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SUMMARY

The objectives of this study were (1) to examine risk factors for Schistosoma mansoni infection among schoolchildren living

in western Côte d’Ivoire, and (2) to carry forward spatial risk prediction and mapping at non-sampled locations. First,

demographic and socio-economic data were obtained from 3818 children, aged 6–16 years, from 55 schools. Second, a

single stool sample was examined from each child by theKato-Katz technique to assess infection status ofS.mansoni and its

intensity. Third, remotely sensed environmental data were derived from satellite imagery and digitized groundmaps.With

these databases a comprehensive geographical information system was established. Bayesian variogram models were

applied for spatial risk modelling and prediction. The infection prevalence of S. mansoni was 38.9%, ranging from 0% to

89.3% among schools. Results showed that age, sex, the richest wealth quintile, elevation and rainfall explained the

geographical variation of the school prevalences of S. mansoni infection. The goodness of fit of different spatial models

revealed that age, sex and socio-economic status had a stronger influence on infection prevalence than environmental

covariates. The generated risk map can be used by decision-makers for the design and implementation of schistosomiasis

control in this setting. If successfully validated elsewhere, this approach can guide control programmes quite generally.

Key words: Bayesian geostatistics, Côte d’Ivoire, geographical information system, kriging, prediction, remote sensing,

risk mapping, Schistosoma mansoni, spatial analysis.

INTRODUCTION

Schistosomiasis is a parasitic disease caused by

trematode worms belonging to the genus of

Schistosoma. In sub-Saharan Africa, schistosomiasis

remains of major public health and economic sig-

nificance. Recent estimates for this region of the

world suggest that 436 million people live at risk of

infection with Schistosoma haematobium, and 393

million people are at risk of S. mansoni. The esti-

mated annual mortality rate might exceed 200 000

(Chitsulo et al. 2000;WHO, 2002; van derWerf et al.

2003). Transmission occurs in freshwater bodies,

where specific aquatic snails act as intermediate host.

Infected snails release cercariae that can penetrate

the skin of humans during occupational and/or re-

creational activities. Cercariae rapidly develop into

schistosomula which, after several weeks, become

adult schistosome worms that constantly produce

eggs. Some of the eggs are released into the

environment by human excreta. The remainder are

trapped in the tissues of the host organs causing

inflammation, which can lead to severe morbidity.

Suitable climatic and environmental conditions

for both the parasite and intermediate host snail,

coupled with inadequate water supply and sanitation

and low hygiene conditions, are the root causes for

the persistence of schistosomiasis (Utzinger et al.

2003).

Progress has been made over the past 10–15 years

with the application of geographical information sys-

tem (GIS) and remote sensing (RS) for risk map-

ping of parasitic diseases, including schistosomiasis.

Hence, these techniqueshavebecome important tools

for the design and implementation of control pro-

grammes (Brooker, Hay & Bundy, 2002a). In ad-

dition, developments in Bayesian methods and

Markov chain Monte Carlo (MCMC) inference

(Gelfand & Smith, 1990) have advanced spatial

modelling. GIS allows identification and visual-

ization of demographic, environmental and socio-

economic covariates for infection risk. Linked to

Bayesian spatial statistics, GIS can save scarce re-

sources of otherwise expensive parasitological sur-

veys for detection and monitoring of high-risk areas
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(Brooker &Michael, 2000; Robinson, 2000). Several

climate and environmental factors have been linked

with schistosome infections on a broad scale (Brooker

et al. 2001; Malone et al. 2001; Zhou et al. 2001;

Yang et al. 2005). For example, a model had been

developed for the distribution of Biomphalaria

pfeifferi, the intermediate host snail of S. mansoni, in

Ethiopia. The model, based on the normalized dif-

ference vegetation index (NDVI) andmaximum land

surface temperature (LST), predicted B. pfeifferi

distribution, and hence infection prevalence of

S. mansoni (Kristensen,Malone &McCarroll, 2001).

Using RS to derive rainfall and maximum LST

data, a model had been produced for prediction of

S. haematobium infections in Cameroon (Brooker

et al. 2002b). This model, however, only showed

good prediction within the boundaries of a given

ecozone (Brooker et al. 2002a).

Previous research has shown that analyses on a

broad scale render it difficult to capture the small-

scale focality, which is a typical epidemiological

feature of schistosomiasis (Bavia et al. 2001; Brooker,

2002; Lengeler, Utzinger & Tanner, 2002). Several

factors, primarily acting at a local scale, may be at the

origin of such heterogeneity (Husting, 1983; Kloos

et al. 1997; Watts et al. 1998). Consequently, ap-

propriate models are required which can capture

potential risk areas at different scales (Bavia et al.

2001; Brooker, 2002). The need for broad-scale

analyses derives from decision-making often taking

place at the district level, while locally distinct needs

can drive small-scale analyses.

The objectives of this study were (1) to identify

risk factors explaining the geographical distribution

of S. mansoni infections in a mountainous region

of western Côte d’Ivoire, and (2) to make predictions

at non-sampled locations. A cross-sectional survey

was done among several thousand schoolchildren.

They were screened for S. mansoni, and interviewed

for demographic and socio-economic indicators. En-

vironmental factors were obtained and a GIS was

established. Finally, Bayesian geostatistics were em-

ployed for prediction of S. mansoni infection. This

work contributes to an ongoing parasitic disease

research and integrated control programme with

emphasis on schistosomiasis, soil-transmitted

helminthiasis and malaria in the western part of

Côte d’Ivoire.

MATERIALS AND METHODS

Study area and population

The study region is a 40r60 km area situated in the

mountainous region of Man, western Côte d’Ivoire.

This setting has been known to be a S. mansoni focus

for over 3 decades (Doumenge et al. 1987). There

are 2 wet seasons; the main one between April and

June and a shorter one in September. Mountains,

inselbergs (remnants of erosion processes forming

isolated, typically rounded mountains which can

range in elevation from a few to several hundreds of

meters) and small valleys dominate the northern part

of the study area, while the southern part is a plain

that acts as a drain for the numerous small rivers.

Recent studies confirmed that this setting is indeed

endemic for S. mansoni with all age-groups con-

cerned (Utzinger et al. 2000; Keiser et al. 2002; Raso

et al. 2005).

The study protocol was approved by the internal

review boards of the Swiss Tropical Institute (Basel,

Switzerland) and the Centre Suisse de Recherches

Scientifiques (Abidjan, Côte d’Ivoire). It received

ethical clearance from the Ministry of Health in

Côte d’Ivoire. Data presented here are derived from

a cross-sectional epidemiological survey carried out

between October, 2001 and February, 2002. All

schools located in the town of Man and those schools

in rural areas with less than 100 pupils on the

education registries were excluded from the survey.

In the remaining 57 rural schools, all schoolchildren

attending grades 3–5 were enrolled for parasit-

ological screening and an interview by the teachers.

Parasitological data

Details of the parasitological surveys have been de-

scribed elsewhere (Raso et al. 2005). In brief, after

explaining the objectives and procedures of the study

to the education officers, class lists for the school year

2001/2002 were obtained, containing the name, age

and sex of each pupil. Unique identification numbers

were assigned to all schoolchildren attending grades

3–5. Schoolchildren were examined for S. mansoni,

soil-transmitted helminths, intestinal protozoa and

Plasmodium infections. Emphasis here is placed on

the field and laboratory procedures pertaining

to S. mansoni.

The research team visited one school after another.

Small containers were distributed to all study parti-

cipants. They were invited to return the containers

with a small portion of their own morning stool.

The stool specimens were collected and transferred

to the central laboratory in the nearby town of Man.

A single 42 mg Kato-Katz thick smear was prepared

from each stool specimen on microscope slides

(Katz, Chaves & Pellegrino, 1972) and allowed to

clear for 30–45 min. The slides were examined by

experienced laboratory technologists under a light

microscope at low magnification. All S. mansoni eggs

were counted and recorded.

Treatment

At the end of the parasitological survey, school-

children who were egg-positive for S. mansoni were

treated according to the existing treatment schedule

recently developed by the regional health authorities,
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as described before (Raso et al. 2005). Praziquantel

was administered at a single oral dose of 40 mg/kg

(WHO, 2002).

Socio-economic data

Socio-economic data were obtained from a pre-

tested and validated questionnaire, which was ad-

ministered by teachers to all schoolchildren who

were previously examined for parasite infections.

Neither teachers nor schoolchildren had prior knowl-

edge on S. mansoni infection status. The question-

naire included a list of 17 morbidity indicators,

12 household assets and the question ‘‘do you live

within the main village or in settlements outside?’’

A simple asset-based approach was adopted to

stratify schoolchildren into socio-economic groups

(Filmer&Pritchett, 2001). Household asset variables

were weighed using principal component analysis.

Schoolchildren were ranked according to their total

sum of asset scores. Finally, schoolchildren were

attached to wealth quintiles, namely (1) most poor,

(2) very poor, (3) poor, (4) less poor, and (5) least

poor.

Environmental data

The geographical locations of schools (longitude,

latitude and elevation) were recorded in the field

using a hand-held global positioning system (GPS;

Thales Navigation, Santa Clara, CA, USA).

In the absence of recent digital maps, available

maps from the 1960s (scales: 1 : 200000 and

1 : 50 000) were georeferenced. Streets, village

boundaries, rivers and elevation lines were digitized.

Satellite imagery data from Digital Enhanced

Landsat Thematic Mapper (ETM+) (image dates :

27 January 2002; 11 November 2002) and GPS-

referenced control points taken in the field served

as validation of the digitized maps. Maps of soil

types (scale: 1 : 500000) were georeferenced and

major soil types of the study area digitized. These

were either ferrallitic soils slightly regenerated

(modal, complex and fairly desaturated) or hydro-

morphic mineral soils. Land cover types were ob-

tained from satellite image (Advanced Very High

Resolution Radiometer (AVHRR) satellite, US

Geological Survey (USGS) Africa Land Cover

Characteristics Database v. 2: Africa Seasonal Cover

Regions, USGS Earth Resources Observation

System (EROS) Data Centre) at a 1r1 km spatial

resolution (http://edcdaac.usgs.gov/glcc/glcc.asp).

Land cover types were field-validated by taking

GPS control points of relevant vegetation classes.

An interpolated digital elevation model (DEM) was

obtained from theUSGSEROSData Center (http://

lpdaac.usgs.gov/gtopo30/gtopo?links.asp). LST and

NDVI data were downloaded fromModerate Resol-

ution Imaging Spectroradiometer (MODIS) from

USGSEROSData Center (http://edcdaac.usgs.gov/

dataproducts.asp). Rainfall estimate (RFE) data with

an 8r8 km spatial resolution from Meteosat 7 sat-

ellite were obtained from the Africa Data Dissemi-

nation Service (ADDS) (http://edcw2ks21.cr.usgs.

gov/adds/). LST, NDVI and RFE were downloaded

for the period of September 2001 to August 2002

and processed as suggested by Hay (2000). LST day

and night data were available as 8-day-maximum

value composites at 1r1 km spatial resolution.

Monthly minimum, mean and maximum composites

were calculated and values extracted for each pixel

corresponding to the school locations. Monthly

maximum value composites were also calculated

from NDVI 16-day-maximum value composites

at 1r1 km spatial resolution and values were ex-

tracted for each school location. The same procedure

was applied for the RFE data. Annual LST and

NDVI were obtained as average of the monthly

mean values. For LST, annual estimates from

monthly minimum and maximum values were also

obtained. RFE was calculated as the total amount

of rainfall over the 1-year period. Distance from

schools to the nearest permanent water body was

computed.

Georeferencing of maps, processing of the en-

vironmental data and distance calculation were

done in IDRISI 32 (Clark Labs, Clarks University,

Worcester, MA, USA). Data were displayed in

ArcView GIS v. 3.2 (Environmental Systems

Research Institute, Inc., Redlands, CA, USA).

Statistical analysis

Parasitological and questionnaire data were double-

entered and validated with EpiInfo v. 6.04 (Centers

for Disease Control and Prevention, Atlanta, GA,

USA). Schoolchildren were subdivided into 2 age

groups; namely (1) 6–10 years, and (2) 11–16 years.

Elevation at each school location was defined as

the mean of the GPS value and the elevation derived

from the digitized maps. Environmental covariates

with continuous values, which showed a non-linear

relationship to S. mansoni infection prevalence, were

categorized. Logistic regression models were fitted

to S. mansoni infection prevalence to identify sig-

nificant demographic (age and sex), socio-economic

and environmental covariates in STATA v. 8.0

(Stata Corporation, College Station, TX, USA).

Those covariates with a significance level below

0.15 were fitted into logistic geostatistical models

usingWinBUGS v. 1.4 (Imperial College &Medical

Research Council, London, UK). To take into ac-

count the spatial heterogeneity, location-specific

random effects were integrated in the logistic models,

assuming that they are distributed according to a

multivariate normal distribution with variance-

covariance matrix related to the variogram of the

spatial process (Gelfand, Ravishanker & Ecker,
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1999). MCMC simulation was employed to estimate

the model parameters (Gelfand & Smith, 1990).

Significant covariates from the final model were

selected to generate a smooth map of S. mansoni

infection risk using Bayesian kriging (Diggle, Tawn

& Moyeed, 1998). For appraisal of the best fitting

model, the deviance information criterion (DIC) was

applied (Spiegelhalter et al. 2002). A smaller DIC

indicates a better model. Further details on the

spatial models are given in the Appendix.

RESULTS

Study compliance and school elevation

Fig. 1 shows that in the school year of 2001/2002,

5448 schoolchildren were listed on the education

registries for grades 3–5 in the 57 rural schools in the

region of Man included in this study. During the

parasitological surveys 5019 children were actually at

school, but 264 failed to provide sufficient quantities

of stool for diagnosis of S. mansoni. Hence, 4755

schoolchildren had a single Kato-Katz thick smear

examined by light microscopy.

Questionnaire data were obtained from 55 schools.

One school returned uncompleted forms, and 1

school failed to send back the questionnaires.

Overall, the teachers interviewed 4376 school-

children. For spatial risk prediction and mapping,

the final cohort consisted of 3818 schoolchildren,

who had both parasitological and questionnaire data.

There were 1528 girls (40.0%) and 2290 boys, with

2093 children aged 6–10 years (54.8%) and 1725

children aged 11–16 years.

School elevations ranged between 291 m and

842 m. Forty schools (73%) were located at elev-

ations below 400 m, while the remaining 15 schools

were located at higher elevations. The highest annual

rainfall value (1128 mm) was observed at the school

with the highest elevation. Rainfall and elevation

were found to be positively correlated (P<0.001),

however there was no co-linearity.

S. mansoni infection

The overall S. mansoni infection prevalence was

38.9%. Infection prevalences of girls and boys were

36.3% and 40.6%, respectively. Infection preva-

lences among the 6–10 year and the 11–16 year old

children were 36.4% and 41.9%, respectively.

The cumulative infection prevalences in the

schools ranged from 0% to 89.3%. Fig. 2 displays

mean school S. mansoni infection prevalences at the

55 sampled locations. The highest prevalences were

found in the south-western part of the study area.

Some distinct foci of high prevalence were also found

in the central part. In contrast, mean school preva-

lences of S. mansoni infections were below 20% in

the north-eastern part of the study area.

Associations between S. mansoni and demographic,

socio-economic and environmental covariates

Table 1 shows the results of the non-spatial bivariate

logistic regression analyses. Schoolchildrens’ age and

sex were significantly associated with an S. mansoni

infection. Children from the older age group

were significantly more likely to be infected with

S. mansoni than their younger counterparts (odds

ratio (OR)=1.22, P=0.001). Boys had significantly

higher infection prevalence than girls (OR=1.19,

P=0.008). There was no significant association

between S. mansoni infection and socio-economic

status.

Children living within the boundaries of the main

villages showed significantly lower S. mansoni infec-

tion prevalences than those living in settlements

outside (OR=0.72, P=0.001). Children living

1–4.9 km away from the nearest health facility were

more likely to be infected with S. mansoni than those

living in close proximity (OR=1.27, P=0.002).

The results from the non-spatial bivariate logistic

regression between S. mansoni and the environmen-

tal covariates are summarized in Table 2. The annual

mean NDVI showed the strongest association with

S. mansoni infection among the set of covariates

investigated. The association was highly negative;

hence high S. mansoni infection prevalences were

characterized by low NDVI values (OR=0.001,

P<0.001). Elevation was also negatively associated

with the prevalence of S. mansoni infections at the

school level (OR=0.21, P<0.001). Children living

above 400 m elevation were less likely to be infected

with S. mansoni.

Spatial analysis of S. mansoni infection

The results of the bivariate spatial models between

S. mansoni and demographic, socio-economic and

physical environment covariates are shown in

n = 5448
Children with

demographic data

n = 4755
Children with 1 Kato-Katz

thick smear

n = 4376
Children with questionnaire

data

n = 1072
Children with
incomplete

questionnaire data

n = 693
Children without
stool specimen/

absent during survey

n = 3818
Children with parasitological

and questionnaire data
(2290 boys and 1528 girls;

2093 children aged 6-10 years and
1725 aged 11-16 years)

Fig. 1. Study profile and schoolchildren’s compliance.
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Table 1. Bivariate associations between Schistosoma mansoni infection prevalence and demographic,

socio-economic and physical environment-related indicators arising from non-spatial and spatial

logistic models

(Odds ratios (OR) are displayed with their respective 95% confidence intervals (CI).)

Indicator

Non-spatial models* Spatial models#

OR 95% CI OR 95% CI

Demography
Age group
6–10 years 1.00 1.00
11–16 years 1.22 1.09, 1.37 1.48 1.26, 1.73

Sex
Female 1.00 1.00
Male 1.19 1.06, 1.34 1.24 1.06, 1.45

Socio-economic status
Most poor 1.00 1.00
Very poor 1.08 0.88, 1.33 1.12 0.86, 1.44
Poor 1.10 0.89, 1.35 1.12 0.86, 1.43
Less poor 0.99 0.80, 1.22 0.93 0.70, 1.19
Least poor 0.89 0.72, 1.10 0.73 0.55, 0.95

Physical environment
Household within main village 0.72 0.59, 0.88 0.84 0.65, 1.08
Travel distance to nearest health facility
<1 km 1.00 1.00
1–4.9 km 1.27 1.09, 1.47 1.84 0.88, 3.44
o5 km 0.88 0.76, 1.01 1.85 0.76, 3.78

* Non-spatial models were fitted in STATA.
# Spatial Bayesian models were fitted in WinBUGS.

Schistosoma mansoni school prevalence (%)

Elevation (Meters)

201 - 300

301 - 400

401 - 500

501 - 600
601 - 700

701 - 800

801 - 900

901 - 1000

1001 - 1100

1101 - 1200

1201 - 1300

Gravel and paved roads

0 - 20

20.1 - 40

40.1 - 60
60.1 - 80

80.1 - 100

Fig. 2. Distribution of mean S. mansoni infection prevalences in 55 rural schools in the mountainous region of Man,

western Côte d’Ivoire.
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Table 1, and the results between S. mansoni

and environmental covariates are summarized in

Table 2. Age group, sex, annual rainfall and elevation

remained significant covariates when spatial

correlation was taken into account. The 5th wealth

quintile was significant in this bivariate spatial

model. NDVI, which was highly significant in the

non-spatial model, was not related to S. mansoni

infection prevalence after accounting for spatial

correlation.

Results of a multivariate non-spatial model

(Model 1) and 3 different multivariate spatial models

(Models 2–4) are summarized in Table 3. The lower

DICs of the spatial models underscore the im-

portance of taking into account spatial correlation

when analysing data in space. To assess whether

environmental factors or socio-economic status had a

more pronounced effect on S. mansoni infection, the

goodness of fit of Models 2–4 were compared with

each other. Model 2 included schoolchildren’s

demographic covariates and their socio-economic

status. Model 3 was built on demographic covariates

and elevation alone, whereas Model 4 additionally

had schoolchildren’s socio-economic status in-

cluded.Model 4 showed the best fit. Schoolchildren’s

socio-economic status was more important than

Table 2. Bivariate associations between Schistosoma mansoni infection prevalence and environmental

indicators arising from non-spatial and spatial logistic models

(Odds ratios (OR) are displayed with their respective 95% confidence intervals (CI).)

Environmental indicator

Non-spatial models* Spatial models#

OR 95% CI OR 95% CI

Minimum LST
<25.0 xC 1.00 1.00
25.0–26.4 xC 0.81 0.71, 0.91 0.99 0.43, 1.91
o26.5 xC 0.34 0.27, 0.42 0.43 0.10, 1.21

Mean LST
<25.0 xC 1.00 1.00
25.0–26.4 xC 0.57 0.50, 0.66 1.06 0.48, 2.02
o26.5 xC 0.27 0.22, 0.33 1.88 0.33, 5.89

Maximum LST
<25.0 xC 1.00 1.00
25.0–26.4 xC 1.48 1.03, 2.11 3.05 0.41, 10.88
o26.5 xC 1.02 0.71, 1.45 4.83 0.64, 17.31

Day-night temperature difference
<6.0 xC 1.00 1.00
6.0–7.9 xC 0.50 0.44, 0.58 1.85 0.63, 4.21
o8.0 xC 0.33 0.26, 0.42 1.90 0.27, 6.41

Rainfall 0.99 0.99, 0.99 0.99 0.99, 0.99
NDVI 0.001 0.0003, 0.006 6.35 0.00, 183.6

Land cover
Forest 1.00 1.00
Savannah 0.99 0.87, 1.12 1.12 0.59, 1.96
Cropland 0.75 0.61, 0.90 0.74 0.30, 1.55

Soil types
Ferrallitic soils 1.00 1.00
Hydromorphic mineral soils 1.96 1.63, 2.36 1.08 0.38, 2.50

Elevation
<400 m 1.00 1.00
o400 m 0.21 0.17, 0.25 0.22 0.08, 0.54

Slope of the landscape
<20x 1.00 1.00
20–39x 0.03 0.01, 0.08 0.23 0.01, 1.21
40–59x 0.32 0.24, 0.43 1.22 0.19, 4.10
o60x 0.18 0.07, 0.43 0.34 0.02, 1.70

Distance to permanent water bodies
<500 m 1.00 1.00
500–999 m 1.33 1.14, 1.55 1.02 0.45, 2.03
o1000 m 1.21 1.05, 1.40 0.58 0.24, 1.19

* Non-spatial models were fitted in STATA.
# Spatial Bayesian models were fitted in WinBUGS.
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elevation in explaining the small-scale distribution

of S. mansoni infection. Adding the rainfall covariate

to Model 4 failed to improve the fit of this model.

In the current epidemiological setting, the mini-

mum distance at which spatial correlation between

2 locations was below 5% was 7.5 km.

Prediction of S. mansoni infection

The predicted prevalence of S. mansoni infection

among school-age children in the region of Man,

western Côte d’Ivoire, is shown in Fig. 3. Low

prevalences were predicted for the north-eastern

part, whereas high prevalences were predicted for the

south-western part of the study area, thus confirming

the point estimates derived from the school-based

parasitological surveys. The map shows surface

predictions of S. mansoni infection prevalence at

non-sampled locations.

The standard deviation of the predicted S. mansoni

infection prevalences is given in Fig. 4. This map

exhibits the precision of the prediction. It shows that

with increasing distance from surveyed locations the

error of the prediction increased.

Fig. 5 shows the random effects of the predictive

model at non-sampled locations. The random effects

basically constitute a residual term that indicates

how much is explained by other factors, which are

not included in Model 4. Large absolute random

effect values correspond to a larger deviation from

the average prevalence. The random effects with the

highest absolute values were observed in areas of

either low or high predicted S. mansoni infection

prevalence. Hence, the uncertainty of the model is

higher in those areas.

DISCUSSION

Microscopical examination of a single Kato-Katz

thick smear from a population sample of 3818

schoolchildren in rural western Côte d’Ivoire re-

vealed an overall S. mansoni infection prevalence

of 38.9%. These results confirm the high endemicity

of this parasitic infection in this epidemiological

setting (Utzinger et al. 2000; Raso et al. 2005).

Analysis at the school level showed that the infection

prevalence of S. mansoni varied considerably from

one location to another, often within short distances,

confirming small-scale focality of this parasite (Greer

et al. 1990; Ratard et al. 1990; Gryseels, 1991;

Lengeler et al. 2002). Bayesian spatial statistical

analysis revealed that the covariates age, sex, 5th

wealth quintile, elevation and rainfall explained the

geographical variation of S. mansoni infection preva-

lence. Interestingly, age, sex and socio-economic

status showed stronger influence on the geographical

Table 3. Comparison of 4 Bayesian models fitted in WinBUGS

(Values represent mean odds ratios (OR) with 95% confidence intervals (CI).)

Covariate

Model 1 (non-spatial) Model 2 (spatial) Model 3 (spatial) Model 4 (spatial)

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Demography
Age group
6–10 years 1.00 1.00 1.00 1.00
11–16 years 1.27 1.11, 1.46 1.45 1.24, 1.71 1.47 1.25, 1.72 1.46 1.24, 1.71

Sex
Female 1.00 1.00 1.00 1.00
Male 1.18 1.03, 1.36 1.21 1.03, 1.42 1.22 1.04, 1.43 1.21 1.03, 1.41

Socio-economic
status
Most poor 1.00 1.00 1.00
Very poor 1.06 0.84, 1.31 1.12 0.85, 1.44 1.12 0.85, 1.44
Poor 1.07 0.86, 1.33 1.09 0.83, 1.40 1.08 0.82, 1.39
Less poor 0.97 0.78, 1.20 0.92 0.70, 1.84 0.91 0.69, 1.18
Least poor 0.72 0.58, 0.89 0.74 0.56, 0.96 0.73 0.55, 0.95

Environment
Elevation
<400 m 1.00 1.00 1.00
o400 m 0.20 0.16, 0.24 0.22 0.07, 0.53 0.20 0.07, 0.50

Sigma* 2.80 1.37, 6.44 1.73 0.92, 3.71 1.72 0.93, 3.53
u# 0.0001 0.00004, 0.0003 0.0003 0.00007, 0.002 0.0004 0.00008, 0.002
DIC$ 4717.09 4025.43 4029.26 4025.03

* Sigma is the estimate of the geographical variability.
# u is the smoothing parameter (correlation decay), measuring the range of the geographical dependency. 3/u indicates the
minimum distance at which spatial correlation between 2 locations becomes less than 5%.
$ DIC is the measure for the model fit. A smaller DIC indicates a better fit of the model data.
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variation of this parasite at small-scale when

compared to the environmental covariates in-

vestigated.

Three methodological shortcomings are important

to note. First, diagnostic sensitivity of a single

Kato-Katz thick smear is low due to the significant

Surveyed schools

Schistosoma mansoni school prevalence (%)

0 - 10

10.1 - 20

20.1 - 30

30.1 - 40

40.1 - 50

50.1 - 60

60.1 - 70

70.1 - 80

80.1 - 90

90.1 - 100

Permanent rivers

Fig. 3. Smoothed map of the predicted Schistosoma mansoni infection prevalence based on Model 4 and produced with

Bayesian kriging for the region of Man, western Côte d’Ivoire.

Surveyed schools

Permanent rivers

Standard deviation of predicted prevalence

0 - 10

10.1 - 15

15.1 - 20

20.1 - 25

25.1 - 30

Fig. 4. Smoothed map with standard errors of the predicted S. mansoni infection prevalence based on Model 4 and

produced with Bayesian kriging for the region of Man, western Côte d’Ivoire.
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day-to-day and intra-specimen variation of S. man-

soni egg counts in stool samples (Engels, Sinzinkayo

& Gryseels, 1996; Utzinger et al. 2001; Booth et al.

2003; Berhe et al. 2004; Raso et al. 2004). However,

mainly light infections are being missed, while mod-

erate and heavy infections, which are particularly

important from a public health point of view, are

more likely to be detected. Second, we have em-

ployed environmental factors with different spatial

resolutions. Using data at different spatial resol-

utions may affect the model results by introducing

bias (Levin, 1992). Third, the alignment between

the environmental covariates and the locations where

the S. mansoni prevalence data have been collected

(i.e. school) introduces a bias, since the environ-

mental features correspond to a wider geographical

area than single point measures (Curran et al. 2000).

Previous work has been done to investigate how

exposure affects S. mansoni infection. Distance to

transmission sites, humanwater contact patterns, and

household characteristics were associated with

individuals or groups at highest risk of S. mansoni

infections (Husting, 1983; Bethony et al. 2001,

2004; Gazzinelli et al. 2001). For example, micro-

geographical studies carried out in Brazil and Kenya

showed that distance from households to streams was

negatively associated with S. mansoni infection

(Kloos et al. 1997; Kloos, Gazzinelli & van Zuyle,

1998). With a view to approximate exposure related

to water contact, we have used the distance to per-

manent rivers. In the non-spatial logistic regression

analysis, this feature was significantly associated to

an S. mansoni infection. However, in the spatially-

explicit models, distance to permanent water bodies

showed no significant association. It follows that

water contact activities approximated by distance to

rivers may be more complex than previously pro-

posed. Consequently, it seems difficult to capture

water contact activities adequately with this single

variable at a meso-geographical scale, because the

relationship may be biased by uneven distribution

of intermediate host snails.

The results of the best fitting spatial model (Model

4) showed that the 5th wealth quintile explained a

significant part of the geographical variation of

S. mansoni, as shown by the improved goodness of

fit of the model. One possible explanation arises from

distance to health-care delivery centres. However, as

previously shown and confirmed in this study, there is

no significant association with the school prevalence

of S. mansoni infection and physical access, as

measured by travel distance, to the nearest health fa-

cility (Raso et al. 2005). Household decision-making

processes may play an equal or even more important

role in this case. Underlying reasons include health

seeking behaviour, transport costs to a dispensary,

treatment costs, and knowledge and perception of the

disease by household members, as recently shown in

Surveyed schools

Permanent rivers

Random effect

<–1.5

–1.49 to –0.50

–0.49 to 0.50

0.51 to 1.50

>1.50

Fig. 5. Smoothed map with location-specific random effects based on Model 4 and produced with Bayesian

kriging for the region of Man, western Côte d’Ivoire.
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studies from Tanzania (Armstrong Schellenberg

et al. 2003). On the other hand, socio-economic

status may also be an indicator for the presence of a

latrine in the richer wealth quintiles, which in turn is

a protective factor for S. mansoni transmission.

Taken together, socio-economic status plays a role in

the small-scale distribution of S. mansoni, but it acts

as an aggregate measure for multiple risk factors that

are connected to well-being and equity.

Elevation and rainfall were the 2 most important

environmental covariates to capture the spatial dis-

tribution of S. mansoni infection prevalence. These

2 covariates were highly correlated. It is plausible

that the mountains in the northern part of the study

area are responsible for the higher rainfall observed

there, generating distinct regional climate conditions.

It is speculated that both covariates have an effect

on the flow velocity of rivers, which in turn is likely

to influence the presence of B. pfeifferi, the inter-

mediate host snail of S. mansoni. Malacological

studies have shown that B. pfeifferi tolerate a maxi-

mum flow speed of up to 0.3 m/s (Appleton, 1978;

Kloos et al. 2001). Recently, the slope of the land-

scape has been proposed as a proxy for water flow

(Brooker & Michael, 2000). Although this covariate

showed no significant association to S. mansoni in-

fection prevalence in the spatial models presented

here, the elevation, which is related to the slope,

was significant. Elevation thus is a useful covariate to

indicate higher flow speed in the mountainous part

of the present study area. In addition to elevation,

rainfall is another covariate that is likely to increase

the flow speed of rivers (Brooker & Michael, 2000).

It follows that B. pfeifferi are less likely to populate

rivers in mountainous parts. Snails are more likely

to proliferate in the plain, which would explain why

children living at locations below 400 m were at a 5-

fold higher risk of an S. mansoni infection when com-

pared to those living at altitudes above this threshold.

In contrast to previous GIS/RS applications with

an emphasis on schistosomiasis, the study presented

here is, to our knowledge, one of the first attempts to

carry forward Bayesian geostatistics for assessment

of environmental risk factors. The results underscore

the importance of using appropriate geostatistical

approaches for the analysis of spatially-explicit data.

Different environmental covariates were tested for

their association with the school prevalence of

S. mansoni infection. The majority of the environ-

mental factors were significantly associated to

S. mansoni infection in the non-spatial logistic re-

gressions. However, when adding a spatial com-

ponent to the logistic models, NDVI, LST, and

day-night temperature differencewere not significant

anymore. This finding is expected since omission

of spatial correlation underestimates the standard

errors of the covariate coefficient (Cressie, 1993).

The results show that demographic covariates and

socio-economic status play a more important role in

the small-scale variation of S. mansoni infection than

any of the environmental covariates investigated, as

assessed by the DIC. However, in areas of either low

or high prevalences, model predictions were less

certain, suggesting that other risk factors (e.g. of

behavioural or genetic nature, which were not in-

cluded in the analysis) might also play important

roles in these areas. Furthermore, ecological details

at small-scale that are important for B. pfeifferi

habitat formation (Genner & Michel, 2003), and

which are suppressed in RS studies at broad or re-

gional scale, may also be at the origin of the uncer-

tainty expressed in our model. Although the random

effects and standard errors of the predictions teach

us about the model uncertainty, our model needs

to be validated in order to assess its reliability, e.g. by

random sampling at other school locations that have

not been currently included.

Concluding, smoothed maps of S. mansoni infec-

tion risk, together with the standard error of the pre-

dictions and random effects displaying uncertainties,

were generated for the region of Man. These maps

can be used by decision-makers for the design and

implementation of S. mansoni control interventions

reaching those at highest risk. An important next

step is to validate the models in similar ecozones. If

they perform well, predictive modelling can guide

schistosomiasis control programmes in similar eco-

epidemiological settings of Côte d’Ivoire and else-

where in sub-Saharan Africa.
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APPENDIX

Let Yij and pij be the status and probability of an

S. mansoni infection, respectively, of schoolchild j

in village i. We assume that Yij arises from a

Bernoulli distribution, YijyBe(pij). We model cov-

ariatesXij and village-specific random effectwi on the

log it(pij), that is log it(pij)=Xij
Tb+wi, where b is

the vector of regression coefficients. We introduce

the spatial correlation on the wi’s by assuming that

w=(w1, w1, …, wN)
T has a multivariate normal dis-

tribution, wyMVN(0, S), with variance-covariance

matrix S. We also assume an isotropic stationary

spatial process, where Skl=s2 exp(xudkl), dkl is the

Euclidean distance between villages k and l, s2 is

the geographical variability known as the sill, u is

a smoothing parameter that controls the rate of

correlation decay with increasing distance and

measures the range of geographical dependency. The

range is defined as the minimum distance at which

spatial correlation between locations is below 5%.

This distance can be calculated as 3/u meters.

Following a Bayesian model specification, we

adopt prior distributions for the model parameters.

We choose vague Normal distributions for the

b parameters with large variances (i.e. 10 000),

an inverse gamma prior for s2 and a uniform prior

for u. MCMC simulation was applied to fit the

models. We run a single chain sampler with a burn-

in of 5000 iterations. Convergence was assessed by

inspection of ergodic averages of selected model

parameters. The chain thereafter sampled every

single iteration, until a sample size of 5000 had been

attained.
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