the original PIV snapshots, the
discrete velocity values have been evaluated on a new grid centred around the axis
of the jet using a third-order spline interpolation. The new grid covers the domain
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(0.5 6 x 6 2.75, −1 6 y 6 1) and contains 225 and 200 points in the streamwise and
cross-stream directions, respectively. The effect of this interpolation has been assessed
by considering a grid twice as dense in every direction. The impact on the snapshots,
the mean field and the PSE results has been found to be weak.

4. Time-resolved flow field reconstruction from the mean flow and one pointwise
unsteady measurement

4.1. Prediction of the Fourier modes from the mean flow
In this section, we aim to predict, for any arbitrary frequency ω0, the spatial structure
of the velocity Fourier mode Û(x, ω0) from the sole knowledge of the mean flow,
computed by time averaging the reconstruction set of PIV snapshots. As explained
in § 2.1, this may be achieved by computing the dominant resolvent modes with a
PSE analysis, by following the procedure detailed in appendix A. Note that the PSE
analysis has been performed in an axisymmetric framework, using the axisymmetric
mean flow defined by the upper half of the complete two-dimensional PIV mean flow
(see figure 4). In the following, we therefore switch from Cartesian coordinates (x, y)
to cylindrical coordinates (x, r), and the axial and radial velocity, denoted by ux and ur,
are taken equal to the streamwise velocity component u and the cross-stream velocity
component v of the upper half of the PIV domain, respectively. One may alternatively
use the lower half of the domain (but ur has to be taken equal to −v), but in our case,
this second choice led to similar results, and therefore is not presented here. Note that
in such an axisymmetric configuration, it is also possible to use both the upper and
lower parts of the domain, which virtually gives twice as many snapshots to produce
a mean flow that would be better converged. This may be useful when the number
of available snapshots is rather low, but this was not the case for the present study,
explaining why we did not use such processing.

The Fourier modes were computed by a DFT of the reference set of PIV snapshots.
Figures 8 and 9 assess the proportionality of the axial velocity of the dominant
resolvent mode and the Fourier mode (modulus and phase comparison of the fields,
respectively), for St = 0.76 (the Kelvin–Helmholtz frequency; see § 3). Figures 10
and 11 show the same comparison for the radial velocity, for St = 0.38 (the
Kelvin–Helmholtz subharmonic). For the sake of comparison, the modulus of every
mode has been normalised such that its maximum is 1, and the phases such that they
are equal to zero at an arbitrary location x = 2.25, r = 0.3. These figures illustrate
for the two velocity components, and for two different characteristic frequencies of
the flow, that, as claimed in § 2.1, the dominant resolvent mode is approximately
proportional to the Fourier mode (their moduli are approximately equal up to a
multiplicative constant and their phases up to an additive constant). However, this
agreement strongly deteriorates in low-energy parts of the flow. This is particularly
striking in figure 11 for instance. We see that close to r = 0, as well as for x< 1.7,
the two fields show a strong discrepancy. While it is known that the dominant modes
may not reproduce well the actual dynamics in the low-energy parts of the flow
(see Beneddine et al. (2016)), here the discrepancy could also be attributed to the
difficulty of measuring a signal with such a low fluctuating energy. Fluctuations in
these regions are instead dominated by measurement noise, which does not allow
any relevant comparison. Similar overall agreement has been found for all the other
investigated frequencies, for both the axial and radial velocity components. This
agreement justifies a posteriori the validity of the axisymmetric hypothesis.
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FIGURE 8. (Colour online) Comparison of the normalised modulus of the axial velocity
of (a) the Fourier mode computed by a DFT of the reference TR-PIV measurements
and (b) the dominant resolvent mode computed from the experimental mean flow only
(St = 0.76). Panels (c,d) compare profiles from the Fourier mode (dashed line) and
the dominant resolvent mode (continuous red line), extracted at r = 0.4 and x = 2.0,
respectively.
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FIGURE 9. (Colour online) Comparison of the normalised phase of the axial velocity
of (a) the Fourier mode computed by a DFT of the TR-PIV measurements and (b) the
dominant resolvent mode computed from the experimental mean flow only (St = 0.76).
Panels (c,d) compare profiles from the Fourier mode (dashed line) and the dominant
resolvent mode (continuous red line), extracted at r = 0.4 and x = 2, respectively. The
phase profiles have been unwrapped.
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FIGURE 10. (Colour online) Comparison of the normalised modulus of the radial velocity
of (a) the Fourier mode computed by a DFT of the TR-PIV measurements and (b) the
dominant resolvent mode computed from the experimental mean flow (St= 0.38). Panels
(c,d) compare profiles from the Fourier mode (dashed line) and the dominant resolvent
mode (continuous red line), extracted at r= 0.5 and x= 2.5, respectively.
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FIGURE 11. (Colour online) Comparison of the normalised phase of the radial velocity
of (a) the Fourier mode computed by a DFT of the reference TR-PIV measurements
and (b) the dominant resolvent mode computed from the experimental mean flow
(St = 0.38). Panels (c,d) compare profiles from the Fourier mode (dashed line) and
the dominant resolvent mode (continuous red line), extracted at r = 0.5 and x = 2.5,
respectively. The phase profiles have been unwrapped.
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FIGURE 12. (Colour online) Real part of the pressure Fourier mode computed with the
PSE analysis, from the experimental mean velocity field for (a) St=0.76 and (b) St=0.38,
corresponding respectively to the Kelvin–Helmholtz frequency and its subharmonic. The
downstream structure of panel (b) is approximately twice as large as the structures of
panel (a), consistent with the fact that this Kelvin–Helmholtz subharmonic is related to
downstream vortex pairing.

The PSE analysis also yields the prediction of the pressure modes, for which we do
not have any experimental comparison. Figure 12 presents the real part of the pressure
mode for the Kelvin–Helmholtz frequency St = 0.76 and the subharmonic St = 0.38,
where one can see alternating positive and negative pressure regions along the shear
layer, as classically observed in shear layers. We also observe that the downstream
structure that appears in figure 12(b) is approximately twice as large as the structures
in figure 12(a), consistent with the assumption that the frequency St= 0.38 is related
to downstream vortex pairing.

4.2. Time-resolved reconstruction of the snapshots
Following the procedure of § 2.1, we computed the amplitude function Λ using the
axial velocity ux at x0 = 2.5, r0 = 0.4 (the input signal can be seen in figure 5). This
choice of input point is discussed in more detail in § 5.1. The choice of the axial
velocity as the input quantity was arbitrary; using the radial velocity led to similar
results (not presented here). The snapshots are finally reconstructed by performing an
inverse DFT at every spatial point. The Λ function was computed for 0.2< St< 1.4,
which contains most of the energy of the flow (see figure 7), following relation (2.2).
Outside of this range, we set Λ= 0, which filters the low-energy part of the spectra.
In this frequency range, we computed 400 resolvent modes. This number stems from
the frequency resolution of the DFT of the input signal, a mode being computed for
every frequency within the range considered. Note that the final reconstructed set of
snapshots has therefore the same time sampling and duration as the input signal used
for the computation of Λ.

The reconstructed snapshots display good agreement with the reference set, as can
be seen in figure 13, which compares an axial velocity snapshot with the reference
PIV field. The size and location of energetic structures are well reconstructed. The
agreement is also good in lesser-energy locations. This can be seen in figure 14, which
compares the temporal evolution of the axial velocity from the reconstruction and the
reference set at the point (x= 2.0, r= 0). The oscillations of both signals are well in
phase, and their amplitude is very close. Note that the comparison cannot be made
in very low-energy parts of the flow, such as the near-axis and most upstream zones
in figure 11. This stems from the fact that the reference set is not accurate in such
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FIGURE 13. (Colour online) Comparison of the axial velocity of (a) the reconstructed
field and (b) the TR-PIV field (reference set) at t= 75.
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FIGURE 14. (Colour online) Comparison of the axial velocity computed from the TR-PIV
snapshots (reference set, dashed line) and the reconstructed signal (red continuous line) at
x = 2.0 and r = 0 (a point presenting an intermediate level of energy), for an arbitrary
time range 50< t< 100.

regions (the signal-to-noise ratio is low) and the model is not designed to reconstruct
low-energy behaviour anyway (see Beneddine et al. (2016)).

In order to provide a more quantitative comparison, we introduce an instantaneous
global measure of the error, denoted by e(t), defined as

e(t)=

√√√√ 1
Np

Np∑
i=1

(ui
x(t)− ui

x,0(t))2, (4.1)

with Np the number of discrete points where the velocity is known, and ui
x and

ui
x,0 the ith discrete streamwise velocity values of the reconstructed field and of

the reference field, respectively. This quantity corresponds to the root mean square
over the whole domain of the velocity error, expressed in non-dimensional units.
One should note that both the reconstruction errors and the PIV measurement errors
contribute to the value of e(t), therefore it would not be zero even in the case of
a perfect reconstruction. Figure 15 shows the temporal evolution of this error, and
we see that the discrepancy between the reference and the reconstruction does not
vary much with time (approximately 0.04), ensuring that the global quality of the
reconstruction is approximately constant over the full time range considered.

As explained in § 2.1, the amplitude function Λ computed from only one flow
variable (here the axial velocity) yields the reconstruction of all other fluctuating
quantities (pressure and radial component of velocity). Figure 16 compares a
reconstructed radial velocity snapshot with the corresponding reference field, and
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FIGURE 15. Time evolution of the global axial velocity error (continuous line) for an
arbitrary temporal range 50< t< 100. The dashed line represents the mean error over the
full time range (0< t< 333), which is approximately equal to 0.038.
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FIGURE 16. (Colour online) Comparison of the radial velocity of the reconstructed field
(a) and the reference PIV fields (b) at t= 75.
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FIGURE 17. Time evolution of the global radial velocity error (continuous line) for an
arbitrary temporal range 50< t< 100. The dashed line represents the mean error over the
full time range (0< t< 333), which is approximately equal to 0.031.

the agreement is once again favourable. Figure 17 shows the temporal evolution of
e, and the level of error is again rather steady over time, with values close to that
of the axial velocity (approximately 0.03). For the pressure reconstruction, we do
not have experimental results to serve as reference, but the accurate reconstruction
of the radial velocity is a strong argument in favour of the quality of the pressure
reconstruction. Indeed, nothing distinguishes these two variables in our approach.
Moreover, the resulting pressure fluctuation field p′(x, r) is reminiscent of what is
expected in such a jet (see figure 18a), with alternating positive and negative pressure
regions that grow in size and amplitude when moving downstream.

Another remarkable feature of the reconstructed fields is their smoothness, which
makes them easily differentiable. This is of high importance for the computation of
derived quantities such as the vorticity, which is sometimes difficult to accurately
compute from PIV measurements, especially in a time-resolved context where the
fields display stronger noise. As an illustration, figure 19 compares a vorticity snapshot
computed from the PSE reconstruction, the reference PIV set and the reconstruction
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FIGURE 18. (Colour online) (a) Reconstructed pressure fluctuation field at t= 75; (b)
mean square pressure fluctuation field p′2.
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FIGURE 19. (Colour online) Comparison of the azimuthal vorticity at t = 75, computed
from (a) the PSE-based reconstructed field, (b) the reference PIV set and (c) the
reconstruction PIV set.

PIV set. The fields have been obtained from differentiation of the velocity snapshots,
based on second-order centred finite differences, with a stencil length equal to 0.08
(twice the length of the interrogation window used for the PIV estimation). The
reconstructed vorticity compares very favourably with the reference. The vorticity
directly derived from the PIV reconstruction set illustrates the kind of results that are
obtained from PIV when the level of noise is too high. This strongly deteriorates the
estimation of the derivatives, while the same level of noise in the input data for the
PSE reconstruction has no similar impact on the reconstructed field. Note that the
vorticity is one among many other derived quantities that may be determined from
the present reconstruction. For instance, figure 18(b) shows the mean square pressure
fluctuation field p′2, and any mean square fluctuation or Reynolds stress term could
be similarly computed, and exploited for further physical analysis.

5. Robustness of the reconstruction method
5.1. Influence of the choice of input point

The reconstruction model of this work is based on that of Beneddine et al. (2016),
who explained that the point used for the computation of the function Λ should be in
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FIGURE 20. (Colour online) Position of the eight points considered to study the influence
of the input point location on the accuracy of the reconstruction; point A is the original
point considered in § 4.2.

a high-energy region of the flow to yield an accurate reconstruction. This requirement
stems from the fact that the dominant resolvent modes accurately reproduce the
Fourier modes in these regions, but there is no guarantee that this agreement would
be as good in low-energy regions. This is confirmed in our case, and can be seen
in figures 8 to 11, where we see that the strongest discrepancy between dominant
resolvent modes and Fourier modes appears in low-energy regions. But as mentioned
in § 4.1, in our case this could be attributed to a poor signal-to-noise ratio in
low-energy regions of the flow, a common problem in experimental studies. This issue
can be clearly seen in figures 9(a) and 11(a) for instance, where the non-energetic
upstream part of the domain has strong noise, yielding a significant discrepancy with
the dominant resolvent fields.

To assess the sensitivity of the results to the input point, we considered seven
additional points along the shear layer for the determination of Λ (in total, four
points above the shear layer and four points below; see figure 20 for the position of
the points). The reconstruction is based on the streamwise component of the velocity
only, as was done in § 4.2. For each of these points, we computed the global error
E, defined as

E= (1/Tmax)

∫ Tmax

0
e(t) dt, (5.1)

with Tmax = 333 the duration of the TR-PIV acquisition and e the instantaneous error
(see (4.1)). The resulting values can be seen in table 1, and we observe two clear
tendencies: the points located downstream yield a smaller error than the ones located
upstream, and the points above the shear layer display a larger error than the ones
below. This is fully consistent with the findings of Beneddine et al. (2016), who
explained that input points located in high-energy regions yield smaller error. Indeed,
here the downstream region contains more energy than the upstream one, where the
Kelvin–Helmholtz instability has not fully developed yet. Also, concerning the axial
velocity, the region inside the jet has been found to be more energetic than the region
outside. This can be observed for instance in figure 8 for St= 0.76.

For a given flow configuration, the location of high-energy regions may usually
be determined by prior physical knowledge of the qualitative dynamics of the
flow. It may therefore be easy to predict good locations for the input sensor
in most situations. However, it is likely that the flow dynamics would involve
several characteristic frequencies, or even a range of frequencies, and that these
frequencies would be related to different locations of the flow. In such a case, it is
not possible to find a single location that would be energetic for all these frequencies.
As explained by Beneddine et al. (2016), this may be treated by considering n
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Point(s) error E x r

A 0.038 2.5 0.4
B 0.047 2 0.4
C 0.062 1.5 0.4
D 0.092 1 0.4
E 0.059 2.5 0.6
F 0.061 2 0.6
G 0.069 1.5 0.6
H 0.117 1 0.6
A and H 0.037 — —
E to H 0.046 — —
All points 0.035 — —

TABLE 1. Comparison of the global error for different input points or sets of points.

points for the determination of Λ, leading to an overdetermined set of n equations
{Λ(ω)= ûx(ω, xk, rk)/ũωx (xk, rk), 1 6 k 6 n} that may be solved by least squares. The
resulting Λ would be weakly affected by low-energy points, such that for every
frequency, only high-energy points would contribute to its value. The reconstruction
would also be likely to be more accurate because it would be based on more input
data. Finally, multiplying the number of input points may be useful when there is not
any prior knowledge of the energetic regions, or when this knowledge is not accurate
enough, since only one of the sensors needs to be well positioned.

We have tested this approach by considering the best and worst points together
(A and H; see table 1). The result, close to that obtained with A only, shows that
the reconstruction is not degraded by the poorly chosen point H. Therefore, in an
experimental context, an accurate prediction would be achieved by using several
pointwise measurements as long as at least one of them is located in a high-energy
part of the flow for each frequency of interest. We also tested the four points above
the shear layer (E to H) together, as well as all points together, and table 1 shows that
when Λ is based on a set of points, the results appear to be always more accurate
than the single-point reconstruction based on the best point of the set. This is of
high importance in an experimental context, when using a sensor at some specific
high-energy points may be too intrusive (for example at points A to D). This gives
more flexibility to the method, since lower-energy points might also be used, as
long as they are sufficiently numerous. In particular, one may position a rather large
number of sensors downstream from the region of interest and obtain a satisfactory
reconstruction, even if this region is not the most energetic one.

5.2. Impacts of an inaccurate knowledge of the input sensor position
The present procedure is intended to be used with unsteady data obtained from
pointwise sensors. However, in practice, the spatial positions of these sensors can be
subject to some uncertainties. In this section, the impact of such inaccurate knowledge
of an input sensor position on the quality of the unsteady reconstruction is studied
by considering an input sensor positioned at (x0 + δx, r0 + δr), but which would
be erroneously assumed to be located at (x0, r0). In the procedure, this amounts
to selecting a different input signal from that of figure 5, such that the computed
amplitude function is no longer defined by (2.2), but becomes equal to the following
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FIGURE 21. (Colour online) Comparison of the streamwise velocity of (a) the unbiased
reconstructed field (no misplacement of the input sensor), (b) biased reconstructed field
with δx = δr = 0.05, (c) biased reconstructed field with δx = δr = 0.1 and (d) biased
reconstructed field with δx = δr = −0.2, for t = 10 and (x0, r0) = (2.5, 0.4). The
reconstruction is performed using the axial velocity component.

biased amplitude function:

Λb =
ûx(ω, x0 + δx, r0 + δr)

ũωx (x0, r0)
. (5.2)

For the reconstruction, we found that such a misplacement mainly results in a
streamwise translation of the structures of the fields and, to a lesser extent, a moderate
change in their overall amplitude and shape. This overall effect on the reconstruction
can be seen in figure 21 for δx = δr = 0.05, δx = δr = 0.1 and δx = δr = −0.2
(Λ is computed from the axial velocity and (x0, r0) = (2.5, 0.4)). In physical units,
this corresponds respectively to misplacements of 0.85, 1.7 and 3.4 mm, i.e. from
realistic up to overestimated experimental positioning errors. When compared with an
unbiased reference snapshot (figure 21a), these biased snapshots seem to all present a
phase shift. Besides this dephasing, the resulting field displays the expected physical
features (alternating positive and negative structures along the shear layer that grow
in size and amplitude in the streamwise direction). This demonstrates that despite a
possibly significant misplacement, the reconstruction does not degenerate but rather
keeps a certain physical relevancy. This may be explained by the fact that here we
consider flows displaying coherent structures, which present by definition a strong
spatial correlation. Therefore, the energy content of the frequency spectrum will not
suddenly change upon considering a point that is slightly misplaced (the spectrum
will display a similar shape with the same dominant frequencies). The phase of the
spectrum may, however, change significantly, which explains why the main observable
effect of a misplacement is a dephasing of the fields.

Despite this weak overall impact on the physical features of the reconstruction, it
may still be interesting to minimise the sensitivity with respect to misplacements by
a relevant choice of input data. To address this issue, let us decompose the biased
amplitude function Λb as

Λb =Λ+ δΛ, (5.3)
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with Λ= ûx(ω, x0, r0)/ũωx (x0, r0) the unbiased amplitude function defined by (2.2) and
δΛ a spurious term that reads

δΛ=
δûx

ũωx (x0, r0)
, (5.4)

with δûx = ûx(ω, x0 + δx, r0 + δr) − ûx(ω, x0, r0). For the reconstruction to be
weakly affected by the misplacement of the sensor, δΛ has to be small with respect
to Λ, which would ensure that each Fourier mode is rebuilt with good accuracy.
The spurious effect of the misplacement may therefore be evaluated by the ratio
b = |δΛ/Λ| = |δûx/ûx|. Finally, using the proportionality between the Fourier modes
and the dominant resolvent modes yields the following expression for b:

b=
∣∣∣∣ ũωx (x0 + δx, r0 + δr)− ũωx (x0, r0)

ũωx (x0, r0)

∣∣∣∣ . (5.5)

This expression only involves the dominant resolvent modes, and may therefore be
computed by knowing only the mean flow. Assuming that the misplacement (δx, δr)
is small, b may be linearised as

b= |bx(ω, x0, r0)δx+ br(ω, x0, r0)δr|, (5.6)

with bx and br respectively the axial and radial sensitivity coefficients defined as

bx = ∂xũωx /ũ
ω
x , br = ∂rũωx /ũ

ω
x . (5.7a,b)

Small values of |bx| and |br| correspond to low sensitivity with respect to misplacements
of the sensors, but the converse is not true, as b may be small even for large values
of |bx| and |br| (errors along x and r may compensate for each other). In addition,
the value of this coefficient does not give any indication regarding the type of effect
of a misplacement, which could be a simple phase shift (as evidenced in figure 21),
or a more significant distortion of the fields. Therefore, this coefficient only gives
qualitative guidelines to minimise the impact of misplacements.

First, it should be noted that these coefficients depend on the input physical
quantity considered: here bx and br are defined from ux, but using for instance
the radial velocity ur as input data for the reconstruction yields bx = ∂xũωr /ũ

ω
r and

br = ∂rũωr /ũ
ω
r . Consequently, the sensitivity with respect to misplacements may be

reduced by considering an input physical quantity whose Fourier modes do not
exhibit strong spatial gradients. In the case of the jet, while the axial velocity modes
display some abrupt variations across the shear layer, as can be seen for instance
in figure 9, the radial velocity or pressure modes do not display such high-gradient
regions (see figures 10 and 12). The reconstruction may be more robust if based on
a local record of one of these two quantities, especially if the sensors are designed
to be near the shear layer.

Equations (5.6) and (5.7) also give insight into the best locations for the input
sensors. Due to the division by the local amplitude of the resolvent modes in (5.7),
bx and br are expected to be small in high-energy regions, as long as the local spatial
gradients do not become too strong. Moreover, the spatial gradients are expected to
be rather small in the direct neighbourhood of a local energy maxima. Figure 22
compares the quantity |bx| + |br| (computed from the radial velocity modes) with |ũωr |
for St= 0.76, and we see that high-energy regions are indeed rather weakly sensitive.
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FIGURE 22. (a) Sensitivity map with respect to misplacements of the input sensors, for
the radial velocity ur used an input (the quantity displayed is |bx|+ |br|); (b) radial velocity
modulus of the normalised dominant resolvent mode. For both panels, St = 0.76. The
panels show a relative correspondence between low-sensitivity and high-energy regions.

While the considerations related to the sensor misplacements completely differ from
those of § 5.1, we are here led to a similar conclusion: the input sensors should be
preferably positioned in energetic regions.

Finally, this rather good correspondence between high-energy and low-sensitivity
points is interesting if multiple input points are considered for the computation of
Λ. The procedure used for the determination of Λ is then based on a least-squares
minimisation that rules out the low-energy points, for each single frequency of the
reconstruction (see § 5.1). It is therefore expected to also rule out the high-sensitivity
points, which increases the overall robustness of the method.

5.3. Sensitivity with respect to the mean flow measurements
The PIV measurements need to be accurate enough to yield a proper mean flow.
In addition to the experimental conditions, the key parameter that influences the
quality of the PIV velocity estimation is the size of the interrogation window: a large
interrogation window contains more particles, which reduces the measurement noise,
but it tends to smooth down the spatial gradients of the flow.

In the previous sections, we have used a mean flow that yields an accurate
reconstruction, confirming a posteriori that the choice of the size of the interrogation
windows was appropriate (see § 3). Choosing a smaller window increases the level
of noise, but this does not have any significant impact on the final mean flow, as
long as the number of snapshots used for the time averaging is high enough for
convergence to be reached. However, taking an overly large interrogation window
yields a mean flow that displays inaccurate, biased spatial gradients. This may be
observed in figure 23, which compares the original mean flow (mean flow A) with a
new mean flow (mean flow B), obtained with interrogation windows twice as large in
each direction (Gaussian window, 37 × 37 pixels, σ = 8). The overall effect of this
enlargement is an underestimation of the spatial derivatives of the mean flow. For
St= 0.38 (the dominant frequency in the downstream zone of the flow), the dominant
resolvent modes computed from mean flow A or B have been found to be hardly
distinguishable. However, as we go to higher frequencies, an increasingly strong
discrepancy appears when considering one mean flow or another. This discrepancy is
therefore particularly important for high frequencies, as can be seen for instance in
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FIGURE 23. (Colour online) Comparison between mean flow A (black continuous line)
and mean flow B (red dashed line), the latter corresponding to a PIV processing with a
larger interrogation window. Panels (a) and (b) respectively display ux and ∂ux/∂r at x= 2,
where ux is the mean axial velocity.
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FIGURE 24. Comparison between the normalised modulus of the dominant resolvent mode
(radial velocity) at St= 0.76 computed from (a) mean flow A (reference mean flow) and
(b) mean flow B (larger interrogation window in the PIV processing).

figure 24: for the Kelvin–Helmholtz frequency St = 0.76, the mode computed from
mean flow B is abnormally energetic in the upstream region of the jet. The impact
on the final reconstruction may be observed in figure 25 (reconstruction based on
the axial velocity at (x= 2.5, r = 0.4)): while the large low-frequency structures are
correctly reconstructed downstream, some spurious high-frequency structures appear
upstream of the flow.

These results show that the quality of the reconstruction is conditioned by the
accuracy of the mean flow measurement, and one crucial aspect is the correct
evaluation of the spatial gradients of the mean flow. In our case, it is found that
when these gradients are erroneously evaluated, the final reconstruction exhibits
abnormal levels of energy for high-frequency structures only. Note that this kind of
preoccupation mainly concerns configurations where the seeding density would be
particularly low, or where some parts of the flow contain really few particles. These
two situations would be the only ones justifying the use of windows so large that it
would have a significant impact on the PSE analysis.
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FIGURE 25. (Colour online) Comparison between a reconstructed radial velocity snapshot
computed from (a) mean flow A (reference mean flow) and (b) mean flow B (larger
interrogation window in the PIV processing).

6. Conclusion
This study shows that, in the case of a round jet at Re= 3300, the sole knowledge

of the mean flow and the unsteady behaviour of one velocity component at a given
point is enough to yield a reconstruction of all the variables of the flow field,
including the pressure fluctuations. The reconstruction procedure is based on the
work of Beneddine et al. (2016), and relies on the ability of a PSE analysis on the
mean flow to yield the dominant resolvent modes, which gives an approximation
of the spatial structure of the Fourier modes of the flow. Such an analysis is of
computationally low demand and easy to implement. It is also particularly well
adapted to the study of experimental configurations since it can be used even when
the mean flow is known on a rather small region.

The reconstruction quality is conditioned by the choice of the input measurement
location: for the reconstruction to be accurate, the input has to be located in a rather
energetic area of the flow. Moreover, high-energy locations are likely to be robust
with respect to a small misplacement of the sensors (but in our case the overall effect
of a misplacement was rather limited). In some situations, determining a priori these
optimal locations may be difficult. Hopefully, as demonstrated in the last section
of the article, this issue may be solved by increasing the number of inputs: the
reconstruction technique is then more robust and accurate even if the sensors are
not optimally positioned. This gives more flexibility for the location of the inputs.
For instance, with enough sensors, one may avoid intrusive regions and place all the
inputs downstream of the flow. The accuracy of the reconstruction is also naturally
related to the quality of the mean flow measurement. But the present study proves that
a sufficiently accurate mean flow may be obtained from classical two-frame PIV even
in difficult experimental conditions (e.g. here, with a low seeding density). The noise
present in the PIV snapshots should not impact the reconstruction, since it cancels out
in the mean flow as soon as enough snapshots have been acquired and convergence
is achieved. Standard PIV parameters yield, in our case, a good reconstruction, and
the main precaution that emerged concerns the interrogation window used for the
PIV processing, as it may lead to bias present in the mean flow. If it is excessively
large, then the final mean flow may present erroneous spatial derivatives, which in
our reconstruction had an impact on high-frequency structures.

The present work is a successful example of the use of our reconstruction
method, but it does not guarantee the generality of the approach, especially for
higher-Reynolds-number flows. Beneddine et al. (2016), who first introduced it,
showed that the mathematical condition which justifies the validity of the underlying
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theory is that the resolvent operator should present a clear separation of singular
values. From a physical point of view, this relates to the existence of one dominant
instability mechanism, such as the Kelvin–Helmholtz mechanism in the round jet.
The reconstruction of the flow field, filtered within the range where instability
mechanisms dominate, is then possible. This range covers all energetic frequencies
of the transitional jet studied here.

Yet for higher-Reynolds-number flows, the situation is more complex, even for
frequencies where the separation of singular values holds. The expected proportionality
between dominant response and Fourier mode is often observed only over a limited
spatial region (see Cavalieri et al. (2013) for instance). The observed mismatch
is not yet understood. It has been partially addressed by Beneddine et al. (2016).
While turbulent flows are known to exhibit both organised structures and spatially
uncorrelated fluctuations, they showed that only the former may be predicted by a
rank-1 model based on the optimal response about the mean flow. Hence, using the
present reconstruction method in such cases could, at best, only provide the correlated
part of the fluctuation field. In such cases, the present technique therefore requires
further insight, which is beyond the scope of this paper.

A possible way to tackle this question might be to consider higher-rank
approximations for the reconstruction. The procedure would be very similar to that
presented in this article, except that a PSE analysis would not be adapted, as it only
provides an approximation of the first dominant resolvent mode. A classical resolvent
analysis would be needed to compute the first n resolvent modes. Equation (2.1) may
then be generalised by approximating the Fourier mode by a linear combination of
the resolvent modes. Using similar notation to that in (2.1), we would have

ûx(ω, x, r)≈
n∑

i=1

Λi(ω)ũωx,i(x, r), (6.1)

with ũωx,i the streamwise velocity component of the ith resolvent mode at frequency ω.
Then, using at least n pointwise measurements, the amplitude functions Λi could
be determined by least squares, similarly to what has been done in § 5.1, when we
considered multiple input points.

This multiple-mode approach may also be useful in a situation where the dynamics
is dominated by several modes. For instance in a jet, if both m= 0 and m= 1 modes
are strong, a PSE analysis could be performed for both m= 0 and m= 1 disturbances,
and the final field reconstructed following the procedure briefly explained in the
previous paragraph. Note that for the placement of the input points, the conclusions
of § 5 still apply: for a given resolvent mode, at least one of the points needs to be
in a high-energy region of this mode.

Here, this reconstruction method is used on two-dimensional data, but in the case
where one would be able to produce a three-dimensional mean flow measurement, then
the exact same procedure, based on tri-dimensional PSE (see for instance Theofilis
(2011)), may be used to rebuild a full three-dimensional time-resolved flow field. This
could be of great interest since the existing methods to measure a flow field in a
volume still remain very difficult to apply in a time-resolved context.
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Appendix A. Axisymmetric PSE analysis
Given a weakly non-parallel axisymmetric mean flow q= (ux(x, r), ur(x, r), p(x, r)),

an axisymmetric PSE analysis about this mean flow consists of considering small
harmonic perturbations (u′x, u′r, p′) at a frequency ω, which are governed by the
linearised Navier–Stokes equations, which for an incompressible flow read

∂xu′x + ∂ru′r +
u′r
r
= 0,

∂tu′x + ux∂xu′x + ur∂ru′x + ∂xuxu′x + ∂ruxu′r

=−∂xp+
1

Re

(
∂xxu′x + ∂rru′x +

∂ru′x
r

)
,

∂tu′r + ux∂xu′r + ur∂ru′r + ∂xuru′x + ∂ruru′r

=−∂rp′ +
1

Re

(
∂xxu′r + ∂rru′r + ∂r

(
u′r
r

))
,


(A 1)

where Re is the Reynolds number. Note that p is not needed since it does not appear
in the equations. A PSE analysis assumes that every fluctuating quantity can be
separated into a shape function and an exponential function. For instance, u′x is taken
to be of the form

u′x = ũx(x, r) exp
(∫ x

x0

α(ξ) dξ − iωt
)
. (A 2)

The streamwise wavenumber function α accounts for the growing and decaying of the
wave, while the change of the wave shape is carried by ũx. Finally, the parabolised
stability equations are obtained by considering the slowly varying flow assumption
(Herbert 1997), which consists of setting ∂x, ur ∼ O(1/Re) and then neglecting all
the terms of order ∼(1/Re)2 and higher. This yields the following expressions for the
streamwise derivatives of the shape functions:

∂xũx =−αũx −

(
∂r +

1
r

)
ũr, (A 3)

∂xũr =
1
ux

(
iω− αux − ur∂r − ∂rur +

1
Re

(
∂rr + α

2
+
∂r

r
−

1
r2

))
ũr −

1
ux
∂rp̃, (A 4)

∂xp̃=
(

iω− ur∂r − ux +
1

Re

(
∂rr + α

2
+
∂r

r

))
ũx +

(
ux∂r +

ux

r
− ∂rux

)
ũr − αp̃.

(A 5)

In the present study, the previous equations have been discretised using second-order
centred finite differences for the radial direction, and by imposing ∂xũx= ũr = ∂xp̃= 0
at r = 0 and ũx = ũr = 0 at r = rmax (upper boundary of the domain). This gives a
discretised problem that may be recast in the compact matrix form

∂xq̃= Lq̃, (A 6)

with q̃ = (ũ, ṽ, p̃)T and L the discretised operator corresponding to (A 3), (A 4) and
(A 5). Starting from an initial value for the shape functions and α at a certain upstream
location x0, equation (A 6) can be propagated downstream to compute the fluctuation
field for x > x0: the state vector q̃j+1 = q̃(xj+1) at a downstream location xj+1 may
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be computed from the value q̃j directly upstream from it, by solving the first-order
approximation

(I −1xL)q̃j+1 = q̃j, (A 7)

with 1x = xj+1 − xj the spatial step and I the identity matrix. The initial conditions
(q̃0, α0) are usually computed from a local spatial linear stability analysis using the
mean velocity profile at x0. Note that an additional condition must be imposed to
remove the ambiguity of the decomposition in (A 2), which allows the streamwise
development of the wave to be absorbed either by the shape function or by α. The
auxiliary condition usually considered is∫ rmax

0
q̃∗∂xq̃r dr= 0, (A 8)

where the superscript ∗ denotes the conjugate transpose. This relation ensures that
most of the streamwise variation is absorbed by α. This provides an update algorithm
for αj+1 = α(xj+1) (see for instance Gudmundsson & Colonius (2011)):

αn+1
j+1 = α

n
j+1 −

1
1x

(∫ rmax

0
(q̃n

j+1)
∗(q̃n

j+1 − q̃j)r dr
)/(∫ rmax

0
(q̃n

j+1)
∗q̃n

j+1r dr
)
. (A 9)

By iterating between (A 7) and (A 9) until convergence, the solution can be advanced
from xj to xj+1.

In practice, this procedure may not converge for spatial steps 1x that are too
small. For the present study, we therefore used the stabilising procedure described in
Andersson, Henningson & Hanifi (1998), which consists of rewriting (A 7) as

(I −1xL− sL)q̃j+1 = (I − sL)q̃j, (A 10)

where s is a positive scalar whose value depends on 1x and the local value of α (see
Andersson et al. (1998)). This procedure allows an arbitrarily small spatial step 1x.

REFERENCES

ADRIAN, R. J. 1979 Conditional eddies in isotropic turbulence. Phys. Fluids 22 (11), 2065–2070.
ANDERSSON, P., HENNINGSON, D. S. & HANIFI, A. 1998 On a stabilization procedure for the

parabolic stability equations. J. Engng Maths 33 (3), 311–332.
BARKLEY, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750–756.
BENEDDINE, S., SIPP, D., ARNAULT, A., DANDOIS, J. & LESSHAFFT, L. 2016 Conditions for validity

of mean flow stability analysis. J. Fluid Mech. 798, 485–504.
CAVALIERI, A., RODRÍGUEZ, D., JORDAN, P., COLONIUS, T. & GERVAIS, Y. 2013 Wavepackets in

the velocity field of turbulent jets. J. Fluid. Mech. 730, 559–592.
CHAMPAGNAT, F., PLYER, A., LE BESNERAIS, G., LECLAIRE, B., DAVOUST, S. & LE SANT, Y.

2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization.
Exp. Fluids 50 (4), 1169–1182.

COLE, D. R. & GLAUSER, M. N. 1998 Applications of stochastic estimation in the axisymmetric
sudden expansion. Phys. Fluids 10 (11), 2941–2949.

DAVOUST, S., JACQUIN, L. & LECLAIRE, B. 2012 Dynamics of m= 0 and m= 1 modes and of
streamwise vortices in a turbulent axisymmetric mixing layer. J. Fluid Mech. 709, 408–444.

EHRENSTEIN, U. & GALLAIRE, F. 2005 On two-dimensional temporal modes in spatially evolving
open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209–218.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

33
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.333


Unsteady flow dynamics reconstruction from mean flow and point sensors 201

GÒMEZ, F., BLACKBURN, H. M., RUDMAN, M., SHARMA, A. S. & MCKEON, B. J. 2016a A
reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent
operator. J. Fluid Mech. 798, R2.

GÒMEZ, F., SHARMA, A. S. & BLACKBURN 2016b Estimation of unsteady aerodynamic forces using
pointwise velocity data. J. Fluid Mech. 804, R4.

GUDMUNDSSON, K. & COLONIUS, T. 2011 Instability wave models for the near-field fluctuations of
turbulent jets. J. Fluid Mech. 689, 97–128.

GUEZENNEC, Y. G. 1989 Stochastic estimation of coherent structures in turbulent boundary layers.
Phys. Fluids A 1 (6), 1054–1060.

GUTMARK, E. & HO, C. 1983 Preferred modes and the spreading rates of jets. Phys. Fluids 26
(10), 2932–2938.

GUZMÁN IÑIGO, J., SIPP, D. & SCHMID, P. J. 2014 A dynamic observer to capture and control
perturbation energy in noise amplifiers. J. Fluid Mech. 758, 728–753.

HERBERT, T. 1997 Parabolized stability equations. Annu. Rev. Fluid Mech. 29 (1), 245–283.
HUDY, L. M., NAGUIB, A. & HUMPHREYS, W. M. 2007 Stochastic estimation of a separated-flow

field using wall-pressure-array measurements. Phys. Fluids 19 (2), 024103.
JEON, Y. J., CHATELLIER, L. & DAVID, L. 2014 Fluid trajectory evaluation based on an ensemble-

averaged cross-correlation in time-resolved PIV. Exp. Fluids 55 (7), 1–16.
JORDAN, P. & COLONIUS, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech.

45, 173–195.
LYNCH, K. & SCARANO, F. 2013 A high-order time-accurate interrogation method for time-resolved

PIV. Meas. Sci. Technol. 24 (3), 035305.
MCKEON, B. J. & SHARMA, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid

Mech. 658, 336–382.
MURRAY, N. E. & UKEILEY, L. S. 2003 Estimation of the flowfield from surface pressure

measurements in an open cavity. AIAA J. 41 (5), 969–972.
NAGUIB, A. M., WARK, C. E. & JUCKENHÖFEL, O. 2001 Stochastic estimation and flow sources

associated with surface pressure events in a turbulent boundary layer. Phys. Fluids 13 (9),
2611–2626.

PIER, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake.
J. Fluid Mech. 458, 407–417.

RODRÍGUEZ, D., CAVALIERI, A. V. G., COLONIUS, T. & JORDAN, P. 2015 A study of linear
wavepacket models for subsonic turbulent jets using local eigenmode decomposition of PIV
data. Eur. J. Mech. (B/Fluids) 49, 308–321.

SASAKI, K., PIANTANIDA, S., CAVALIERI, A. V. G. & JORDAN, P. 2017 Real-time modelling of
wavepackets in turbulent jets. J. Fluid Mech. 821, 458–481.

STOKES, S. & GLAUSER, M. 1999 Multi-point measurement techniques used in the study of separated
flows. In 30th AIAA Fluid Dynamics Conference, AIAA Paper, vol. 28, p. 3518.

THEOFILIS, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352.
TISSOT, G., ZHANG, M., LAJÚS, F. C., CAVALIERI, A. V. G. & JORDAN, P. 2017 Sensitivity of

wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811,
95–137.

TOWNE, A. & COLONIUS, T. 2015 One-way spatial integration of hyperbolic equations. J. Comput.
Phys. 300, 844–861.

TU, J. H., GRIFFIN, J., HART, A., ROWLEY, C. W., CATTAFESTA, L. N. III & UKEILEY, L. S. 2013
Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic
estimation of velocity fields. Exp. Fluids 54 (2), 1–20.

TUNG, T. C. & ADRIAN, R. J. 1980 Higher-order estimates of conditional eddies in isotropic
turbulence. Phys. Fluids 23 (7), 1469–1470.

YEGAVIAN, R., LECLAIRE, B., CHAMPAGNAT, F., ILLOUL, C. & LOSFELD, G. 2016 Lucas-Kanade
fluid trajectories for time-resolved PIV. Meas. Sci. Technol. 27 (8), 084004.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

33
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.333

	Unsteady flow dynamics reconstruction from mean flow and point sensors: an experimental study
	Introduction
	Context of the study
	Contribution and scope of the study

	Reconstruction procedure
	Description of the procedure
	Causality of the reconstruction

	Characterisation of the application case
	Experimental set-up and data processing
	Characterisation of the unsteady behaviour of the jet

	Time-resolved flow field reconstruction from the mean flow and one pointwise unsteady measurement
	Prediction of the Fourier modes from the mean flow
	Time-resolved reconstruction of the snapshots

	Robustness of the reconstruction method
	Influence of the choice of input point
	Impacts of an inaccurate knowledge of the input sensor position
	Sensitivity with respect to the mean flow measurements

	Conclusion
	Acknowledgements
	Appendix A. Axisymmetric PSE analysis
	References


