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A Justification of the Probabilistic
Explanation of the Entropy Principle
Laurent Jodoin*y

In many ways, entropy and probability are two concepts that complement each other.
But it has been argued that there is no ‘straightforward connection’ between them with
a no-go thesis from Kevin Davey. However, this skeptical conclusion rests on counter-
examples that fail to do justice to the entropy principle and the equivocality of the notion
of probability. Proceeding from the disambiguation of probability, and acknowledging
the explanatory goal of the entropy principle, it is argued that the Boltzmannian statis-
tical mechanics account can be vindicated with a justification of the explanandum, the
reference class, and the standard uniform probability measure.
1. Skepticism about Probability Measures in Statistical Mechanics. The
thesis that entropy increases because systems pass from less probable states
to more probable states is often presented as a successful explanation of
thermodynamic phenomena by reductionist statistical physics. But this the-
sis is more insidious than it seems: it does not mean that entropy cannot de-
crease or that entropic systems are chancy or that thermodynamics is indeter-
ministic. Additionally, it is compatible with the hypothesis that many or even
most thermodynamic systems are in a low-entropy state right now. Con-
sequently, the elucidation of this important thesis in physics requires an
adequate interpretation of these two polysemous and polemical concepts: en-
tropy and probability.

This insidiousness has been pushed to its extreme by a no-go thesis in
Davey (2008), which argues against the existence of a straightforward, a
priori connection between entropy and probability. Davey’s argument rests
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on the claim that any “probability principle” whereby knowledge of a sys-
tem’s macrostate M is used to determine the probability measure mM over
the microstates cannot be justified. Davey devises situations showing that
it is possible to knowMwithout being in a position to form a justified belief
about which probability measure is applicable to M. Therefore, the low-
entropy states actually found in nature would need not be considered im-
probable at all because low-entropy states are not necessarily improbable.
In which case neither the second law of thermodynamics nor the entropy
principle (defined below) would be explicable as a result of the fact that sys-
tems tend to move from improbable to probable states. Davey’s position
thus targets the reference class problem in Boltzmannian statistical mechan-
ics (BSM), and his thesis has the merit to force a (better) justification of the
basic assumptions at play regarding that problem. Davey’s argument is ap-
ropos since the choice of a probability distribution is arguably “the funda-
mental problem of statistical mechanics” (Penrose 1979, 1940).

As we will see below, Davey’s skepticism can be subsumed under a much
broader skepticism, similar in kind to the problemof induction,which amounts
to denying the ascription of any probability value or measure whatsoever. It
thus must be rejected. But my main aim in this article is to give (back) to
BSM some credit in explaining the tendency of thermodynamic behavior to-
ward equilibrium. I thus want to give a justification for the use that BSM
makes of the Lebesgue measure (or an equivalent measure) on the set of pos-
sible microstates compatible with a given system’s macrostate (as opposed to
a reference to other classes the system in question belongs to and other mea-
sures describing the class in question). Since themain goal of the probabilistic
explanatory strategy advanced in this article is to explain thermodynamic en-
tropy increase, determining the correct reasons for choosing a particular ref-
erence class and probability measure are to be sought in this very explanatory
goal. The argument for a justification of the probabilistic explanatory power
of BSM rests on meeting the following three criteria: (i) the explanandum
(i.e., isolated thermodynamic systems), (ii) the reference class (i.e., the set
of possible microstates), and (iii) the standard uniform probability measure
are indeed justified. This article addresses the justification of these criteria
explicitly.

The next section (sec. 2) thereby addresses what kind of phenomenon the
thermodynamic entropy principle aims at explaining (i.e., its explanandum)
and, correspondingly, the explanandumof the statistical version of the entropy
principle. Section 3 first addresses Davey’s skeptical position and, second,
distinguishes several different probability ascription procedures (diachronic
and intra- and interlevel synchronic). Distinguishing these procedures reveals
the shifts from one procedure to another in Davey’s argument (which dissoci-
ates the procedure for probability ascription from the one for entropy value). The
distinction also allows us to identify which probability ascription procedure
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is at play in BSM. In section 4, I present the entropy principle’s explanatory
strategy by addressing the aforementioned criteria and thereby offering a jus-
tification for the different elements of the probabilistic account.

2. The Entropy Principle and References Classes. The concept of en-
tropy shows an extraordinary polysemy (see, e.g., Capek and Sheehan 2005;
Frigg and Werndl 2011) and has created many controversies (e.g., Carnap
1977; Callender 1999; Davey 2008). Because of the problems created when
various definitions of a concept are equivocated, it is prudent to first distin-
guish the second law of thermodynamics, which stipulates that heat cannot
be entirely converted into work, from the entropy principle, stipulating that
entropy does not decrease in isolated systems (expanded on below). The lat-
ter is often seen as a reformulation or even an explanation of the former. In
thermal physics, one must also distinguish the thermodynamic from the sta-
tistical version of the entropy principle, and in statistical mechanics (SM),
there are also quite a fewdefinitions:Boltzmann’s andGibbs’s, basedon com-
plexions or phase space volume and on surface or volume integrals (see
Uffink [2007] and the references therein). Here (following Davey), the dis-
cussion will be restricted to the domain of BSM, and thus it relies on the
Boltzmannian definition of entropy.

2.1. BSM Explanatory Objectives. Since the Boltzmannian definition
of entropy aims at accounting for the thermodynamic version of the entropy
principle, it is worth stating again that the latter stipulates that the entropy of
a system is always nondecreasing (i.e., it increases or remains constant) for
any adiabatic process (whether the system is isolated or not). But there are
certain circumstances in which systems can have decreasing entropy: la-
beled as ‘closed’ (those systems that can exchange energy but not matter)
and ‘open’ (those exchanging both energy and matter). It is also possible
to prepare a low-entropy state, and additionally, a decrease in the entropy
of a system is sufficient to infer an interaction of that system with its envi-
ronment. The entropy principle thus reflects an asymmetry between two
classes of systems, between isolated systems (whether adiabatically isolated
or not), on the one hand, and closed or open systems, on the other (Clausius
1854; Denbigh 1989). (Lieb and Yngvason [2003] base this distinction on
adiabatic accessibility.) This asymmetry rests on the existence of certain
“spontaneous changes” that involve an entropy increase.1 In fact, an open
1. A system can be composed of a smaller system and some part of the latter’s environ-
ment and can be considered as isolated. Two bodies of different temperature that come
into direct thermal contact involve a spontaneous flow of heat and an entropy increase.
And the system composed of a cooler body and a hotter one can be considered isolated
but with increasing entropy. We can thus say that a spontaneous change (i.e., one that is
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system can always be part of a larger isolated system so that the entropy of
the isolated ‘system 1 environment’ always increases or remains constant;
that is, a local entropy decrease of a system must be compensated by a
global entropy increase in its environment. Consequently, the asymmetry
is between (A) always nondecreasing entropy for isolated systems or adiabat-
ically isolated systems and (B) increasing or decreasing entropy for closed or
open systems. The probabilistic explanatory strategy of the BSM account
aims at explaining only A, which is thus its explanandum.

This strategy takes the Boltzmannian entropy of a macrostateMt at time t
to be SB(t) ; SB(Mt) ; kBlog ½m(GM )�, where kB is the Boltzmann constant,
m is the (normalized) Lebesgue measure, and GM is a region of phase space
associated with Mt (Landau and Lifshitz 1980; Goldstein and Lebowitz
2004; Uffink 2007). The leading idea of BSM’s entropy principle is that
SB(Mt) could mirror the behavior of the thermodynamic entropy, that is, in-
creasing with time and reaching a maximum at equilibrium.2 This principle
is as follows (Brown et al. 2009; Frigg 2010a): consider an instant of time t0
and assume that the entropy SB(t0) of a system is low compared to SB at equi-
librium; then, for any time t > t0, it is highly probable that SB(t) > SB(t0).
The challenge then is to establish a clear meaning to the phrase ‘highly
probable’. Davey has succeeded in demonstrating its inherent ambiguity
by challenging the justification of a system’s reference classes.

2.2. Davey’s Counterexamples. What Davey’s (2008) paper claims is
that one can construct specific cases in which an instance of the entropy
principle should not be construed as a move from an improbable state to
a probable state, in accordance with what the BSM explanation would re-
quire, but rather as a move from a probable state to an improbable state.
In other words, Davey’s point is that one can imagine an allegedly appro-
priate reference class/measure space with respect to which an instance of
the entropy principle (i.e., a process with increasing Boltzmann entropy)
is unlikely rather than likely, contrary to what the BSM account would tell
us. He thus presents three different counterexamples that target the three
aforementioned criteria required to vindicate the BSM account.
not driven by doing work) in energy entails an entropy increase. The asymmetry alluded
to above captures a distinction between ‘natural/spontaneous’ change and ‘forced/artifi-
cial’ change, and thus it accords with the intuition that cups of coffee cool by themselves
while refrigerators need to be plugged in in order to work. It is also behind the clauses
“by itself ” and “without an accompanying change elsewhere” in Rudolf Clausius’s
(1854, 138) versions of the second law of thermodynamics.

2. This principle is variously referred to as the ‘Boltzmannian version’ of the second law
of thermodynamics (Callender 1999), ‘Boltzmann’s law’ (Frigg 2010a), or the ‘Principle
of probable equilibration’ (Brown, Myrvold, and Uffink 2009).
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The first counterexample presents the case of a scientist who tells us that
10 minutes ago a gas in a glass box was in equilibrium, and at that time he
made a choice between two preparations. The upshot is that there is no way
we could form a justified belief about the probability of either of those two
preparations. However, since the BSM account aims at explaining A (as
discussed above), the question to be answered is ‘why does the entropy
of isolated systems increase?’ rather than ‘why are there many low entropy
systems?’ or ‘is it probable to find low entropy systems?’ (see sec. 3.2).

The second counterexample presents a counterfactual argument about
glasses under ‘government fiat’: in one case, all good citizens must do every-
thing they can to keep all glasses of water half full of ice, and in another case
all good citizens must do everything they can to keep all glasses free of ice.
The argument thus targets the claim that low-entropy states actually found in
nature need not be improbable at all because we can imagine situations in
which systems in states of low entropy ought not to be ascribed states of
low probability.3 But this argument misrepresents the explanandum of the
BSM account by conflating different probability ascription procedures (see
sec. 3.2) and by disassociating the reference classes for probability ascrip-
tion, on the one hand, and entropy value, on the other (sec. 4.2).

The third counterexample devises a particularmicrostate x ∈ M that never
passes through the equilibriummacrostate,Q, and a special probability mea-
sure that is defined only on x. It thus targets the choice and justification of a
“micro” reference class (discussed in sec. 4.2) and of a probability measure
(discussed in sec. 4.3). I now turn to the discussion about a disambiguation of
probability, and a related albeit misguided skepticism, before showing that
those three counterexamples fail to do justice to the BSM account of the en-
tropy principle (in sec. 4).

3. Probability

3.1. The Probability Ascription Problem. As von Mises emphasized,
probability in, probability out. This means roughly that a probabilistic asser-
tion must be posited in some way. In other words, one should not conflate
facts and probabilities. Relative frequencies and symmetry attributes are
not probabilities—they are facts (Sklar 1993; Handfield 2012). And facts
do not come in a “preformed sigma-algebra of events”; they are ‘exogenous’
to the probability calculus.4 The probability calculus is ‘objective’ because it
is formally constructed, but the ascription of a probability value or a proba-
bility measure is partially arbitrary, hence ‘subjective’, because it lacks this
3. There is a similar argument in Albert (2000).

4. As Ismael (2009, 105) puts it, “Looking at frequencies will provide evidence for prob-
abilities, but as a logical matter they do not determine the probabilistic facts.”
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formal guidance.5 The inevitable presence of arbitrary components, such as
those related to the reference class problem, in inferences leading to the as-
cription of probabilities to facts can be labeled the probability ascription
problem.

This problem is similar in nature to the problem of induction because both
are cases of ampliative inferences (see Carnap 1966; Hájek and Hall 2002).
This is a standard argument saying that any terms in the conclusion that are
not already in the premises must have been introduced via definition, and
the definitions must be in terms of either what is available in the premises
or what has been previously defined in the course of the reasoning. Yet, both
inductive inferences and inferences to probability ascription go ‘beyond the
evidence’, and in that sense both can nourish a certain skepticism. Indeed, a
statement inferring from the finite frequencies of a coin toss the probabilities
of heads and tails ‘goes beyond the evidence’ of those finite frequencies be-
cause these probabilities imply that subsequent ‘similar enough’ tosses will
abide by the same frequencies.

This problem might give some support to Davey’s skepticism and his
claim that the connection between entropy and probability is not ‘straightfor-
ward’. In this particular sense, Davey’s thesis would be a special case of the
probability ascription problem, for BSM has no more special status in this
regard than any other (empirical) scientific theory. On this account, it would
be correct to say that the BSM probabilistic explanatory strategy is problem-
atic. However, this is too strong a requirement because the probability as-
cription problem would hinder any kind of probabilistic ascription or prob-
abilistic explanation in cases not supported on inductive grounds, such as
cases based on asymmetries (e.g., a die before throwing it). This is therefore
the same conclusion regarding Davey’s skepticism as that of Shech (2013)
but for other reasons. But Davey’s argument points to a version of the ref-
erence class problem that differs from the aforementioned probability ascrip-
tion problem. Davey’s account makes the insight that there can be situations
in which an a priori principle chooses the wrong probability measure. My
argument for the justification of an adequate probabilistic interpretation
relies on a distinction between probability ascription procedures, which
serves to disambiguate what is deemed ‘probable’ and thereby aligns with
the explanatory goals of the BSM account. This allows one to construct
and then justify both the explanandum and the explanans of the BSM entropy
principle.
5. Here, I insist on the objective-subjective distinction, which focuses on the epistemic
tools that we have: ‘objective’ then reflects what has empirical support or what is math-
ematically deduced, and ‘subjective’ refers to the arbitrary components of our inferences.
Of course, many discussions of probability insist instead on the ontological-epistemic
distinction, where it is supposed that ontological claims can be evaluated independently
of our epistemic tools.
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3.2. Two Kinds of Probability Ascription Procedure. I propose a dis-
tinction between two generic procedures to ascribe probability values, which
can be labeled “diachronic” and “synchronic.”6 They are distinguished here
to show how they can influence differently the meaning of probability and,
thus, its equivocality. Consequently, it affects the meaning of the theory in
which probabilities play a role. For instance, it seems justified to assert that
probability has not the same meaning in quantum mechanics that it has in
evolutionary biology, or at least that the convergence of their meaning re-
quires a justification. They both depend on the evidence of chance, but, as
the previous discussion emphasized, facts alone are insufficient for probabil-
ity ascription.7 Accordingly, this account can be considered as ‘neutral’ (or
‘hybrid’) with regard to the strands of interpretation, that is, the epistemic
and the physical. Such a choice would be superimposed and should not hin-
der the role of probability in explanation.8

The simple experiment of throwing dice can be helpful here. In the dia-
chronic procedure, the outcomes (i.e., the mutually exclusive results) are in-
stantiated after throwing a die many times in a similar fashion. If the number
of throws is large enough, it is supposed that the set of all possible outcomes
will be instantiated, which corresponds to the ‘basic space’,Q.9 Additionally,
it is often supposed that the relative frequency of the outcomes just equals
their probability. However, as discussed earlier, this assumption is generally
only adopted faute de mieux. The procedure can be formalized as follows:
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Diachronic probability procedure. ED : ai ∈ Q5 f(a1 5TtE1), (a2 5TtE2), : : : ,
(an 5 TtEn)g,
eds (2003) distinguishes “probability of becoming” and “probability of being.”
y (2011) rather proposes another distinction with “instantaneous probability,” when
robability is “specific to a particular time,” and “noninstantaneous probability” oth-
e. Both can be related to the diachronic probability, but they do not intervene in the
ents here.

ndfield (2012) calls ‘actualism’ the doctrine stipulating that chances are reducible
idence, to facts about real events, to ‘this-wordly’ phenomena.

acknowledged by Strevens (2014, 42), in SM “probability is introduced into an
nation not because it is either metaphysically or epistemologically unavoidable,
ecause it enhances the explanation, providing more insight than the deterministic
ative.”

e determination of the possible outcomes of an experiment does not necessarily
a diachronic procedure, even though the determination of the probability of these

mes does. For example, the simple observation of a die, alongside symmetry argu-
s, can suffice. Also, some experiments have infinite possible outcomes, e.g., ‘re-
ng the distance from the bull’s eye to the point where a dart, aiming at the bull’s
ctually hits the plane’, where a diachronic procedure to determine all possible out-
s would take infinite attempts.
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where ai are the outcomes among n possibilities in Q, E is an experiment (or
a test) and Ei are particular instances of the generic ED (i.e., the system in a
particular context at a certain time, so a particular occurrence and not the
experiment per se), and Tt is an evolution operator.10 The diachronic prob-
ability is then PD(ai) 5 m(ai)=m(Q), where m is a normed measure. Here, a
given state Ei in the experiment evolves toward a range of possible states or
outcomes ai. For instance, a given state Ei of throwing a die (generally
loosely defined) evolves (via Tt) toward a certain outcome ai; if the exper-
iment or the test is performed an infinite number of times, then it is reason-
able to think that all n possible outcomes occurred, which form the set
Q 5 f1, 2, : : : , 6g.

In the synchronic procedure, the events correspond to states of ‘similar
enough’ systems (e.g., those in the same context or the same time frame);
for instance, many similar dice can be thrown simultaneously (instead of the
same die thrown many times in succession). Formally:
10. T
termi
by co
tween
defin
malis
quan
vecto

6 Publ
Synchronic probability procedure. ES : ai ∈ Q 5 f(a1 ∈ B), (a2 ∈ B), : : : ,
(an ∈ B)g,
where B is a class of similar systems with different attributes corresponding
to the outcomes. Similarly as before, if the class B is very large, then it is
reasonable to think that all n possible outcomes can be found in B. This pro-
cedure can be labeled as intralevelwhen the states ai belong to different sys-
tems in the same class B of systems (e.g., many similar dice) and interlevel
when a macrostate (corresponding to B) is associated with a number of pos-
sible microstates corresponding to the ai. Of course, the paradigmatic exam-
ple of the later is SM, where the ‘probability of a macrostate’ is based on the
number of associated microstates. These procedures are very helpful when
iterative procedures such as diachronic procedures are not possible; for in-
stance, we cannot test the very same car many times to determine the (dia-
chronic) probability of accidents, but we can test different ‘similar enough’
cars (synchronic probability). If the microstates are unobservable, then the
probability measure will surely (but not necessarily) be determined by sym-
metry arguments, such as the equiprobability of every microstate. Thus, the
his operator can be implicit, just as with the die example in which it does not de-
ne the sequence of states between the throw and the result. In quantum mechanics,
ntrast, the Schrödinger operator is explicit, but there is the famous breakdown be-
the deterministic temporal evolution and the probability measure. This formal

ition of probability ascription could be reformulated in the quantum mechanics for-
m: Tt would be the Schrödinger operator of course, nwould be the dimension of the
tum phase space, Ei would be the state vector, and the ai the projections of this state
r.
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same arbitrary elements, as in the diachronic procedure, are present here,
but they generally lead to different philosophical problems.

Distinguishing these procedures is a good way to analyze the problems
related to the ambiguous notion of probability. In effect, the objective-
subjective distinction and the related reference problem do not apply in the
sameway in each procedure.Moreover, since BSMuses interlevel synchronic
probability, and quantummechanics diachronic probability, one can argue that
certain procedures challenge the deterministic stance while others do not. Fi-
nally, it forces us to clarify the conditions in which these procedures are ap-
plied. For instance, it would appear unreasonable to assert that the (diachronic)
probability of rolling a one is 1/3 because a given set of dice at a certain mo-
ment in time is constituted by one-third (synchronic probability) of dice with a
one uppermost. The obvious reason for the divergence in this example appears
to be that the conditions or the experimental setups are different. The govern-
ment fiat example is a case in point: the intralevel synchronic probability, con-
sisting of the relative frequency of all the glasses of water containing ice at a
moment in time, differs not only from the diachronic probability of a single
glass of water into which one citizen randomly puts ice but also from the
interlevel synchronic probability of a single glass of water based on the phase
space volume of its associated microstates.

Consequently, the probability determined by one procedure does not nec-
essarily have the same meaning or the same consequence for an explanatory
strategy as does another procedure. Assuming their convergence thus re-
quires justification. In the absence of such a justification, as is the case in
Davey’s argument, a conclusion about ‘probability’ in SM rests on an ambi-
guity that must be lifted in order to substantiate, for example, the claim that
there is no connection between entropy and probability. The next section
will discuss how the BSM explanatory strategy constrains the choice of a
reference class.
4. The Entropy Principle’s Probabilistic Explanatory Strategy. Con-
trary to widespread belief, the statistical version of the entropy principle
does not really stipulate that thermodynamic systems pass from improbable
states to more probable states. States do not evolve into other states just be-
cause there are more of the latter or because they make up a set of a larger
measure (Uffink 2007, 979–80). Oddly enough, this would be incompatible
with the deterministic laws on which thermodynamics is based. As stressed
by Leeds (2003, 128), speaking of “the probability of our ice melting” is “a
little misleading.”What is extremely probable is that a piece of ice is in one
of the microstates that guarantee deterministically that it will melt. Under-
lying this reasoning is the fundamental presupposition of SM that “systems
can legitimately be described by an underlying causal picture of the world”
86/711586 Published online by Cambridge University Press
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(Sklar 1993, 148). In effect, BSM posits that a system’s behavior is deter-
mined by or “supervenes” on this causal structure (Frigg 2010a, 93).

This is an important assumption in the BSM’s explanatory strategy. The
following three subsections are devoted to presenting and justifying the el-
ements of this strategy.

4.1. Probabilistic Explanation. The BSM account is supposed to ex-
plain (i.e., to offer an explanans for) a particular explanandum, namely, iso-
lated macroscopic systems that have nondecreasing entropy (A). Obviously,
the success of this account will be judged in accordance with what one sees
fit as an explanation, and there can be numerous, more or less stringent mod-
els of explanation. But if the satisfaction of some formal conditions and pre-
suppositions is necessary for any probabilistic explanation, then it is only
fitting that the explanans of an account such as BSM’s should abide by these
conditions. Alternatively, if there are no such conditions, then scientific ex-
planatory strategies must be taken at face value. In that case, counterex-
amples such as Davey’s would be open to criticism for not abiding by the
specific explanatory strategy that they target. The demonstration of a dis-
crepancy between what BSM actually does and an alleged counterexample
would then suffice to vindicate the former. So, let us suppose that such for-
mal conditions exist.

The overall picture of a probabilistic explanation looks like this (Sklar
1973): let S be a statistical generalization (and eventually a probabilistic
law). If the conditions Ci it describes are met, then, with probability p, the
event described by the explanandum will occur. These conditions refer to
the background of S and include information about laws or causal relation-
ships or histories. Although the details are still debated, it is generally agreed
that pmust be generated by S and that it must be relatively high (without the
imposition of any precise value). More importantly, it is generally accepted
that the ‘expectation’ of the explanandum from the explanans {S, Ci, p} has
explanatory power. Conversely, the choice of a reference class and condi-
tions forming {S, Ci, p} are supposed to support this expectation in order
for this probabilistic strategy to be explanatory. Yet, it does not eliminate
the possibility of a stronger or better explanation.

The choice and justification of the appropriate reference class is notori-
ously difficult, but the previous distinction regarding probability procedures
helps to clarify the implications of those procedures and to justify a choice.
For instance, a die purportedly has a 1/6 probability of yielding a one as per
the diachronic probability, but that does not mean that one-sixth of the class
of similar dice in the world at this very moment is in the state of yielding
a one according to the (intralevel) synchronic probability. In practice, there
are some presuppositions, which determine the conditions Ci (on which prob-
abilistic explanations, regarding, e.g., the rolling of dice, are based), and these
6 Published online by Cambridge University Press
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presuppositions constrain the choice of the relevant reference class. Further-
more, once the explanandum is defined (i.e., case A) as well as the condi-
tions Ci and the presuppositions of the explanatory strategy (i.e., the ‘causal
structure’), then justification of the probabilistic strategy can be obtained.

4.2. The Entropy Principle’s Explanans. If the explanandum of the
BSM account is (as mentioned) an isolated thermodynamic system (A), then
there is no need to demand that BSMmake any sort of claims about the con-
ditions that bring about other systems (B).11 Now, the explanans of the BSM
account is based on the presupposition that there is, underlying the ex-
planandum, a causal picture of the world. The Ci of the explanans should
therefore refer to this underlying causal picture, that is, to the phase space
of individual systems left isolated. Similarly, S should refer to this phase
space in order to express the idea behind the probabilistic explanans (as dis-
cussed above) where it is extremely probable (i.e., very high p) that a mac-
roscopic system (e.g., a piece of ice) is in one of the microstates that deter-
ministically guarantee that it will later instantiate a high-entropy state (e.g.,
by melting).

Goldstein (2001, 43) expresses this idea, which he labeled ‘typicality’:
given a nonequilibrium phase point x of energyE, the Hamiltonian dynamics
governing the motion xt arising from xwould have to be ridiculously special
to avoid carrying xt into Geq reasonably quickly and keeping it there an ex-
tremely long time, unless, of course, x itself were ridiculously special.12 Sim-
ilarly, Railton (1981) contends that almost all possible sets of initial condi-
tions fall into the class leading to equilibrium, and almost none into the class
leading to nonequilibrium. In short, the ratio m(Geq)=m(GM*), where M* is a
standard nonequilibrium macrostate, is very large. Explanandum and ex-
planans can thus constrain the choice of a reference class. The reference
class that the BSM account adopts is the one containing all of the microstates
(not some particular subregions) compatible with the individual system’s
energy. Although, at least for now, the uniform probability measure m and
correlatively the high-p clause are still in need of a (better) justification
(see sec. 4.4), the BSM account as described so far can invalidate Davey’s
counterexamples (discussed next).

4.3. Micro- and Macroreference Classes. The explanans presented
above proposes to explain the entropic behavior of amacroscopic system left
11. Shech (2013, 603) calls these systems “problematic systems.”

12. Many Boltzmannians such as Goldstein would deny a certain role played by prob-
ability, namely, that entropy should be a function of probability density (Gibbs) instead
of a function of phase space. But such Boltzmannians will nonetheless accept a proba-
bilistic explanation based on the ‘typicality’ of the initial conditions (e.g., Goldstein
2001, 53). This is discussed below.
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isolated, which defines a macroreference class by relying on its phase space,
thus also defining a microreference class. And it proposes to do so with a
probabilistic explanation in which it is extremely probable that such a sys-
tem is in one of the microstates that deterministically guarantee that it will
later instantiate a high-entropy state. Within this explanatory framework
there is an obvious choice of probability ascription procedure. It is, in effect,
a case of interlevel synchronic probability where the outcomes (ai) from the
microreference class are determined by the macroreference class (B).

It is thus not a case of intralevel synchronic probability where, for exam-
ple, many similar glasses at a given time have a certain entropy state. Such a
probability refers to the macroscopic conditions, that is, the possible inter-
ventions on the macroscopic systems. In effect, the probability of being in
a particular macrostate must refer to the conditions that affect the possible
macrostates. It thus has nothing to do with BSM’s explanandum (A). This is
why we do not need to form and much less justify any belief about which
probability measure describes the system before being isolated. This is also
why we do not need to ascribe any probability to a given macrostate at a par-
ticular time. In fact, this omission is part of both the explanandum and the
conditions (Ci) of the explanans because any interaction with a system leads
it to (very likely) be in a microstate that will evolve toward a high-entropy
state if left isolated (this is discussed later). Consequently, it is not necessary
to obtain a successful explanans to be specific about phase space: there is no
need to ascribe a probability to any specific subregion of phase space or to
form a “justified belief about the probability with which our system lies in
any [specific] subregion of phase space” (Davey 2008, 34).13 Therefore,
the “Basic Claim”—”If a region of phase space is large, then it is probable
for a physical system to find itself there” (30)—does not need to be substan-
tiated, as Davey’s first purported counterexample tries to do (see sec. 2.2).

The important shift in Davey’s argument in the second counterexample
occurs when he ascribes a probability value based on the class of macroscop-
ically similar systems (i.e., the glasses of water) and not on the phase space.
The reference class for the determination of the entropy value and that for the
determination of the probability value are different. In other words, Davey
chooses intralevel instead of interlevel synchronic probability, and these do
13. Of course, the endorsement of a specific uniform probability measure (e.g., Le-
besgue’s) would lead to the ascription of a specific probability value to arbitrary subre-
gions of that space. But such a specific value is not necessary for our probabilistic ex-
planatory scheme to work, since equivalent, uniform probability measures could work.
The question whether a uniform probability measure could ascribe a high probability to
nonequilibrium microstates (and thus contradict this scheme) will have to await future
work.
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not coincide. What happens to other similar systems (i.e., intralevel syn-
chronic probability) is thus irrelevant to the microphysical evolution of an
isolated system, that is, the explanandum A. Therefore, the reference class
of glasses under government fiat cannot possibly determine the probability
that an individual system is in a certain microstate and cannot support the ex-
pectation of the explanandum, which invalidates the second counterexample.

Furthermore, it is also not a case of diachronic probability where, for ex-
ample, a given glass once left isolated will evolve toward either a high- or a
low-entropy state or any other state for that matter. Should thermodynamic
systems be described by such a probability, they would be considered as in-
deterministic as quantum systems, contrary to one fundamental presupposi-
tion of SM. Another application of diachronic probability is to be found in
the objection (e.g., Frigg 2010b) that ‘typicality’ is impotent on the basis that
nonequilibrium states do not evolve into equilibrium states simply because
there are overwhelmingly more of the latter. It is rather that there are over-
whelmingly more nonequilibrium states (or phase space points) that evolve
into equilibrium states (or phase space points) than nonequilibrium states
(or phase space points) that do not.

Suppose now that a die is in a macrostate defined as showing one upper-
most. There is no way that we can infer its intralevel synchronic probability
based on the reference class of all similar dice in the world in any particular
moment in time. Thus, intralevel synchronic probability is not the right read-
ing underlying the use of ‘probable’ in Davey’s Basic Claim. If the condi-
tions of this event include very specific interventions on all the dice in the
world to obtain (or hinder) the occurrence of showing one uppermost, then
all these interventions would have to be known. Similarly, if, for a given
macrostate, these conditions include a very specific dynamic intervention
(e.g., knocking the die in a specific place, with such and such friction), then
the diachronic probability would be quite different to the usual 1/6 attributed
to every face and would not be explanatory. Yet, the BSM account is agnos-
tic with regard to the specific macrostate a system can be prepared in, the
specific dynamics involved, and how long the system is allowed to stay iso-
lated. These specific features of thermodynamic systems are worth investi-
gating, but they are not necessary for the BSM’s explanatory strategy.

4.4. Justifying a Probability Measure. What then justifies the choice of
the standard uniform or Lebesgue measure as the probability measure on
phase space in the BSM account? A first, preliminary and general answer
is that there is no good answer, for justification in a strong sense would
amount to solving the probability ascription problem and correspondingly
the problem of induction (sec. 3). As a more specific answer, I propose
two arguments, which may be labeled ‘generic’ and ‘particular’, to justify
the proper, uniform probability measure for the BSM account.
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The generic argument relies on the flexibility of the BSM account in
building a probability measure that can support the expectation criterion
in the explanatory strategy with the combination {S, Ci, p}. In effect, it does
not have to be the uniform measure (i.e., microcanonical or Lebesgue mea-
sure) specifically, for all that is needed is that p supports the expectation
within the explanatory strategy according to the interlevel synchronic prob-
ability. It remains true that the only way to determine the ‘real’ probability
measure would require very specific, microscopic details about the systems
in question, but this flexibility is a compelling reason to leave aside the crit-
icisms targeting the principle of indifference to the effect that it fails to de-
liver a unique probability measure. In fact, uncertainty about the micro-
scopic details is not an obstacle to, but rather an essential element of, the
probabilistic explanatory strategy. The successes of BSM are due in large
part to its abstraction from the details of the systems it purports to describe
(Khinchin 1949). This flexibility can be seen as a case of universal or asymp-
totic explanation in which the microscopic details are set aside (see Batter-
man 2002). Therefore, this flexibility plays a role in the explanans, which
supports the uniform probability measure.

The particular argument relies on the typicality of the BSM account, with
typicality taken in the common sense, as something happening in the vast
majority of cases and also as the opposite of special cases. Of course, typi-
cality comes with a vast literature, filled with both criticisms (e.g., Frigg
2010b) and justifications (e.g., Werndl 2013). My point here is this: since
in experiments one has the freedom to prepare a system into all kinds of dif-
ferent initial microstates on the energy hypersurface, no region of phase
space should be assigned a higher probability than any other. Of course, this
claim could be justified on purely inductive grounds, because any prepara-
tion puts a system into a microstate that will evolve to equilibrium, but the
argument is stronger if the justification is situated within our explanatory
framework. In fact, the usage of the principle of indifference and equiprob-
ability is restricted (see Castell 1998) here because it is applied to a set of
systems with strong similarities (i.e., microstates in the canonical phase
space). Moreover, the consequence of a very special, nonuniform proba-
bility measure could be a system that will (more) likely be in a microstate
evolving toward a special condition, for example, gas particles concentrated
in the corner of a container, thereby violating the second law of thermody-
namics. Therefore, a nonuniform probability measure does not support the
expectation of the instances we observe or, consequently, the explanans of
the BSM account.

At this point, if the explanandum, the explanans, and the relevant micro-
and macroreference classes are indeed justified but a justification based on
inductive grounds or the principle of indifference is ruled out, then it is
seems impossible to ascribe in a justified manner a probability measure in
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any probabilistic explanation whatsoever. The common example of throw-
ing dice would then be impossible to explain. The principle of indifference
is still objectionable, but its flexible and restricted usage within a justified
explanatory framework (as presented here) remains conservative. At least,
this framework provides the reasons why (i.e., it explains in the sense pro-
vided above) it is likely for A to occur.

Having said all that, the entropy of the system is also overwhelmingly
likely to be increasing toward the past. Again, a vast literature has tackled
this problem (see, e.g., Albert 2000). Here, I will say only this: it is not to
deny the very existence of the system in the past, but rather that the relevant
period of time of the explanandum A starts precisely with an intervention
providing, or preparing, a non-maximal-entropy macrostate because before
it was not isolated; hence, that time is irrelevant as far as the BSM account is
concerned. After all, the BSM’s entropy principle is not necessarily bound to
explain all kinds of asymmetry or “everything that is supposedly deteriorat-
ing or getting worse” (Denbigh 1989, 323). Many problems with SM remain
to be solved, even with a probability measure, but if the above arguments are
valid, a justification of the probabilistic explanation (although not a proof of
the entropy principle) is available.

4.5. Proviso: Trivialization of the Entropy Principle. A probabilistic
explanation of thermodynamic entropy has been proposed, but a proof of
the entropy principle as a deduction from dynamic premises alone is still re-
mote. However, it can be quite unsatisfactory to support this proof with very
special initial conditions, such as the supposed low-entropy initial state of
the universe. Here is a rendition of what some might be tempted to do in ex-
plaining the time asymmetry of entropy from a kind of information asymme-
try between the past and the future: from a known initial state we generally
infer that the evolution of certain systems (e.g., dice) can lead to any out-
comes in a predefined set; that is, we deem ourselves ignorant of which spe-
cific state will occur from among these possible outcomes. Given this asym-
metry, if we define a phase space function such as statistical entropy, it can
only increase because its independent variable goes from a low to a high
value; that is, it evolves from a small phase space (the known specific state)
to a larger one (of all possible outcomes). This is what can be called the ‘triv-
ialization of the statistical entropy increase’. But it can hardly be deemed a
proof of the entropy principle. Perhaps future work in the field will devise a
full-fledged satisfactory mathematical explanation based on something like
ergodicity or typicality—or else answers to the ‘very hard questions’ Gold-
stein (2001) alluded to. But even without the latter, or without what can be
deemed a proof or even a strong metaphysical explanation of the entropy
principle, a sound probabilistic, universal explanation of it, as seen above,
is available.
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5. Conclusion. Skepticism will remain plausible in matters of probability
ascription and scientific explanation because more stringent requirements
remain possible in many scientific endeavors. Nonetheless, there is a strong,
explanatory connection between entropy and probability. This connection is
based on fundamental assumptions (such as the one about the underlying
causal structure that determines macrostates) and on general explanatory
conditions, along with a disambiguation of the notion of probability. These
explanatory features circumscribe the choice of macro- and microreference
classes as well as of a flexible, albeit restricted, usage of equiprobability.
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