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CONTRIBUTIONS TO THE THEORY OF F-AUTOMATIC SETS

CHRISTOPHER HAWTHORNE

Abstract. Fix an abelian group Γ and an injective endomorphism F : Γ → Γ. Improving on the results
of [2], new characterizations are here obtained for the existence of spanning sets, F-automaticity, and
F-sparsity. The model theoretic status of these sets is also investigated, culminating with a combinatorial
description of the F-sparse sets that are stable in (Γ,+), and a proof that the expansion of (Γ,+) by any
F-sparse set is NIP. These methods are also used to show for prime p ≥ 7 that the expansion of (Fp [t],+)
by multiplication restricted to tN is NIP.

§1. Introduction. A set S of natural numbers is said to be p-automatic if the set of
representations base p of the elements of S forms a regular language—meaning that
it is recognized by a finite automaton. Motivated by the isotrivial Mordell–Lang
problem, Bell and Moosa were led in [2] to extend this notion to the context where
the natural numbers are replaced by an abelian group Γ and multiplication by p is
replaced by a fixed injective endomorphism F of Γ. The intended examples were
when Γ is a finitely generated subgroup of a semiabelian variety G over a finite
field Fq , with Γ preserved by the q-power Frobenius endomorphism F of G. In that
setting, Bell and Moosa show in [2] that if X is a closed subvariety of G then X ∩ Γ
is F-automatic; they do so using the isotrivial Mordell–Lang theorem of Moosa
and Scanlon in [6], which describes X ∩ Γ. These results have recently been made
effective and generalized to arbitrary commutative algebraic groups by Bell, Ghioca,
and Moosa in [1].

Our interest here is in the general theory of F-automata. The precise definition
of an F-automatic subset of Γ is recalled in Section 2, but let us give an informal
explanation now. First one needs to know that (Γ, F ) admits a “spanning set”: this
is a finite subset Σ such that every element of Γ can be expressed as s0 + Fs1 + ··· +
F nsn for some s0, ... , sn ∈ Σ. Then a subset S of Γ is said to be F-automatic if the
set of words s0s1 ··· sn such that s0 + Fs1 + ··· + F nsn ∈ S forms a regular language
on the alphabet Σ.

Our goals in this paper are twofold: (1) to clarify and further develop the
foundations of this theory, and (2) to investigate the model-theoretic properties
of F-automatic sets, in particular with respect to the stability-theoretic hierarchy.
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128 CHRISTOPHER HAWTHORNE

Regarding foundations, our main results are:

• A characterization of when (Γ, F ) admits a spanning set in terms of the
existence of a height function on Γ (Theorem 3.10) and, in the finitely generated
case, in terms of the eigenvalues of F ⊗Z idC (Theorem 3.12).

• A characterization of F-automaticity in terms of kernels; this is Theorem 4.2
below. This result brings the basic theory of F-automatic sets closer to the
classical case of p-automaticity.

• A characterization of F-sparsity. In the theory of regular languages there is
a natural sparse/non-sparse dichotomy in terms of the growth of the number
of accepted words of bounded length. This was extended and investigated
in [2]; see Definition 5.1 below for details. We clarify some properties of F-
sparse sets (answering a question in [2] along the way) and characterize them
in terms of length functions (Theorem 5.10). As a consequence, we obtain
in Corollary 5.12 a useful criterion for verifying F-sparsity; this criterion is
used by Bell–Ghioca–Moosa in the recent preprint [1] on effective isotrivial
Mordell–Lang.

We next turn to the model-theoretic analysis. Here our main results are:

• An explicit characterization of stable F-sparse sets as finite Boolean combi-
nations of translates of finite sums of sets of the form {a + Fa + ··· + F na :
n < �}—these are the “groupless F-sets” of [6]. That the groupless F-sets are
stable is from [6]; the converse is Theorem 6.3 below.

• The production of some new NIP expansions of (Γ,+); see Theorem 7.7. This
includes (Γ,+, A) for any F-sparse A ⊆ Γ, but it also includes some examples
that are not even F-automatic, most notably the expansion of (Fp[t],+) by
the graph of multiplication restricted to tN, when p ≥ 7. This last example is
Theorem 7.8 below.

§2. Preliminaries. We first recall the relevant theory of regular languages; the
interested reader is directed to [7] for further details. Fix a finite set Λ, which we will
use as an alphabet. We use Λ∗ to denote the set of strings of elements of Λ. A language
is any subsetL ⊆ Λ∗. We use � to denote the empty string. Given � ∈ Λ∗, |�| denotes
the length of �.

Definition 2.1. The set of regular languages over Λ is the smallest
set of languages that contains the finite languages and is such that if
L1, L2 ⊆ Λ∗ are regular then so are L1 ∪ L2, L1L2 = {�� : � ∈ L1, � ∈ L2}, and
L∗

1 = {�1 ··· �n : �1, ... , �n ∈ L1}.

Regular languages can be characterized as those recognized by machines of a
certain form:

Definition 2.2. A non-deterministic finite automaton (or NFA) is a 5-tupleM =
(Λ, Q, q0,Ω, �), where:

• Λ is a finite alphabet.
• Q is a finite set of states.
• q0 ∈ Q is the initial state.
• Ω ⊆ Q is the set of finish states.
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• � : Q × Λ → 2Q is the transition function: given (q, a) ∈ Q × Λ it outputs the
set of states the machine could transition to if it is in state q and reads
input a.

We identify � with its natural extension Q × Λ∗ → 2Q given by �(q, �a) =⋃
{�(q′, a) : q′ ∈ �(q, �)}. If � ∈ Λ∗ we say M accepts � if �(q0, �) ∩ Ω 	= ∅; the

set of such � is the language recognized by M. If |�(q, a)| = 1 for all q ∈ Q and
a ∈ Λ we say M is a deterministic finite automaton (or DFA). In this case we regard
� as having codomain Q, rather than 2Q.

Fact 2.3 [7, Lemma 2.2 and Sections 3.2 and 3.3]. If L ⊆ Λ∗ then the following
are equivalent:

• L is regular.
• L is recognized by some DFA.
• L is recognized by some NFA.

A note on exponential notation: we use Λr to denote the alphabet of r-tuples of
elements of Λ, and we use Λ(r) to denote the language {� ∈ Λ∗ : |�| = r}.

Throughout the paper, we fix an infinite abelian group Γ equipped with some
injective endomorphism F : Γ → Γ. We let Z[F ] denote the subring of End(Γ)
generated by F, and consider Γ as a Z[F ]-module. Our context is slightly more
general than that of [2]: they require that Γ be a finitely generated abelian group,
which we do not. Most of the results of [2] go through in this context with no
additional effort.

Following [2], given a string s0 ··· sn of elements in Γ we let

[s0 ··· sn]F = s0 + Fs1 + ··· + F nsn.

Note that when (Γ, F ) = (Z, d ) and si ∈ {0, ... , d – 1} this is just computing the
number represented by s0 ··· sn base d. Given a set L of strings of elements of Γ,
we let

[L]F = {[�]F : � ∈ L}.

Definition 2.4. If Σ is a finite subset of Γ we say Σ is an F-spanning set (for Γ) if
it satisfies the following axioms:

(i) For all a ∈ Γ there is � ∈ Σ∗ such that a = [�]F .
(ii) 0 ∈ Σ, and if a ∈ Σ then – a ∈ Σ.
(iii) If a1, ... , a5 ∈ Σ then a1 + ··· + a5 ∈ Σ + FΣ.
(iv) If a1, a2, a3 ∈ Σ and a1 + a2 + a3 ∈ FΓ then a1 + a2 + a3 ∈ FΣ.

Condition (i) is what allows us to make a sensible definition of F-automaticity: it
says that every element of Γ has an “F-expansion with digits in Σ.” Conditions (iii)
and (iv) are somewhat technical. Roughly speaking, their main use is to constrain
how addition and application of powers of F can affect the length of the shortest
F-expansion of a given group element; see for example [2, Lemma 5.3] and the proof
of Proposition 3.8. The latter is the only place we will directly make use of condition
(iii) or (iv); for more details on how they are used in establishing the basic properties
of F-automatic sets, see [2, Sections 5 and 6].
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130 CHRISTOPHER HAWTHORNE

Note that the existence of an F-spanning set will imply that Γ is finitely generated
as a Z[F ]-module, and that Γ/FΓ is finite.

It is pointed out in [2, Lemmas 5.6 and 5.7] that for r > 0 if Σ is an F-spanning
set then [Σ(r)]F is both an F-spanning set and an F r-spanning set.1

Definition 2.5. We say A ⊆ Γ is F-automatic if there is an F r-spanning set Σ for
some r > 0 such that {� ∈ Σ∗ : [�]F r ∈ A} is regular.

The following is a useful strengthening of [2, Proposition 6.3]:

Proposition 2.6. Suppose A ⊆ Γ is F-automatic. Then for any r > 0 and any
F r-spanning set Σ, {� ∈ Σ∗ : [�]F r ∈ A} is regular.

Proof. By F-automaticity there is r0 > 0 and an F r0 -spanning set Σ0 such that
{� ∈ Σ∗

0 : [�]F r0 ∈ A} is regular. Now Θ := [Σ(r0)]F r is an F rr0 -spanning set, and
by [2, Proposition 6.3] we have that {� ∈ Θ∗ : [�]F rr0 ∈ A} is regular. Suppose it is
recognized by the automaton M = (Θ, Q, q0,Ω, �). Now define a new automaton
M ′ = (Σ, Q × Σ(<r0), (q0, �),Ω′, �′) by

�′((q, �), a) =

{
(�(q, [�a]F r ), �) if |�| = r0 – 1,
(q, �a) if |�| < r0 – 1,

Ω′ = {(q, �) : �(q, [�]F r ) ∈ Ω}.

(Note if |�| < r0 that [�]F r = [�0r0–|�|]F r ∈ Θ, so �(q, [�]F r ) is defined.) Given
� ∈ Σ∗ we can write � = �1 ··· �n+1 where |�1| = ··· = |�n| = r0 and |�n+1| <
r0. Now, M ′ accepts � if and only if M accepts [�1]F r ··· [�n+1]F r (where
again [�n+1]F r = [�n+10r0–|�n+1|]F r ∈ Θ), which is in turn equivalent to [�]F r =
[[�1]F r ··· [�n+1]F r ]F rr0 ∈ A. SoM ′ recognizes {� ∈ Σ∗ : [�]F r ∈ A}, as desired. �

§3. Existence of spanning sets. We first study what it means for Γ to admit
an F-spanning set. It is clear in [2] that the authors do not expect all finitely
generated abelian groups to admit spanning sets, but no example was given. Here
is one:

Example 3.1. Consider Γ = Z2. Fix T ∈M2(Z) invertible and diagonalizable

over C, and with an eigenvalue � with |�| < 1; for example T =
(

1 1
1 0

)
. Let

F : Z2 → Z2 be the associated linear map on Z2. Suppose for contradiction that
there were an F-spanning set Σ for Z2. Let {v,w} ⊆ C2 be an eigenbasis for T, say
withTv = �v andTw = �w. Write each element of Σ (uniquely) in the formav + bw
for a, b ∈ C, and let M be the largest |a| obtained in this way. Given x ∈ Z2 we can
write

x = [s0 ··· sn]F =
n∑
i=0

T i(aiv + biw) =
( n∑
i=0

ai�
i

)
v +
( n∑
i=0

bi�
i

)
w,

1What we denote [Σ(r)]F is denoted simply Σ(r) in [2]; recall that for us Σ(r) denotes the set of strings
over Σ of length r.
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where si = aiv + biw ∈ Σ. So by independence of {v,w} if we write x = av + bw
then

|a| =
∣∣∣∣ n∑
i=0

ai�
i

∣∣∣∣ ≤ n∑
i=0

|ai ||�|i ≤M
∞∑
i=0

|�|i ≤M (1 – |�|)–1.

On the other hand, if we had a 	= 0 then since Z2 is closed under integer scaling
there would be some x ∈ Z2 such that the corresponding a did not satisfy |a| ≤
M (1 – |�|)–1, a contradiction. So a = 0, and Z2 ⊆ Cw, contradicting the fact that
the C-linear span of Z2 is all of C2. So no F-spanning set exists for Z2.

Bell and Moosa [2] give a sufficient condition for Γ to admit an F r-spanning
set for some r (under the assumption that Γ/FΓ is finite) in terms of the existence
of what they call a height function on Γ. Our first goal is to show that this is also
necessary.

Definition 3.2. A height function for (Γ, F ) is a map h : Γ → R≥0 satisfying the
following:

(Symmetry and triangle inequality) There areα, κ∈Rwithα>1 and κ>0 such
that h(– a)≤αh(a) + κ and h(a + b)≤α(h(a) + h(b)) + κ for all a, b∈Γ.
(Northcott property) For allN ∈ N there are finitely many a∈Γ with h(a)≤N .
(Canonicity) There is � ∈ R with � > 1 such that h(Fa) ≥ �h(a) for cofinitely
many a ∈ Γ.

We will find it useful to work with a different class of functions on Γ:

Definition 3.3. A length function for (Γ, F ) is a map � : Γ → R≥0 satisfying the
following:

(Symmetry) �(a) = �(– a) for all a ∈ Γ.
(Ultrametric inequality) There is D ∈ R with D ≥ 0 such that �(a + b) ≤
max(�(a), �(b)) +D for all a, b ∈ Γ.
(Northcott property) For allN ∈N there are finitely many a∈Γ with �(a) ≤ N .
(Logarithmic property) There is a finite exceptional set A and C,E ∈ R with
C > 0 and E ≥ 0 such that
• �(Fa) ≤ �(a) + C for all a ∈ Γ, and
• �(F na) ≥ �(a) + nC – E for all a ∈ Γ \A and n ∈ N.

Note that if � satisfies all the axioms of being a length function besides symmetry,
then �′(a) := max(�(a), �(– a)) will be a length function.

There is an immediate connection between length functions and height functions.
Suppose � is a length function for (Γ, F ) with exceptional set A and associated
constants C,D,E. Pick r so that rC > E. It is then straightforward to check that
h(a) := 2�(a) is a height function for (Γ, F r) with exceptional set A and associated
constants α = 2D , � = 2rC–E , and κ = 1. It is harder to derive a length function
from a height function. One might attempt to reverse the above, and given a height
function h ask whether �(a) := log(h(a)) is a length function. A first obstacle is
that we might have h(a) < 1, though this could be dealt with by setting �(a) = 0 for
such a. A more fundamental problem is that the axioms of height functions place
no upper bound on h(Fa) in terms of h(a), whereas the axioms of length functions
demand such a bound on �(Fa). We will see in Theorem 3.10, however, that the
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132 CHRISTOPHER HAWTHORNE

existence of a height function indeed implies the existence of a length function, and
moreover that both are equivalent to the existence of a spanning set.

Remark 3.4. It will sometimes be convenient to assume that C is large compared
to some function of D and E (and possibly other constants). If we are willing to
pass from F to a power thereof, this can always be assumed: if � is a length function
for (Γ, F ) with associated constantsC,D,E, we can take r such that rC satisfied the
desired inequalities. Then � is a length function for (Γ, F r) with associated constants
rC,D,E.

Lemma 3.5. Suppose � is a length function for (Γ, F ) with exceptional set A and
associated constantsC,D,E. By increasing E we can assume that every element of the
exceptional set A has finite F-orbit.

Proof. Suppose the F-orbit of a ∈ A is infinite; so there is ia such that F ia a /∈ A.
Now, for all n ≥ ia we have

�(F na) = �(F n–ia F ia a) ≥ �(F ia a) + (n – ia)C – E

= �(a) + nC – (E + iaC + �(a) – �(F ia a)︸ ︷︷ ︸
∗

),

and for n < ia we have

�(F na) = �(a) + nC – (nC + �(a) – �(F na)︸ ︷︷ ︸
∗

).

Hence taking E ′ to be the maximum of E and all the quantities marked ∗, we get
that �(F na) ≥ �(a) + nC – E ′ so that a is no longer exceptional with respect to this
new E ′. Iterating this procedure for each a ∈ A with infinite F-orbit, we eventually
produce a new Ẽ ≥ E such that only the elements of A of finite F-orbit remain
exceptional. �

Remark 3.6. If there is a length function for (Γ, F ) and a ∈ Γ has finite F-orbit,
then a must have finite order. Indeed, the F-orbit of ka is finite for all k ∈ N; but
the logarithmic property then implies that all ka lie in the finite exceptional set.

Combining Lemma 3.5 and Remark 3.6 we may assume the logarithmic property
applies to all elements of infinite order.

Here is the motivating example of a length function.

Definition 3.7. If Σ is an F-spanning set for Γ, we define �Σ : Γ → R≥0 by setting
�Σ(a) to be the length of the shortest � ∈ Σ∗ such that [�]F = a.

Proposition 3.8. If Σ is an F-spanning set for Γ then �Σ is a length function for
(Γ, F ) with associated constants C = D = E = 1 and exceptional set Σ.

Proof. We verify the axioms. Symmetry of �Σ is simply by symmetry of Σ. Lemma
5.3 of [2] implies that the ultrametric inequality holds of �Σ with D = 1. Since Σ
is finite there are finitely many � ∈ Σ∗ of length ≤ N , and hence �Σ satisfies the
Northcott property. Finally, we prove that �Σ satisfies the logarithmic property with
C = E = 1 and exceptional set Σ. For the upper bound, note that if a = [s0 ··· s
 ]F
with s0, ... , s
 ∈ Σ then Fa = [0s0 ··· s
 ]F ; so �Σ(Fa) ≤ �Σ(a) + 1. It remains to show
the lower bound.
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Suppose a /∈ Σ. Write �Σ(a) = 
 for some 
 > 1; say a = [s0 ··· s
–1]F . Suppose
for contradiction that �Σ(Fma) < m + 
 – 1; so we can write Fma = [t0 ··· tm+
–3]F .
Then

Fms0 + ··· + Fm+
–1s
–1 = Fma = t0 + ··· + Fm+
–3tm+
–3. (1)

Then t0 ∈ FΓ, so by axiom (iv) we get that t0 = Ft′0 for some t′0 ∈ Σ. Inductively
suppose for some i < m – 1 we can write t0 + ··· + F i ti = F i+1t′i for some t′i ∈ Σ.
Then F i+1(t′i + ti+1) = t0 + ··· + F i+1ti+1 which can be seen to be in F i+2Γ using
Equation (1) and the fact that m ≥ i + 2. Hence t′i + ti+1 ∈ FΓ by injectivity of F,
and again by axiom (iv) we can write t′i + ti+1 = Ft′i+1 for some ti+1 ∈ Σ. So t0 + ··· +
F i+1ti+1 = F i+2t′i+1. It follows that t0 + ··· + Fm–1tm–1 = Fmt′m–1 for some t′m–1 ∈ Σ.
(Note tm–1 is defined since 
 ≥ 2.) So Fma = Fmt′m–1 + Fmtm + ··· + Fm+
–3tm+
–3,
and thus

a = t′m–1 + (tm + ··· + F 
–3tm+
–3).

Hence by [2, Lemma 5.3] we get that a can be represented by a string of length
≤ 
 – 1, contradicting our assumption that �Σ(a) = 
. �

We will want to use a result of [2] to deduce that the existence of a height function
implies the existence of a spanning set. To do so we will need to know that Γ/F rΓ
is finite for all r.

Lemma 3.9. Suppose S ⊆ Γ contains a representative of each coset of FΓ. Then

[S(r)]F = {s0 + ··· + F r–1sr–1 : s0, ... , sr–1 ∈ S}
contains a representative of each coset of F rΓ. In particular, if Γ/FΓ is finite then so
too is Γ/F rΓ for all r > 0.

Proof. Given a ∈ Γ we can find s0 ∈ S such that a ≡ s0(mod FΓ). Then
inductively we can find s1, ... , sr–1 ∈ S such that F –1(a – s0) ≡ s1 + ··· +
F r–2sr–1(mod F r–1Γ), at which point it follows that a ≡ s0 + ··· +
F r–1sr–1(mod F rΓ). �

Putting all this together, we deduce the following characterization for the existence
of spanning sets, which in particular provides a converse to [2, Proposition 5.8].

Theorem 3.10. Suppose Γ/FΓ is finite. The following are equivalent :

1. Γ admits an F r-spanning set for some r > 0.
2. There is a length function for some (Γ, F r).
3. There is a height function for some (Γ, F r).

Proof. (1) =⇒ (2) is Proposition 3.8, and we noted (2) =⇒ (3) after the
definition of length functions. For (3) =⇒ (1), we appeal to [2, Proposition 5.8].
Formally they require that Γ be finitely generated as a group, but this is only used
to deduce that Γ/F rΓ is finite for all r; by Lemma 3.9 we can assume as much from
the fact that Γ/FΓ is finite. �

Corollary 3.11. Suppose there is anF r-spanning set for Γ for some r > 0 andH ≤
Γ is F-invariant. Then there is an F s -spanning set for H for some s > 0. Furthermore
if A ⊆ H then A is F-automatic in Γ if and only A is F-automatic in H.
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Proof. By Theorem 3.10 there is a length function � for some (Γ, F r). One can
check that � � H is a length function for (H, (F � H )r). So again by Theorem 3.10
there is an F s -spanning set for H for some s > 0.

For the “furthermore,” note by the above and [2, Lemmas 5.6 and 5.7] there is s
such that there is an F s -spanning set Σ for H that is contained in an F s -spanning
set Σ′ for Γ. The right-to-left direction then follows from [2, Proposition 6.8(b)]. For
the left-to-right, note that {� ∈ Σ∗ : [�]F s ∈ A} = {� ∈ (Σ′)∗ : [�]F s ∈ A} ∩ Σ∗ is
the intersection of two regular languages, and is thus regular (see [7, Theorem 2.1]);
so A is F-automatic in H. �

In fact when Γ is a finitely generated abelian group, we can use the above to deduce
a concrete and verifiable characterization of the existence of spanning sets.

Theorem 3.12. Suppose Γ is a finitely generated abelian group. Then Γ admits an
F r-spanning set for some r > 0 if and only if the eigenvalues of F ⊗Z idC (viewed as a
linear map on the C-vector space Γ ⊗Z C) all have modulus > 1.

We will want to restrict our attention to the torsion-free case; the following lemma
tells us that the torsion subgroup can be ignored for the purposes of determining
whether there is a spanning set.

Lemma 3.13. Suppose Γ is a finitely generated abelian group ; write Γ = Γ0 ×H
where Γ0 is torsion-free and H is finite. Let � : Γ → Γ0 be the projection, and let
F0 : Γ0 → Γ0 be the map induced by F. Then

1. �([s0 ··· sn]F ) = [(�(s0)) ··· (�(sn))]F0 for s0, ... , sn ∈ Γ.
2. If Σ is an F-spanning set for Γ then �(Σ) is an F0-spanning set for Γ0.
3. If Σ0 is an F0-spanning set for Γ0 then �–1(Σ0) is an F-spanning set for Γ.

Proof. Note first that since F is injective and H is finite we get that FH = H ;
so there is indeed a well-defined and injective F0 : Γ0 → Γ0 that satisfies � ◦ F =
F0 ◦ �.

1. Note that�([s0 ··· sn]F ) =�(s0) + �(Fs1) + ··· + �(F nsn) =�(s0) + F0(�(s1)) +
··· + F n0 (�(sn)) = [(�(s0)) ··· (�(sn))]F0 .

2. Suppose Σ is an F-spanning set for Γ; we verify that �(Σ) satisfies the axioms.
(i) Suppose a ∈ Γ0. Since Σ satisfies axiom (i) there is s0 ··· sn ∈ Σ∗

such that [s0 ··· sn]F = a. Then by part (1) we get that a = �(a) =
[(�(s0)) ··· (�(sn))]F0 .

(ii) Since 0 ∈ Σ we get that 0 = �(0) ∈ �(Σ). If �(a) ∈ �(Σ) then since Σ
satisfies axiom (ii) we get that – a ∈ Σ, and hence – �(a) ∈ �(Σ).

(iii) Suppose �(a1), ... , �(a5) ∈ �(Σ). Since Σ satisfies axiom (iii) there are
b0, b1 ∈ Σ such that a1 + ··· + a5 = b0 + Fb1. Then �(a1) + ··· + �(a5) =
�(b0) + �(Fb1) = �(b0) + F0(�(b1)) ∈ �(Σ) + F0(�(Σ)), as desired.

(iv) Suppose �(a1), �(a2), �(a3) ∈ �(Σ) and �(a1) + �(a2) + �(a3) = F0b for
some b ∈ Γ0. Then �(a1 + a2 + a3) = F0(�(b)) = �(Fb), so there is h ∈
H such that a1 + a2 + a3 = Fb + h. Since F is bijective on H, there is h0 ∈
H such that Fh0 = h. So a1 + a2 + a3 = F (b + h0); thus since Σ satisfies
axiom (iv) we get that b + h0 ∈ Σ, and hence that b = �(b + h0) ∈ �(Σ).

3. Suppose Σ0 is an F0-spanning set for Γ0; we verify that �–1(Σ0) satisfies the
axioms.
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(i) Suppose a ∈ Γ. Since Σ0 satisfies axiom (i) there is s0 ··· sn ∈ Σ∗
0 such that

�(a) = [s0 ··· sn]F0 = [(�(s0)) ··· (�(sn))]F0 = �([s0 ··· sn]F ) (since each
si ∈ Σ0 ⊆ Γ0). Let h = a – [s0 ··· sn]F ∈ H . Then a = h + [s0 ··· sn]F =
[(s0 + h)s1 ··· sn]F and s0 + h, s1, ... , sn ∈ �–1(Σ0), as desired.

(ii) Since 0 ∈ Σ0 we get that 0 ∈ �–1(0) ⊆ �–1(Σ0). If a + h ∈ �–1(Σ0) with
a ∈ Σ0 and h ∈ H , then since Σ0 satisfies axiom (ii) we get that – a ∈ Σ0,
and hence – (a + h) ∈ �–1(Σ0).

(iii) Suppose a1 + h1, ... , a5 + h5 ∈ �–1(Σ0) with each ai ∈ Σ0 and each hi ∈ H .
Since Σ0 satisfies axiom (iii) there are b0, b1 ∈ Σ0 such that

a1 + ··· + a5 = b0 + F0b1 = b0 + F0(�(b1)) = b0 + �(Fb1) = b0 + Fb1 + h,

for some h ∈ H . Then

(a1 + h1) + ··· + (a5 + h5) = (b0 + h1 + h2 + ··· + h5 + h) + Fb1

and b0 + h1 + h2 + ··· + h5 + h, b1 ∈ �–1(Σ0).
(iv) Suppose a1 + h1, a2 + h2, a3 + h3 ∈ �–1(Σ0) with each ai ∈ Σ0 and each
hi ∈ H ; suppose further that (a1 + h1) + (a2 + h2) + (a3 + h3) = Fb for
some b ∈ Γ. Thena1 + a2 + a3 = �(Fb) = F0(�(b)); thus since Σ0 satisfies
axiom (iv) we get that �(b) ∈ Σ0, and b ∈ �–1(Σ0). �

Proof of Theorem 3.12. We first reduce to the torsion-free case. By the
fundamental theorem of finitely generated abelian groups we may assume Γ =
Zm ×H where H is a finite group; let � : Γ → Zm be the projection. Let F0 be
the endomorphism of Zm induced by F ; note then that F r0 is the endomorphism
of Zm induced by F r . So by Lemma 3.13 Γ admits an F r-spanning set for some
r > 0 if and only if Zm admits an F r0 -spanning set for some r > 0. Moreover under
the identification Γ ⊗Z C = Zm ⊗Z C we have that F ⊗Z idC ∼ F0 ⊗Z idC, and in
particular they have the same eigenvalues.

We may therefore assume Γ = Zm for some m and F ∈Mm(Z).
( ⇐= ) By replacing F with a power, we may assume |�| > 2 for all � ∈ �(F ). We

show there exists a height function for (Γ, F ). Pick a basis {e1, ... , em} for Cm

that puts F in Jordan canonical form. Let h : Cm → R≥0 be the infinity norm
associated with {e1, ... , em}: so h(a1e1 + ··· + amem) = maxi |ai |. We show
that h � Zm is a height function for (Γ, F ). Triangle inequality and symmetry
are clear. For the Northcott property, recall that two norms ‖·‖1 and ‖·‖2 on a
vector space V are equivalent if there are c1, c2 > 0 such that c1‖v‖1 ≤ ‖v‖2 ≤
c2‖v‖1 for all v ∈ V ; recall further that all norms on a finite-dimensional
space are equivalent. In particular, our infinity norm is equivalent to the usual
infinity norm ‖·‖∞ on Cm, and there is c > 0 such that ‖v‖∞ ≤ ch(v) for all
v ∈ Cm. So if h(v) ≤ N then ‖v‖∞ ≤ cN , and there can only be finitely many
such v ∈ Zm.

It remains to check canonicity. Fix some � > 1 such that � + 1 < |�|
for all � ∈ �(F ). Suppose v = v1e1 + ··· + vmem ∈ Cm \ {0}; write Fv =
w1e1 + ··· + wmem. Fix i such that |vi | = h(v). Depending on the structure
of the Jordan blocks, we get that wi is either �vi + vi+1 or �vi (for � ∈ �(F )
corresponding to vi ). In the first case, reverse triangle inequality yields

h(Fv) ≥ |wi | ≥ |�||vi | – |vi+1| ≥ (|� – 1|)|vi | > � |vi | = �h(v),
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and in the second case we get

h(Fv) ≥ |wi | = |�||vi | > � |vi | = �h(v).

So h satisfies canonicity, as desired.
( =⇒ ) Suppose there is � ∈ �(F ) with |�| ≤ 1. There are two cases:

Case 1. Suppose there is � ∈ �(F ) with |�| < 1; the argument in this case
is similar to Example 3.1. Since the same is true for all powers of F it
suffices to show that there is no F-spanning set. Pick a basis {e1, ... , em}
for Cm that puts F into Jordan canonical form; for x ∈ Cm we write

x =
m∑
i=1

fi (x)ei ;

so eachfi : Cm → C is linear. Pick some ek corresponding to the bottom-
right of some Jordan block for �; so fk(Fx) = �fk(x) for x ∈ Cm.

Suppose for contradiction we had an F-spanning set Σ. Let M =
max{|fk(a)| : a ∈ Σ}. Then if

y =

∑
i=0

F iai

for ai ∈ Σ then

|fk(y)| =
∣∣∣∣ 
∑
i=0

�ifk(ai )
∣∣∣∣ ≤ 
∑

i=0

|�ifk(ai )|

=

∑
i=0

|�|i |fk(ai )| ≤M
∑
i<�

|�|i =M
1

1 – |�| .

So everyy ∈Zm satisfies |fk(y)| ≤M 1
1–|�| . So since the integers are closed

under doubling and fk is linear, we get that fk(y) = 0 for each y ∈ Zm.
So Cm = spanC Zm is spanned by {e1, ... , em} \ {ek}, a contradiction.

Case 2. Suppose |�| ≥ 1 for all � ∈ �(F ); pick some � ∈ �(F ) with |�| = 1.
We show that there is non-zero a ∈ Zm such that F ia = F ja for some
i 	= j, and deduce that no power of F admits a length function.

Let p�(x) be the minimal polynomial for � over Q. Note that if � ∈ C

is a root of p� then so is �–1. Indeed, this is true of � since �–1 = � and
p� ∈ Q[x], and hence is true of all Aut(Q/Q)-conjugates of �. But p�
divides the characteristic polynomial of F, and hence p� has no roots of
modulus < 1 by hypothesis. It follows that p� has no roots of modulus
> 1 either. That is, the roots of p� lie on the unit circle.

Now, p�(F ) isn’t invertible over C, since p�(F )v = p�(�)v = 0 for
any eigenvector v of F with eigenvalue �. So p�(F ) isn’t invertible over
Q, and thus V := kerQ(p�(F )) is a non-trivial F-invariant subspace of
Qm. Furthermore p�(F � V ) = 0, so the minimal polynomial of F �
V is separable (since p� is); so F � V is diagonalizable (over C) with
eigenvalues that are roots of p�, and hence lie on the unit circle. In
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particular in the inner product induced by the eigenbasis for F � V we
get that F � V is unitary.

Since V is a non-trivial subspace of Qm it contains a non-zero a ∈ Zm.
So Fa ∈ V ∩ Zm as well and ‖Fa‖ = ‖a‖ (where the norm is induced
by the aforementioned inner product); inductively we get ‖F na‖ = ‖a‖
and F na ∈ Zm for all n. But ‖·‖ is equivalent to the Euclidean norm
(since both are norms on a finite-dimensional space); so there are
finitely many b ∈ Zm with ‖b‖ = ‖a‖. So F ia = F ja for some i 	= j.
By injectivity of F we get F i–ja = a, and hence that (F n)i–ja = a for all
n. It follows that theF n-orbit of a is finite for all n > 0. Since a has infinite
order, Remark 3.6 yields that no power of F admits a length function.
Hence by Theorem 3.10 Γ does not admit an F r-spanning set for any
r > 0. �

§4. A characterization of F-automaticity. A useful characterization of classical
automaticity is in terms of “finiteness of kernels.” A version of this for F-
automaticity is given in [2, Lemma 6.2]. Using length functions we are able to
improve this result. First, here is what kernels mean in our setting, as introduced
in Definition 6.1 of [2]. As before, we fix an abelian group Γ with an injective
endomorphism F.

Definition 4.1. Suppose A ⊆ Γ. Given s0, ... , sn–1 ∈ Γ we set

As0···sn–1(x) = {x ∈ Γ : s0 + ··· + F n–1sn–1 + F nx ∈ A}

(soA� = A). Given S ⊆ Γ, by the (S, F )-kernel of A we mean the set {A� : � ∈ S∗}.

Theorem 4.2. Suppose Γ admits an F r-spanning set for some r > 0 (and so in
particular that Γ/FΓ is finite). Fix finite S ⊆ Γ containing a representative of each
coset of FΓ in Γ. Then A ⊆ Γ is F-automatic if and only if the (S, F )-kernel of A is
finite.

The big improvement here is that S need not be a spanning set—being a complete
set of representatives for Γ/FΓ is a much weaker condition. A nice feature of this
characterization is that, apart from the hypothesis on existence of a spanning set,
F-automaticity of a set A can be checked without references to higher powers of F.

Lemma 4.3. Let Γ, F, and S be as in Theorem 4.2. Suppose n > 0. The (S, F )-kernel
of A is finite if and only if the (S(n), F n)-kernel of A is finite.

Proof. The (S(n), F n)-kernel is clearly contained in the (S, F )-kernel. Suppose
the (S, F )-kernel is infinite.

Note that if � = s0 ··· sk–1, � = t0 ··· t
–1 ∈ S∗, and a ∈ Γ then

a ∈ (A�)� ⇐⇒ t0 + ··· + F 
–1t
–1 + F 
a ∈ A�
⇐⇒ s0 + ··· + F k–1sk–1 + F k(t0 + ··· + F 
–1t
–1 + F 
a) ∈ A
⇐⇒ s0 + ··· + F k–1sk–1 + F kt0 + ··· + F k+
–1t
–1 + F k+
a ∈ A
⇐⇒ a ∈ A��.

So (A�)� = A�� ; in particular, if A�� 	= A�′� then A� 	= A�′ .
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Since the set of all A� is infinite, there is 0 ≤ i < n such that the set of A�
with |�| ≡ i(mod n) is infinite. Now, as S is finite, this means there is � ∈ S∗

of length i such that {A�� : � ∈ S∗, |�| ∈ nZ} is infinite. It follows by the above
observation that {A� : � ∈ S∗, |�| ∈ nZ} is infinite, and so the (S(n), F n)-kernel is
infinite. �

Lemma 4.4. Suppose Γ admits a length function � for (Γ, F ) with associated
constants C,D,E such that C ≥ D. Suppose S,T ⊆ Γ are finite sets both containing
a representative of each coset of FΓ. Then A has finite (S, F )-kernel if and only if it
has finite (T, F )-kernel.

Proof. LetN = max{�(s – t) : s ∈ S, t ∈ T}. Suppose the (T, F )-kernel of A is
finite.

Take an element A� of the (S, F )-kernel of A, say with � = s0 ··· sn–1 ∈ S∗. By
Lemma 3.9 there is � = t0 ... tn–1 ∈ T ∗ such that

s0 + ··· + F n–1sn–1 ≡ t0 + ··· + F n–1tn–1(mod F n(Γ)).

So A� lies in the (T, F )-kernel of A. Let

� = F –n((s0 – t0) + ··· + F n–1(sn–1 – tn–1));

so for a ∈ Γ we have

a + � ∈ A� ⇐⇒ t0 + ··· + F n–1tn–1 + F n(a + �) ∈ A
⇐⇒ t0 + ··· + F n–1tn–1 + F na + (s0 – t0) + ··· + F n–1(sn–1 – tn–1) ∈ A
⇐⇒ s0 + ···F n–1sn–1 + F na ∈ A
⇐⇒ a ∈ A�.

SoA� = A� – �. Hence to show that the (S, F )-kernel of A is finite it suffices to show
that � can take on one of only finitely many values (as �, � vary). We show that �(�)
is bounded in terms of S,T , which suffices by the Northcott property.

We first bound �(F n�) = �((s0 – t0) + ··· + F n–1(sn–1 – tn–1)). Since �(s0 – t0) ≤
N and �(F (s1 – t1)) ≤ N + C , the ultrametric inequality yields

�((s0 – t0) + F (s1 – t1)) ≤ N + C +D.

Since �(F 2(s2 – t2)) ≤ N + 2C , another application of ultrametric inequality yields

�((s0 – t0) + F (s1 – t1) + F 2(s2 – t2)) ≤ N + 2C +D

(since by hypothesis C ≥ D). Continuing inductively, we find that �(F n�) ≤
N + (n – 1)C +D. Hence by the logarithmic property we get that �(�) ≤ N – C +
D + E. �

Proof of Theorem 4.2. Suppose Γ admits an F n-spanning set Σ for some n > 0.
By Proposition 3.8 �Σ is a length function for (Γ, F n) with associated constants
C,D,E such that C ≥ D. Suppose A ⊆ Γ. Then by the previous two lemmas, the
(S, F )-kernel of A is finite if and only if the (S(n), F n)-kernel of A is, which occurs if
and only if the (Σ, F n)-kernel of A is. (Note that an F n-spanning set must contain a
representative of every coset of FΓ.) But by [2, Lemma 6.2] this is equivalent to A
being F-automatic, as desired. �

https://doi.org/10.1017/jsl.2021.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.38


CONTRIBUTIONS TO THE THEORY OF F-AUTOMATIC SETS 139

As an illustration of the usefulness of this characterization we give quick proof
of [2, Lemma 6.7(a)]: that if a spanning set exists then the equivalence relation of
“representing the same element” on strings is characterized by a finite automaton.

Corollary 4.5. Suppose Σ is an F-spanning set. Then {(�, �) ∈ (Σ2)∗ : [�]F =
[�]F } is a regular language over (Σ2)∗.

Here we are conflating (Σ2)∗ with the subset of (Σ∗)2 consisting of the (�, �) such
that |�| = |�|.

Proof. By Proposition 2.6 this is equivalent to Δ = {(a, a) : a ∈ Γ} ⊆ Γ2 being
F-automatic. Fix a set S containing exactly one representative of each coset of FΓ in
Γ; we will show that the (S2, F )-kernel of Δ is finite. Note that if s0 ··· sn–1, t0 ··· tn–1 ∈
S(n) are unequal, say with i minimal such that si 	= ti , then since si 	≡ ti(mod FΓ)
and F is injective we get that s0 + ··· + F n–1sn–1 	≡t0 + ··· + F n–1tn–1(mod F i+1Γ).
So s0 + ··· + F n–1sn–1 	≡t0 + ··· + F n–1tn–1(mod F nΓ), and thus s0 + ··· + F n–1sn–1 +
F na 	= t0 + ··· + F n–1tn–1 + F nb for any a, b ∈ Γ. So Δ(�,�) is empty if (�, �) ∈ (S2)∗

and � 	= �. Furthermore if � = � then by injectivity of F we get Δ(�,�) = Δ. So the
(S2, F )-kernel of Δ contains two elements. �

§5. A characterization of F-sparsity. Recall that a language L ⊆ Σ∗ is sparse if it
is regular and |{� ∈ L : |�| ≤ x}| grows polynomially in x. See the beginning of [2,
Section 7] for a brief overview of sparsity.

Fix (Γ, F ) an abelian group equipped with an injective endomorphism. In [2] Bell
and Moosa adapt the notion of sparsity to the setting of F-automatic sets.

Definition 5.1. A subset A ⊆ Γ is F-sparse if there is an F r-spanning set Σ for
some r > 0 and a sparse L ⊆ Σ∗ such that A = [L]F r .

While the definition of F-sparsity is sufficient for the purposes of [2], it is
cumbersome in some contexts. In particular, in order to show a set is not sparse one
needs to check every possible set of representatives in every possible spanning set
for every possible power of F. For example, it is not immediate from the definition
that Γ itself isn’t F-sparse.

In this section we will give a characterization of F-sparsity in terms of length
functions, and deduce from that some natural properties of F-sparsity. We will use
the following characterization of sparsity:

Fact 5.2 [2, Proposition 7.1]. L ⊆ Σ∗ is sparse if and only if it is a finite union
of sets of the form v0w

∗
1 v1 ··· vn–1w

∗
n vn where v0, ... , vn, w1, ... , wn ∈ Σ∗.

We call languages of the form v0w
∗
1 v1 ··· vn–1w

∗
n vn simple sparse. By Fact 5.2 an

F-sparse set is a finite union of sets of the form [L]F r where L is a simple sparse
language. The following further simplification in the structure of F-sparse sets will
be useful both for proving basic closure properties below, and for studying stability
in the next section.

Proposition 5.3. Suppose A ⊆ Γ is F-sparse. There is s0 ∈ N such that for all
s ∈ s0N we can write A as a finite union of translates of sets of the form [a∗1 ··· a∗n ]F s
where a1, ... , an ∈ Γ.
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Proof. By Fact 5.2 we can write A as a finite union of sets of the form
[v0w

∗
1 v1 ···w∗

n vn]F r for some strings vi , wi ∈ Γ∗. By replacing F with F r we may
assume r = 1. Let s0 be the least common multiple of all the |wi |.

In the case where Γ = Zm and F is multiplication by some d > 0, an intermediate
result in the proof of [5, Lemma 3.4] is that we can write A as a finite union of
translates of sets of the form [�∗1 ··· �∗n ]F where �1, ... , �n ∈ Γ∗ all have length s0. In
fact with little additional effort the proof of this generalizes to our setting, and can
be made to show that if s ∈ s0N then we may take all �i to have length s rather
than s0. But if we let ai = [�i ]F then [�∗1 ··· �∗n ]F = [a∗1 ··· a∗n ]F s ; so we have written A
in the desired form. �

We note some closure properties:

Proposition 5.4. 1. For any A ⊆ Γ and s > 0, A is F-sparse if and only if it is
F s -sparse.

2. If A,B ⊆ Γ are F-sparse then so is A ∪ B .
3. If A ⊆ Γ is F-sparse and X ⊆ Γ is F-automatic then A ∩ X is F-sparse.
4. If A,B ⊆ Γ are F-sparse then so is A+ B .

Proof. 1. The right-to-left is by definition; for the left-to-right, take an F r-
spanning set Σ for some r > 0 and a sparse languageL⊆Σ∗ such thatA = [L]F r .
Recall by [2, Lemma 5.7] that Σ′ = [Σ(s)]F r is anF rs -spanning set. Given� ∈ Σ∗

with s | |�|we can associate�′ ∈ (Σ′)∗ as follows: write� = �1 ··· � |�|
s

with each

�i ∈ Σ(s), and set �′ = [�1]F r ··· [� |�|
s

]F r . So [�]F r = [�′]F rs , and |�′| = |�|
s .

Note now that

A = [L]F r = [L0∗ ∩ (Σ(s))∗]F r = [{�′ : � ∈ L0∗ ∩ Σ(sN)}︸ ︷︷ ︸
L′

]F rs .

Since regular languages are closed under intersection (see [7, Theorem 2.1]),
we get that L0∗ ∩ (Σs)∗ is regular; one can then use a DFA that recognizes
L0∗ ∩ (Σs)∗ to construct an NFA that recognizes L′. By Fact 5.2 L0∗, and
hence L0∗ ∩ (Σs)∗, is a sparse language; thus since |�′| = |�|

s we get that L′ is
sparse. So A = [L′]F rs is F s -sparse.

2. Take an F r-spanning set Σ and an F s -spanning set Θ with sparse languages
L1 ⊆ Σ∗ and L2 ⊆ Θ∗ such that A = [L1]F r and B = [L2]F s . By the argument
given in the proof of (1), we may assume r = s . By [2, Lemma 5.6], there is an
F r-spanning set Ω containing Σ ∪ Θ. Then L1 ∪ L2 is a sparse language in Ω∗,
and A ∪ B = [L1 ∪ L2]F r . So A ∪ B is F-sparse.

3. Take an F r-spanning set Σ for some r > 0 and a sparse language L ⊆ Σ∗

such that A = [L]F r . By Proposition 2.6 {� ∈ Σ∗ : [�]F r ∈ X} is regular. So if
L′ = {� ∈ L : [�]F r ∈ X} then L′ is regular (as the intersection of two regular
languages; see [7, Theorem 2.1]) and thus sparse (as it’s contained in L). But
[L′]F r = A ∩ X ; so A ∩ X is F-sparse.

4. We first check the case where B = {�} is a singleton. Take an F r-spanning set
Σ for some r > 0 and a sparse language L ⊆ Σ∗ such that A = [L]F r . By [2,
Lemma 5.6] there is an F r-spanning set Σ′ ⊇ Σ that contains a + � for every
a ∈ Σ. Given � = a1 ··· a|�| ∈ Σ∗ non-empty let �� = (a1 + �)a2 ··· a|�| ∈ (Σ′)∗;
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so [�� ]F r = [�]F r + �. It is routine to check that sparsity of L implies sparsity
of L� := {�� : � ∈ L} ⊆ (Σ′)∗. So A+ � = [L� ]F r is F-sparse.

We now do the general case. By Proposition 5.3 there is s such that there is
an F s -spanning set and such that both A and B can be written as a finite union
of translates of sets of the form [a∗1 ··· a∗n ]F s . Distributing, it suffices to check
the case A = � + [a∗1 ··· a∗n ]F s and B = � ′ + [b∗1 ··· b∗

n′ ]F s . By the first case, we
may assume � = � ′ = 0. Given � ∈ a∗1 ··· a∗n and � ∈ b∗1 ··· b∗

n′ we let � ⊕ � ∈ Γ∗

denote the string obtained by characterwise addition; so [� ⊕ �]F s = [�]F s +
[�]F s . Then

a∗1 ··· a∗n ⊕ b∗1 ··· b∗n′ = (a1 + b1)∗(a∗2 ··· a∗n ⊕ b∗1 ··· b∗n′)
∪ (a1 + b1)∗(a∗1 ··· a∗n ⊕ b∗2 ··· b∗n′)

and is thus sparse by an inductive argument on (n, n′). SoA+ B = [a∗1 ··· a∗n ⊕
b∗1 ··· b∗

n′ ]F s is F-sparse. �

Remark 5.5. A special case of Proposition 5.4(4) is that the F-sparse sets are
closed under translation. This answers a question posed in [2, Remark 7.3].

We now work towards a characterization of F-sparsity using length functions.

Definition 5.6. Suppose A ⊆ Γ and � is a length function for (Γ, F ). We let
fA,�(x) = |{a ∈ A : �(a) ≤ x}|, and we say A is �-sparse if fA,�(x) ∈ O(xd ) for
some d ∈ N.

For our characterization of F-sparsity we will need the following reverse
ultrametric inequality:

Lemma 5.7. If � is a length function for (Γ, F ) with associated constants C,D,E
and a, b ∈ Γ satisfy �(b) < �(a) – D then �(a + b) ≥ �(a) – D.

Proof. Otherwise �(a) > max(�(b), �(a + b)) +D = max(�(– b), �(a + b)) +
D ≥ �(a). �

We will also require the following observation relating the length of a string to
the length of the group element it represents:

Lemma 5.8. Suppose � is a length function for (Γ, F ) with associated constants
C,D,E; suppose S is a finite subset of Γ. Then there is M ≥ 0 such that �([�]F ) ≤
|�|C +M for all � ∈ S∗.

Proof. Pick r ∈ N such that rC ≥ D, and let K = max{�([�]F ) : � ∈ S(r)}.
We show by induction on k ≥ 1 that if � ∈ S(kr) then �([�]F ) ≤ (k – 1)rC +

D +K . The base case is just the definition of K. For the induction step, write
� = �1�2 where |�2| = r. Then by the induction hypothesis �([�1]F ) ≤ (k – 2)rC +
D +K , and by the logarithmic property we get that �(F (k–1)r [�2]F ) ≤ �([�2]F ) +
(k – 1)rC ≤ (k – 1)rC +K . So by the ultrametric inequality we get that

�([�]F ) = �([�1]F + F (k–1)r [�2]F ) ≤ max((k – 2)rC +D +K, (k – 1)rC +K) +D

= (k – 1)rC +D +K

(since rC ≥ D).
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Now, for any � ∈ S∗ we can pad by some string of zeroes � of length < r to get
that |��| ∈ rZ, at which point we get �([�]F ) = �([��]F ) ≤ (|��| – r)C +D +K ≤
C |�| +D +K . �

Lemma 5.9. Suppose Σ is an F r-spanning set for some r > 0. Suppose L ⊆ Σ∗

is regular and � is a linear ordering on Σ (which induces a length-lexicographical2

ordering on Σ∗ which we also denote by �). Let

L̃ = {� ∈ L : � � � for all � ∈ L such that [�]F r = [�]F r}.

Then L̃ is regular. Moreover if [L]F r is �Σ-sparse then L̃ is sparse.

Proof. Be replacing F with F r we may assume r = 1. Let K ⊆ (Σ2)∗ be the set

of
(
�
�

)
such that

• � ∈ L;
• [�]F = [�]F ; and
• � ∈ L and � ≺ �, or � ∈ L00∗.

So if � ∈ L then
(
�
�

)
∈ K if and only if � (with possibly the trailing 0 removed)

witnesses that � /∈ L̃; so L̃ = L \ �(K), where � : (Σ2)∗ → Σ∗ is projection to the first
coordinate. So since L is regular it suffices to show that �(K) is regular (since by [7,
Theorems 2.1 and 2.2] regular languages are closed under Boolean combinations).

Note that K is regular: this is because L× L, equality (see Corollary 4.5), ending
in 0, and ≺ are regular, and so K is a Boolean combination of regular languages.
Fix a DFA (Σ2, Q, q0,Ω, �) for K ; we use this to construct an NFA (Σ, Q′, q′0,Ω

′, �′)
recognizing �(K). We let Q′ = Q, q′0 = q0, and Ω′ = Ω. For the transition function
we set

�′(q, a) =
{
�

(
q,

(
a
b

))
: b ∈ Σ

}
.

Then � is accepted by our NFA if and only if there is � ∈ Σ∗ with |�| = |�| such that

�

(
q0,

(
�
�

))
∈ Ω; i.e., such that

(
�
�

)
∈ K . So our NFA recognizes �(K), and �(K)

is regular. So L̃ is regular.
For the “moreover” clause, suppose [L]F is �Σ-sparse. Note that [·]F is a bijection

L̃→ [L]F ; furthermore by definition of �Σ we have that �Σ([�]F ) ≤ |�|. It follows
that L̃ is sparse: since [L]F is �Σ-sparse, we get that

|{� ∈ L̃ : |�| ≤ x}| ≤ |{a ∈ [L]F : �Σ(a) ≤ x}| = f[L]F ,�Σ(x) ∈ O(xd ),

for some d. �
The construction of the NFA in the above proof can be generalized to show that

the projection away from some coordinate of a regular language over Σm+1 is regular
over Σm. We also used the fact that Boolean combinations of regular languages

2Recall that � � � in the length-lexicographical order on Σ∗ induced by � if |�| < |�| or if |�| = |�|
and � precedes � in the lexicographical ordering induced by �.
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are regular; combining these two facts gives us a sense in which regular languages
interact nicely with first-order logic.

Theorem 5.10. Suppose � is a length function for some (Γ, F r). Then A ⊆ Γ is
F-sparse if and only if it is F-automatic and �-sparse.

Proof. By Proposition 5.4-(1) it suffices to check the case r = 1; so assume � is
a length function for (Γ, F ). Let C,D,E be the constants associated with �.
( =⇒ ) Suppose A is F-sparse; so there is some F s -spanning set Σ and some sparse

L ⊆ Σ∗ such that A = [L]F s . We get by [2, Proposition 6.8(b)] that A is F-
automatic; it remains to show that A is �-sparse. Since � is also a length
function for (Γ, F s ) (see Remark 3.4), we can replace F with F s and thus
assume that s = 1. By Fact 5.2 L is a finite union of simple sparse languages.
One can verify that a finite union of �-sparse sets is �-sparse; it thus suffices
to check the case where L is simple sparse, say L = v0w

∗
1 ··· vn–1w

∗
n vn with

ui , vi ∈ Σ∗. We apply induction on n; the base case n = 0 is trivial.
For the induction step, we have two cases.
Case 1. Suppose [w∗

n vn]F is finite. Then

A =
⋃

a∈[w∗
n vn ]F

[v0w
∗
1 ···w∗

n–1vn–1a]F ,

and by the induction hypothesis each [v0w
∗
1 ···w∗

n–1vn–1a]F is �-sparse. So
A is �-sparse.
Case 2. Suppose [w∗

n vn]F is infinite.

Claim 5.11. There is M ∈ R and i ∈ N such that if kn ≥ i then
�([v0w

k1
1 ···wknn vn]F ) ≥ C |v0w

k1
1 ···wknn vn| +M .

Proof. Our strategy will be to write

[v0w
k1
1 ···wknn vn]F︸ ︷︷ ︸

a

= [v0w
k1
1 ···wkn–1

n–1 vn–1w
kn–i
n ]F

+ F |v0w
k1
1 ···wkn–1

n–1 vn–1w
kn–i
n |[winvn]F︸ ︷︷ ︸

b

and then use the reverse ultrametric inequality to show that �(a) is not
much less than �(b).

Applying Lemma 5.8 with S = Σ, we find that there is M0 ≥ 0
such that �([�]F ) ≤ C |�| +M0 for all � ∈ Σ∗. Then by Northcott prop-
erty there is some i such that �([winvn]F ) > M0 +D + E. Suppose
k1, ... , kn ∈ N with kn ≥ i ; to avoid notational clutter we abbreviate � =
v0w

k1
1 ···wkn–1

n–1 vn–1w
kn–i
n . We then wish to show that �([�winvn]F ) is not

much less than �(F |�|[winvn]F ).
Note that

�(F |�|[winvn]F )≥ �([winvn]F )+ |�|C – E >C |�|+D+M0 ≥ �([�]F )+D

by hypothesis onM0. So by the reverse ultrametric inequality we get that

�([�winvn]F ) = �([�]F + F |�|[winvn]F ) ≥ �(F |�|[winvn]F ) – D

≥ �([winvn]F ) + |�|C – D – E.
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Let M = �([winvn]F ) – |winvn|C – D – E. Then if kn ≥ i then �([v0w
k1
1 ···

wknn vn]F ) ≥ |v0w
k1
1 ···wknn vn|C +M , as desired. �

Now, we can write

L= {v0w
k1
1 ···wknn vn : k1, ... , kn ∈ N, kn ≥ i}∪

⋃
j<i

v0w
∗
1 ···w∗

n–1vn–1w
j
nvn.

By the induction hypothesis each [v0w
∗
1 ···w∗

n–1vn–1w
j
nvn]F is �-sparse; it

remains to check the case kn ≥ i .
If � = v0w

k1
1 ···wknn vn with kn ≥ i and � satisfies �([�]F ) ≤ x then by

the claim |�|C +M ≤ x, and thus |�| ≤ C –1(x –M ). But by hypothesis
there are d,K such that eventually |{� ∈ L : |�| ≤ y }| ≤ Kyd . So if x is
sufficiently large there are at mostK(C –1(x –M ))d ∈ O(xd ) strings � ∈ L
satisfying �([�]F ) ≤ x; so A is �-sparse.

( ⇐= ) Let Σ be an F s -spanning set for some s > 0. Note first that A is �Σ-sparse.
Indeed, by Lemma 5.8 (applied to (Γ, F s ) withS = Σ) there isM ∈ R such that
�([�]F s ) ≤ |�|C +M for all � ∈ Σ∗. So if �Σ(a) ≤ x then �(a) ≤ xC +M ;
thus fA,�Σ(x) ≤ fA,�(xC +M ) ∈ O(xd ) for some d, and A is �Σ-sparse.

Let L = {� ∈ Σ∗ : [�]F s ∈ A}; so L is regular by Proposition 2.6. Fix any
total order� on Σ, and let L̃ be as in Lemma 5.9; so L̃ is sparse, since [L]F s = A
is �Σ-sparse. So A = [L̃]F s is F-sparse. �

It follows from Lemma 5.9 and Theorem 5.10 that F-sparsity can be checked in
any spanning set by looking at a set of “minimal” representations of elements of A.

Corollary 5.12. Suppose Σ is anF r-spanning set for some r > 0. SupposeL ⊆ Σ∗

is regular and � is a linear ordering on Σ (which we again identify with the induced
length-lexicographic ordering on Σ∗). Let

L̃ = {� ∈ L : � � � for all � ∈ L such that [�]F r = [�]F r}.

Then [L]F r is F-sparse if and only if L̃ is sparse.

Proof. The right-to-left direction is by definition of F-sparsity. For the left-to-
right direction, we use Theorem 5.10 to deduce that [L]F r is �Σ-sparse, at which
point it follows from Lemma 5.9 that L̃ is sparse. �

Another consequence is that if A is contained in an F-invariant subgroup H then
sparsity of A can be checked in H:

Corollary 5.13. Suppose there is an F r-spanning set for some r > 0. Suppose
H ≤ Γ is F-invariant and A ⊆ H . Then A is F-sparse in Γ if and only if A is F-sparse
in H.

Proof. For the right-to-left direction, note by Proposition 5.4(1) that A is F r-
sparse. So there is s > 0 with an F rs -spanning set Σ for H and L ⊆ Σ∗ sparse such
that A = [L]F rs . Then using [2, Lemmas 5.6 and 5.7], since there is an F r-spanning
set for Γ we may assume there is an F rs -spanning set Σ′ for Γ containing Σ. Then
L ⊆ (Σ′)∗ witnesses that A is F-sparse in Γ.
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For the left-to-right direction, fix any length function � for some (Γ, F s) (using
Theorem 3.10). One can check that � is a length function for H; so by Theorem 5.10
applied to H it suffices to show that A is F-automatic inH and �-sparse. By Theorem
5.10 applied to Γ we get that A is F-automatic in Γ and �-sparse. Then Corollary
3.11 yields that A is F-automatic in H, and since A ⊆ H we get that �-sparsity in Γ
agrees with �-sparsity in H. So A is F-sparse in H. �

We can now see that Γ (and more generally any set containing an infinite F-
invariant subgroup of Γ) is not F-sparse.

Corollary 5.14. Suppose A ⊆ Γ is F-sparse.

1. A does not contain any coset of any infinite F-invariant subgroup.
2. If Γ is finitely generated then A does not contain any coset of any infinite

subgroup.

Proof. 1. We first show that Γ itself is not F-sparse. Since F-sparse implies
F r-sparse (Proposition 5.4 (1)) and F-invariant implies F r-invariant, we may
assume there is an F-spanning set Σ. By Lemma 3.5 we may assume the
exceptional set of �Σ contains only elements of finite F-orbit; say the new
associated constants are C,D,E. Note that we can take C = 1: the constants
obtained from Proposition 3.8 are C = D = E = 1, and Lemma 3.5 doesn’t
require changing C. Note that there is a ∈ Σ of infinite F-orbit: otherwise by
Remark 3.6 all a ∈ Σ would be of finite order as well, and thus

Z[F ]a =

⎧⎨⎩ ∑
i<|{a,Fa,...}|

kiF
ia : each ki < |a|

⎫⎬⎭
would be finite, and Γ = Z[F ]Σ would be finite, a contradiction.

Fix a ∈ Σ of infinite F-orbit; fix s > D + E.

Claim 5.15. Suppose � ∈ {– a, 0, a}∗ \ {0}∗. Then [�]F s 	= 0.

Proof. We show that �Σ([�]F s ) 	= 0, which will suffice.
Let 
 = |�| > 0. The claim is clear when 
 = 1; assume then that 
 ≥ 2.

We may assume � has no trailing zeroes and, by possibly negating, that
�
–1 = a; so

�Σ([�]F s ) = �Σ([�0 ··· �
–2]F s + F s(
–1)a).

We look to apply the reverse ultrametric inequality. Note that
�Σ([�0 ··· �
–2]F s ) ≤ s(
 – 2) + 1 by definition of �Σ. Thus

�Σ(F s(
–1)a) ≥ 1 + s(
 – 1) – E > 1 + s(
 – 2) +D ≥ �Σ([�0 ··· �
–2]F s ) +D

by the logarithmic property (recalling that C = 1) and since s > D + E; note
that the logarithmic property applies since a has infinite F-orbit. So by the
reverse ultrametric inequality

�Σ([�]F s ) ≥ �Σ(F s(
–1)a) – D ≥ 1 + s(
 – 1) – E – D ≥ 1 + s – E – D > 0,

since 
 ≥ 2 and s > D + E. So in particular [�]F s 	= 0. �
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It follows that [·]F s � {0, a}∗a is injective. Indeed, suppose �, � ∈ {0, a}∗a
are distinct; then we can write [�]F s – [�]F s = [�]F s for some � ∈ {– a, 0, a}∗ \
{0}∗. Hence by the claim [�]F s – [�]F s 	= 0.

But then

fΓ,�Σ(s
 + 1) = |{[�]F : � ∈ Σ∗, |�| ≤ s
 + 1}| ≥ |{[�]F s : � ∈ {0, a}(
)a}|
= |{0, a}(
)a| = 2
 .

So fΓ,�Σ /∈ O(xd ) for any d; so Γ is not �Σ-sparse, and hence by Theorem 5.10
Γ is not F-sparse.

Suppose now that H is an infinite F-invariant subgroup of Γ; we show that
A contains no coset of H. Replacing A by a translate (which is harmless by
Proposition 5.4(4)), it suffices to show that A doesn’t contain H. By the above
special case we get that H isn’t F-sparse in H; so Corollary 5.13 yields that H
isn’t F-sparse in Γ. Since H is F-invariant, it is F-automatic in Γ; this follows
from Corollary 3.11. So if we had A ⊇ H then by Proposition 5.4(3) H would
be F-sparse in Γ, a contradiction. So A 	⊇ H , as desired.

2. Again using Proposition 5.4(1) we may assume there is a length function �
for (Γ, F ). Since F-sparsity is closed under translation (Proposition 5.4(4)),
it suffices to show that A does not contain any infinite H ≤ Γ; suppose for
contradiction there is such an H. Since Γ is finitely generated and H is infinite
there is some a ∈ H of infinite order; we will show that Za isn’t �-sparse. We
show by induction on k that if 1 ≤ n ≤ 2k then �(na) ≤ �(a) + kD. The base
case k = 0 is immediate. For the induction step, suppose the claim holds of k;
suppose 2k < n ≤ 2k+1. Then

�(na) = �(2ka + (n – 2k)a) ≤ max(�(2ka), �((n – 2k)a)) +D

≤ (�(a) + kD) +D ≤ �(a) + (k + 1)D

by the induction hypothesis.
Then {na : n ∈ Z, �(na) ≤ �(a) + kD} ⊇ {na : 1 ≤ n ≤ 2k} contains at

least 2k elements. So fZa,�(x) /∈ O(xd ) for any d, and Za isn’t �-sparse. But
A ⊇ H ⊇ Za; so fA,�(x) ≥ fZa,�(x), and A isn’t �-sparse. So A isn’t F-sparse
by Theorem 5.10, a contradiction. �

§6. F-sparse sets and stable expansions of finitely generated abelian groups. Fix
an infinite abelian group Γ and a subset A ⊆ Γ. We say that A is stable in Γ if
there do not exist arbitrarily long tuples (a1, ... , aN ; b1, ... , bN ) of elements of Γ
such that ai + bj ∈ A if and only if i ≤ j. This can be expressed model-theoretically
by requiring that in Th(Γ, 0,+, A) the formula x + y ∈ A be a stable formula. The
question of which subsets of Γ are stable has been of significant interest to model
theorists for some time. We refine the question here as follows:

Question 6.1. Suppose Γ is a finitely generated abelian group and F : Γ → Γ is
an injective endomorphism, such that (Γ, F ) admits a spanning set for some r > 0.
Which F-automatic sets of Γ are stable?

In [5] I answered this question in the classical case where Γ = Z and F is
multiplication by a positive integer. Here, we generalize the methods of [5] to answer
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the above question for F-sparse sets. This is Theorem 6.3 below. There are some
issues that arise in generalizing; we focus our exposition on what needs to be done
beyond what was done in [5].

Our answer will be in terms of the “F-cycles” introduced in [6]:

Definition 6.2. Suppose Γ is an abelian group and F is an injective endomor-
phism. An F-cycle is a set of the form C (a;F �) := {a + F �a + ··· + F �na : n < �}.
An F-set of Γm is a finite union of sets of the form � +H + C (a1;F r1) + ··· +
C (an;F rn ) where � ∈ Γm, H ≤ Γm is F-invariant, each ai ∈ Γm, and each ri > 0.
A groupless F-set is a finite union of sets of the form � + C (a1;F r1) + ··· +
C (an;F rn ) with �, ai , ri as above. The F-structure (Γ,F) on Γ has domain Γ and a
predicate for every F-set of every Γm.

Note in particular that the graph of addition is an F-invariant subgroup of Γ3,
and is thus an F-set; so (Γ,F) expands (Γ,+).

In [6] it was shown that if Γ is finitely generated and⋂
i∈N

(F i) = {0} (†)

holds in Z[F ] then the F-structure (Γ,F) is stable. (Here (F i) is the ideal generated
by F i in Z[F ].) In particular, all F-sets are stable in Γ. Here we prove a converse for
F-sparse sets.

Theorem 6.3. Suppose Γ is a finitely generated abelian group and F is an injective
endomorphism of Γ such that Γ admits an F r-spanning set for some r > 0. If A ⊆ Γ
is F-sparse and stable in Γ then A is a finite Boolean combination of groupless F-sets.

We would like to use the results of [6] to deduce quantifier elimination of
(Γ,F); unfortunately, this requires that Z[F ] satisfy (†), which doesn’t follow from
the existence of a spanning set. Consider for example Γ =Z× (Z/2Z) with the
endomorphism F (a, b) = (2a, b). One can check using, e.g., Theorem 3.12 that Γ
admits an F r-spanning set for some r > 0, but F – 2 =F i(F – 2)∈ (F i) for all i ∈N.

We give a sufficient condition for (†) to hold, and then reduce Theorem 6.3 to the
case where this condition holds.

Lemma 6.4. If Γ is torsion-free and admits an F r-spanning set for some r > 0 then
Z[F ] satisfies (†).

Proof. Fix r > 0 for which there is a length function � for (Γ, F r), say with
associated constants C,D,E. By Lemma 3.5 and Remark 3.6 we may assume the
logarithmic property applies to all non-zero elements.

Suppose G ∈
⋂
i∈N(F i), and suppose a ∈ Γ; suppose for contradiction that

Ga 	= 0. For n ∈ N since G ∈ (F rn) there is Gn ∈ Z[F ] such that G = F rnGn. Since
Ga 	= 0 we get that Gna 	= 0, and thus the logarithmic property applies to Gna. So
�(Ga) = �(F rnGna) ≥ �(Gna) + nC – E ≥ nC – E. But this grows without bound,
a contradiction. So Ga = 0 for all a ∈ Γ, and G = 0. �

We can now show Theorem 6.3 under the assumption that Γ is torsion-free.

Proposition 6.5. Suppose Γ is torsion-free and finitely generated, and admits an
F r-spanning set for some r > 0. If A ⊆ Γ is stable and F-sparse then A is a finite
Boolean combination of groupless F-sets.
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Proof. By replacing F with a power thereof we may assume Γ admits an F-
spanning set (since A is also F r-sparse by Proposition 5.4(1)). By Proposition 5.3
we can write A as a finite union of sets of the form � + [a∗1 ··· a∗n ]F s for some s > 0
and �, a1, ... , an ∈ Γ. If we let b1, ... , bn ∈ Γ be such that ai =

∑
j≥i bi then we can

rewrite

� + [a∗1 ··· a∗n ]F s = � + {[be11 ]F s + ··· + [benn ]F s : e1 ≤ ··· ≤ en}

and thus write A as a finite union of sets of this form. Fix one such � + {[be11 ]F s +
··· + [benn ]F s : e1 ≤ ··· ≤ en} in the union; we show it is contained in some B of the
desired form that is itself contained in A.

We will proceed by examining the ei such that [be11 ]F s + ··· + [benn ]F s ∈ A.

Claim 6.6. X := {(e1, ... , en) ∈ Nn : [be11 ]F s + ··· + [benn ]F s ∈ A – �} is quantifier-
free definable in (N, 0, S, �N) for some � ∈ N \ {0}, where S is the successor function.

Proof. Fix � ∈ Sn, and suppose e�(1) ≤ ··· ≤ e�(n). Let ci =
∑
j≥i b�(i); so

[be11 ]F s + ··· + [benn ]F s ∈ A ⇐⇒ [ce11 c
e2–e1
2 ··· cen–en–1

n ]F s ∈ A – �.

By [2, Lemmas 5.6 and 5.7] there is an F s -spanning set Σ containing all the ci ; so by
Proposition 2.6 {� ∈ Σ∗ : [�]F s ∈ A – �} is regular. Then as argued in the proof of
[5, Proposition 2.2] there is some Boolean combination φ(x1, ... , xn) of congruences
and equalities between one variable and one constant such that

(e1, ... , en) ∈ X ⇐⇒ [ce11 c
e2–e1
2 ··· cen–en–1

n ]F s

⇐⇒ (N, 0, S, �N) |= φ(e1, e2 – e1, ... , en – en–1)

(again, under the assumption that e�(1) ≤ ··· ≤ e�(n)). But a congruence or equality
between a constant N ∈ N and either e1 or ei+1 – ei can be expressed as a formula
in (N, 0, S, �N), for some sufficiently large �. So this is in turn equivalent to
(N, 0, S, �N) |= �(e1, ... , en) for some quantifier-free �.

Doing this for all � and taking LCMs of the � and disjunctions over the
possible orderings of the ei , we find that there is a single quantifier-free formula
φ in (N, 0, S, �N, <) such that X = φ(Nn). Then φ is a stable formula under any
partitioning of its variables: large ladders for φ would yield large ladders for the
corresponding partitioning of

x1 + ··· + xn ∈ A – �,

and the latter is stable under any partitioning of the variables as A is stable (and
addition is commutative and associative).

But the stable quantifier-free formulas in (N, 0, S, �N, <) are known to be
quantifier-free formulas in (N, 0, S, �N); this is [5, Proposition 3.3]. So X is quantifier-
free definable in (N, 0, S, �N). �

Claim 6.7. Y := {[be11 ]F s + ··· + [benn ]F s : (e1, ... , en) ∈ X} is definable in (Γ,F).

Proof. Fix a ∈ Γ such that F ia 	= F ja for i 	= j; the logarithmic property of
any length function for any (Γ, F t) shows such a must exist. Then [ai ]F s 	= [aj ]F s for
i 	= j; indeed, otherwise applying F s – 1 to both sides we would have F sia = F sja,
a contradiction.

https://doi.org/10.1017/jsl.2021.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.38


CONTRIBUTIONS TO THE THEORY OF F-AUTOMATIC SETS 149

Consider Φ: N → Γ given by i �→ [ai ]F s . By a similar argument to the one given in
the proof of [5, Lemma 3.6] we get that Φ is an interpretation of (N, 0, S, �N) in (Γ,F).
Furthermore each map [ai ]F s �→ [bi ]F s is definable in (Γ,F), as is addition. So
Y = {[be11 ]F s + ··· + [benn ]F s : ([ae1 ]F s , ... , [aen ]F s ) ∈ Φ(X )} is definable in (Γ,F),
as desired. �

We get by Lemma 6.4 that (Γ, F ) satisfies (†). Moreover the fact that Γ is infinite
and finitely generated and that F is injective implies that Z[F ] satisfies the other
conditions assumed by [6]: namely that Z[F ] is a finite extension of Z generated
by F and that F is not a zero divisor in Z[F ]. So by [6, Theorem A] (Γ,F) admits
quantifier elimination; so Y (and hence � + Y ) is a Boolean combination of F-sets.
At this point the argument given in the proof of [5, Theorem 3.1] shows that � + Y
is a Boolean combination of F-sparse F-sets. Now by Corollary 5.14 an F-sparse
F-set must be groupless; so � + Y is a Boolean combination of groupless F-sets. But

� + {[be11 ]F s + ··· + [benn ]F s : e1 ≤ ··· ≤ en} ⊆ � + Y ⊆ A.

So we can replace � + {[be11 ]F s + ··· + [benn ]F s : e1 ≤ ··· ≤ en} with � + Y in the
union defining A without changing the union. Applying this to all sets in the union,
we have written A as a Boolean combination of groupless F-sets. �

Proof of Theorem 6.3. By Proposition 5.4(1) we may replace F withF r , and thus
assume that Γ admits an F-spanning set Σ. Using the fundamental theorem of finitely
generated abelian groups we can write Γ = Γ0 ⊕H where H is the torsion subgroup
of Γ and Γ0 is torsion-free. Let F0 : Γ0 → Γ0 be the endomorphism of Γ0 induced by
F, as in Lemma 3.13, and let �0 : Γ → Γ0 be the projection. Then Lemma 3.13 yields
that�0(Σ) is anF0-spanning set for Γ0. Moreover if vi , wi ∈ Σ∗ then Lemma 3.13 also
yields that �0([v0w

k1
1 v1 ···wknn vn]F r ) = [�0(v0)�0(w1)k1�0(v1) ··· �0(wn)kn�0(wn)]F r0 ,

where for � ∈ Σ∗ we obtain �0(�) ∈ (�0(Σ))∗ by applying �0 to each letter of �. So
if B ⊆ Γ is F-sparse then �0(B) ⊆ Γ0 is F0-sparse.

For b ∈ H let Ab = {a ∈ Γ0 : a ⊕ b ∈ A}. Note that x + y ∈ Ab is stable in Γ0:
if we had arbitrarily long tuples (a1, ... , aN ; b1, ... , bN ) in Γ0 witnessing the contrary,
then the tuples (a1, ... , aN ; b1 + b, ... , bN + b) would witness the instability of A in
Γ, a contradiction. We wish to show that Ab is F-automatic in Γ; since regular
languages are closed under intersection and A – b is F-automatic it suffices to show
that Γ0 is. Fix a generating set {�1, ... , �
} for Γ, and write

F�i =

∑
j=1

aij�j ,

for aij ∈ Z; let X = (aij + |H |Z)
i,j=1 ∈M
(Z/|H |Z). We construct a DFA recog-
nizing Γ0. Let �H : Γ → H be the projection. The idea is to observe that if c =
c1�1 + ··· + c
�
 ∈ Γ then to compute �H (F nc) it suffices to knowXn(ci + |H |Z)
i=1,
and since X is a matrix over a finite ring, its powers can be tracked using a
finite automaton. Using this we can determine �H ([�c]F ) from �H ([�]F ) and
Xn(ci + |H |Z)
i=1, which are finitary objects.

The set of states is Q = {(h,Y ) : h ∈ H,Y ∈M
(Z/|H |Z)}. The initial state
is q0 = (0, I ), and the finish states are Ω = {(0, Y ) : Y ∈M
(Z/|H |Z)}. For the
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transition map, suppose we are in state (h,Y ) and receive input c ∈ Σ. LetY ′ = XY .
Write c = c1�1 + ··· + c
�
 for ci ∈ Z, and let v = (ci + |H |Z)
i=1 ∈ (Z/|H |Z)
 . Let

h′ = h +

∑
i=1

�H ((Yv)i �i),

where (Yv)i ∈ Z/|H |Z is the ith entry of Yv. Note that this is well-defined
since �H (|H |Γ) = 0. Our machine then transitions to (h′, Y ′). One can check by
induction on |�| that �(q0, �) = (�H ([�]F ), X |�|). So our machine recognizes the
representations over Σ of �–1

H (0) = Γ0; thus Γ0 (and hence Ab) is F-automatic in Γ.
Furthermore Ab ⊆ A – b, and A is F-sparse; so by Proposition 5.4(3) and (4) Ab

is F-sparse in Γ. So as remarked above we get that Ab is F0-sparse in Γ0. So by
Proposition 6.5 each Ab is a Boolean combination of groupless F0-sets. So since

A =
⋃
b∈H

(Ab + b),

it suffices to show that we can write C (a;F s0 ) as a union of translates of sets of the
form C (b;F t). Let � = a0s–1 ∈ Γ∗

0 . We would like to use the above automaton
to compute �H ([�i ]F ); unfortunately, there’s no guarantee that a ∈ Σ, so we
may not have that � ∈ Σ∗. However, by [2, Lemma 5.6] there is an F-spanning
set Σ′ containing a; running through the argument given above, we can assume
the automaton accepts inputs from (Σ′)∗. Since there are only finitely many
states, we see that �(q0, �

i), and hence �H ([�i ]F ) is ultimately periodic in i; say
�H ([�i+�]F ) = �H ([�i ]F ) for i ≥ N . Then

C (a;F s0 ) = {[�i ]F0 : i > 0}
= {[�i ]F0 : 0 < i < N + �} ∪

⋃
j<�

{[�N+j+i�]F0 : i ∈ N \ {0}}.

But [�N+j+i�]F = �H ([�N+j+i�]F ) + �0([�N+j+i�]F ) = �H ([�N+j ]F ) + [�N+j+i�]F0

(by Lemma 3.13). So

{[�N+j+i�]F0 : i ∈ N \ {0}} =– �H ([�N+j ]F ) + {[�N+j+i�]F : i ∈ N \ {0}}
=– �H ([�N+j ]F ) + [�N+j ]F + C (F (N+j)s [��]F ;F �s).

Substituting this into the above expression for C (a;F s0 ), we have written C (a;F s0 )
as a union of translates of C (b;F �s), as desired. �

It is worth pointing out that, assuming the existence of spanning sets, there are
always F-sparse sets that aren’t F-sets. Indeed, fix any a ∈ Γ of infinite F-orbit. One

can check that A =
{(
F ia
F ja

)
: i ≤ j

}
⊆ Γ2 is F-sparse. If A were an F-set then by

[6] it would be stable, contradicting the fact that
(
F ia

0

)
+
(

0
F ja

)
∈ Aif and only

if i ≤ j. With some effort one can encode sets like this into subsets of Γ itself.

§7. NIP expansions of (Γ,+). We now turn our attention to NIP expansions of
(Γ,+). We produce a class of subsets A ⊆ Γ, which we call the F-EDP sets, that
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contains the F-sparse sets; we show that if A is F-EDP then (Γ,+, A) is NIP. Our
argument generalizes that of [5, Section 6.2], which deals with the case when Γ = Z
and F is multiplication by some d > 1. As an application of our general result, we
will see that (Fp[t],+,×�tN) is NIP, where ×�tN is the graph of multiplication on tN.

We introduce some convenient multi-index notation. Suppose s = (�1, ... , �n) with
�1, ... , �n ∈ Γ∗ and k = (k1, ... , kn) ∈ Nn. Then by sk we mean the string �k1

1 ··· �knn .
Note that if 0 = (0, ... , 0) then s0 = �, the empty word.

Definition 7.1. By an F-exponentially definable in Presburger (F-EDP) subset of
Γ we mean a set of the form [sφ(N)]F := {[sk]F : (N,+) |= φ(k)} for some tuple s of
strings over Γ and some formula φ(x) with |x| = |s|.

Lemma 7.2. 1. F-EDP sets are closed under finite union.
2. F-sparse sets are F-EDP.

Proof. 1. It suffices to check pairwise unions. Suppose we are given F-EDP
sets [sφ(N)

1 ]F and [s�(N)
2 ]F . Then their union can be written as [(s1s2)�(N)]F where

�(x, y) is (φ(x) ∧ y = 0) ∨ (�(y) ∧ x = 0), and is thus F-EDP.
2. Suppose we are given an F r-spanning set Σ for some r > 0 and a sparseL ⊆ Σ∗.

By Fact 5.2 we may assume L is a finite union of simple sparse languages; by
part (1) we may assume L itself is simple sparse, say L = v0w

∗
1 v1 ···w∗

n vn for
vi , wi ∈ Σ∗. Given � = s0 ··· s|�|–1 ∈ Σ∗ let �′ = s00r–1s10r–1 ··· s|�|–10r–1. Then
(��)′ = �′�′ and [�′]F = [�]F r . So

[L]F r = {[(v′0)
0(w′
1)k1(v′1)
1 ··· (w′

n)
kn (v′n)


n ]F : k1, ... , kn, 
0, ... , 
n ∈ N,


0 = ··· = 
n = 1}

is F-EDP. �

The F-EDP sets contain significantly more than just the F-sparse sets. For
instance, if a, b, c ∈ Γ then {[aibi ]F : i ∈ N} and {[aibjci+j ]F : i, j ∈ N} are F-
EDP, but are not typically F-automatic, and hence not F-sparse.

Our goal is to prove that if we start with a weakly minimal abelian group (Γ,+),
and if A ⊆ Γ is F-EDP, then (Γ,+, A) is an NIP structure. Recall that Γ being
weakly minimal means that Th(Γ,+) is superstable and of U-rank 1. Equivalently,
for all n > 0, nΓ and the subgroup of n-torsion are either finite or of finite index
in Γ—see for example [4, Proposition 3.1]. So, for example, all finitely generated
abelian groups are weakly minimal.

We begin by adapting Proposition 5.3 to EDP sets.

Lemma 7.3. If A is F-EDP then there is s0 such that for all s ∈ s0N we can write A
in the form [aφ(N)]F s for some formula φ in Presburger arithmetic and some tuple a of
elements of Γ (i.e., strings of length 1).

Proof. Write A = {[sk]F : (N,+) |= φ(k)} where s = (�1, ... , �n). Let s0 =

lcm(|�1|, ... , |�n|), and suppose s ∈ s0N. If �′i = �
s

|�i |
i then
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A =
⋃
i1<

s
|�1|

···
⋃
in<

s
|�n |

{
[(�′1)k

′
1�
i1
1 ··· (�′n)

k′n�inn ]F :

(N,+) |= φ
(
s

|�1|
k′1 + i1, ... ,

s

|�n|
k′n + in

)}
.

Since sets of the desired form are closed under union (as in Lemma 7.2(1)) it thus
suffices to check the case

A = {[v0w
k1
1 ···wknn vn]F : (N,+) |= φ(k1, ... , kn)},

where the wi all have the same length s. But by the argument given in [5, Lemma
3.4] (which generalizes to our context, as we noted in the proof of Proposition 5.3)
there are � ∈ Γ and �1, ... , �n ∈ Γ∗ of length s such that if each kj > 0 then we can
write

[v0w
k1
1 ···wknn vn]F = � + [�k1–1

1 ··· �kn–1
n ]F = � + [ak1–1

1 ··· akn–1
n ]F s ,

where ai = [�i ]F . The case where some kj = 0 can be dealt with inductively, again
using closure under union; so it suffices to check the case � + {[ak1

1 ··· aknn ]F s :
(N,+) |= φ(k1, ... , kn)}. But we can rewrite this as

n⋃
i=1

{[(� + ai)a
ki
i ··· aknn ]F s : (N,+) |= φ(0, ... , 0, ki + 1, ki+1, ... , kn)},

which takes the desired form by closure under union. �

The source of NIP in Theorem 7.7 will be that (N,+) is NIP. The following lemma
and corollary relate automatic and F-EDP sets to sets definable in (N,+).

Lemma 7.4. Suppose Λ is a finite alphabet and L ⊆ (Λm)∗ is regular. Suppose
a1, ... , am are tuples from Λ. Then the relation⎧⎪⎨⎪⎩(k1, ... , km) : |ak1

1 | = ··· = |akm
m |,

⎛⎜⎝ak1
1
...

akm
m

⎞⎟⎠ ∈ L

⎫⎪⎬⎪⎭ ⊆ N|a1| × ··· × N|am |

is definable in (N,+). (Here we identify (Λm)∗ with the subset of (Λ∗)m of tuples
whose constituent strings all have the same length.)

The important clause of the relation is

⎛⎜⎝ak1
1
...

akm
m

⎞⎟⎠ ∈ L; the condition |ak1
1 | = ··· =

|akm
m | is only there so we can view

⎛⎜⎝ak1
1
...

akm
m

⎞⎟⎠ as an element of (Λm)∗.

https://doi.org/10.1017/jsl.2021.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.38


CONTRIBUTIONS TO THE THEORY OF F-AUTOMATIC SETS 153

Proof. Fix an automaton (Λm,Q, q0,Ω, �) forL; we show that for any q1, q2 ∈ Q
the relation ⎧⎪⎨⎪⎩(k1, ... , km) : |ak1

1 | = ··· = |akm
m |, �

⎛⎜⎝q1,

⎛⎜⎝ak1
1
...

akm
m

⎞⎟⎠
⎞⎟⎠ = q2

⎫⎪⎬⎪⎭
is definable in (N,+). Applying this to q0 and the elements of Ω yields the desired
result.

We apply induction on |a1| ··· |am|. For the base case, if some |ai | = 0 then our
relation is either empty or equivalent to all ki being zero, depending on whether
q1 = q2, and both of these are definable in (N,+).

For the induction step, suppose no |ai | = 0. Write ai = (ai1, ... , aini ) and ki =
(ki1, ... , kini ). Suppose k11 is minimum among the ki1. For 
 ∈ N we let

q(
) = �

⎛⎜⎝q1,

⎛⎜⎝a


11
...
a
m1

⎞⎟⎠
⎞⎟⎠ .

We will use the fact that if the machine is in state q1 and receives input

⎛⎜⎝ak1
1
...

akm
m

⎞⎟⎠, it

will first read

⎛⎜⎝a
k11
11
...

a
k11
m1

⎞⎟⎠ and move to state q(k11), after which it will process the rest

of the input.
For q′ ∈ Q, let φq′(k1, ... , km) be the statement

|ak12
12 ··· ak1n1

1n1
| = |ak21–k11

21 a
k22
22 ··· ak2n2

2n2
|

= ··· = |akm1–k11
m1 a

km2
m2 ··· akmnmmnm |∧�

⎛⎜⎜⎜⎜⎜⎝q′,
⎛⎜⎜⎜⎜⎜⎝

a
k12
12 ··· ak1n1

1n1

a
k21–k11
21 a

k22
22 ··· ak2n2

2n2
...

a
km1–k11
m1 a

km2
m2 ··· akmnmmnm

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠=q2.

That is, φq′ asserts that if the machine starts in state q′ and receives as input

⎛⎜⎝ak1
1
...

akm
m

⎞⎟⎠
with the prefix

⎛⎜⎝a
k11
11
...

a
k11
m1

⎞⎟⎠ deleted, then the machine ends in state q2.

Then our relation is equivalent to the statement φq(k11)(k1, ... , km). But since
there are finitely many states in Q, we get that q(
) is eventually periodic in 
. So
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for q′ ∈ Q the statement q(k11) = q′ is definable in (N,+). Moreover, for any fixed
q′ ∈ Q the induction hypothesis yields that φq′(k1, ... , km) is definable in (N,+);

thus our relation is defined in (N,+) by
∨
q′∈Q

(q(k11) = q′ ∧ φq′(k1, ... , km)) (under

the assumption that k11 is minimum among the ki1).
Similarly we get definability in the case ki1 is minimum for some i > 1. So taking

disjunctions we get that our relation is definable in (N,+). �
Corollary 7.5. Suppose Γ admits an F-spanning set. If X ⊆ Γm is F-automatic

and a1, ... , am are tuples from Γ then⎧⎪⎨⎪⎩(k1, ... , km) :

⎛⎜⎝ [ak1
1 ]F
...

[akm
m ]F

⎞⎟⎠ ∈ X

⎫⎪⎬⎪⎭ ⊆ N|a1| × ··· × N|am |

is definable in (N,+).

Proof. By [2, Lemma 5.6] there is an F-spanning set Σ containing all the aij ;
one can then check that Σm is an F-spanning set for Γm. Let L ⊆ (Σm)∗ be the set
of representations of elements of X ; so L is regular. Then by the previous lemma⎧⎪⎨⎪⎩(k1, ... , km, 
1, ... , 
m) : |ak1

1 0
1 | = ··· = |akm
m 0
m |,

⎛⎜⎝ ak1
1 0
1
...

akm
m 0
m

⎞⎟⎠ ∈ L

⎫⎪⎬⎪⎭
is definable in (N,+), say by φ(k1, ... , km, 
1, ... , 
m). Then ∃
1 ··· ∃
mφ(k1, ... ,
km, 
1, ... , 
m) defines the desired relation in (N,+). �

In order to apply the previous two results, we will need to relate the relations
we wish to show are NIP to automatic sets. The following lemma does so. It is a
straightforward generalization of a known result in classical automata theory; see
for example [3, Theorem 6.1].

Lemma 7.6. Suppose Γ admits an F r-spanning set for some r > 0. If X ⊆ Γm is
definable in (Γ,+) with parameters from Γ then X is F-automatic.

This result is similar in flavour to the proof of Lemma 5.9, in which it came
out that regular languages are closed under Boolean combinations and projection.
This proof is similar, but with a complication relating to mismatched lengths when
dealing with projection; we get around this by changing the set of finish states.

Proof. We first check the case where X is 0-definable in (Γ,+); we apply
structural induction on formulas. That the claim holds for x = y and x + y = z
is [2, Lemma 6.7]; that the claim holds for a union or complement is because
regular languages are closed under union and complementation. It remains to check
existential quantification.

Suppose then that X ⊆ Γm+1 is F-automatic. Fix an F r-spanning set Σ for some
r > 0; then as before one can check that Σm+1 is an F r-spanning set for Γm+1.
So by Proposition 2.6 there is an automaton M = (Σm+1, Q, q0,Ω, �) recognizing
the representations over Σm+1 of elements of X. Consider the non-deterministic
automatonM ′ = (Σm,Q, q0,Ω′, �′) where
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• �′(q, a) =
{
�

(
q,

(
a
b

))
: b ∈ Σ

}
for a ∈ Σm, and

• Ω′ =
{
q ∈ Q : there is � ∈ Σ∗ such that �

(
q,

(
0|�|

�

))
∈ Ω
}

.

Then if � ∈ (Σm)∗ is accepted by M ′ then there is �1 ∈ Σ(|�|) such that

�

(
q0,

(
�
�1

))
∈ Ω′; i.e., such that there is �2 ∈ Σ∗ such that �

(
q0,

(
�0|�2|

�1�2

))
∈ Ω.

So
(

[�]F r
[�1�2]F r

)
∈ X . Conversely suppose there is b ∈ Γ such that

(
[�]F r
b

)
∈ X ; say

b = [�]F r for � ∈ Σ∗. Write � = �1�2 where |�1| = |� | (replacing � with some �0k

if necessary). Then
(

[�0|�2|]F r
[�1�2]F r

)
=
(

[�]F r
b

)
∈ X ; so

(
�0|�2|

�1�2

)
is accepted by M. So

�

(
q0,

(
�
�1

))
∈ �′(q0, �) ∩ Ω′, andM ′ accepts � .

So M ′ recognizes the representations over Σr of the projection of X away from
the last coordinate. So existentially quantifying an F-automatic set results in an
F-automatic set.

So if X is 0-definable in (Γ,+) then X is F-automatic. For the general case,
suppose we are given an F-automatic set X ⊆ Γm+1 and b ∈ Γ; it suffices to

show that
{

a ∈ Γm :
(

a
b

)
∈ X
}

is F-automatic. Fix an F r-spanning set Σ; fix

s0 ··· sn–1 ∈ Σ∗ such that [s0 ··· sn–1]F r = b. As before by Proposition 2.6 there is a
DFAM = (Σm+1, Q, q0,Ω, �) recognizing the representations over Σm+1 of elements
of X. Consider the DFAM ′ = (Σm,Q × {0, ... , n}, (q0, 0),Ω′, �′) where

�′((q, i), a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
�

(
q,

(
a
si

))
, i + 1

)
if i < n,(

�

(
q,

(
a
0

))
, n

)
else,

for a ∈ Σm, and

Ω′ = (Ω × {n}) ∪
{

(q, i) ∈ Q × {0, ... , n – 1} : �
(
q,

(
0n–i

si ··· sn–1

))
∈ Ω
}
.

One can show by induction on |� | that

�((q0, 0), �) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
�

(
q0,

(
�

s0 ··· s|�–1|

))
, |� |
)

if |� | < n,(
�

(
q0,

(
�

s0 ··· sn–10|�|–n

))
, n

)
else,

for � ∈ Σm. Hence M ′ accepts the � ∈ (Σm)∗ such that
(

[�]F r
b

)
∈ X ; so{

a ∈ Γm :
(

a
b

)
∈ X
}

is F-automatic, as desired. �
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Theorem 7.7. Suppose (Γ,+) is a weakly minimal abelian group and admits an
F r-spanning set for some r > 0; suppose A ⊆ Γ is F-EDP. Then (Γ,+, A) is NIP.

Proof. We apply [4, Theorem 2.9], which tells us that in a weakly minimal group
Γ if AΓ is NIP then so is (Γ,+, A). Here AΓ is the induced structure of (Γ,+) on
A: the domain of AΓ is A, and for every (Γ,+)-definable subset X of Γm with
parameters from Γ its trace X ∩ Am on A is an atomic relation of AΓ. We show that
AΓ is interpretable in (N,+), and thus is NIP.

By Lemma 7.3 we may assume A takes the form [aφ(N)]F s for some s ∈ rN. So Γ
admits an F s -spanning set by [2, Lemma 5.7]. Let Φ: N|a| → Γ be k �→ [ak]F s ; so Φ
is surjective φ(N|a|) � A. We show that Φ defines an interpretation of AΓ in (N,+),
and hence that AΓ is NIP.

By Corollary 7.5 the equivalence relation given by k1 ∼ k2 if and only if Φ(k1) =
Φ(k2) is definable in (N,+) (since the diagonal in Γ2m is F-automatic by [2, Lemma
6.7]). Suppose now thatX ⊆ Γm is definable with parameters in (Γ, 0,+); it remains
to show that φ(N|a|)m ∩ (Φm)–1(X ) is definable in (N,+). We get by Lemma 7.6
that X is F-automatic; so by Corollary 7.5 (Φm)–1(X ) is definable in (N,+). So
φ(N|a|)m ∩ (Φm)–1(X ) is definable in (N,+), and Φ defines an interpretation of AΓ

in (N,+). �

As an application of Theorem 7.7, we prove the following:

Theorem 7.8. Supposep ≥ 7 is prime. Then (Fp[t],+,×�tN) is NIP, where×�tN =⎧⎨⎩
⎛⎝ titj
ti+j

⎞⎠ : i, j ∈ N

⎫⎬⎭.

Proof. LetF : Fp[t] → Fp[t] bef(t) �→ tf(t). Note thatFp is an F-spanning set
for Fp[t]. Indeed, an arbitrary element of Fp[t] is of the form a0 + a1t + ··· + antn =
[a0a1 ··· an]F , and the other axioms are easily verified using the facts that Fp is a
subgroup and Fp ∩ F (Fp[t]) = {0}. Furthermore (Fp[t],+) is weakly minimal: for
each n ∈ N we have

nFp[t] =

{
Fp[t] if p � n,

0 else,

{a ∈ Fp[t] : na = 0} =

{
0 if p � n,

Fp[t] else,

so weak minimality follows from [4, Proposition 3.1]. So Theorem 7.7 applies, and
(Fp[t],+, A) is NIP whenever A ⊆ Fp[t] is F-EDP.

We encode ×�tN in an F-EDP subset of Fp[t]. Write Fp = Z/pZ = {n : n ∈ Z}.
Let

A = tN ∪ 2tN ∪ {3ti+j – 3ti – 3tj : i, j ∈ N \ {0}}.

Note that

{3ti+j – 3ti – 3tj : i, j ∈ N \ {0}} ={[(0)k(– 3)(0)
(– 3)(0)k–13]F : k, 
 ∈ N, k > 0}
∪ {[(0)k(– 6)(0)k–13]F : k ∈ N \ {0}}
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is F-EDP as a union of F-EDP sets (see Lemma 7.2(1)). Since tN = {[(0)k1]F : k ∈
N} and 2tN = {[(0)k2]F : k ∈ N}, we get that A itself is F-EDP as a union of F-EDP
sets; so (Fp[t],+, A) is NIP. It remains to see that ×�tN is definable in (Fp[t],+, A).

Claim 7.9. tN and B := {ti+j – ti – tj : i, j ∈ N \ {0}} are both definable in
(Fp[t],+, A).

Proof. We first check tN. I claim that ifφ(x) is (x ∈ A) ∧ (2x ∈ A) thenφ defines
tN. It is clear that φ(Fp[t]) ⊇ tN; suppose conversely that f ∈ φ(Fp[t]). If we had
f = 2ti ∈ 2tN then 2f = 4ti , and hence 2f /∈ A (since p ≥ 7 implies 4 /∈ {1, 2, 3},
and these are the only leading coefficients of elements of A). But this contradicts the
assumption that f ∈ φ(Fp[t]). Similarly if we had f = 3ti+j – 3ti – 3tj for some
i, j then 2f = 6ti+j – 6ti – 6tj has leading coefficient 6; so by similar reasoning we
conclude that 2f /∈ A, a contradiction. So having eliminated the other possibilities
we conclude that f ∈ tN, as desired. Note then that 2tN = 2tN is also definable.

We now check B. I claim that if �(x) is 3x ∈ A \ (tN ∪ 2tN) then � defines B.
That �(Fp[t]) ⊆ B is just injectivity of f �→ 3f; that �(Fp[t]) ⊇ B is that {3ti+j –
3ti – 3tj : i, j ∈ N} ∩ (tN ∪ 2tN) = ∅, which follows by considering the leading
coefficients. �

So it suffices to show that ×�tN is definable in (Fp[t],+, tN, B). In fact if
φ(x, y, z) is

(x = 1 ∧ z = y ∈ tN) ∨ (y = 1 ∧ z = x ∈ tN) ∨ (x, y, z ∈ tN ∧ z – x – y ∈ B),

then ×�tN = φ(Fp[t]). It is clear that ×�tN ⊆ φ(Fp[t]); for the converse suppose⎛⎝titj
tk

⎞⎠ ∈ φ(Fp[t]). Note that if either of the first two disjuncts of φ holds then⎛⎝titj
tk

⎞⎠ ∈ ×�tN; suppose then that the last holds. So there are i ′, j′ > 0 such that

tk – ti – tj = ti
′+j′ – ti

′
– tj

′
. Since i ′, j′ > 0 we get that the leading coefficient

of the right-hand side is 1; for the same to be true on the left-hand side we must
have k > i, j, and thus k = i ′ + j′. So ti + tj = ti

′
+ tj

′
, and {i, j} = {i ′, j′}. Thus

i + j = i ′ + j′ = k, and

⎛⎝titj
tk

⎞⎠ ∈ ×�tN. �
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