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Equilibrium turbulent boundary layers with
lateral streamline convergence or divergence

T. B. NICKELS †
Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK

(Received 24 July 2008 and in revised form 14 November 2008)

The constraints necessary for equilibrium solutions of the boundary layer equations
are explored for turbulent boundary layers subject to lateral convergence and
divergence and with longitudinal pressure gradients. It is shown that in addition
to the well-known equilibrium solutions for two-dimensional boundary layers there
are additional possible equilibrium states for boundary layers with these extra rates-
of-strain acting. The necessary constraints for equilibrium are derived and discussed.

1. Introduction
This analytical study was motivated by the results of two experimental studies

conducted at the University of Melbourne examining the effects of streamline
divergence and convergence on developing turbulent boundary layers (Saddoughi &
Joubert 1991, Panchapakesan et al. 1997). In these experiments, a developed turbulent
boundary layer on a flat plate was subjected to streamline divergence in the one case
and convergence in the other, by linearly diverging (or converging) the sidewalls of
the wind tunnel while maintaining a zero pressure gradient by the adjustment of a
flexible ‘ceiling’ above the plate. Measurements of the spanwise variation of pressure
and skin friction suggest that these flows may be considered as axisymmetric, i.e.
homogeneous along circles centred at the point where the mean streamlines meet.
Although the internal angle between the sidewalls was 10◦ in both cases, the behaviour
of the boundary layer in the two cases was markedly different. The diverging case
showed very little change in the mean flow and turbulence and appeared to be close
to, and approaching, an equilibrium state. The converging case, however, showed
significant changes in the flow structure and appeared to be in the state far from
equilibrium. This prompted the question as to why the two flows are so markedly
different and, more generally, under what conditions is it possible for boundary layers
with streamline divergence or convergence to achieve a state of equilibrium?

Equilibrium boundary layers are special solutions of the boundary layer equations
where the shapes of the mean velocity and turbulence profiles remain self-similar when
non-dimensionalized appropriately. Clauser (1954) was one of the first researchers to
study equilibrium solutions for turbulent boundary layers. By analogy with laminar
flows, he proposed the possibility of turbulent equilibrium boundary layers with
pressure gradients acting. Proceeding by physical arguments he postulated a pressure
gradient parameter which, if held constant, could lead to equilibrium solutions. He
further showed experimentally two flows in which this equilibrium was achieved.
The equilibrium solutions of Clauser (1954) are solutions in which the mean
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274 T. B. Nickels

velocity profiles in defect form are self-similar over most of the layer. These are
self-similar solutions of the Reynolds averaged boundary layer equations in which the
viscous terms have been neglected and hence they will be referred to as approximate
equilibrium flows. These solutions do not ensure exact equilibrium since the Reynolds
numbers of the flows are changing and hence the flow very near the wall, which
is affected by viscosity, is not in equilibrium. In Clauser’s flows similarity of the
defect does not extend all the way to the wall, although it does apply over a large
region of the boundary layer profile. These solutions are then appropriate for high
Reynolds numbers and may be precise at infinite Reynolds number. Following on
from this earlier work, Clauser (1956) gave a general discussion of the turbulent
boundary layer in which he considered broader issues and also showed that for his
class of approximate equilibrium flows that the shear stress could also be nearly self-
similar. He also examined the appropriate form for the pressure gradient parameter
for approximate equilibrium. Bradshaw (1967) established flows of this nature and
studied the turbulence structure experimentally.

Townsend (1956) and Rotta (1962) examined the conditions required for equilibrium
more rigorously than Clauser and established a set of conditions under which exact
equilibrium is possible. The equilibrium is considered exact if the defect similarity
applies across the whole layer so that the viscous terms are included in the similarity
formulation. In the case of rough walls the similarity solution would extend close
to the height of the roughness elements (above the roughness sublayer). They also
considered the conditions necessary for the equilibrium of the stress profiles. They
both found that for smooth walls the only exact equilibrium layer that could occur was
the favourable pressure gradient sink flow. Coles (1957) and Perry (1968) considered
flows where the conditions for exact equilibrium are relaxed in order to account for
experimental evidence that an empirical equilibrium state is possible for flows which
do not meet the stringent conditions derived by Rotta (1962) and Townsend (1956).
Both authors derived parameters which, if kept constant, could lead to empirical
equilibrium flows despite the fact that these flows do not satisfy the conditions
required for exact equilibrium.

The above studies of equilibrium flow all apply for the nominally two-dimensional
boundary layer that occurs on a plate where the streamlines are parallel when
viewed in a direction normal to the wall. It does not seem to be generally known
that equilibrium solutions can also exist for flows with streamline convergence or
divergence with or without streamwise pressure gradients. In this paper the analysis
for equilibrium is extended to these cases.

2. Definition of equilibrium
In this paper two definitions of equilibrium are used. Approximate equilibrium

boundary layers are boundary layers where the mean velocity defect profile is self-
similar over most of the layer and the Reynolds shear stress profile is also self-similar
over most of the layer. The phrase ‘over most of the layer’ means we neglect the
region near the wall where viscosity becomes important. If the Reynolds number of
the flow is sufficiently high this region is small and makes only a small contribution
to the momentum and mass flux. These solutions are derived by assuming that the
viscous terms are negligible which is true over most of the layer when the Reynolds
number of the flow is sufficiently large. The equilibrium flows of Clauser fall into
this category. Exact equilibrium boundary layers are solutions of the boundary layer
equations in which the similarity applies across the whole layer and may be derived
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Equilibrium boundary layers with convergence or divergence 275

from approximate equilibrium solutions by ensuring that the local Reynolds number
of the flow is constant. In these layers the velocity-defect similarity applies all the way
to the wall as does the Reynolds shear stress similarity since the viscous terms have
not been neglected. Exact equilibrium boundary layers are a subclass of approximate
equilibrium layers with additional restrictions imposed.

3. The Reynolds shear stress
In the following analysis the flow will be considered axisymmetric with U the

mean velocity in the radial (r) direction, V the mean velocity in the wall normal (y)
direction and u and v the velocity fluctuations. This is consistent with the experiments
mentioned in § 1 which are (to a very good approximation) homogeneous along circles
centred at the point where the mean streamlines intersect. The momentum equation
for boundary layers in cylindrical coordinates may then be written as

U
∂U

∂r
+ V

∂U

∂y
=

−1

ρ

∂P

∂r
+

1

ρ

∂(−uv)

∂y
+ ν

∂2U

∂y2
, (3.1)

where the flow is assumed axisymmetric in the mean and the assumption that the
point of interest is not too close to the origin (r =0) where extra terms in the viscous
stress become important (in particular where ∂2U/∂y2 � U/r2) is implicit. The other
terms neglected are in line with the usual boundary layer assumptions including the
streamwise (radial) derivative of the normal stresses. Checks on the effect of including
these extra terms show them to be negligible in the momentum balance and show
that they do not affect the conclusions of the analysis (for the experiments discussed
in § 1, inclusion of the extra terms changes the streamwise momentum by less than
2 %). Using the mean continuity equation

1

r

∂Ur

∂r
+

∂V

∂y
= 0 (3.2)

and multiplying both sides of (3.1) by δ/U 2
τ , after some algebra it is possible to show

that

g′
12 = − δ

Uτ

dU1

dr
(2f − ηf ′ − f 2/S + I1f

′/S) + δ
dS

dr
(f − f 2/S + I1f

′/S)

+ S
dδ

dr
(ηf ′ − I1f

′/S) − S
δ

r
(ηf ′ − I1f

′/S) +
1

δ+
f ′′, (3.3)

where δ is the boundary layer thickness and Uτ is the wall shear velocity (Uτ =
√

τw/ρ

where τw is the shear stress at the wall and ρ is the density of the fluid). In these
equations the following definitions have been used:

η =
y

δ
, (3.4)

S =
U1

Uτ

, (3.5)

f (η) =
U1 − U

Uτ

, (3.6)

I1 =

∫ η

0

f dη, (3.7)
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Figure 1. Co-ordinate system.

C1 =

∫ ∞

0

f dη (3.8)

δ =
δ∗S

C1

, (3.9)

δ+ =
δUτ

ν
(3.10)

g12(η) =
−uv

U 2
τ

, (3.11)

where U1 is the velocity outside the boundary layer and is assumed positive in the
positive r direction – i.e. away from the origin. δ∗ is the displacement thickness
of the boundary layer. The dash denotes differentiation of the function of η with
respect to η. In order to more easily discuss both diverging flows (flow out from the
origin) and converging flows (flow towards the origin) in a coordinate system that
is more natural for comparison with experiments, we consider the simple coordinate
transformations

r = x + xo, x > 0, (3.12)

for diverging flow and

r = xo − x, 0 < x < xo, (3.13)

for converging flow. These flows then start from some initial radius r = xo, develop
in the positive x-direction which is away from the origin in the diverging case
and towards the origin in the converging case as shown in figure 1. This simplifies
the interpretation of the terms since, for example a positive value of dU1/dx is a
favourable pressure gradient in both flows. The interpretation is then in terms of the
usual convention where the flow direction is considered positive.

We will also define a non-dimensional pressure gradient parameter, after Clauser
(1956) as

βx =
δ∗

τo

dP

dx
= − δ∗

Uτ

S
dU1

dx
= −C1

δ

Uτ

dU1

dx
(3.14)
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and by analogy following Panchapakesan et al. (1997) a divergence parameter which
they specified in Cartesian coordinates as

βD = − δ∗

Uτ

S
dW1

dz
(3.15)

and in terms of the axisymmetric coordinate system and our new variable x βD =
− S2δ∗/(x + xo) for diverging flow and βD = S2δ∗/(xo − x) for converging flow. With
this coordinate system and divergence parameter then the cases of convergence and
divergence can be treated using a similar equation in which only the sign of βD differs,
being positive for convergence and negative for divergence. (It is important to note
that these flows are axisymmetric and hence in the appropriate polar coordinates there
are only two velocity components, this third velocity component only arises when
expressing things in Cartesian form as has been done in the experimental papers.
These flows are actually (to a very good approximation) two-dimensional since they
are homogeneous along circles located at the origin of the streamlines.) Since we
will be looking for equilibrium solutions in which the various length scales become
proportional then the use of the displacement thickness δ∗ is not important but it
has been chosen here in order to provide a connection with the work of Clauser on
approximate equilibrium solutions in flows with pressure gradients. In terms of these
new parameters then the momentum equation may be rewritten as

g′
13 =

βx

C1

(2f − ηf ′ − f 2/S + I1f
′/S) + δ

dS

dx
(f − f 2/S + I1f

′/S)

+ S
dδ

dx
(ηf ′ − I1f

′/S) − βD

C1

(ηf ′ − I1f
′/S) +

1

δ+
f ′′. (3.16)

From the above equation it may be seen that for approximate similarity to be
possible for the Reynolds shear stress, the following conditions must apply

S = constant, (3.17)

i.e. the skin friction coefficient C ′
f is not a function of x

dδ

dx
= constant, (3.18)

βD = constant and (3.19)

βx = constant. (3.20)

Implicit in this analysis is the choice to scale the mean velocity defect and the
turbulence quantities using the wall shear velocity and a suitably defined, boundary
layer thickness. In this sense it is in line with the classical analysis of conditions for
equilibrium solutions of the equations. However, since S is constant is a condition of
the solutions then scaling with the wall shear velocity and the external flow velocity
are equivalent. Note that the boundary layer thickness used here is proportional
to the Clauser–Rotta length scale 	 (which in this notation is 	= δ∗S =C1δ) and
hence is a well-defined integral length scale. It is only chosen here rather than the
Clauser–Rotta length scale since under most circumstances its value will be close to
the more commonly used experimental measurements of boundary layer thickness
(such as the ‘99 % thickness’). While this is not necessary for the analysis it may be
helpful for some readers.
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4. The momentum integral equation
Integrating the momentum equation across the boundary layer in the vertical

direction leads to the momentum integral equation for flows with simple convergence
or divergence (see also Kehl 1943; Head & Patel 1968).

In terms of the parameters defined earlier this may be written as

dθ

dx
=

1

S2

[
1 + βx +

2βx + βD

H

]
, (4.1)

where θ is the momentum thickness of the layer. It is not difficult to show that this
reduces to the usual form for boundary layers with no lateral straining (βD =0) and
an applied pressure gradient. In the zero pressure gradient case with an extra lateral
straining the equation further reduces to

dθ

dx
=

1

S2

(
1 +

βD

H

)
. (4.2)

5. Approximate equilibrium
Now in the case of approximate equilibrium solutions, which will be considered

first, the last term is neglected, the assumption being that if the Reynolds number
(defined here as δ+) is sufficiently large this term may be neglected over most of the
flow. It should be noted that these solutions may also be good approximations to the
real behaviour in the case where the variation of δ+ with streamwise distance is very
small. These might be considered quasi-equilibrium solutions. We will then consider
exact equilibrium solutions in which these assumptions are unnecessary.

Hence the analysis suggests that approximate equilibrium solutions may be possible
for flows with streamline convergence or divergence if the above conditions are
satisfied. The conditions are similar to those previously derived for two-dimensional
boundary layers with the extra condition given by (3.19).

The momentum integral equation imposes extra constraints which will here be
used to decide which of the flows satisfying the above conditions are possible. We
consider first the zero pressure gradient cases which inspired the analysis. It may be
recalled that in the experiments the case with diverging flow appeared to be close to
an equilibrium solution whereas the converging case was far from equilibrium.

5.1. Zero pressure gradient

Here we consider first the case with zero streamwise (radial) pressure gradient. In the
converging streamline case from the definition of βD we have

βD = S2δ∗/(xo − x), βD > 0. (5.1)

Rearranging this equation and differentiating we find an expression for dδ∗/dx,

dδ∗

dx
=

−βD

S2
(5.2)

and since both βD and S are greater than zero then

dδ∗

dx
< 0. (5.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

49
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008004989
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The momentum integral equation for zero pressure gradient flow with streamline
divergence or convergence can be rewritten

dδ∗

dx
=

1

S2
(H + βD), (5.4)

using the fact that H = δ∗/θ is constant if the flow is in equilibrium. Hence for the
converging flow where βD > 0 we have

dδ∗

dx
> 0 (5.5)

which is in direct contradiction with (5.3). Hence, a converging zero pressure gradient
flow cannot be in equilibrium – a result that is consistent with the experimental
observations.

Now consider the zero pressure gradient, diverging case. In this case βD < 0 by
definition. Using the definition of this parameter

βD = −S2δ∗/(x + xo), βD < 0. (5.6)

Rearranging this equation and differentiating we find an expression for dδ∗/dx,

dδ∗

dx
=

−βD

S2
(5.7)

and since βD < 0 and S > 0

dδ∗

dx
> 0. (5.8)

Now returning to the momentum integral equation,

dδ∗

dx
=

1

S2
(H + βD), βD < 0, (5.9)

and to avoid a contradiction with (5.8) in this case it is necessary that H + βD > 0 or,
equivalently βD/H > −1. This essentially suggests that an equilibrium solution may
be possible if the divergence is not too strong.

This analytical result is consistent with the experimental observation that the
diverging flow of Saddoughi & Joubert (1991) (with zero pressure gradient) shows
little change in the stresses, whereas the converging case presented in Panchapakesan
et al. (1997) (also with zero pressure gradient) shows large changes and no tendency
towards equilibrium. In the case of Saddoughi & Joubert (1991), βD/H ≈ −0.6, which
is also consistent with the constraint given above. The results presented in their paper
show the boundary layer length scales are all growing linearly in the latter part of the
flow (see their figure 7.), the mean velocity profiles are self-similar (evident from their
figure 8.), S is very close to a constant (it varies by only 1.4 % over the last metre
of the flow, see their figure 4.). Their βD also reaches a constant value. Hence all the
conditions for similarity are satisfied and the Reynolds stresses are indeed self-similar
in the latter part of the flow.

5.2. Non-zero pressure gradient

In the case where the pressure gradient is non-zero the conditions are altered. In the
diverging case when δ∗ = A(x + xo) (A> 0 is some constant) then βx = constant can
be satisfied by any power-law distribution of external velocity, i.e.

U1 = B(x + xo)
m, (5.10)
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280 T. B. Nickels

where B and m are some arbitrary constants and this leads to

1

U1

dU1

dx
=

m

(x + xo)
(5.11)

and using the definition of βx and the linear variation of δ∗ then

βx = −mAS2, (5.12)

where a negative value of m corresponds to an adverse pressure gradient in the
direction of the flow. In the converging case the situation is similar and here δ∗ = A(xo−
x), A > 0 and hence βx = mAS2 but in this case a negative value of m corresponds
to a favourable pressure gradient in the direction of the flow. Using these definitions
gives a consistent sign of βx for the same type of pressure gradient when considering
development in the direction of the flow (so, for example, βx > 0 always corresponds to
an adverse pressure gradient in the flow direction). Care must be taken in interpreting
the value of m in terms of the nature of the pressure gradient. In both cases
(converging and diverging), it is not difficult to show that

βx = mβD. (5.13)

The momentum integral equation with non-zero pressure gradient may be written
as

dδ∗

dx
=

1

S2
(H + βx(H + 2) + βD). (5.14)

In the converging flow as before from the definition of βD , dδ∗/dx < 0. In this case
then

1

S2
(H + βx(H + 2) + βD) < 0 (5.15)

which leads to

βx < −(βD + H )/(H + 2) βD > 0 (5.16)

and since the right-hand side is always negative then a favourable pressure gradient
must be applied. This equation also shows that the applied pressure gradient must
be sufficiently strong for a given βD in order to satisfy the equation. Note also in the
case for zero divergence, βD =0, then we also find that a favourable pressure gradient
is necessary (this is the well-known sink-flow solution).

In the diverging case where βD < 0 dδ∗/dx > 0 which leads to

βx > −(βD + H )/(H + 2). (5.17)

There are two possible solutions to this equation. If βD/H < −1 then βx > 0 always,
which corresponds to an adverse pressure gradient and if −1 <βD/H < 0 then the
right-hand side is negative and the pressure gradient may be either a slight favourable
pressure gradient or an adverse pressure gradient (or as we saw earlier a zero pressure
gradient).

6. Exact equilibrium
In this section the conditions for exact equilibrium will be derived. Exact equilibrium

will be used here to describe flows which satisfy the conditions given above for
approximate equilibrium with the added restriction that the local Reynolds number
of the flow is constant. The consideration of viscosity effectively introduces a new
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Equilibrium boundary layers with convergence or divergence 281

length scale and hence an additional condition for equilibrium. In the following
analysis the ratio of the viscous length scale to any other length scale is held constant
by ensuring that the local Reynolds number of the flow is held constant. An exact
equilibrium flow must satisfy the conditions for an approximate equilibrium flow and
hence all length scales must be in constant ratio as must all velocity scales so that
it suffices to show that for constant kinematic viscosity the product of any velocity
with any length is invariant with streamwise distance. Now if U1 has a power-law
distribution then

U1δ
∗ = B(x + xo)

mA(x + xo) = constant (6.1)

and hence m = −1 is the only solution to this equation (the same applies for converging
flow). In flow without divergence this corresponds with the classical sink flow solution.

In the case with both pressure gradient and lateral straining effects then for exact
equilibrium both βD and βx must be constant. The condition for exact equilibrium
(given that the conditions for approximate equilibrium are satisfied) may be written
as

d(U1δ
∗)

dx
= 0 (6.2)

or, equivalently, as

S2 dδ∗

dx
= βx. (6.3)

Substituting into (5.14) the condition for exact equilibrium is

βx = H + Hβx + 2βx + βD (6.4)

or

βx = −(βD + H )/(H + 1). (6.5)

For the converging flow βD is always positive and hence the only way to achieve
an exact equilibrium flow is for βx to be negative which implies the application of a
favourable pressure gradient (as was found for the case of approximate equilibrium
which is not surprising).

In the case of exact equilibrium we also have the fact that

βx = mβD = −1βD (6.6)

which leads to the only solution as βD =1, βx = −1 corresponding to a converging
flow with a favourable pressure gradient applied. It is not possible then to have an
exact equilibrium for the diverging flow case, although approximate equilibrium may
be possible.

In order to relate these conditions to a physical picture of the flow we assume that
the free stream velocity at x = 0 (which is at some radial distance from the origin) is
U1(x = 0) = Uo and we find that the variation of the velocity is

U1

Uo

=
xo

(xo − x)
. (6.7)

If we ignore the displacement effect of the boundary layer growth this corresponds
with the flow radially inward between two parallel discs. To allow for the boundary
layer growth (negative in this case) the upper disc would need to be made slightly
conical in practice.
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7. Discussion and conclusions
It has been shown that equilibrium solutions are theoretically possible for boundary

layers with pressure gradients and streamline divergence or convergence. Approximate
equilibrium layers with pressure gradient and divergence are found to be possible if
two parameters are held constant: the Clauser pressure gradient parameter βx and
the divergence parameter βD . The necessary conditions for these equilibrium layers
to exist have been derived and it is found further that exact equilibrium is possible
on a smooth wall for the case of streamline convergence with a favourable pressure
gradient applied with particular values of the parameters. It must be stressed that the
analysis has shown only that certain flows may be in equilibrium in that they satisfy
certain conditions. The conditions are necessary but may not be sufficient. The results
for approximate equilibrium are consistent with available experimental results in the
case of zero streamwise pressure gradient.
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