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The linear stability of uniform, plane internal wave beams with locally confined
spatial profile, in a stratified fluid of constant buoyancy frequency, is discussed.
The associated eigenvalue problem is solved asymptotically, assuming perturbations
of long wavelength relative to the beam width. In this limit, instability is found only
for oblique disturbances which vary in the along-beam and the horizontal transverse
directions. The mechanism of instability is a first-harmonic–mean resonant interaction
between the underlying wave beam and three-dimensional perturbations that comprise
a time-harmonic component, with the beam frequency, and a mean flow. Progressive
beams which transport energy in one direction, in particular, are unstable if the
beam steepness exceeds a certain threshold value, whereas purely standing beams
are unstable even at infinitesimal steepness. A distinguishing feature of this three-
dimensional modulational instability is the generation of circulating horizontal mean
flows at large distances from the vicinity of the beam.
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1. Introduction
Internal gravity wave beams are fundamental to continuously stratified media and

have received considerable attention in the past decade, both from a theoretical
perspective and in connection with various geophysical processes. The origin and
salient features of wave beams can be readily understood from the well-known
dispersion relation obeyed by sinusoidal plane waves in a uniformly stratified
Boussinesq fluid; see, for example, Lighthill (1978). A remarkable property of this
dispersion relation, reflecting the anisotropic propagation of internal gravity waves,
is that the wave frequency depends on the inclination relative to the vertical, but
not the magnitude, of the wave vector. By superposition of sinusoidal plane waves
with common frequency and wavevectors pointing in the same direction but having
different magnitude, therefore, it is possible to construct wave beams: time-harmonic
plane waves with general spatial profile that stretch along a direction that depends
on the wave frequency. Moreover, as internal waves are transverse, the velocity field
associated with such a uniform beam is solely in the beam direction, along which no
variations are present. All convective-acceleration terms in the governing equations
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of motion thus vanish identically, and a uniform beam, regardless of its profile,
represents an exact nonlinear solution in an unbounded, inviscid, uniformly stratified
fluid (McEwan 1973; Tabaei & Akylas 2003).

A simple way of generating internal wave beams is by forcing with a localized
time-harmonic disturbance at a frequency below the background buoyancy frequency,
as demonstrated by Mowbray & Rarity (1967) using an oscillating horizontal cylinder
as wave source in a stratified fluid tank. These classic experiments also confirmed that
the group velocity is orthogonal to the phase velocity, energy thus being transported
along planes of constant phase, an intuitively surprising result which, too, derives from
the anisotropy of the internal-wave dispersion relation noted above. Later, Bell (1975)
showed analytically that wave beams make up the far-field disturbance induced by
a time-harmonic current of stratified fluid of infinite depth over a locally confined
bottom obstacle of small amplitude. The suggestion put forward by this simple
model for tidal flow over bottom topography in oceans is supported by more recent
theoretical and computational investigations (Khatiwala 2003; Lamb 2004) which take
into account transient, finite-depth and nonlinear effects ignored in Bell (1975), as well
as by laboratory experiments (Gostiaux & Dauxois 2007; Zhang, King & Swinney
2007; Peacock, Echeverri & Balmforth 2008) and field observations (Lien & Gregg
2001; Cole et al. 2009; Johnston et al. 2011). From these findings, it is now
recognized that oceanic internal wave beams are central to tidal conversion – the
transfer of tidal energy to internal waves by the interaction of the barotropic tide
with sea-floor topography – a process that is believed to be important in deep-ocean
mixing. Furthermore, there is evidence from numerical simulations (Fovell, Durran &
Holton 1992; Alexander, Holton & Durran 1995) and field experiments (Dewan et al.
1998; Kumar 2007) that atmospheric gravity waves due to thunderstorms often form
beam-like structures by a mechanism analogous to mechanical forcing (Mowbray &
Rarity 1967).

On the theoretical side, since uniform beams are fundamental nonlinear states in an
inviscid stratified fluid with constant buoyancy frequency, it is natural to enquire
into their stability under departures from these idealized flow conditions. A first
attempt to address this issue was made by Tabaei & Akylas (2003), who studied
analytically the evolution of slow modulations along a finite-steepness beam with
general profile, taking into account weak viscous effects as well as the possible
presence of background shear and variations in the buoyancy frequency. Surprisingly
enough, nonlinear effects due to along-beam modulations vanish to leading order, and
the propagation under the assumed flow conditions is controlled by linear dispersive,
viscous and refraction effects; hence, uniform internal wave beams are totally stable
to along-beam modulations. While this does not exclude instability to other types of
perturbations, the stability characteristics of internal wave beams still remain largely
unexplored. An exception is the recent study by Clark & Sutherland (2010), who
present experimental and numerical evidence that finite-steepness beams with a quasi-
monochromatic profile can be unstable, and eventually break down, due to short-scale
plane disturbances with frequency half of that of the underlying beam. This instability
mechanism appears to be closely related to the widely studied parametric subharmonic
instability of sinusoidal plane internal waves; see Koudella & Staquet (2006) and
references given therein.

The present paper, unlike the works cited above, is concerned with three-
dimensional perturbations of internal wave beams. Specifically, we examine the
stability of uniform beams to oblique modulations which vary slowly in the along-
beam and the horizontal transverse directions. Such perturbations would naturally
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Stability of internal wave beams to three-dimensional modulations 69

arise, for example, in tidally generated beams over topography with three-dimensional
variations, as is typically the case in the field. The dynamics of oblique modulations
turns out to be fundamentally different from that of purely longitudinal modulations
considered in Tabaei & Akylas (2003). Owing to the presence of transverse variations,
a resonant interaction now becomes possible between the underlying beam and three-
dimensional perturbations that comprise a time-harmonic component, with the beam
frequency, and a mean flow. This first-harmonic–mean interaction, which can lead
to instability of a uniform beam, is analysed by matched asymptotics, and the
associated stability eigenvalue problem is solved numerically. Specific results are
presented for progressive beams which transport energy in one direction, as is the
case for tidally generated beams, as well as purely standing beams which involve no
net energy transport. In both cases, instability arises only for oblique perturbations,
underscoring the three-dimensional character of the instability mechanism. Progressive
beams, however, are found to be unstable only above a threshold steepness – given
a locally confined beam profile, its peak velocity amplitude has to exceed a critical
value for instability to set in – whereas standing beams turn out to be unstable even at
infinitesimal steepness.

According to our results, three-dimensional modulational instability becomes
stronger as the beam steepness is increased and/or the beam angle to the horizontal
is decreased. The latter trend, in particular, suggests that this instability mechanism
should be relevant to tidally generated beams which typically propagate at small
angles (in the 3–5◦ range) to the horizontal. Moreover, our analysis reveals that
three-dimensional perturbations are accompanied by circulating horizontal mean flows
at large distances from the vicinity of the beam. This unique feature of oblique
modulations is akin to the recently observed circulating horizontal mean flow induced
by wave beams with both longitudinal and transverse variations (Bordes et al. 2012).
A large-scale mean horizontal circulation was also noted by King, Zhang & Swinney
(2009) in laboratory experiments and numerical simulations of tidal flow over model
three-dimensional topography (a half-sphere on a horizontal plane).

2. Stability equations
An inviscid, uniformly stratified Boussinesq fluid supports time-harmonic plane

internal gravity waves with general spatial profile. These so-called internal gravity
wave beams still obey the familiar internal-wave dispersion relation of sinusoidal plane
waves,

ω = N0 sin θ, (2.1)

which furnishes the wave frequency ω in terms of the beam angle θ (0 < θ < π/2)
to the horizontal, N0 being the (constant) buoyancy frequency of the medium. For
the purpose of discussing the stability of such a uniform beam to three-dimensional
perturbations, it is convenient to use a rotated coordinate system, formed by the
along-beam (ξ ), cross-beam (η) and transverse horizontal (ζ ) directions (figure 1).
Employing the same scalings as in Tabaei & Akylas (2003) (with the beam width
as characteristic length and 1/N0 as time scale), the flow-velocity components
u = (u, v,w) along (ξ, η, ζ ) and the reduced density ρ and pressure p, are then
governed by the following dimensionless equations:

∇ ·u= 0, (2.2a)
ρt + u ·∇ρ =−u sin θ + v cos θ, (2.2b)

ut + u ·∇u=−pξ + ρ sin θ, (2.2c)
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FIGURE 1. Geometry of uniform internal wave beam inclined at an angle θ to the horizontal.
The beam profile varies in the cross-beam (η) direction, and the associated flow velocity,
u0(η, t), is in the along-beam (ξ ) direction. The transverse horizontal direction is denoted
by ζ .

vt + u ·∇v =−pη − ρ cos θ, (2.2d)
wt + u ·∇w=−pζ . (2.2e)

Equations (2.2) admit the following exact solution representing a finite-steepness
internal wave beam (McEwan 1973; Tabaei & Akylas 2003):

u= u0(η, t)≡ {U(η)e−i sin θ t + c.c.
}
, v = w= 0, (2.3a)

ρ = ρ0(η, t)≡ {−iU(η)e−i sin θ t + c.c.
}
, (2.3b)

p= p0(η, t)≡
{

i cos θ
∫ η

U(η′) dη′e−i sin θ t + c.c.
}
, (2.3c)

where c.c. denotes complex conjugate and the amplitude function U(η) which specifies
the beam profile can be chosen at will. Here, only beams that are locally confined in
the cross-beam direction are considered, so U(η)→ 0 as η→±∞. We also assume
that the beam angle θ is not equal to the limiting values θ = 0 and θ = π/2 for
which, respectively, the beam degenerates into a steady horizontal shear flow and
a non-propagating fluid column oscillating at the background buoyancy frequency.
Moreover, to ensure that the beam (2.3) is statically stable, no density inversions
are allowed, which requires that ∂ρ0/∂y < 1, where y = η cos θ − ξ sin θ denotes the
vertical coordinate (figure 1). This condition then translates into∣∣∣∣dU

dη

∣∣∣∣< 1
2 cos θ

, (2.4)

which places a restriction on the maximum steepness of the beam.
We wish to examine the linear stability of the internal wave beam (2.3) to three-

dimensional perturbations. To this end, we introduce infinitesimal disturbances to the
basic state, in the form of normal modes,

u= u0(η, t)+ û(η, t) exp { iµ(ξ + c t)+ iεζ } , (2.5)
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Stability of internal wave beams to three-dimensional modulations 71

with analogous expressions for v, w, ρ and p. Here µ and ε are given real
wavenumbers, while the mode amplitudes û = (û, v̂, ŵ), ρ̂ and p̂ need to be
determined, along with the complex speed c.

Upon substituting (2.5) into (2.2) and linearizing with respect to the perturbations,
we find the following set of equations for û, ρ̂ and p̂:

iµû+ ∂v̂
∂η
+ iεŵ= 0, (2.6a)

∂ρ̂

∂t
+ sin θ û+

(
∂ρ0

∂η
− cos θ

)
v̂ =−iµCρ̂, (2.6b)

∂ û

∂t
− sin θρ̂ + ∂u0

∂η
v̂ =−iµ(Cû+ p̂), (2.6c)

∂v̂

∂t
+ cos θρ̂ + ∂ p̂

∂η
=−iµCv̂, (2.6d)

∂ŵ

∂t
+ iεp̂=−iµCŵ, (2.6e)

where C = c + u0. By the Bloch–Floquet theorem, û, ρ̂ and p̂ are to be periodic in t
with the same period, 2π/ sin θ , as the basic state (2.3):

(û, ρ̂, p̂)
∣∣

t+2π/ sin θ
= (û, ρ̂, p̂)

∣∣
t
. (2.7)

In addition, the perturbations must decay in the cross-beam direction, far away from
the beam:

(û, ρ̂, p̂)→ 0 (η→±∞). (2.8)

Equations (2.6) along with conditions (2.7) and (2.8) constitute an eigenvalue
problem, c = cr + ici being the eigenvalue parameter. The stability of the underlying
wave beam hinges upon the sign of the imaginary part of c, µci < 0 implying
instability. In searching for unstable modes, it suffices to consider ε > 0, since a
solution of (2.6)–(2.8) for ε < 0 is obtained from that for ε > 0 by ŵ→−ŵ.

In view of the periodicity requirement (2.7), û may be expressed as a Fourier series
in t with period 2π/ sin θ :

û=
∞∑

n=−∞
Ûn(η)e−in sin θ t, (2.9)

with analogous expansions for ρ̂ and p̂. Upon inserting these series and the beam
solution (2.3) into (2.6), collecting terms involving like harmonics leads to an infinite
set of coupled differential equations for the Fourier coefficients, to be solved subject
to the boundary conditions (2.8). For given µ and ε, in general, one could proceed
to tackle this problem numerically, by first truncating the Fourier series to a finite
number of modes and then discretizing the resulting finite-dimensional boundary-
value problem, to obtain a matrix eigenvalue problem for c. Rather than such a
fully numerical approach, here we shall analyse the stability problem (2.6)–(2.8)
asymptotically, assuming long-wavelength perturbations (µ, ε� 1), representing three-
dimensional modulations of the uniform beam (2.3). In this limit, as discussed below,
the primary (n = ±1) and mean (n = 0) dominate over the rest of the harmonics in
(2.9), and a greatly simplified system of coupled equations is obtained from (2.6).
However, enforcing the boundary conditions (2.8) requires careful examination of the
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far-field flow behaviour in the cross-beam direction. It will turn out that unstable
modulations are accompanied by a horizontal mean flow that extends far away from
the underlying wave beam.

3. Long-wavelength perturbations
Putting the boundary conditions (2.8) aside, we now seek an asymptotic solution of

the stability equations (2.6) subject to the periodicity requirement (2.7) for µ, ε� 1.
To proceed in the analysis, these two wavenumbers are taken to satisfy

µ= κε2 (0< ε� 1), (3.1)

κ being an O(1) parameter. Moreover, the cross-beam and transverse velocity
amplitudes v̂ and ŵ are scaled as follows:

v̂→ µṽ, ŵ→ εw̃. (3.2)

Thus, all terms in the incompressibility equation (2.6a) are brought to the same order.
Under the assumed balance (3.1), it can be readily verified from the dispersion relation
(2.1) that modulations along ξ and ζ of a linear sinusoidal plane wave with O(1)
wavenumber in the η direction become equally important. As it turns out, the scalings
(3.1) and (3.2) are also appropriate for discussing the modulational instability of a
small-steepness beam with locally confined cross-section. For a finite-steepness wave
beam, however, it will later become necessary to revise (3.1) so as to capture the most
unstable modulations (see § 6).

Returning to the stability equations (2.6), after implementing (3.1) and (3.2), the
incompressibility equation (2.6a) reads

κ

(
iû+ ∂ṽ

∂η

)
+ iw̃= 0. (3.3a)

We also eliminate ρ̂ and p̂ by first solving for these variables from (2.6c) and
(2.6e) and then substituting the results in (2.6b) and (2.6d). Thus, the following
two equations are obtained:

∂2û

∂t2
+ sin2θ û = µ

{
∂

∂t

(
∂w̃

∂t
− iCû− ∂u0

∂η
ṽ

)
− iC

∂ û

∂t

+ sin θ
(

cos θ − ∂ρ0

∂η

)
ṽ

}
+ O(µ2), (3.3b)

∂

∂t

(
∂w̃

∂η
− i cot θ û

)
= iµ

{
∂ṽ

∂t
+ cot θ

(
∂u0

∂η
ṽ + iCû− ∂w̃

∂t

)
− ∂

∂η
(Cw̃)

}
+ O(µ2). (3.3c)

In view of the periodicity condition (2.7), û, ṽ and w̃ may be expanded in
Fourier series, as in (2.9). For long-wavelength perturbations (µ, ε � 1), moreover,
(3.3) reveal that the primary and mean harmonics dominate in these series, and the
appropriate expansions for û, ṽ and w̃ take the form

û=
{

Û−(η)e−i sin θ t + Û+(η)ei sin θ t
}
+ µU(η)+ · · ·, (3.4a)

ṽ =
{

V̂−(η)e−i sin θ t + V̂+(η)ei sin θ t
}
+ V(η)+ · · ·, (3.4b)

w̃=
{

Ŵ−(η)e−i sin θ t + Ŵ+(η)ei sin θ t
}
+W(η)+ · · ·. (3.4c)
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Stability of internal wave beams to three-dimensional modulations 73

Compared to the notation used earlier in (2.9), here the subscripts ± denote the
primary (n=±1) and the overbar the mean (n= 0) harmonic terms.

The equations governing the amplitudes of the primary and mean harmonics in
(3.4) are obtained by inserting these expansions into (3.3) and collecting the various
contributions to each harmonic. Specifically, from the primary-harmonic terms in
(3.3c) and (3.3a), we find

Ŵ± = i cot θ
∫ η

Û± dη′ + O(µ), (3.5)

V̂± =−i
(

d
dη
+ i
κ

cot θ
)∫ η ∫ η′

Û± dη′′ dη′ + O(ε2). (3.6)

Then, collecting primary-harmonic terms in (3.3b) and making use of (3.5) and (3.6)
yields

cÛ− + cos θ
(

i
d

dη
− 1

2κ
cot θ

)∫ η ∫ η′
Û− dη′′ dη′ − i

dU

dη
V = O(ε2, µ), (3.7a)

cÛ+ − cos θ
(

i
d

dη
− 1

2κ
cot θ

)∫ η ∫ η′
Û+ dη′′ dη′ − i

dU∗

dη
V = O(ε2, µ), (3.7b)

where * denotes complex conjugate.
Turning next to mean terms, from (3.3c), after further use of (3.5) and (3.6), it

follows that

c
dW

dη
+ 2 cot θ

{
dU∗

dη

(
i

d
dη
− 1

2κ
cot θ

)∫ η ∫ η′
Û− dη′′ dη′

+dU

dη

(
i

d
dη
− 1

2κ
cot θ

)∫ η ∫ η′
Û+ dη′′ dη′

}
= O(ε2, µ). (3.8)

Finally, assembling mean terms in (3.3a) and (3.3b), respectively, we obtain

dV

dη
=− i

κ
W + O(µ), (3.9)

sin θ U − cos θ V + U∗Û− − UÛ+ + dU∗

dη

(
d

dη
+ i
κ

cot θ
)∫ η ∫ η′

Û− dη′′ dη′

− dU

dη

(
d

dη
+ i
κ

cot θ
)∫ η ∫ η′

Û+ dη′′ dη′ = O(ε2, µ). (3.10)

Equations (3.7)–(3.10) bring out the coupling of the primary-harmonic and mean-
harmonic perturbations to the underlying internal wave beam: according to (3.8) and
(3.10), the interaction of the primary-harmonic perturbation with the beam induces a
mean flow, which in turn feeds back to the primary harmonic via interacting with
the beam, as described by (3.7). Whether this primary-harmonic–mean interaction
mechanism can extract energy from the basic beam, causing instability, depends upon
finding modes which, in addition to solving (3.7)–(3.10), remain locally confined in
the cross-beam direction, as demanded by the boundary conditions (2.8). This issue is
taken up below.
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4. Flow behaviour in the far field
Attention is now focused on meeting the boundary conditions (2.8). To this end, we

shall require that∫ η ∫ η′
Û− dη′′ dη′→ 0,

∫ η ∫ η′
Û+ dη′′ dη′→ 0 (η→±∞). (4.1)

In view of (3.5) and (3.6), these conditions ensure that the primary-harmonic
perturbations remain locally confined in the cross-beam direction, in accordance with
(2.8).

In regard to the mean-flow perturbations, however, as it turns out (see numerical
results in § 5), it is not possible to make all three components, U, V and W, go
to zero as η→ ±∞. Instead, following a matched-asymptotics approach, we shall
content ourselves with only the largest of these flow components approaching zero,
and the remaining mean flow far away from the beam will be matched to an ‘outer’
disturbance that satisfies the boundary conditions (2.8). Specifically, from the scalings
(3.1) and (3.2) and expansions (3.4), the transverse mean flow, being O(ε), dominates
the O(µ) cross-beam and along-beam mean-flow components. Hence, expanding W as
follows,

W =W
(0) + κεW (1) + · · ·, (4.2)

we impose the condition

W
(0)→ 0 (η→±∞). (4.3)

Note that, in view of (3.1) and (3.2), the correction term in (4.2) implies that the
remaining transverse mean flow in the far field is O(µ), which is of comparable
magnitude to the other two mean-flow components there. In fact, by substituting (4.2)
into (3.9), we find that

V = V
∣∣
−∞ −

i
κ

∫ η

−∞
W
(0)

dη′ + O(ε), (4.4)

where V|−∞ denotes V(η→−∞), and then U can be obtained by combining (4.4)
with (3.10).

Expressions (4.2) and (4.4) furnish the mean-flow perturbation in the vicinity of the
beam; they may be viewed as an ‘inner’ solution which is to be matched to an ‘outer’
solution far away from the beam in the cross-beam direction. In preparation for this
matching, it follows from (4.2) and (4.4), along with (3.10) and (3.2), that

û∼ µ
(

cot θV|±∞,V|±∞,W
(1)|±∞

)
(η→±∞), (4.5)

where

V|+∞ ∼ V|−∞ − i
κ

∫ ∞
−∞

W
(0)

dη + O(εη) (η→∞) (4.6)

and W
(1)|±∞ ≡W

(1)
(η→±∞).

The above outer limit of the inner solution for û suggests an outer solution in the
form

û∼ µU(χ)= µ(U ,V ,W ). (4.7)
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Here, χ = εη is a ‘stretched’ cross-beam coordinate, anticipating a breakdown in
expansion (4.6) when η ∼ 1/ε in the far field. Upon substituting (4.7) into (2.6), to
leading order, the outer solutions consistent with the boundary conditions (2.8) are

U ∼ V|±∞
(

cot θ, 1,∓ i
sin θ

)
e∓χ/ sin θ (χ ≷ 0). (4.8)

Hence, matching of the outer solution (4.7)–(4.8) as χ → 0± with the outer limit of
the inner solution (4.5)–(4.6) requires that

W
(1)|±∞ ∼∓ i

sin θ
V|±∞ (η→±∞). (4.9)

Note that, since U /V = cot θ in (4.8), the induced mean flow far from the beam is
purely horizontal.

The boundary conditions (4.1) and (4.3) combined with the matching conditions
(4.9) ensure that the primary-harmonic and mean-flow perturbations are locally
confined in the cross-beam direction. These conditions are utilized below, along with
(3.7)–(3.9), to formulate an eigenvalue problem for c, which determines the stability of
the underlying uniform beam.

5. Preliminary stability results
5.1. Normalized eigenvalue problem

Returning to (3.7)–(3.9), it is convenient to work with

ψ± =
∫ η ∫ η′

Û± dη′′ dη′ (5.1)

and the cross-beam mean flow V which, according to (3.9), to leading order is given
by

dV

dη
=− i

κ
W
(0)
, (5.2)

where W
(0)

is the leading-order approximation to the transverse mean flow in (4.2).
After the scalings

κ = 1
2

cot θκ̃, c= cos θ c̃, U = 1
2

cos θŨ, V = 2ϕ, (5.3)

it follows from (3.7)–(3.9) and the boundary conditions (4.1) and (4.3) that ψ−, ψ+
and ϕ satisfy

c̃
d2ψ−
dη2
=−i

dψ−
dη
+ ψ−

κ̃
+ i

dŨ

dη
ϕ, (5.4a)

c̃
d2ψ+
dη2
= i

dψ+
dη
− ψ+

κ̃
+ i

dŨ∗

dη
ϕ, (5.4b)

c̃
d2ϕ

dη2
=−1

κ̃

{
dŨ∗

dη

(
dψ−
dη
+ i
κ̃
ψ−

)
+ dŨ

dη

(
dψ+
dη
+ i
κ̃
ψ+

)}
, (5.4c)
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with

ψ−→ 0, ψ+→ 0,
dϕ
dη
→ 0 (η→±∞). (5.5)

Equations (5.4) subject to the boundary conditions (5.5) define an eigenvalue problem
for (ψ−, ψ+, ϕ), with c̃ being the eigenvalue parameter. Note that, in formulating
this problem, the only information needed from the matched-asymptotics analysis of
§ 4 is condition (4.3), which pertains to the dominant mean-flow component, W

(0)
.

Later, though, we shall make use of the higher-order matching conditions (4.9) as
well, to derive the eigenvalue problems governing the most unstable modulations of
finite-steepness beams (see § 6.1) and the stability of beams of very small steepness
(see Appendix).

The eigenvalue problem (5.4)–(5.5) was solved numerically employing fourth-order
centred finite differences and a standard QZ algorithm for the matrix eigenvalue solver.
The discretization was carried out on a non-uniform grid, affording higher resolution
in the region of the underlying beam, where eigenmodes exhibit rapid variation. The
same numerical procedure was followed for solving the eigenvalue problems derived
later in this work (see § 6.2 and the Appendix). The size of the computational domain,
−η∞ 6 η 6 η∞, and the number of grid points N that we used varied, depending on
the needs of each problem (η∞ = 30–200, N = 100–500).

In our stability computations, as basic state we used: (i) progressive beams, which
transport energy in one direction and are most relevant to internal tides; and (ii) purely
standing beams, which involve no net energy transport. Specifically, for dŨ/dη which
enters in the stability equations (5.4), we chose

dŨ(η)

dη
=


U0

∫ ∞
0

A(l)eilη dl (progressive beam), (5.6a)

1
2

U0

∫ ∞
−∞

A(l)eilη dl=−2U0
d

dη
(ηe−2η2

) (standing beam), (5.6b)

with A(l) = −l2e−l2/8/
√

8π, U0 being a parameter that controls the beam peak
amplitude. As explained in Tabaei, Akylas & Lamb (2005), progressive beams
comprise plane waves with wavenumbers l of the same sign only, whereas standing
beams are made of equal contributions from plane waves with wavenumbers of
opposite signs. The specific profiles of d(Ũ/U0)/dη in (5.6) are displayed in figure 2.

By virtue of the scalings (5.3), the beam angle θ has dropped out of the normalized
eigenvalue problem (5.4)–(5.5). The eigenvalues c̃ thus depend on the beam peak
amplitude U0 and the parameter κ̃ which, according to (3.1) and (5.3), controls the
relative magnitudes of the along-beam and transverse wavenumbers of the perturbation.
Moreover, for the profiles (5.6), whose real and imaginary parts, respectively, are odd
and even functions of η, it suffices to consider κ̃ > 0: a solution for κ̃ < 0 is obtained
from that for κ̃ > 0 by η→−η, ψ−→ ψ+ and ψ+→ ψ−. Finally, taking into account
(5.3), for the underlying beam to be statically stable, (2.4) requires that

U0 <
1

2cos2θ
. (5.7)

This condition is met irrespective of the beam angle 0 < θ < π/2 if U0 < 0.5, and for
cos−1

(
1/
√

2U0

)
< θ < π/2 when U0 > 0.5.
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–4 –2 0 2 4

1

0

–1
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2

–2

FIGURE 2. Profiles d(Ũ/U0)/dη of progressive beam (5.6a) (solid line, real part; dashed line,
imaginary part) and standing beam (5.6b) (solid line).

5.2. Progressive beams
Computed eigenvalues c̃ = c̃r + ic̃i with negative imaginary part (c̃i < 0), implying
instability, versus κ̃ are plotted in figure 3 for the beam amplitudes U0 = 0.35, 0.5 and
0.65. Only results of the greatest growth rate −κ̃ c̃i, corresponding to the most unstable
mode, for given κ̃(=2κ tan θ) are presented. Figure 3(a) shows that progressive beams
with the profile (5.6a) are unstable when U0 > 0.35, and our numerical results indicate
that instability is present for U0 above a critical value of ∼0.3.

It is clear from figure 3(a) that unstable eigenvalues arise only for κ̃ 6= 0, revealing
that perturbations must have both longitudinal (ξ ) and transverse (ζ ) variations in
order for instability to be possible. Also, it is worth noting that as κ̃ →∞ for fixed
U0, c̃ approaches a constant, and the corresponding growth rate −κ̃ c̃i increases linearly.
This suggests that a rescaling of the assumed balance µ = O(ε2) in (3.1), between the
longitudinal and transverse wavenumbers of the perturbation, would be necessary in
order to capture the maximum growth rate of the instability (see § 6).

A representative example of instability eigenmode is displayed in figure 4. As
expected, the cross-beam mean flow V = 2ϕ is not locally confined in η. Qualitatively,
V is a linear combination of a constant and a tanh-like function. The constant is
connected to the outer solutions (4.8) with V|+∞ = V|−∞, which describe a single
horizontal circulating flow per half transverse wavelength (figure 5a). In contrast, the
tanh-like function is connected to the outer solutions (4.8) with V|+∞ =−V|−∞, which
exhibit two circulating flows bounded by the beam per half transverse wavelength
(figure 5b). The mean flow in figure 5(a) is qualitatively similar to that induced
by a wave beam with both longitudinal and transverse variations, according to the
experimental observations of Bordes et al. (2012).

5.3. Standing beams
Computed eigenvalues c̃ with negative imaginary part versus κ̃ are plotted in figure 6
for the beam amplitudes U0 = 0.1, 0.4 and 0.65. Unlike the case of progressive
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(a)

(b)

–0.05

–0.10

–0.15

0

–0.20

FIGURE 3. Computed eigenvalues c̃ = c̃r + ic̃i with negative imaginary part (c̃i < 0) versus
κ̃ for progressive beams (5.6a): U0 = 0.35 (©), 0.5 (4) and 0.65 (�); (a) c̃i versus κ̃ , (b) c̃r
versus κ̃ . Only results of the greatest growth rate, −κ̃ c̃i, for given κ̃ are presented.

beams where eigenvalues are generally complex, here the most unstable perturbations
correspond to pure imaginary c̃, and for U0 = 0.4, 0.65 these eigenvalues first appear
at κ̃ = 0 (figure 6). Also, our computations indicate that standing beams are unstable
(c̃i stays negative) as U0→ 0, in spite of the fact that no instability is possible for
U0 = 0. This suggests that the stability eigenvalue problem (5.4)–(5.5) is not uniformly
valid as U0→ 0 with ε, µ� 1.

To derive the eigenvalue problem governing the stability of small-steepness beams,
a rescaling of (3.7)–(3.9) is necessary. Details of the analysis are given in the
Appendix. The proper scaling of the beam profile U(η) turns out to be U = ε1/2US,
and the appropriate eigenvalue problem in the small-steepness limit is (A 7)–(A 8).
This problem was solved numerically for the normalized standing-beam profile (5.6b),
where U0 = ε1/2US0/

√
sin θ (see (A 9)). Computed unstable eigenvalues, which again
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(c)

FIGURE 4. Unstable eigenmode versus η for progressive beam (5.6a) with U0 = 0.5 and
κ̃ = 4: (a) Û−, (b) Û+, (c) V . The solid line is the real part, and the dashed line is the
imaginary part under the normalization

∫∞
−∞ Û−(dŨ∗/dη) dη = 1.

are pure imaginary, versus κ̃ are plotted in figure 7 for various values of the rescaled
beam amplitude US0. It is seen that these eigenvalues as US0→∞ agree with those in
figure 6 as U0→ 0. The stability results for small-steepness beams are thus smoothly
connected with those for finite-steepness beams. Moreover, as expected, in the limit
US0→ 0, no instability is present (specifically the eigenvalues go to zero at US0 around
0.2). Finally, we remark in passing that the eigenvalue problem (A 7)–(A 8) is suitable
for examining the stability of small-steepness beams in general. On the basis of this
problem, the progressive-beam profile (5.6a), in particular, was found to be stable in
the small-steepness limit, consistent with the fact that the instability of progressive
beams sets in above a certain threshold value of U0, according to our earlier results
(figure 3a).

Figures 6 and 7 show that unstable modes (−κ̃ c̃i > 0) arise for κ̃ 6= 0; hence,
perturbations must be three-dimensional for instability to occur, as in the case of
progressive beams. Moreover, the eigenvalues c̃ tend to a constant (and the instability
growth rate increases linearly) as κ̃ → ∞ for finite-steepness beams (figure 6),
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0–2 2 0–2 2

(a) (b)

FIGURE 5. Streamline patterns of horizontal mean flows described by the outer solutions
(4.8): (a) V|+∞ = V|−∞, (b) V|+∞ = −V|−∞. The thick solid line in (b) represents the
inner solution which features a strong transverse flow W

(0)
along the beam. The abscissa

εx= ε(ξ cos θ + η sin θ) is a horizontal direction perpendicular to the horizontal transverse εζ
direction (figure 1), and streamlines for |εζ |> π/2 are symmetric with respect to εζ =±π/2.

1 3 52 4

–0.1

–0.2

–0.3

–0.4

0

–0.5
0 6

FIGURE 6. Computed unstable eigenvalues c̃ = ic̃i versus κ̃ for standing beams (5.6b):
U0 = 0.1 (•), 0.4 (N) and 0.65 (�). Only results of the greatest growth rate, −κ̃ c̃i, for given κ̃
are presented. (For standing beams with U0 6 0.65 the most unstable c̃ is pure imaginary.)

whereas for small-steepness beams c̃ eventually falls to zero at a finite value of κ̃ ,
which increases as US0 is increased. (In figure 7, for US0 = 10 c̃ goes to zero at
κ̃ = 16.3 and for US0 = 100 at κ̃ = 163.) This behaviour suggests that the maximum
instability growth rate for finite-steepness standing beams is realized as κ̃ →∞,
similar to the case of progressive beams (§ 5.2).
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–0.4

0

–0.5
0 6

FIGURE 7. Computed unstable eigenvalues c̃ = ic̃i versus κ̃ for small-steepness standing
beams (5.6b) with U0 = ε1/2US0/

√
sin θ : US0 = 0.3 (×), 1 (+), 4 (•), 10 (N) and 100 (�).

(For small-steepness standing beams there is only one unstable c̃ for given κ̃ and it is pure
imaginary.)

6. Most unstable modulations
6.1. Rescaled equations

For the purpose of capturing the most unstable disturbances of finite-steepness wave
beams, we now revise the assumed balance (3.1) between µ and ε, such that
κ = µ/ε2� 1, and rescale (3.7)–(3.9) suitably; this leads to a new eigenvalue problem
for c.

Returning to (3.4), when κ � 1, we may expand Û±:

Û± = Û(0)
± +

1
κ

Û(1)
± + · · ·. (6.1)

Also, from (3.9),

V = V∞ − i
κ

∫ η

W
(0)

dη′ + · · ·, (6.2)

where V∞ is a constant, and

W =W
(0) + κεW (1) + · · · (6.3)

according to (4.2). The leading-order term in (6.2) is consistent with the results
obtained earlier, for κ � 1, from the eigenvalue problem (5.4)–(5.5): V = 2ϕ indeed
approaches a constant as κ̃ = 2κ tan θ →∞, according to (5.4c) and (5.5). However,
when κ = O(ε−1/2), the O(1/κ) corrections in (6.1) and (6.2) become as important
as the O(κε) correction to W in (6.3). As a result, in order to capture the dominant
instability of finite-steepness wave beams, which is realized as κ � 1, higher-order
matching than (4.3) of the inner with the outer mean flow is necessary. To this end, we
write

κ = σ

ε1/2
, (6.4)
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thereby replacing (3.1) with

µ= σε3/2, (6.5)

where σ is an O(1) parameter.
Upon substituting (6.1)–(6.3), with κ given by (6.4), into (3.7)–(3.8), equating O(1)

and O(ε1/2) terms to zero yields

cÛ(0)
− =−i cos θ

∫ η

Û(0)
− dη′ + i

dU

dη
V∞, (6.6a)

cÛ(0)
+ = i cos θ

∫ η

Û(0)
+ dη′ + i

dU∗

dη
V∞, (6.6b)

c
dW

(0)

dη
=−2i cot θ

(
dU∗

dη

∫ η

Û(0)
− dη′ + dU

dη

∫ η

Û(0)
+ dη′

)
, (6.6c)

cÛ(1)
− =−i cos θ

∫ η

Û(1)
− dη′ + cos2θ

2 sin θ

∫ η ∫ η′
Û(0)
− dη′′ dη′ + dU

dη

∫ η

W
(0)

dη′, (6.6d)

cÛ(1)
+ = i cos θ

∫ η

Û(1)
+ dη′ − cos2θ

2 sin θ

∫ η ∫ η′
Û(0)
+ dη′′ dη′ + dU∗

dη

∫ η

W
(0)

dη′, (6.6e)

c
dW

(1)

dη
= 2
σ 2

cot θ

{
dU∗

dη

(
−i
∫ η

Û(1)
− dη′ + 1

2
cot θ

∫ η ∫ η′
Û(0)
− dη′′ dη′

)

+ dU

dη

(
−i
∫ η

Û(1)
+ dη′ + 1

2
cot θ

∫ η ∫ η′
Û(0)
+ dη′′ dη′

)}
. (6.6f )

In addition, in view of the boundary conditions (4.1) and (4.3) and the matching
conditions (4.9), we require that∫ η ∫ η′

Û(0)
− dη′′ dη′→ 0,

∫ η ∫ η′
Û(0)
+ dη′′ dη′→ 0, W

(0)→ 0 (η→±∞),(6.7a)∫ η

Û(1)
− dη′→ 0,

∫ η

Û(1)
+ dη′→ 0, W

(1)→∓ i
sin θ

V∞ (η→±∞). (6.7b)

We remark that the constant V∞ that appears in (6.6a) and (6.6b) and the boundary
conditions (6.7b) is unknown. However, (6.6a)–(6.6c) which reflect the O(1) term
balance in (3.7)–(3.9), along with the leading-order boundary conditions (6.7a), cannot
determine V∞ as well as Û(0)

− , Û(0)
+ , W

(0)
and c. Rather, it is the combined equation

system (6.6) together with the full boundary conditions (6.7) that define a suitable
eigenvalue problem for (Û(0)

− , Û(0)
+ ,W

(0)
, Û(1)
− , Û(1)

+ ,W
(1)
), with c being the eigenvalue;

V∞ is thus found as part of the solution of this problem via satisfying the matching
conditions for W

(1)
in (6.7b).

6.2. Normalized eigenvalue problem
In preparation for solving the eigenvalue problem (6.6)–(6.7), we introduce

ψ± =
∫ η ∫ η′

Û(0)
± dη′′ dη′, ϕ =−i tan θ

∫ η

W
(0)

dη′,

Ψ± = 1
σ

∫ η

Û(1)
± dη′, Φ =−iσ tan θ W

(1)
.

 (6.8)
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In terms of these variables and after the scalings

σ = 1
2

cot θ σ̃ , c= cos θ c̃, U = 1
2

cos θ Ũ, V∞ = cot θ
σ

V, (6.9)

equations (6.6) and the boundary conditions (6.7) read

c̃
d2ψ−
dη2
=−i

dψ−
dη
+ i
σ̃

dŨ

dη
V, (6.10a)

c̃
d2ψ+
dη2
= i

dψ+
dη
+ i
σ̃

dŨ∗

dη
V, (6.10b)

c̃
d2ϕ

dη2
=−dŨ∗

dη
dψ−
dη
− dŨ

dη
dψ+
dη

, (6.10c)

c̃
dΨ−
dη
=−iΨ− + 1

σ̃
ψ− + i

σ̃

dŨ

dη
ϕ, (6.10d)

c̃
dΨ+
dη
= iΨ+ − 1

σ̃
ψ+ + i

σ̃

dŨ∗

dη
ϕ, (6.10e)

c̃
dΦ
dη
=−dŨ∗

dη

(
Ψ− + i

σ̃
ψ−

)
− dŨ

dη

(
Ψ+ + i

σ̃
ψ+

)
, (6.10f )

with

ψ−→ 0, ψ+→ 0,
dϕ
dη
→ 0,

Ψ−→ 0, Ψ+→ 0, Φ→ ∓V

sin θ
(η→±∞).

 (6.11)

This eigenvalue problem, which replaces (5.4)–(5.5) for µ = O(ε3/2), was solved
numerically by the procedure described earlier (see § 5.1), choosing again (5.6) for
the normalized beam profile Ũ(η). To compute the constant mean flow V , in particular,
Φ was eliminated in favour of V by integrating (6.10f ) from η = −∞ to η =∞ and
using (6.10d), (6.10e) and the matching conditions for Φ in (6.11):

V = i sin θ
2

∫ ∞
−∞

(
dŨ∗

dη
dΨ−
dη
− dŨ

dη
dΨ+
dη

)
dη. (6.12)

Since the beam angle θ appears explicitly in (6.12), eigenvalues c̃ now depend
on three parameters, θ , σ̃ and the beam peak amplitude U0. Specific results for
progressive and standing beams are presented below.

6.3. Progressive beams
Computed eigenvalues c̃ = c̃r + ic̃i with c̃i < 0 for progressive beams versus σ̃ are
plotted in figure 8 for the same values of U0 = 0.35, 0.5 and 0.65 as in figure 3, and
θ = π/6 and π/3. (For these parameter values beams are statically stable according
to (5.7).) Note that, for given U0 and θ , as σ̃ → 0, c̃ approaches the corresponding
asymptotic value of c̃ found earlier as κ̃ →∞ in figure 3. The stability results for
µ = O(ε3/2) presented here are thus smoothly connected with those obtained in § 5.2
for µ= O(ε2).
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FIGURE 8. Computed unstable eigenvalues c̃= c̃r + ic̃i (with c̃i < 0) versus σ̃ for progressive
beams (5.6a), with θ = π/6 and U0 = 0.35 (©), 0.5 (4) and 0.65 (�), and with θ = π/3 and
U0 = 0.35 (�), 0.5 (5) and 0.65 (�); (a) c̃i versus σ̃ , (b) c̃r versus σ̃ .

Figure 8 shows that modes with negative c̃i are possible only for a finite range of
σ̃ > 0. The associated instability growth rate, −σ̃ c̃i, which is an increasing function
of σ̃ for small σ̃ , thus reaches a peak at some finite σ̃ and finally falls to zero at a
higher σ̃ ; hence, unstable perturbations are always oblique to the beam direction. This
result underscores the three-dimensional character of the instability mechanism, and
is also consistent with Tabaei & Akylas (2003), who found that purely longitudinal
modulations (σ̃ →∞) are stable.

A representative example of an unstable eigenmode is displayed in figure 9.
As expected, V∞ and W

(1)
are not localized in η. Rather, by virtue of the

boundary conditions (6.7), this inner solution is connected to the outer solution (4.8)
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FIGURE 9. Eigenmode with the highest growth rate (at σ̃ = 1.65) versus η for progressive
beam (5.6a) with U0 = 0.5 and θ = π/3: (a) Û(0)

− , (b) Û(0)
+ , (c) V∞, (d) W

(1)
. The solid

line is the real part, and the dashed line is the imaginary part under the normalization∫∞
−∞ Û(0)

− (dŨ∗/dη) dη = 1.

with V|−∞ = V|∞ = V∞, which represents an O(ε3/2) single circulating horizontal flow
per half transverse wavelength (figure 5a).

6.4. Standing beams
Computed unstable eigenvalues (c̃i < 0) for standing beams versus σ̃ are plotted in
figure 10 for the same values of U0 = 0.1, 0.4 and 0.65 as in figure 6, and θ = π/6
and π/3. (For these parameter values beams satisfy the criterion (5.7) for static
stability.) All eigenvalues are pure imaginary, similarly to those shown in figure 6.
Moreover, upon comparing these two sets of results, it is seen that, for given U0 and
θ , the limiting values of c̃ as σ̃ → 0 here agree with the asymptotic values of c̃ as
κ̃ →∞ in the earlier computations (figure 6); hence, matching is achieved. Finally,
as in the case of progressive beams (§ 6.3), the instability growth rate, −σ̃ c̃i, after
attaining a maximum falls to zero at a finite value of σ̃ . Therefore, the instability is
again three-dimensional.
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FIGURE 10. Computed unstable eigenvalues c̃= ic̃i versus σ̃ for standing beams (5.6b), with
θ = π/6 and U0 = 0.1 (•), 0.4 (N) and 0.65 (�), and with θ = π/3 and U0 = 0.1 (+), 0.4 (H)
and 0.65 (�). The inset shows a close-up of the plot near σ̃ = 0.

7. Discussion
The preceding analysis has revealed that beam modulations that vary both in the

along-beam and the horizontal transverse directions behave very differently from
purely longitudinal beam modulations considered in Tabaei & Akylas (2003). Such
oblique modulations enable the coupling of a uniform beam to three-dimensional
perturbations that involve a time-harmonic component, with the beam frequency, and
a mean flow; as a result of this resonant first-harmonic–mean-flow interaction, energy
can be extracted from a uniform beam, causing instability.

An interesting feature of this instability mechanism is that the mean-flow component
of unstable perturbations extends far from the vicinity of the underlying wave beam.
Theoretically, this necessitates the use of matched asymptotic expansions for deriving
the appropriate stability eigenvalue problem for the complex perturbation speed,
c = cr + ici. As it turns out, the proper asymptotic treatment hinges on whether the
beam steepness is assumed to be infinitesimally small or finite, and the stability results
are fundamentally distinct in these two instances. Specifically, in the small-steepness
limit, progressive beams are entirely stable, whereas purely standing beams are always
unstable. On the other hand, in the finite-steepness regime, progressive beams become
unstable above a certain threshold steepness, while purely standing beams continue
to be unstable irrespective of their steepness. In all cases, however, instability arises
solely due to oblique modulations.

Apart from the beam steepness, another parameter that affects the instability of
finite-steepness beams is θ , the beam angle to the horizontal, as indicated by the
scalings (6.9). To bring out this dependence, we plot in figure 11(a) the computed
maximum growth rate −σci|max versus θ in the range 3◦ 6 θ 6 12◦, for finite-steepness
progressive beams with normalized profile (5.6a) and amplitudes U0 = 0.35, 0.43
and 0.5. (These beams are all statically stable according to the criterion (5.7).) It is
seen that the instability becomes significantly stronger as θ is decreased, particularly
below 10◦ or so, which, interestingly, is the opposite trend from that exhibited by
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FIGURE 11. Dependence on beam angle to the horizontal θ , of modulational instability of
finite-steepness progressive beams with profile (5.6a), with amplitude U0 = 0.35 (©), 0.43
(4) and 0.5 (�). (a) Computed maximum growth rate −σci|max . (b) Cycles ×ε3/2, in terms of
beam period, it would take the most unstable disturbance to amplify by a factor of e.

parametric subharmonic instability of periodic wavetrains (Lombard & Riley 1996).
This suggests that three-dimensional modulational instability should be relevant to
steep tidally generated wave beams, which are of the progressive type and propagate
at small θ , typically in the 3–5◦ range. To emphasize this point further, figure 11(b)
shows the number of cycles, in terms of beam period, it would take the most unstable
disturbance to amplify by a factor of e, for the same beams and θ as in figure 11(a).
Clearly, for θ in the range relevant to tidally generated beams, the instability is
expected to grow appreciably within a tidal period.

While our asymptotic analysis applies to beams with general locally confined profile,
here specific results were reported only for the progressive- and standing-beam profiles
(5.6) with A(l) = −l2e−l2/8/

√
8π. However, we did carry out computations for various

other localized profiles and the results turned out to be qualitatively the same. For
example, substituting A(l) = −l3csch(πl/2) in (5.6a), the critical U0 above which
progressive beams become unstable is now ∼0.37 compared to 0.3 for the earlier
choice of A(l). In view of (2.3a) and (5.3), given a progressive beam profile, the
dimensionless critical amplitude U0 translates into a peak vertical displacement of
O(U0L cos θ), which provides a dimensional threshold for instability in terms of the
(dimensional) characteristic beam width L and propagation angle θ .

In assessing the three-dimensional instability mechanism discussed here, it should
be kept in mind that our results are based on an asymptotic approach, valid for long-
wavelength perturbations relative to the beam thickness (ε, µ� 1). Accordingly, the
predicted maximum instability growth rates are small, −σci|maxε3/2� 1, but increasing
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as ε is increased. Of course, this trend strictly holds for ε� 1, and understanding the
instability of wave beams to oblique perturbations with ε = O(1) would require a fully
numerical stability analysis. Also, as remarked earlier, our theory becomes singular
when θ = 0, as the beam frequency is zero in this limit.

Finally, the present study has ignored background rotation, which does come into
play in a geophysical setting, due to the Earth’s rotation. In regard to tidally generated
internal wave beams, however, rotation would mainly cause the beam angle θ to
slightly decrease, and modulational instability is unlikely to be affected in a significant
way by this modification. On the other hand, the Earth’s rotation plays a crucial
role in the parametric subharmonic instability of tidal beams with frequency close
to twice the inertial frequency (Gerkema, Staquet & Bouruet-Aubertot 2006; Young,
Tsang & Balmforth 2008), but this instability mechanism is quite distinct from the one
discussed here.
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Appendix. Small-steepness beams
For small-steepness beams (|U| � 1), it is necessary to rescale (3.7)–(3.9) in order

to obtain the appropriate eigenvalue problem for determining c. To this end, we put

U(η)= δUS(η), (A 1)

where |US| = O(1) and δ is a small parameter (0 < δ � 1) that will be related to ε.
Here, µ and ε are assumed to satisfy (3.1) with κ = O(1). From (3.8), then, W = O(δ),
and V must be constant to leading order according to (3.9). Turning next to (3.7),
since the beam profile U = O(δ), for the interaction terms coupling Û+ and Û− with U
to come into play – this is essential to the instability mechanism – it is necessary that
V = O(1/δ). Hence, V and U (according to (3.10)) are increased by a factor of 1/δ,
whereas W is decreased by a factor of δ. Now, this mean flow must be matched to the
outer solution (4.8); for this to be possible, in view of (3.1) and (3.2), it is necessary
that εδ ∼ ε2/δ, suggesting that

δ = ε1/2. (A 2)

Based on the above qualitative arguments, the mean flow is rescaled as

U→ ε−1/2 cot θ V∞, V→ ε−1/2V∞, W→ κε1/2W, (A 3)

where V∞ is constant, and upon substituting (A 1)–(A 3) into (3.7) and (3.8), we find

cÛ− = cos θ
(
−i

d
dη
+ cot θ

2κ

)∫ η ∫ η′
Û− dη′′ dη′ + i

dUS

dη
V∞, (A 4a)

cÛ+ = cos θ
(

i
d

dη
− cot θ

2κ

)∫ η ∫ η′
Û+ dη′′ dη′ + i

dU∗S
dη

V∞, (A 4b)

c
dW

dη
= 2 cot θ

κ

{
dU∗S
dη

(
−i

d
dη
+ cot θ

2κ

)∫ η ∫ η′
Û− dη′′ dη′

+ dUS

dη

(
−i

d
dη
+ cot θ

2κ

)∫ η ∫ η′
Û+ dη′′ dη′

}
. (A 4c)
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In addition, from (4.1) and matching of the mean-flow perturbation with the outer
solution (4.7)–(4.9) (which is upgraded here by O(ε−1/2)), the following boundary
conditions are imposed:∫ η ∫ η′

Û− dη′′ dη′→ 0,
∫ η ∫ η′

Û+ dη′′ dη′→ 0, W→∓ iV∞
sinθ

(η→±∞).(A 5)

Equations (A 4) subject to the boundary conditions (A 5) constitute the desired
eigenvalue problem for determining c in the small-steepness limit. Again, as in (6.10)
and (6.11), the constant mean flow V∞ is an unknown, to be found as part of the
solution of this problem. Letting

ϕ =− i
2

√
sinθ W, V∞ = 2

√
sin θ V, US = cos θ

2
√

sin θ
ŨS, (A 6)

and using the same notation as in (5.1) and (5.3) for ψ±, κ̃ and c̃, we obtain
a normalized version of the eigenvalue problem, with θ completely scaled out,
for (ψ−, ψ+, ϕ):

c̃
d2ψ−
dη2
=−i

dψ−
dη
+ ψ−

κ̃
+ i

dŨS

dη
V, (A 7a)

c̃
d2ψ+
dη2
= i

dψ+
dη
− ψ+

κ̃
+ i

dŨ∗S
dη

V, (A 7b)

c̃
dϕ
dη
=−1

κ̃

{
dŨ∗S
dη

(
dψ−
dη
+ i
κ̃
ψ−

)
+ dŨS

dη

(
dψ+
dη
+ i
κ̃
ψ+

)}
, (A 7c)

subject to

ψ−→ 0, ψ+→ 0, ϕ→∓V (η→±∞). (A 8)

In solving the above problem, it is convenient to eliminate ϕ in favour of V , by
integrating (A 7c) and using (A 7a), (A 7b) and the matching condition for ϕ in (A 8),
as was done in (6.12).

Taking into account the various rescalings of U in (A 1), (A 2), (A 6) and (5.3), the
beam steepness parameter U0 in (5.6) is related to its small-steepness counterpart US0

via

U0 = ε1/2

√
sin θ

US0. (A 9)
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