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Abstract We say that a map f from a Banach space X to another Banach space Y is a phase-isometry
if the equality

{‖f(x) + f(y)‖, ‖f(x) − f(y)‖} = {‖x + y‖, ‖x − y‖}
holds for all x, y ∈ X. A Banach space X is said to have the Wigner property if for any Banach space Y
and every surjective phase-isometry f : X → Y , there exists a phase function ε : X → {−1, 1} such that
ε · f is a linear isometry. We present some basic properties of phase-isometries between two real Banach
spaces. These enable us to show that all finite-dimensional polyhedral Banach spaces and CL-spaces
possess the Wigner property.
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1. Introduction

Throughout this paper, we consider the spaces all over the real field. Let X and Y be
Banach spaces. We say that a map f : X → Y is a phase-isometry if it satisfies

{‖f(x) + f(y)‖, ‖f(x) − f(y)‖} = {‖x + y‖, ‖x − y‖} (x, y ∈ X).

Two maps f, g : X → Y are called phase equivalent if there exists a phase function ε :
X → {−1, 1} such that g = ε · f . In the present paper, it is the connection between
phase-isometries and isometries that will concern us. Under the onto assumption, the
well-known Mazur–Ulam theorem [16] states that an isometry f of a real Banach space
X onto another Banach space Y with f(0) = 0 is linear. Thus, it is natural to ask

Question 1.1. Is it true that every surjective phase-isometry f between two Banach
spaces X and Y is phase equivalent to a linear isometry?
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Another important result which is related to linear isometries is Wigner’s theorem [25]
and its generalizations (see [2, 4, 5, 17, 19]). Rätz’s result [19, Corollary 8(a)] showed
that every map f between two real Hilbert spaces H and K with the property that

|〈f(x), f(y)〉| = |〈x, y〉| (x, y ∈ H),

is phase equivalent to a linear isometry. Recently, Maksa and Páles [12] revisited this
real version of Wigner’s theorem, and they used this to obtain that every phase-isometry
between real Hilbert spaces is phase equivalent to a linear isometry. Namely, Question 1.1
has a positive answer when X and Y are real Hilbert spaces. In our paper [8], we provide
an affirmative answer to Question 1.1 with X and Y being lp(Γ) spaces (0 < p < ∞). The
first author and Jia presented in [9] a similar result for L∞(Γ)-type spaces. Recall that
a Banach space X is said to have the Wigner property if Question 1.1 has an affirmative
answer for an arbitrary target Y . It should be mentioned that the previous results for real
Hilbert spaces, lp(Γ) spaces or L∞(Γ)-type spaces are not enough to establish that these
spaces have the Wigner property since the target spaces are not arbitrary. Very recently,
Question 1.1 for general Banach space has started in our paper [21], in which we proved
that smooth Banach spaces, L∞(Γ)-type spaces and l1(Γ)-spaces enjoy this property.

Although this manuscript is a continuation of our paper [21], the techniques we use in
this note are totally different from those in [21]. We use a new method to construct the
desired linear isometries. It is also a key step to solve Question 1.1. Actually, although our
main result is about polyhedral spaces and CL-spaces, more properties of phase-isometries
are shown to hold in general Banach spaces for the sake of possible applications. In §2,
we introduce a notion of ‘star points’ to study the maximal convex subsets (i.e., facets)
of the unit sphere. This notion enables us to show that every phase-isometry between
two Banach spaces maps star points to star points in §3. By this, we can build a required
isometry between two cones generated by the maximal convex subsets of corresponding
unit spheres. We apply this result in §4 to establish that finite-dimensional polyhedral
spaces (i.e., those spaces whose unit sphere is a polyhedron) and CL-spaces which include
many classical Banach spaces have the Wigner property. It is known that CL-spaces are
very famous and important in the development of the geometry of Banach spaces. Recall
from [15] that

Definition 1.2. A Banach space X is said to be a CL-space (an almost CL-space) if
BX = co(M ∪ −M) (BX = co(M ∪ −M), respectively) for every maximal convex set M
of SX .

The notion of CL-spaces was first introduced in 1960 by R. Fullerton [3]. Examples
of real CL-spaces are L1(μ) spaces for any measure μ and its isometric preduals, in
particular, C(K), where K is a compact Hausdorff space (see [10, §3]). The c0 and l1

sums of CL-spaces are also proved to be CL-spaces (see [15]). For more information
on CL-spaces, we refer to [1, 6, 11, 14, 20, 22, 23]. Let us mention that the key part in
handling Question 1.1 is how to construct or find a proper linear isometry with the desired
property. Although we can provide an affirmative answer to Question 1.1 for CL-spaces,
we do not know whether this is true for almost-CL-spaces.

Throughout what follows, we shall freely use without explicit mention notation ‘±’ to
mean that either ‘+’ or ‘−’ holds. For a Banach space X, BX , SX and X∗ will stand for
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its unit ball, its unit sphere and its dual space, respectively. A subset M of SX is said to
be a maximal convex subset of SX if it is not properly contained in any other convex
subset of SX .

2. Star points on the unit sphere of Banach spaces

In this section, we introduce the concept of star points in the unit sphere of Banach
spaces. This concept plays an important role in showing main lemma and some proposi-
tions. Geometric characterizations of such points are also given for further results in next
section.

Before our conclusions, we need some notation and concepts most of which come
from [7]. By the Hahn–Banach and Krein–Milman theorems, we can see that every
maximal convex subset M of SX has the form

M = {x ∈ SX : x∗(x) = 1}.
for some extreme point x∗ of BX∗ . We denote by M(X) the set made up of all maximal
convex subsets of SX , i.e.,

M(X) := {M ⊂ SX : M is a maximal convex subset of SX}.
Given x ∈ SX , the star of x with respect to SX is defined by

St(x) := {y ∈ SX : ‖y + x‖ = 2}.
It is easy to check that ‖x + y‖ = 2 if and only if [x, y] ⊂ SX for every x, y ∈ SX . Then
we can rewrite

St(x) = {y ∈ SX : [x, y] = {tx + (1 − t)y : t ∈ [0, 1]} ⊂ SX}.
Clearly, for every x ∈ SX , there is a maximal convex subset of SX containing x. Thus,
St(x) is precisely the union of all maximal convex subsets of SX containing x, i.e.,

St(x) =
⋃

{M ∈ M(X) : x ∈ M}. (2.1)

It is interesting to give a result demonstrating the relationship between the maximal
convex subsets and the star sets of unit sphere. The proof here is based on an idea of [18,
Proposition 2.3], and given only for the sake of completeness.

Proposition 2.1. Let X be a Banach space, and let M ∈ M(X). Then M is precisely
the intersection of all St(x) with x ∈ M , that is, M =

⋂
x∈M St(x).

Proof. Note first that M ⊂ St(x) for every x ∈ M implies that

M ⊂
⋂

x∈M

St(x).

To prove the converse, choose z ∈ ⋂
x∈M St(x). Then ‖z + x‖ = 2 for all x ∈ M . Set two

open convex sets
S1 = M + intBX and S2 = −z + intBX ,

where intBX denotes the interior points of BX . Obviously, S1 ∩ S2 = ∅. By the separation
theorem, there is a linear functional x∗ ∈ SX∗ and a real number c such that x∗(z1) >
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c > x∗(z2) for every z1 ∈ S1 and every z2 ∈ S2. It follows that

supx∗(−z + intBX) ≤ c ≤ inf x∗(x + intBX)

for every x ∈ M . Consequently,

−x∗(z) + 1 ≤ c ≤ x∗(x) − 1

for every x ∈ M . This shows that c = 0 and x∗(z) = x∗(x) = 1 for every x ∈ M . By the
maximality of M , we have M = {x ∈ SX : x∗(x) = 1}, and hence z ∈ M . The proof is
complete. �

We will provide a concept which turns out to be a useful tool for analysing maximal
convex subsets of unit sphere of Banach spaces.

Definition 2.2. Let X be a Banach space. A point x ∈ SX is called a star point of
SX if St(x) is a maximal convex subset of SX .

We can see that an element x ∈ SX is a star point if and only if St(x) is convex since
that St(x) is convex is sufficient to show that St(x) is a maximal subset of SX . For better
understanding of star points, we now give two characterizations of star points on the unit
sphere which will be of use later.

Proposition 2.3. Let X be a Banach space and x ∈ SX . Then the following
statements are equivalent:

(1) x is a star point of SX .

(2) For all y, z ∈ St(x), we have ‖y + z‖ = 2.

(3) There is a unique maximal convex set of SX containing x.

Proof. That (1) implies (2) is obvious. To prove that (2) implies (3), suppose that
there are two sets M1, M2 ∈ M(X) containing x. Clearly, M1 ∪ M2 ⊂ St(x). Now, take an
arbitrary z ∈ M1. Since (2) holds, it follows that [z, y] ⊂ SX for every y ∈ M2. Hence we
have M2 ⊂ co(M2, z) ⊂ SX . Then the maximality of M2 ensures us that co(M2, z) = M2,
and thus z ∈ M2. It follows that M1 ⊂ M2, and so M1 = M2. Finally, (3) implies (1)
following from the identity (2.1). �

By the previous proposition, we can present an example here that draws upon [7, Exer-
cise 2.18], which shows that every maximal convex set of the unit sphere in a separable
Banach space has star points.

Example 2.4. If X is a separable Banach space, then SX has star points. Indeed, let
M ∈ M(X). Choose {xn} to be a dense subset of M . Then the point x0 =

∑
2−nxn is

a star point of SX . Actually, for every M1 ∈ M(X) containing x0, there exists a func-
tional x∗ ∈ SX∗ such that M1 = {x ∈ SX : x∗(x) = 1}. In particular, x∗(x0) = 1 implies
that x∗(xn) = 1 for all n ∈ N. This and the maximality of M show that M = M1. So
there is a unique maximal convex set of SX containing x0. This completes the proof by
Proposition 2.3.
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The notion of star points relates to the familiar notion of smooth points in Banach
spaces.

Remark 2.5. Recall that x ∈ SX is called a smooth point if there exists only one sup-
port functional x∗ ∈ SX∗ at x. Proposition 2.3 and the Hahn–Banach theorem establish
that if x is a smooth point of SX , then it is a star point of SX . It should be remarked
that the smooth points of SX are dense in SX , whenever X is a separable Banach space
[7, p. 171]. Therefore, for any separable Banach space X, the set consisting of star points
is dense in SX .

By the above results, one may wonder whether every Banach space possesses a star
point. The following easy example shows that it is not true.

Example 2.6. Let Γ be an uncountable set. Note that for every x ∈ l1(Γ), St(x) is
not a convex subset of Sl1(Γ). It follows that the unit sphere of l1(Γ) does not have star
points.

Let X be a Banach space and M ∈ M(X). Recall that a point x ∈ M is called a non-
proper support point of M if any x∗ ∈ SX∗ with x∗(x) = 1, we have x∗(z) = 1 for all
z ∈ M . It is routine to verify that there is only a unique maximal convex set M of SX

containing x. So a non-proper support point of M is a star point. Now we may conclude
a direct relation from the above arguments that for every x ∈ SX ,

x is a smooth point ⇒ x is non-proper support point ⇒ x is a star point.

However, none of the converse is true, even for the finite-dimensional spaces.

Example 2.7. (1) For each 0 < t < 1, let us write Xt = (R2, ‖ · ‖), where the unit
sphere is given by

SXt
= {(a, b) ∈ R

2 : a2 + b2 = 1, |a| > t} ∪ {(a,±
√

1 − t2) ∈ R
2 : |a| ≤ t}.

Then the point (t,
√

1 − t2) is a star point but not a non-proper support point.

(1) Define an equivalent norm ‖ · ‖ on l1 by

‖x‖ =
‖x‖l1 + ‖x‖l2

2
, ∀x ∈ l1,

where ‖ · ‖l1 and ‖ · ‖l2 denote the usual l1-norm and l2-norm, respectively. Then the
unit vectors {en}n≥1 ⊂ X = (l1, ‖ · ‖) are all non-proper support points but not smooth
points. Indeed, X is a Banach space with a strict convex norm. Therefore, every maximal
convex subset of SX is a singleton. It follows that all points of the unit sphere are non-
proper support points, whereas there are more than one support functional in SX∗ for
each en with n ≥ 1. For example, e∗n = (ai)i≥1 where ai ∈ R with an = 1 and ai = 0 for
i �= n. Then for each j �= n, x∗

n = e∗n + 1
2e∗j ∈ SX∗ is a support functional at en. Thus en

is not a smooth point. One can easily check that this conclusion also holds for the l
(m)
1

which is l1-spaces in dimension m with m ≥ 2.
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Remark 2.8. Although three conceptions are quite different in general Banach spaces,
they are the same in some classical Banach spaces, such as Lp(μ) (μ is a measure and
1 ≤ p ≤ ∞) and C(K) (K is a compact Hausdorff space).

3. The properties of phase-isometries on Banach spaces

In this section, we start the study of surjective phase-isometries between two Banach
spaces X and Y . We start this section with a basic property of surjective phase-isometry
which was verified in [21, Lemma 2.1].

Lemma 3.1 (Tan and Huang [21, Lemma 2.1]). Let X and Y be Banach spaces,
and let f : X → Y be a surjective phase-isometry. Then f is a injective norm-preserving
map and f(−x) = −f(x) for all x ∈ X.

An elementary result is presented to show that every phase-isometry carries star points
to star points and we do not know whether this is true for smooth points and non-proper
support points.

Lemma 3.2. Let X and Y be Banach spaces, and let f : X → Y be a surjective
phase-isometry. Then for every x ∈ SX , St(x) ∈ M(X) if and only if St(f(x)) ∈ M(Y ).

Proof. Since the inverse of f denoted by f−1 is also a surjective phase-isometry, we
only need to prove that if St(x) ∈ M(X) then St(f(x)) ∈ M(Y ). Suppose that it is not
true. Then Proposition 2.3 allows the existence of two distinct elements y1, y2 ∈ St(f(x))
such that ‖y1 + y2‖ < 2. We set z1 := 1

2 (y1 + f(x)) and z2 := 1
2 (y2 + f(x)). It is easy to

see that z1, z2 ∈ St(f(x)) satisfy

‖z1 + z2‖ < 2 and ‖z2 − z1‖ < 2.

Since f is surjective, there are x1, x2 ∈ SX such that f(x1) = z1 and f(x2) = z2. Observe
from the fact that f is a phase-isometry that

x1, x2 ∈ St(x) ∪ St(−x).

Thus ‖x1 + x2‖ = 2 or ‖x1 − x2‖ = 2, which leads to a contradiction that ‖z1 + z2‖ = 2
or ‖z1 − z2‖ = 2. The proof is complete. �

We shall take up to construct maps concerning the maximal convex sets of the unit
sphere, which is also a key step to obtain a desired linear isometry from X onto Y .

Definition 3.3. Let X be a Banach space and M ∈ M(X). Denote by CX
M the cone

generated by M , i.e., CX
M = ∪λ≥0λM . We see that ‖x + y‖ = ‖x‖ + ‖y‖ for all x, y ∈ CX

M .
We shall freely use this observation without explicit mention throughout what follows.

Let X and Y be Banach spaces, and let f : X → Y be a surjective phase-isometry.
Suppose that M ∈ M(X) and x0 ∈ M . We define a map fM : CX

M → Y with respect to
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x0 given by

fM (x) =
{

f(x) if ‖f(x) + f(x0)‖ = ‖x + x0‖;
−f(x) if ‖f(x) − f(x0)‖ = ‖x + x0‖ �= ‖x − x0‖.

We can also define a phase-isometry FM : X → Y given by

FM (x) =

⎧⎨
⎩

fM (x) if x ∈ CX
M ;

−fM (−x) if x ∈ −CX
M ;

f(x) if x /∈ CX
M ∪ −CX

M .

Remark 3.4. It is easy to see that for every x ∈ CX
M , we have

‖fM (x) + fM (x0)‖ = ‖x + x0‖ = ‖x‖ + ‖x0‖.

Moreover, we can see that the map FM : X → Y is an odd mapping, since f(−x) = −f(x)
for every x ∈ X by Lemma 3.1. It follows that FM : X → Y is surjective phase-isometry.
Then, Lemma 3.1 again establishes that FM is a bijection and fM : CX

M → Y is injective.

We now deal with the case that maximal convex set M has a star point. An interesting
property of fM is presented below.

Proposition 3.5. Let X and Y be Banach spaces, and let f : X → Y be a surjective
phase-isometry. Suppose that M ∈ M(X) contains a star point x0. Let fM : CX

M → Y
be a map with respect to x0. Then M1 = fM (M) ∈ M(Y ) and fM (CX

M ) is a cone in Y
generated by M1. Furthermore, fM : CX

M → CY
M1

is a surjective isometry.

Proof. By Lemma 3.2 and Remark 3.4, it is apparent that St(f(x0)) ∈ M(Y ) and
fM (M) ⊂ St(f(x0)). For every y ∈ St(f(x0)) with f(x) = y for some x ∈ SX . Since f is
a phase-isometry, we see that

‖x + x0‖ = ‖f(x) + f(x0)‖ = 2 or ‖x − x0‖ = ‖f(x) + f(x0)‖ = 2.

It follows that x or −x ∈ St(x0) = M by Proposition 2.3. As a consequence, we get y =
fM (x) with x ∈ M or y = fM (−x) with −x ∈ M , which implies that fM (M) = St(f(x0)).

Set M1 := fM (M). It remains to verify that fM (CX
M ) = CY

M1
. By the definition of fM ,

for every 0 �= x ∈ CX
M , we have

‖fM (x) + fM (x0)‖ = ‖x + x0‖ = ‖x‖ + ‖x0‖ = ‖fM (x)‖ + ‖fM (x0)‖.

This allows us to conclude that

‖ fM (x)
‖fM (x)‖ + fM (x0)‖ = 2.

An immediate conclusion from this is that fM (x)/‖fM (x)‖ ∈ St(fM (x0)) = M1, and so
fM (x) ∈ CY

M1
. For every 0 �= y ∈ CY

M1
with f(x) = y for some x ∈ X. Note that ‖f(x) +
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f(x0)‖ = ‖f(x)‖ + ‖f(x0)‖, and since f is a phase-isometry, we have either

‖x‖ + ‖x0‖ = ‖f(x) + f(x0)‖ = ‖x + x0‖
or

‖x‖ + ‖x0‖ = ‖f(x) + f(x0)‖ = ‖x − x0‖.
It follows that ±x/‖x‖ ∈ St(x0) = M . As a consequence, f(x) = fM (x) with x ∈ CX

M

or f(x) = fM (−x) with −x ∈ CX
M . Both cases show that y = f(x) ∈ fM (CX

M ). Thus, we
finish the proof of fM (CX

M ) = CY
M1

.
Finally, as seen from the above for all x, y ∈ CX

M , we have

‖fM (x) + fM (y)‖ = ‖fM (x)‖ + ‖fM (y)‖ = ‖x‖ + ‖y‖ = ‖x + y‖.
That fM is a phase-isometry leads to

‖fM (x) − fM (y)‖ = ‖x − y‖
as required, which finishes the proof. �

One may have a question whether the definition of fM depends on the choice of x0. It
may have something to do with the choice of x0 in some degree.

Lemma 3.6. Let X and Y be Banach spaces, and let f : X → Y be a surjective phase-
isometry. Suppose that M ∈ M has a star point. Then fM = ±f ′

M , where fM and f ′
M are

defined with respect to two distinct points x0 and x′
0 of M , respectively.

Proof. We can assume that x0 ∈ M is a star point. Then f(x0) is also a star point of
SY by Lemma 3.2. Since f is a phase-isometry, we have

2 = ‖x0 + x′
0‖ ∈ {‖f(x0) + f(x′

0)‖, ‖f(x0) − f(x′
0)‖}.

If ‖f(x0) + f(x′
0)‖ = ‖x0 + x′

0‖ = 2, then f(x′
0) ∈ St(f(x0)). We conclude from this and

fM ’s definition that for every 0 �= x ∈ CX
M and θ ∈ {−1, 1}, fM (x) = θf(x) implies that

f ′
M (x) = θf(x). Namely, fM = f ′

M . Another possibility is that

‖f(x0) − f(x′
0)‖ = ‖x0 + x′

0‖ = 2 > ‖x0 − x′
0‖.

Applying a similar argument as above shows that f ′
M = −fM . �

We still need more lemmas to investigate the property of these fM ’s. The first one
bases completely on the idea of [24, Lemma 3.4] (we apply almost the same proof). For
our use and convenience, we present here a generalized version which also establishes that
all surjective phase-isometries are separably determined in some sense. For every subset
A of a Banach space, [A] stands for its closed linear span.

Lemma 3.7. Let X and Y be two Banach spaces, and let f : X → Y be a surjective
phase-isometry. Then for every separable subset A ⊂ X, there are separable subspaces
X0 ⊂ X and Y0 ⊂ Y such that A ⊂ X0 and f(X0) = Y0.
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Proof. Let X1 = [A] and Y1 = [f(X1)]. Choose {xn} ⊂ X1 which is dense in X1. To
see that Y1 is separable, it suffices to show that the set {f(xn)} ∪ {−f(xn)} is dense
in f(X1). By Lemma 3.1, it is clear that {f(xn)} ∪ {−f(xn)} ⊂ f(X1). Now for every
y ∈ f(X1) with f(x) = y for some x ∈ X1, there is a subsequence {xnk

} of {xn} such
that xnk

converges to x in norm. For every k ≥ 1, choose yk ∈ Y satisfying

yk =
{

f(xnk
) if ‖f(xnk

) − f(x)‖ = ‖xnk
− x‖ �= ‖xnk

+ x‖;
−f(xnk

) if ‖f(xnk
) − f(x)‖ = ‖xnk

+ x‖.

Thus, it is obvious that ‖yk − y‖ = ‖yk − f(x)‖ = ‖xnk
− x‖. This means that {f(xn)} ∪

{−f(xn)} is dense in f(X1) as desired. Define inductively separable subspaces Xn ⊂ X
and Yn ⊂ Y such that for all n ≥ 2,

Xn = [f−1(Yn−1)] and Yn = [f(Xn)].

Then it is easy to verify that X0 =
⋃∞

n=1 Xn and Y0 =
⋃∞

n=1 Yn are just the subspaces
that we need. �

We will follow the line of the proof of [24, Lemma 3.5] to obtain a similar conclusion
for phase-isometries instead of isometries. By Lemmas 3.6 and 3.7, we are now able to
generalize Proposition 3.5 to the general case where the assumption on star points can
be removed.

Proposition 3.8. Let X and Y be Banach spaces, and let f : X → Y be a surjective
phase-isometry. Suppose that M ∈ M(X) and fM : CX

M → Y is the map with respect to
some x0 ∈ M . Then fM (M) ∈ M(Y ) and fM (CX

M ) is a cone in Y generated by fM (M).
Furthermore, fM is an isometry on CX

M .

Proof. We first conclude that this conclusion is true under the assumption that X is
a separable Banach space. By Example 2.4, M has a star point. In other words, if the
chosen x0 ∈ M is not a star point, then by Lemma 3.6, we can replace it by a star point
x′

0 ∈ M . Proposition 3.5 yields the desired conclusion.
Now we handle the general case. For every finite subset A ⊂ M with x0 ∈ A, we apply

Lemma 3.7 to FM to obtain two separable subspaces XA ⊂ X and YA ⊂ Y such that
A ⊂ XA and FM (XA) = YA. Let MA ∈ M(XA) such that M ∩ XA ⊂ MA. The previous
argument ensures us that

fMA
(MA) ∈ M(YA),

where fMA
: CXA

MA
→ YA is the induced map with respect to x0 and MA. As A ⊂ M ∩ MA,

we have fM (x) = fMA
(x) for every x ∈ A. It follows that

co(fM (M)) ⊂ SY .

So we can choose M1 ∈ M(Y ) such that fM (M) ⊂ M1. For the converse, since the inverse
f−1 of f is also a surjective phase-isometry, there is a map hM1 : CY

M1
→ X with respect
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to f(x0) ∈ M1 and induced from f−1. We can see that

hM1 ◦ fM (x) = x

for all x ∈ CX
M . Using the above argument for hM1 and M1, we also have

M ⊂ hM1(M1) ⊂ co(hM1(M1)) ⊂ SX .

This and the maximality of M entail that M = hM1(M1), and so fM (M) = M1.
We also need to prove that fM (CX

M ) = CY
M1

, where M1 = fM (M). For all 0 �= z ∈
CX

M and x ∈ M , set B := {z, x, x0}. Following a similar argument as above, we get two
separable subspaces XB ⊂ X and YB ⊂ Y such that B ⊂ XB and FM (XB) = YB . Let
fMB

: CXB

MB
→ YB be the induced map with respect to x0 and MB . Then fMB

(MB) ∈
M(YB) and fMB

(CXB

MB
) ⊂ YB is a cone generated by fMB

(MB). It follows that

‖fM (z) + fM (x)‖ = ‖fMB
(z) + fMB

(x)‖ = ‖fM (z)‖ + ‖fM (x)‖.
Consequently, we obtain fM (z)/‖fM (z)‖ ∈ St(fM (x)) for every x ∈ M . Applying Propo-
sition 2.1, we get fM (z)/‖fM (z)‖ ∈ M1, and so fM (CX

M ) ⊂ CY
M1

. Conversely, repeating
the same argument to hM1 : CY

M1
→ X, we obtain hM1(C

Y
M1

) ⊂ CX
M . Observe that the

map hM1 is injective and
hM1 ◦ fM (x) = x

for all x ∈ CX
M . We get fM (CX

M ) = CY
M1

as desired. It is simply verified that fM : CX
M → Y

is an isometry by noticing that

‖fM (x) + fM (y)‖ = ‖x + y‖,
for all x, y ∈ CX

M . The proof is complete. �

Remark 3.9. It should be noted that when E is a subspace of a Banach space X and
M is a maximal convex set of SX , ME = M ∩ E may not be a maximal convex set of
SE by [22, Remark 2.3]. So we can not replace MA by M ∩ XA to simplify the proof of
Proposition 3.8.

Proposition 3.8 also allows us to conclude that Lemma 3.6 still works in the general
case. For this reason, in what follows we shall briefly use the notation fM referring to the
map defined in Definition 3.3 without explicit mention x0 unless it is necessary. We sum
up now the result as follows.

Corollary 3.10. Let X and Y be Banach spaces, and let f : X → Y be a surjective
phase-isometry. Suppose that M ∈ M(X) and x0, x′

0 ∈ M . Then fM = ±f ′
M , where fM

and f ′
M are defined with respect to x0 and x′

0 of M , respectively.

For every Banach space X, since SX consists of all its maximal convex subsets M , it
seems that a demanded isometry F which is phase equivalent to f on the entire space
X can be induced from these fM ’s. It can not be simply got by defining F : X → Y
by F (x) = fM (x) for every M ∈ M(X) and x ∈ M . A difficulty should be noted here
that for every x in the intersection of the two cones CX

M1
and CX

M2
of distinct sets
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M1, M2 ∈ M(X). It may happen that fM1(x) �= fM2(x), for example, fM1(x) = f(x),
while fM2(x) = −f(x). This means that the definition of F may be actually not valid.
We shall present a lemma below as a first step to overcome this difficulty.

Lemma 3.11. Let X and Y be Banach spaces, and let f : X → Y be a surjective
phase-isometry. Suppose that M1, M2 are in M(X) with M1 ∩ M2 �= ∅. If fM1(x0) =
θfM2(x0) for some x0 ∈ M1 ∩ M2 and some θ ∈ {−1, 1}, then fM1(z) = θfM2(z) for all
z ∈ CX

M1
∩ CX

M2
.

Proof. We may assume that θ = 1 to simplify the notation, that is fM1(x0) = fM2(x0).
Suppose, on the contrary, that there is a nonzero element z0 ∈ CX

M1
∩ CX

M2
such that

fM1(z0) = −fM2(z0). We observe first from Proposition 3.8 that

‖x0 − z0‖ = ‖fM1(x0) − fM1(z0)‖ = ‖fM2(x0) + fM2(z0)‖ = ‖x0‖ + ‖z0‖ = ‖x0 + z0‖.
Let u0 be the mid-point of x0 and z0, i.e., u0 = (x0 + z0)/2. Obviously, u0 ∈ CX

M1
∩ CX

M2
.

If fM1(u0) = −fM2(u0), then

‖u0‖ = ‖x0 − u0‖ = ‖fM1(x0) − fM1(u0)‖ = ‖fM2(x0) + fM2(u0)‖ = ‖x0‖ + ‖u0‖;
If fM1(u0) = fM2(u0), then

‖u0‖ = ‖u0 − z0‖ = ‖fM1(u0) − fM1(z0)‖ = ‖fM2(u0) + fM2(z0)‖ = ‖u0‖ + ‖z0‖.
Either case leads to a contradiction. Thus, the proof is complete. �

4. Phase-isometries on finite-dimensional polyhedral Banach spaces and
CL-spaces

In this section, we shall apply the preceding results about surjective phase-isometries
to the study of finite-dimensional polyhedral Banach spaces ( i.e., for those whose unit
sphere is a polyhedron) and CL-spaces.

For our result on finite-dimensional polyhedral Banach spaces, we need a result [8,
Lemma 2.5] which builds a connection between functionals of dual of respective spaces
in terms of a phase-isometry. For a Banach space X, a functional x∗ ∈ SX∗ is called a
w∗-exposed point of BX∗ if x∗ is the unique support functional at some smooth point
x ∈ SX .

Lemma 4.1. Let X and Y be real Banach spaces, and let f : X → Y be a phase-
isometry (not necessarily surjective). Then for every w∗-exposed point x∗ of BX∗ , there
exists a linear functional ϕ ∈ Y ∗ of norm one such that x∗(x) = ±ϕ(f(x)) for all x ∈ X.

The previous result enables us to show that all finite-dimensional polyhedral Banach
spaces have the Wigner property.

Theorem 4.2. Let X be an n-dimensional polyhedral Banach space. Then X has the
Wigner property.
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Proof. Let Y be a Banach space, and let f : X → Y be a surjective isometry. Given
M0 ∈ M(X), let fM0 be defined as in Definition 3.3. Since X is a polyhedral Banach space
of finite dimension, the cone CX

M0
generated by M0 is a convex body of X. Proposition 3.8

guarantees that fM0(C
X
M0

) is also a convex body in Y . Mankiewicz [13] has proved that
every isometry between convex bodies is the restriction of an affine onto isometry between
the corresponding spaces. By this result, there is a linear isometry gM0 : X → Y such that
its restriction on the cone CX

M0
is fM0 .

We now apply Lemma 4.1 to obtain that for every w∗-exposed point x∗ of BX∗ , there
exists a linear functional ϕ ∈ SY ∗ such that

x∗(x) = ±ϕ(f(x)) = ±ϕ(fM (x)) (M ∈ M(X), x ∈ CX
M ). (4.1)

We claim that for every M ∈ M(X), either x∗(x) = ϕ(fM (x)) for all x ∈ CX
M or x∗(x) =

−ϕ(fM (x)) for all x ∈ CX
M holds. It remains to show that the third possibility, that

is x∗(x) = ϕ(fM (x)) �= 0 and x∗(y) = −ϕ(fM (y)) �= 0 for some x, y ∈ CX
M , leads to a

contradiction. Indeed, it follows from (4.1) that

x∗(x + y) = ±ϕ(fM (x + y)) = ±ϕ(fM (x) + fM (y)).

If x∗(x + y) = ϕ(fM (x) + fM (y)), this shows that x∗(y) = −ϕ(fM (y)) = 0, a contradic-
tion. If x∗(x + y) = −ϕ(fM (x) + fM (y)), then obviously x∗(x) = −ϕ(fM (x)) = 0. This
is a contradiction which proves the claim. For every w∗-exposed point z∗ of BX∗ , we can
choose ϕz∗ ∈ SY ∗ such that

z∗(z) = ϕz∗(gM0(z))
(
z ∈ CX

M0

)
and z∗(x) = ±ϕz∗(gM0(x))

(
x ∈ X/CX

M0

)
.

To see our conclusion, we shall prove that f is phase equivalent to gM0 . Now for every
M ∈ M(X), although it may occur that M ∩ M0 = ∅, there are M1, · · · , Mm ⊂ M(X)
such that Mi ∩ Mi+1 �= ∅ for i = 0, 1, · · · , m, where we use the notation Mm+1 = M .
We deduce from Lemma 3.11 and M1 ∩ M0 �= ∅ that there is θ1 ∈ {−1, 1} such that
gM0(x) = θ1fM1(x) for all x ∈ CX

M0
∩ CX

M1
. This and the claim show that

ϕz∗(gM0(y)) = ϕz∗(θ1fM1(y))

for all y ∈ CX
M1

. Inductively, there are {θi}m+1
i=2 ⊂ {−1, 1} such that

ϕz∗(gM0(y)) = ϕz∗(θ1 · · · θm+1fMm+1(y)) = ϕz∗(θ1 · · · θm+1fM (y))

for all y ∈ CX
M . Set θM = θ1 · · · θm+1. Then

ϕz∗(gM0(y)) = ϕz∗(θMfM (y)) (4.2)

for all y ∈ CX
M . Let W be the set consisting of all w∗-exposed points of BX∗ . By Proposi-

tion 3.8, the set {ϕz∗}z∗∈W is a norming set of Y . So (4.2) ensures us that gM0 = θMfM

on CX
M . This completes the proof. �

The second conclusion of this section is that CL-spaces have the Wigner property. In
what follows, to simplify the notation let us make some explanation. X and Y are always
used to represent a CL-space and a Banach space, respectively. For every surjective phase-
isometry f : X → Y and every M ∈ M(X), let fM be defined as in Definition 3.3. The
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unique linear functional x∗ ∈ SX∗ such that M = {x ∈ SX : x∗(x) = 1} will be denoted
by x∗

M . By Proposition 3.8, fM (M) ∈ M(Y ). Thus, there is a unique y∗ ∈ SY ∗ such that
fM (M) = {y ∈ SY : y∗(y) = 1} and we denote it by y∗

M .
For our second result, we present a basic property for CL-spaces, which may be

previously known. Its brief proof is given here since we can not find it in literature.

Lemma 4.3. Let X be a CL-space. For all M1, M2 ∈ M(X). If M1 �= −M2, then
M1 ∩ M2 �= ∅.

Proof. If M1 = M2, then the desired conclusion is obviously true. Now we assume that
M1 �= M2. Choose an element z ∈ M1 which is not in M2 ∪ −M2. Since BX = co(M2 ∪
−M2), there are x1 ∈ M2, x2 ∈ −M2 and λ ∈ (0, 1) such that

z = λx1 + (1 − λ)x2.

The identity x∗
M1

(z) = 1 implies that x1, x2 ∈ M1. We conclude from this that x1 ∈
M1 ∩ M2 �= ∅. �

Lemma 4.4. Let X be a CL-space and Y a Banach space, and let f : X → Y be a sur-
jective phase-isometry. If M1, M2 ∈ M(X) with M1 ∩ M2 �= ∅ and fM1(x0) = θfM2(x0)
with θ ∈ {−1, 1} for some x0 ∈ M1 ∩ M2, then y∗

M1
◦ fM2 = θx∗

M1
on the cone CX

M2
.

Proof. We may assume that fM1(x0) = fM2(x0) for some x0 ∈ M1 ∩ M2. Namely, the
value of θ is chosen to be 1. Moreover, by Corollary 3.10 we can assume that fM1 and
fM2 are defined with respect to x0. If z ∈ CX

M2
∩ CX

M1
, then by Lemma 3.11, we have

fM2(z) = fM1(z). This gives the desired conclusion in this case. Note that f(−x) = −f(x)
for every x ∈ X. Then in the case of z ∈ CX

M2
∩ −CX

M1
, we have fM2(z) = −fM1(−z)

following from ‖f(z) + f(x0)‖ = ‖z + x0‖ or ‖f(z) − f(x0)‖ = ‖z + x0‖. This entails the
desired result.

Now we handle the remaining case of z ∈ CX
M2

and z /∈ CX
M1

∪ −CX
M1

. Since X is a
CL-space, there are x1 ∈ M1, x2 ∈ −M1 and λ ∈ (0, 1) such that

z

‖z‖ = λx1 + (1 − λ)x2.

It follows that x1, x2 ∈ M2, and therefore

fM2(‖z‖x1) = fM1(‖z‖x1) and fM2(‖z‖x2) = −fM1(−‖z‖x2).

This together with the choice of y∗
M1

yields

2‖z‖ = y∗
M1

(fM2(‖z‖x1) − fM2(‖z‖x2))

= y∗
M1

(fM2(‖z‖x1) − fM2(z)) + y∗
M1

(fM2(z) − fM2(‖z‖x2))

≤ ‖fM2(‖z‖x1) − fM2(z)‖ + ‖fM2(z) − fM2(‖z‖x2)‖
=

∥∥‖z‖x1 − z
∥∥ +

∥∥z − ‖z‖x2

∥∥ = 2‖z‖.
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Thus equality holds in the above, i.e., we have

y∗
M1

(fM2(‖z‖x1) − fM2(z)) = ‖fM2(‖z‖x1) − fM2(z)‖ =
∥∥‖z‖x1 − z

∥∥,

y∗
M1

(fM2(z) − fM2(‖z‖x2)) = ‖fM2(z) − fM2(‖z‖x2)‖ =
∥∥z − ‖z‖x2

∥∥.

On the other hand, we get

2‖z‖ = x∗
M1

(‖z‖x1 − ‖z‖x2) = x∗
M1

(‖z‖x1 − z) + x∗
M1

(z − ‖z‖x2)

≤ ∥∥‖z‖x1 − z
∥∥ +

∥∥z − ‖z‖x2

∥∥ = 2‖z‖.
This allows us to assert that

x∗
M1

(‖z‖x1 − z) =
∥∥‖z‖x1 − z

∥∥ = y∗
M1

(fM2(‖z‖x1) − fM2(z)).

Since we have y∗
M1

(fM2(‖z‖x1)) = x∗
M1

(‖z‖x1) = ‖z‖, it follows that y∗
M1

(fM2(z)) =
x∗

M1
(z) as expected. The proof is complete. �

The previous lemma reveals the connections between distinct maximal convex sets of
unit sphere of CL-spaces. We will prove the main result mentioned in the abstract: Every
CL-space has the Wigner property.

Theorem 4.5. Let X be a CL-space. Then X has the Wigner property.

Proof. Note that M(X) is the set consisting of all maximal convex subsets of SX . One
can easily see that

X =
⋃

M∈M(X)

CX
M .

By the axiom of choice, there is a set M(X)+ ⊂ M(X) such that for every M ∈ M(X)
either M or −M belongs to M(X)+ and M1 ∩ M2 �= ∅ for every M1, M2 ∈ M(X)+ by
Lemma 4.3. Fix M0 ∈ M(X)+. Lemma 3.11 guarantees that there is a set {θM}M∈M(X)+

of signs such that fM0(x0) = θMfM (x0) for some x0 ∈ M ∩ M0 and each θM does not
depend on the choices x0 in M ∩ M0. So we can define a phase-isometry F : X → Y
given by

F (x) =
{

θMfM (x) if x ∈ CX
M

−θMfM (−x) if − x ∈ CX
M

for all M ∈ M(X)+. To see that F is well defined, it remains to check that

θM1fM1(x) = θM2fM2(x)

for all x ∈ CX
M1

∩ CX
M2

, where M1, M2 ∈ M(X)+. By Lemma 3.11, it suffices to show that
there exists some z0 ∈ M1 ∩ M2 such that

θM1fM1(z0) = θM2fM2(z0).

Lemma 4.4 ensures us the existence of a corresponding y∗
M0

∈ SY ∗ such that

y∗
M0

(fM1(x)) = θM1x
∗
M0

(x) and y∗
M0

(fM2(x)) = θM2x
∗
M0

(x),
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for all x ∈ M1 ∩ M2. Consequently,

y∗
M0

(θM1fM1(x)) = y∗
M0

(θM2fM2(x)) = x∗
M0

(x) (4.3)

for all x ∈ M1 ∩ M2. Choose z0 ∈ M1 ∩ M2. If x∗
M0

(z0) �= 0, then (4.3) and fM1(z0) =
±fM2(z0) entail that θM1fM1(z0) = θM2fM2(z0). If x∗

M0
(z0) = 0, then there are z1 ∈

M0, z2 ∈ −M0 and λ ∈ (0, 1) such that

z0 = λz1 + (1 − λ)z2.

We observe that z1 ∈ M1 ∩ M2 ∩ M0 is the desired element. Clearly, F is a surjective
phase-isometry, and it is phase equivalent to f . By Lemma 3.1 and Proposition 3.8, we
see that F is bijective, F (M) ∈ M(Y ) and F (CX

M ) is a cone in Y generated by F (M).
We claim that for every M ∈ M(X), the relation y∗

M ◦ F = θMx∗
M holds on X. We can

assume that M ∈ M(X)+. By the above observation, we only need to check that

y∗
M ◦ F (z) = θMx∗

M (z)

for every z ∈ CX
M ′ with M ′ ∈ M(X)+. Note that M ∩ M ′ �= ∅ and θMfM (v) = θM ′fM ′(v)

for all v ∈ M ∩ M ′. Lemma 4.4 guarantees that

y∗
M ◦ F (z) = y∗

M (θM ′fM ′(z)) = θMx∗
M (z)

for all z ∈ CX
M ′ . This finishes the claim.

We now prove that F : X → Y is a surjective isometry, and so F is just the desired
linear isometry by Mazur–Ulam theorem. Indeed, for all u, v ∈ X, it is easily seen that
there is an M ∈ M(X) such that x∗

M (u − v) = ‖u − v‖. The claim implies that

‖F (u) − F (v)‖ ≥ |y∗
M ◦ F (u) − y∗

M ◦ F (v)| = ‖u − v‖.

Similarly, we have

‖F (u) + F (v)‖ ≥ ‖u + v‖.
Since F is a phase-isometry, the previous two inequalities should be equalities. Namely
F : X → Y is an isometry. The proof is complete. �

An immediate conclusion of Theorem 4.5 is the following

Corollary 4.6. L1(μ)-spaces and C(K) have the Wigner property, where μ is a
positive measure and K is a compact Hausdorff space.
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