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We consider atomic chains with nearest neighbour interactions and study periodic
travelling waves and homoclinic travelling waves, which are called wavetrains and
solitons, respectively. Our main result is a new existence proof which relies on the
constrained maximization of the potential energy and exploits the invariance
properties of an improvement operator. The approach is restricted to convex
interaction potentials but refines the standard results, as it provides the existence of
travelling waves with unimodal and even profile functions. Moreover, we discuss both
the numerical approximation and the complete localization of wavetrains, and show
that wavetrains converge to solitons when the periodicity length tends to infinity.

1. Introduction

We consider infinite chains of identical atoms with unit mass that are coupled
by nearest neighbour interactions. The dynamics of such chains is governed by
Newton’s equations

ẍj(t) = Φ′(xj+1(t) − xj(t)) − Φ′(xj(t) − xj−1(t)), (1.1)

where xj(t) denotes the position of the jth atom at time t and Φ is the interaction
potential. Restating (1.1) in terms of atomic distances rj(t) = xj+1(t) − xj(t) and
atomic velocities vj(t) = ẋj(t), we find that

ṙj(t) = vj+1(t) − vj(t), v̇j(t) = Φ′(rj(t)) − Φ′(rj−1(t)). (1.2)

We allow for arbitrary convex interaction potentials Φ and refer to (1.1) as a Fermi–
Pasta–Ulam (FPU) chain, although the potential in the original paper [5] was a
quartic polynomial.

FPU chains can be viewed as simple toy models for crystals and solids, and
they allow some essential properties of nonlinear elastic materials to be studied.
Although (1.1) is a strong simplification of a real material, it exhibits very com-
plex behaviour and we are, at present, far from a complete understanding of its
dynamical properties.

During the past few decades, a lot of research has addressed the existence and
properties of travelling waves in FPU chains because they can be viewed as ele-
mentary waves and provide a lot of insight into the energy transport in nonlinear
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Figure 1. The atoms in a dispersive shock self-organize into modulated travelling waves.
Parts (a)–(d) depict snapshots of atomic distances and velocities against the scaled particle
index for different macroscopic times. (a) distances, time = 0, (b) distances, time = 0.5,
(c) velocities, time = 0, (d) velocities, time = 0.5. Part (e) depicts the corresponding
family of wavetrains with supersonic soliton as the ‘homoclinic limit’. The picture shows
the density plots of six local distribution functions in the (r, v)-plane. Modulation theory
predicts that each of these local distribution functions corresponds to a travelling wave
whose parameters depend on macroscopic time and particle index.

media. Such travelling waves solve nonlinear advance–delay differential equations,
and characterizing the solution set to those equations is a fundamental problem in
mathematics.

A further motivation for the study of travelling waves is related to atomistic
Riemann problems and self-thermalization of FPU chains: starting with piecewise
constant initial data for atomic distances and velocities, solutions to (1.2) are self-
similar on a macroscopic scale and involve dispersive shocks, which are fan-like
structures with strong microscopic oscillations (see figure 1). It is known from the
theory of integrable systems and numerical simulations that the oscillations within
a dispersive shock can be described by modulated travelling waves (see [1, 6] and
the references therein).
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1.1. Travelling waves and main results

Travelling waves are exact solutions to (1.2) and satisfy the ansatz1

rj(t) = R(ϕ), vj(t) = V (ϕ), ϕ = kj + ωt, (1.3)

with phase ϕ, wavenumber k, (negative) frequency ω and profile functions R and
V . Inserting (1.3) into (1.2), we obtain the nonlinear advance–delay differential
equations

ω
d
dϕ

R = ∇+
k V, (1.4 a)

ω
d
dϕ

V = ∇−
k Φ′(R), (1.4 b)

where ∇+
k and ∇−

k respectively denote the forward- and backward-difference opera-
tors with shift k. Depending on the properties of the profile functions, we distinguish
the following cases.

(i) Wavetrains or periodic waves: R and V are periodic.

(ii) Solitons or homoclinic waves: R and V are localized over a constant back-
ground state.

(iii) Fronts or heteroclinic waves: R and V connect different constant background
states.

(iv) Oscillatory fronts: R and V connect different asymptotic wavetrains.

Note that our usage of ‘soliton’ is quite sloppy: localized travelling waves are some-
times called ‘solitary waves’, and ‘soliton’ then refers to a solitary wave that survives
collisions with other such waves unchanged.

We show the existence of wavetrains and solitons with unimodal and even profile
functions R and V , where even means invariance under ϕ � −ϕ as usual, and
unimodal functions are monotone for both ϕ � 0 and ϕ � 0. Our main result can
be stated as follows.

Theorem 1.1. Under natural regularity assumptions on the convex potential Φ
there exists a four-parameter family of wavetrains, and if Φ additionally satisfies
some superquadratic growth conditions, then there also exists a three-parameter
family of solitons. Moreover, the profile functions R and V are unimodal and even
for both families.

Closely related to this paper are the works [6,10,18,19,21], where the existence of
travelling waves was likewise studied in a variational framework. We will therefore
compare both our method (§ 2.2) and our results (§ 4.3) with those presented in
these papers. We also refer readers to the numerical study [4], to [8] for existence

1The ansatz (1.3) is slightly more general than the usual one, which assumes that the atomic
positions xj depend on the phase variable ϕ. In fact, the ansatz xj(t) = X(kj + ωt) is not
invariant under Galilean transformations x � x + v0t, whereas (1.3) has this property as it
respects r � r, v � v + v0.
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results in two-dimensional lattices and to [16], which proves the existence of small-
amplitude travelling waves by means of centre-manifold reduction. Moreover, the
existence of fronts is studied in [15], and [20] is concerned with oscillatory fronts in
FPU chains with biharmonic potentials.

All the results presented below solely concern wavetrains and solitons in FPU
chains, but the method can also be applied to other Hamiltonian lattices with
convex potential energy P, such as, for instance, Klein–Gordon chains with convex
on-site potential [12] and atomic chains with next-to-nearest neighbour interactions.

We emphasize that we are unable to provide uniqueness results for travelling
waves. Uniqueness of relative equilibria in Hamiltonian lattices is a notoriously
difficult problem and almost nothing is known about it. The only available results
concern either the near-sonic limit [9] or systems where the travelling wave equation
can be solved explicitly. Examples are the Toda chain [22], the discrete nonlinear
Schrödinger equation [11], the harmonic chain and the hard-sphere model [2].

1.2. Overview on the proof and organization of the paper

In a preparatory step, we reformulate the travelling wave equation (1.4) in terms
of a normalized profile function W ∈ L2. More precisely, we show that (1.4) can be
transformed into a nonlinear eigenvalue equation

ω2W = ∂P(W ), (1.5)

where P(W ) is the potential energy of a travelling wave. The profile function W
has no physical meaning, but determines R and V via

R(ϕ) = r0 +
∫ ϕ+k

ϕ

W (ϕ̃) dϕ̃ and V (ϕ) = v0 + ωW (ϕ),

where r0 and v0 are suitable normalization constants.
Our approach relies on a combination of variational and dynamical concepts, and

can be summarized as follows.

(i) Equation (1.5) is the Euler–Lagrange equation for the optimization problem
P(W ) → max subjected to the constraint W ∈ Bγ . Here γ is a free parameter,
Bγ ⊂ L2 denotes the ball of radius

√
2γ, and ω2 is the Lagrangian multiplier.

(ii) There exists an improvement dynamics W �→ Tγ [W ] on Bγ that increases
the potential energy. Moreover, each stationary point of this dynamics solves
(1.5) and vice versa.

(iii) There exist non-trivial cones S that are invariant under the improvement
dynamics. Consequently, each maximizer of P in S ∩ Bγ is a travelling wave
(see theorem 2.3).

We emphasize that the convexity of Φ is essential for this approach as it is intimately
related to both the properties of Tγ and the existence of non-trivial invariant cones.

A major part of the mathematical analysis done in this paper is needed to show
that there exist maximizers of P in Sγ . In the wave-train setting we can use rather
simple compactness arguments as the functional P is continuous with respect to the
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weak topology in L2. In the soliton setting, however, we lack the weak compactness
of P, and the existence proof for maximizers requires more sophisticated arguments.
Our main technical result in this context is lemma 4.7, which implies that (for
certain S) the maximizing sequences for P in Sγ are localized and hence precompact
in the strong topology.

This paper is organized as follows. In § 2.1 we derive the fixed-point equation
(1.5) for both wavetrains and solitons. The details of our variational approach
are presented in § 2.2, while § 2.3 is concerned with the analytical properties of
the underlying functionals and operators. In § 3.1 we continue with the existence
proof for wavetrains and present some numerical simulations in § 3.2. The complete
localization of wavetrains is studied in § 3.3. The existence proof for solitons is
contained in § 4.1 and relies on a natural condition for the superquadratic growth
of the functional P. In § 4.2 and § 4.3 we discuss the corresponding properties of the
interaction potential Φ. Finally, inspired by the notion of Γ convergence we show
in § 4.4 that wavetrains converge to solitons when the periodicity length tends to
infinity.

2. Variational approach

In this section we transform the travelling wave equation into a fixed-point equa-
tion for a normalized profile function W and describe our variational approach to
existence results for both wavetrains and solitons. To point out the key ideas we
start with more formal considerations in § 2.1 and § 2.2 and postpone the analytical
details to § 2.3.

2.1. Travelling waves as eigenfunctions of nonlinear integral equations

In what follows we assume that the periodicity length of wavetrains is given by
2L with 0 < L < ∞ and we take the corresponding profile functions R and V
to be defined on [−L, L]. Moreover, we identify the soliton case with L = ∞ by
considering R and V as functions on [−∞,∞], or, equivalently, as functions on the
Alexandrov compactification of R. In other words, in both cases we impose the
boundary conditions R(L) = R(−L) and V (L) = V (−L).

In what follows we denote the Lebesgue space of all square-integrable functions
on [−L, L] by L2([−L, L]) with L ∈ (0,∞], and if there is no risk of confusion we
write L2 instead of L2([−L, L]).

Our first aim is to transform the travelling wave equations for wavetrains and
solitons into eigenvalue equations for certain nonlinear integral operators defined
on L2. For this purpose we define two linear averaging operators and normalize the
potential Φ. More precisely, for a given reference distance r0 we define the potential
Φr0 by

Φr0(r) = Φ(r0 + r) − Φ(r0) − Φ′(r0)r,

which is normalized via Φr0(0) = Φ′
r0

(0) = 0 and Φ′′
r0

(0) = Φ′′(r0), and mention
that this normalization respects the convexity of Φ. The eigenvalue equations for
solitons and wavetrains involve the averaging operators

(ĀkW )(ϕ) =
∫ ϕ+k/2

ϕ−k/2
W (ϕ̃) dϕ̃
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and

ÂkW = ĀkW − 1
2L

∫ L

−L

ĀkW (ϕ̃) dϕ̃ = ĀkW − k

2L

∫ L

−L

W (ϕ̃) dϕ̃.

Note that the operator Āk is well defined and symmetric on L2 for both finite and
infinite L (see lemma 2.5), whereas Âk is well defined for L < ∞ only.

2.1.1. Wavetrains and normalization via mean values

In order to reformulate the travelling wave equation (1.4) for L < ∞ we introduce
the mean values of wavetrains by

rav :=
1

2L

∫ L

−L

R(ϕ) dϕ, vav :=
1

2L

∫ L

−L

V (ϕ) dϕ.

Remark 2.1. With the identification

R(ϕ − 1
2k) = rav + (ÂkW )(ϕ), (2.1 a)

V (ϕ) = vav + ωW (ϕ) (2.1 b)

for some profile function W with

1
2L

∫ L

−L

W (ϕ) dϕ = 0,

the integral equation
ω2W = ÂkΦ′

rav
(ÂkW ) (2.2)

is equivalent to the wave train equation (1.4).

Proof. First suppose that R and V solve (1.4), and let W = ω−1(V − vav). Then
(1.4 a) implies

d
dϕ

R(ϕ − 1
2k) = W (ϕ + 1

2k) − W (ϕ − 1
2k) =

d
dϕ

(ÂkW )(ϕ),

and hence R(ϕ − 1
2k) = (ÂkW )(ϕ) + c1 for some constant c1. Integrating this with

respect to ϕ, we find rav = 0 + c1 and hence (2.1 a). Moreover, (1.4 b) provides

ω2 d
dϕ

W (ϕ) = Φ′(rav + (ÂkW )(ϕ + 1
2k)) − Φ′(rav + (ÂkW )(ϕ − 1

2k))

= Φ′
rav

((ÂkW )(ϕ + 1
2k)) − Φ′

rav
((ÂkW )(ϕ − 1

2k)),

and integration with respect to ϕ gives ω2W = ÂkΦ′
rav

(ÂkW )+c2 for some constant
c2. The condition

1
2L

∫ L

−L

W (ϕ) dϕ = 0

now implies c2 = 0 and hence (2.1 b). Now let a solution W of (2.2) be given, and
define both R and V as in (2.1). Then equation (1.4 a) holds by construction, and
(1.4 b) follows from (2.2) by differentiation with respect to ϕ.
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We emphasize that the particular form of (2.2) depends on the potential Φ. For
instance, in the harmonic case Φ(r) = 1

2βr2 the parameter rav drops out to give

ω2W (ϕ) = β

∫ ϕ+k/2

ϕ−k/2

∫ ϕ̃+k/2

ϕ̃−k/2
W (ϕ̄) dϕ̄ dϕ̃,

and for Φ(r) = exp(r) we find

ω2W (ϕ) = exp(rav)
∫ ϕ+k/2

ϕ−k/2
exp

( ∫ ϕ̃+k/2

ϕ̃−k/2
W (ϕ̄) dϕ̄

)
dϕ̃ − C,

C =
exp(rav)

2L

∫ +L

−L

exp
( ∫ ϕ̃+k/2

ϕ̃−k/2
W (ϕ̄) dϕ̄

)
dϕ̃.

Note that in both cases we have explicitly used the condition∫ L

−L

W (ϕ) dϕ = 0.

2.1.2. Solitons and normalization via background states

For solitons, it is much more convenient to base the normalization on the back-
ground states

rbg := lim
ϕ→±∞

R(ϕ), vbg := lim
ϕ→±∞

V (ϕ),

because then the normalized profiles are localized.

Remark 2.2. With the identification

R(ϕ − 1
2k) = rbg + (ĀkW )(ϕ), V (ϕ) = vbg + ωW (ϕ) (2.3)

for some profile function W with limϕ→±∞ W (ϕ) = 0, the integral equation

ω2W = ĀkΦ′
rbg

(ĀkW ) (2.4)

is equivalent to the soliton equation (1.4).

Proof. The proof is similar to that of remark 2.1.

For illustration we exploit (2.4) for Φ(r) = exp(r) and find

ω2W (ϕ) = exp(rbg)
(

−k +
∫ ϕ+k/2

ϕ−k/2
exp

( ∫ ϕ̃+k/2

ϕ̃−k/2
W (ϕ̄) dϕ̄

)
dϕ̃

)
.

We can also consider the integral equation (2.4) for L < ∞ and readily verify
that each solution defines a wave train via (2.3). This normalization for wavetrains
seems to be artificial because, for finite L, we have no immediate interpretation
of the parameter rbg. However, in § 4.4 we rely on this setting and show that the
L-periodic solutions WL to (2.4) converge to solitons as L → ∞ (see corollary 4.21),
and this implies RL(±L) → rbg.
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2.1.3. Parameter dependence of travelling waves

The travelling wave equation (1.4) obeys a simple scaling symmetry. In fact, the
solution set to (1.4) is invariant under

R(ϕ) � R(λϕ), V (ϕ) � V (λϕ),

k � λ−1k, ω � λ−1ω, L � λ−1L,

}
(2.5)

with arbitrary λ > 0, corresponding to

W (ϕ) � λW (λϕ) with rbg � rbg, vbg � vbg, rav � rav, vav � vav.

Up to this scaling there remain four independent parameters for wavetrains. A
natural choice for nonlinear potentials is to fix the length parameter L and to
regard rav, vav, k and ω as independent parameters [2]. In this paper, however, we
prefer to fix the wavenumber k so that wavetrains are parametrized by rav, vav,
L and the phase speed σ := ω/k. Accordingly, we parametrize solitons by rbg, vbg
and σ.

Note that the velocity parameters vav and vbg do not appear in the travelling
wave equations due to the Galilean invariance of FPU chains. However, these trivial
parameters become important when studying modulated travelling waves [1, 2].

2.2. Variational structure for wavetrains and solitons

In view of the scaling and the reformulation results from § 2.1 we now begin to
simplify our setting. In what follows we consider an arbitrary convex and smooth
potential Φ normalized by Φ(0) = Φ′(0) = 0. Moreover, we restrict to k = 1, so the
frequency ω equals the phase speed σ, and consider only the following two averaging
operators:

(ĀW )(ϕ) =
∫ ϕ+1/2

ϕ−1/2
W (ϕ̃) dϕ̃, (ÂW )(ϕ) = (ĀW )(ϕ) − 1

2L

∫ L

−L

W (ϕ) dϕ.

(2.6)
Moreover, in order to point out the similarities between wavetrains and solitons

we refer to an abstract averaging operator A, which equals either Ā or Â, and
consider the general travelling wave equation

σ2W = AΦ′(AW ) (2.7)

with W ∈ L2([−L, L]), where L might be finite or infinite. In what follows, we call
W a travelling wave if and only if there exist σ2 > 0 such that (2.7) is satisfied.

The starting point for the variational formulation is the observation that (2.7) is
the Euler–Lagrange equation to the action functional

L(σ2, W ) = K(σ2, W ) − P(W ),

where

K(σ2, W ) = 1
2σ2

∫ L

−L

W (ϕ)2 dϕ and P =
∫ L

−L

Φ((AW )(ϕ)) dϕ (2.8)

are the kinetic energy and the potential energy, respectively.
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The first rigorous existence result for wavetrains and solitons under superquad-
ratic growth assumptions for Φ was given by Friesecke and Wattis [10]. The key
idea (in our notation) is to minimize the L2-norm of W under the constraint of
prescribed potential energy, where 1/σ2 plays the role of a Lagrangian multiplier.
The existence of corresponding minimizers was then established by means of Lions’s
concentration-compactness principle [17].

Smets and Willem [21] prove the existence of solitons by showing that, for super-
quadratic Φ, the functional L satisfies the assumptions of (a modified) mountain-
pass theorem. Recently, these results were improved by Schwetlick and Zimmer
in [19]. They require the superquadratic growth to hold only asymptotically, so
certain double-well potentials are admissible.

Similarly to [21], Pankov and Pflüger [18] apply the mountain-pass theorem to
wavetrains, and pass to the limit L → ∞ by means of concentration compactness.
Moreover, they present a different existence proof for solitons based on the Nehari
manifold of L.

A different idea was introduced by Filip and Venakides [6] in the context of
convex potentials Φ. They proposed to maximize the potential energy P under the
convex constraint W ∈ Bγ with

Bγ = {W ∈ L2 : 1
2‖W‖2

2 � γ}.

The first advantage of this approach is that L < ∞ implies the functional P to
be continuous with respect to the weak topology in L2, so the existence of wave-
trains follows from elementary principles of infinite-dimensional convex analysis.
The second advantage is that the improvement operator Tγ appears naturally in
this context and allows for deriving effective approximation schemes for wavetrains
(see [1, 13] and the numerical simulations below).

Our method is also based on the constrained maximization of the potential energy
but yields improved results as it exploits invariance properties of Tγ .

2.2.1. Constrained maximization and the improvement operator

In view of (2.7) we formally define the improvement operator Tγ as

Tγ [W ] :=
√

2γ

‖∂P[W ]‖2
∂P[W ],

where the operator ∂P is the Gâteaux derivative of P, which means that ∂P[W ] =
AΦ′(AW ) for all W ∈ L2. By construction, each fixed point W of Tγ is a trav-
elling wave with 1

2‖W‖2
2 = γ and, vice versa, where the speed is given by σ2 =

‖∂P[W ]‖2/
√

2γ.
In § 2.3 we exploit the convexity of Φ and derive the following building blocks for

the existence proof.

(i) ∂P respects the positive cone

U := {W ∈ L2 : W (−ϕ1) = W (ϕ1) � W (ϕ2)
for almost all 0 � ϕ1 � ϕ2 � L},
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which consists of all functions on [−L,−L] that are even and unimodal. More-
over, for A = Ā the operator ∂P also respects

N := {W ∈ L2 : W (ϕ) � 0 for almost all ϕ ∈ [−L,−L]},

which is the cone of all non-negative functions.

(ii) Tγ is well defined on Bγ \ M and maps into ∂Bγ \ M, where

M := {W ∈ L2 : P(W ) = 0}

is the set of all global minimizers of P.

(iii) Tγ increases the potential energy, which means that P(TγW ) � P(W ) for
W /∈ M, where equality holds if and only if W = Tγ [W ].

We are now able to describe the key principle that provides the existence of trav-
elling waves.

Theorem 2.3. Let S ⊂ L2 be some positive cone that is invariant under the action
of the operator ∂P. Then the set Sγ \ M with Sγ = S ∩ Bγ is invariant under the
action of Tγ , and each proper maximizer of P in Sγ is a fixed point of Tγ , and hence
is a travelling wave.

Proof. The invariance of Sγ is implied by the assumption on S and the properties of
Tγ . Now let W be a proper maximizer. Then P(Tγ [W ]) = P(W ) > min P|Sγ

implies
both Tγ [W ] = W and W /∈ M, and we conclude that W is in fact a travelling wave
with σ2 > 0.

In what follows, the cone S is given by either U or U ∩ N . Since these cones are
not open in L2, the fact that each maximizer must satisfy the Euler–Lagrange equa-
tion (2.7) with multiplier σ2 is not clear a priori but is provided by the invariance
of Sγ under Tγ .

Theorem 2.3 yields only a sufficient condition for the existence of travelling waves.
In fact, showing that P attains its maximum in Sγ is not trivial (at least in the
soliton case), and requires a better understanding of the energy landscape in Sγ . In
our analysis we follow the direct approach and show that maximizing sequences for
P are compact in some appropriate topology in L2. More precisely, for wavetrains
we use weak compactness, whereas in the soliton setting we establish the strong
compactness for maximizing sequences.

2.3. Some functional analysis

Here we prove the aforementioned properties of the improvement operator Tγ .
To this end, we rely on the following standing assumptions on the potential Φ.

Assumption 2.4. For given γ > 0 we assume that the interaction potential Φ has
the following properties on the interval [−

√
2γ,

√
2γ]:

• (smoothness) Φ is at least C 2;

• (convexity) Φ′′ � 0;
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• (normalization) 0 = Φ(0) = Φ′(0) and Φ′′(0) = β � 0;

• (non-triviality) Φ does not vanish identically.

The restriction on the interval [−
√

2γ,
√

2γ] is natural in our context because W ∈
Bγ implies ‖AW‖∞ � √

2γ (see lemma 2.5). As a consequence of assumption 2.4
we find

0 � Φ(r) � 1
2r2(β + o(|r|)), Φ′(−|r|) � 0 � Φ′(|r|) (2.9)

for all r with |r| � √
2γ. Moreover, the non-triviality condition implies Bγ \M 
= ∅,

so each maximizer of P in Bγ is proper.
Within this section the parameter L can take arbitrary values in (0,∞], and

Lp and W 1,p with 1 � p � ∞ denote the usual Lebesgue and Sobolev spaces on
[−L, L], where

〈W1, W2〉 =
∫ L

−L

W1(ϕ)W2(ϕ) dϕ

gives the inner product in L2.

2.3.1. Properties of the averaging operators Ā and Â
We summarize some elementary properties of the averaging operators that are

used in the proofs below.

Lemma 2.5. For any L, the operator Ā is well defined on L2 and has the following
properties.

(i) Ā maps into L2 ∩ L∞ with ‖ĀW‖∞ � ‖W‖2 and ‖ĀW‖2 � ‖W‖2.

(ii) Ā maps into W 1,2 with (ĀW )′(ϕ) = W (ϕ + 1/2) − W (ϕ − 1/2).

(iii) Ā is self-adjoint on L2.

(iv) If a sequence (Wn)n converges weakly in L2 to some limit W∞, then ( ¯AWn)n

converges strongly in L2([−L̃, L̃]) for each finite L̃ < ∞ with L̃ � L. In
particular, for L < ∞, the image of each bounded set in L2 under the operator
Ā is precompact in L2 with respect to the strong topology.

(v) In the wave train case (L < ∞) the operator Ā is compact. Moreover, the
mth eigenvalue (m = 0, 1, 2, . . . ) is given by


m = Θ

(
mπ

2L

)
, Θ(
) := 
−1 sin(
),

and the corresponding eigenspace is spanned by

cos
(

mπ

L
·
)

and sin
(

mπ

L
·
)

.

(vi) In the soliton case (L = ∞), the operator Ā is no longer compact, because it
has continuous spectrum spec L2Ā = {Θ(
) : 
 ∈ R}. In particular,

spec L2Ā2 = [0, 1].
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Moreover, for L < ∞, we have Â : L2 → L2 ∩ L∞ with ‖ÂW‖∞ � ‖W‖2 and
‖ÂW‖2 � ‖W‖2.

Proof. Definition (2.6) gives

ĀV (ϕ) =
∫ L

−L

χ̄(ϕ − s)V (s) ds = χ̄(ϕ − ·) ∗ V, (2.10)

where χ̄ abbreviates the indicator function of the interval [− 1
2 , 1

2 ] and ∗ denotes the
convolution operator. Hölder’s inequality gives

| ¯AV (ϕ)|2 �
∫ ϕ+1/2

ϕ−1/2
V (s)2 ds,

and from this we readily derive the first assertion. The proofs of the second and third
claims are then straightforward. Now suppose Wn → W∞ weakly in L2([−L, L]).
Then we have ĀWn → ĀW∞ pointwise due to (2.10), and this implies the strong
L2 convergence on each finite interval [−L̃, L̃] due to the uniform L∞ bound.

In order to characterize the spectral properties of Ā we study how Θ acts on
plane waves. A direct calculation shows that each plane wave Ek(ϕ) = ϕ �→ eikϕ

satisfies the eigenvalue equation

ĀEk = Θ( 1
2k)Ek

pointwise, and this gives the fourth and the fifth assertion. Finally, for L < ∞ we
have

ĀV (ϕ) = χ̂(ϕ − ·) ∗ V, χ̂(ϕ) = χ̄(ϕ) − 1
2L

.

This implies
|ÂW (ϕ)|2 � ‖χ̂‖∞‖χ̄(ϕ − ·)W‖2

2 = |ĀW (ϕ)|2

and, in turn, the desired properties of Â.

As a consequence of definition (2.6) and lemma 2.5 we easily find

ker L2 Ā =
{

W ∈ L2 : W (·) = W (· + 1),
∫ 1/2

−1/2
W (ϕ) dϕ = 0

}
. (2.11)

In particular, the kernel of Ā is trivial if either L is irrational or L = ∞. Moreover,
for L < ∞ we have

ker L2 Â = ker L2 Ā ⊕ span{1}. (2.12)

2.3.2. Properties of the potential energy functional P
We rely on assumption 2.4 and use standard methods from convex analysis to

prove some properties of P and its derivative. All results are formulated in terms of
the abstract averaging operator A and hold for both the wave train and the soliton
case.
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Lemma 2.6. The functional P is well defined, bounded, continuous and Gâteaux-
differentiable on Bγ , and its derivative ∂P = A ◦ ∂Φ ◦ A is a monotone operator
and maps Bγ continuously into L2. Moreover, for arbitrary W1, W2 ∈ Bγ we have

P(W2) − P(W1) � 1
2m‖AW2 − AW1‖2

2 + 〈∂P[W1], W2 − W1〉 (2.13)

and

〈∂P[W2] − ∂P[W1], W2 − W1〉 � m‖AW2(ϕ) − AW1(ϕ)‖2
2, (2.14)

where the monotonicity constant is given by m = inf |r|�√
2γ Φ′′(r) � β.

Proof. For all W in Bγ we have ‖AW‖∞ � √
2γ, and assumption 2.4 implies

|Φ′(r)| � C|r|, Φ(r) � 1
2Cr2

for all r with |r| � √
2γ, where C = sup|r|�√

2γ |Φ′′(r)| � β. Consequently, we find

0 � P(W ) � 1
2C‖AW‖2

2 � γC, ‖A∂Φ[AW ]‖p � Cp‖W‖p � Cp‖W‖p,

and all assertions concerning the continuity and boundedness of both P and ∂P
follow immediately. Now let W1, W2 ∈ Bγ be fixed, and note that the convexity
inequality (Φ′(r2) − Φ′(r1))(r2 − r1) � m(r2 − r1)2 with ri = AWi(ϕ) implies
(2.14) by integration with respect to ϕ. To prove (2.13), let η ∈ [0, 1] and consider
W (η) := (1 − η)W1 + ηW2 ∈ Bγ as well as

p(η) := P(W (η)).

The function p is well defined and differentiable with respect to η, and, using (2.14),
we find

d
dη

p(η) = 〈∂P[W (η)], W2 − W1〉

� η−1〈∂P[W (η)] − ∂P[W1], ηW2 − ηW1〉 + 〈∂P[W1], W2 − W1〉

= η−1〈∂P[W (η)] − ∂P[W1], W (η) − W1〉 + 〈∂P[W1], W2 − W1〉

� η−1m‖AW (η) − AW1‖2
2 + 〈∂P[W1], W2 − W1〉

� ηm‖AW2 − AW1‖2
2 + 〈∂P[W1], W2 − W1〉.

Finally, we integrate the last estimate from η = 0 to η = 1, and this gives (2.13).

The convexity of P implies that each trivial travelling wave with σ2 = 0 must
belong to M, the set of all minimizers of P.

Remark 2.7. We have ∂P[W ] 
= 0 for all W ∈ Bγ \ M.

Proof. Assume that there exists some W ∈ Bγ \ M with ∂P[W ] = 0. Then (2.14)
with W2 = 0 and W1 = W provides AW = 0 and, hence, P(W ) = 0, which is a
contradiction.

Note that, for non-degenerate potentials Φ with Φ(r) > 0 for all r 
= 0, we have
M = ker A, where ker A is given in (2.11) and (2.12).
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2.3.3. Properties of the improvement operator Tγ

First we show that the cones U and N are invariant under the action of both Ā
and Φ′. Here again the convexity of Φ enters, as it guarantees that Φ′ is increasing.

Lemma 2.8. The cones U and N are convex, closed under weak and strong con-
vergence in L2 and invariant under the action of ∂P and Ā. Moreover, U is also
invariant under the action of Â (for L < ∞).

Proof. The only non-trivial assertion is the invariance of U under Ā. To prove this,
we fix W ∈ U and consider Y = dĀW/dφ with Y (ϕ) = W (ϕ + 1

2 ) − W (ϕ − 1
2 )

thanks to lemma 2.5. This function is odd as W (ϕ) = W (−ϕ) implies

Y (−ϕ) = W (−ϕ + 1
2 ) − W (−ϕ − 1

2 ) = W (ϕ − 1
2 ) − W (ϕ + 1

2 ) = −Y (ϕ).

Hence, it remains to show that Y (ϕ) � 0 for all ϕ � 0, which is equivalent to

W (ϕ + 1
2 ) � W (ϕ − 1

2 ), ϕ � 0.

For 1
2 � ϕ � L − 1

2 this estimate follows from 0 � ϕ − 1
2 � ϕ + 1

2 . Moreover, for
0 � ϕ � 1

2 it holds thanks to W (−ϕ + 1
2 ) = W (ϕ − 1

2 ) and 0 � −ϕ + 1
2 � ϕ + 1

2 ,
and for L − 1

2 � ϕ � L it is a consequence of W (ϕ + 1
2 ) = W (2L − ϕ − 1

2 ) and
2L − ϕ − 1

2 � ϕ − 1
2 .

Lemma 2.9. The operator Tγ maps Bγ \M continuously into ∂Bγ \M and satisfies

P(Tγ [W ]) − P(W ) � 1
2m‖ATγ [W ] − AW‖2

2 (2.15)

for all W ∈ Bγ \ M. Moreover, the equality sign holds if and only if W is a fixed
point of Tγ .

Proof. Lemma 2.6 and remark 2.7 imply that Tγ is well defined and continuous on
Bγ \ M. Moreover, ‖Tγ [W2]‖2 =

√
2γ holds by definition. Now let W1 ∈ Bγ \ M

be fixed and set W2 := Tγ [W1] and σ2
2 := ‖∂P[W1]‖2/

√
2γ > 0. Hence, σ2

2W2 =
∂P[W1], and from (2.13) we infer that

P(W2) − P(W1) − 1
2m‖AW2 − AW1‖2

2 � σ−2
2 〈W2, W2 − W1〉

� σ−2
2 (‖W2‖2

2 − ‖W2‖2‖W1‖2),

which gives (2.15) due to ‖W1‖2 � ‖W2‖2 =
√

2γ. Moreover, we find an equality
sign in the second estimate if and only if ‖W2‖2

2 = ‖W1‖2
2 = 〈W1, W2〉, that is, if

and only if W1 = W2.

With lemma 2.9 we have derived all the ingredients that we used in the proof of
theorem 2.3.

3. Wavetrains

As a first application of theorem 2.3 we establish the existence of wavetrains in § 3.1
and proceed with some comments on the numerical computation of wavetrains in
§ 3.2. Afterwards we study the complete localization of wavetrains in § 3.3.
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3.1. Existence results

Our first existence result concerns wavetrains that are renormalized via their
mean values. This corresponds to L < ∞, A = Â and S = U .

Theorem 3.1. For each L < ∞ and γ > 0 there exists a unimodal and even wave
train W such that 1

2‖W‖2
2 = γ and σ2W = ÂΦ′(ÂW ) for some σ2 > 0.

Proof. With respect to the weak topology in L2, the functional P is continuous and
the set Sγ = U ∩ Bγ is compact. Therefore, and since Φ is convex, there exists a
proper maximiser W with supP|Sγ = P(W ) > 0 = minP|Sγ . The desired result
now follows from theorem 2.3.

In view of remark 2.1 and the scaling (2.5) we infer that theorem 3.1 implies the
existence of a four-parameter family of solutions (R, V ) to the original travelling
wave equation (1.4) with fixed L. This family is parametrized by rav, vav, k and γ,
and for nonlinear potentials we can expect (at least locally) that γ can be replaced
by ω.

Similar existence results for wavetrains in convex FPU chains are proven in [2,6],
but provide only W ∈ ∂Bγ . Our method improves these results as it establishes the
existence of wavetrains with the additional property W ∈ U , which in turn implies
R ∈ U and σV ∈ U . This sheds light on some observations from [1, 14]: the traces
of travelling waves found in the numerical simulations of initial-value problems for
(1.1) typically encircle convex sets in the (r, v)-plane (see part (e) of figure 1). In
particular, these curves have exactly two extrema in both the r-direction and the
v-direction, and hence they correspond to unimodal profile functions R and V .

We proceed with some remarks concerning the uniqueness of wavetrains. The
norm constraint 1

2‖W‖2
2 = γ alone is not sufficient for uniqueness as the travelling

wave equation is invariant under shifts in ϕ. Moreover, since the set of all 2L̃-
periodic functions with mL̃ = L for some m ∈ N is invariant under the action of
Tγ , we can construct a whole family of wavetrains satisfying the norm constraint.

From these considerations we conclude that any uniqueness result for wavetrains
must prescribe further properties of the profile function W . Motivated by numerical
simulations, we conjecture that for each γ there exists exactly one travelling wave
with W ∈ U and 1

2‖W‖2
2 = γ, but we are not able to prove this conjecture.

Finally, using similar arguments to those in the proof of theorem 3.1 we can derive
an existence result for wavetrains in the setting L < ∞, A = Ā and S = U ∩ N .

Lemma 3.2. For each L < ∞ and γ > 0 there exist a wave train W ∈ U ∩N ∩∂Bγ

such that σ2W = ĀΦ′(ĀW ) for some σ2 > 0.

3.2. Numerical computation of wavetrains

It is natural to use the improvement dynamics

W ∈ Sγ �→ Tγ [W ] ∈ Sγ (3.1)

for the approximation of wavetrains, and a corresponding discrete scheme is readily
derived and implemented. It was proven in [13] that the orbits generated by (3.1)
are compact in the strong L2 topology, but from a theoretical point of view this
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Figure 2. Profile functions W for several values of γ with L = 2 and Φ as in (3.2).
(a) γ = 1, (b) γ = 3, (c) γ = 5, (d) γ = 7, (e) γ = 9, (f) γ = 11.
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Figure 3. Traces for the wavetrains from figure 2.

result remains unsatisfactory due to the lack of uniqueness. So it is clear neither
that maximizers of P in Sγ are unique, nor that all fixed points of Tγ are (global)
maximizers.

In numerical simulations, however, we found (3.1) to have good properties. For a
wide class of potentials we observed rapid convergence to a unique limit independent
of the chosen initial data. In figure 2 we present the numerically computed profiles
W for different values of γ with A = Ā and

Φ(r) = cosh(r) − 1. (3.2)

For small γ we can approximate Φ by Φharm(r) = Φ′′(0)r2, and hence the profile W is
close to a rescaled plane wave. For increasing γ, however, the nonlinearity dominates
and the profile function becomes tighter. Figure 3 shows the corresponding traces
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Figure 4. The functions WCL and ĀWCL: (a) WCL versus ϕ; (b) ĀWCL versus ϕ.

in the (r, v)-plane: these are the curves

ϕ �→ (ĀW (ϕ), σW (ϕ)) ∼= (R(ϕ), V (ϕ)),

(see remark 2.2). Surprisingly, we find a nested family of curves that mean the
traces for different values of γ do not intersect but fill out a convex region. We are
not able to prove this observation but mention that a similar phenomenon occurs
when FPU chains generate dispersive shocks [3, 14].

3.3. Complete localization of wavetrains

It is well known for strongly nonlinear potentials that in certain limits the wave-
trains (and even the solitons) localize completely in the sense that, under a suitable
rescaling, the profile functions W converge to the indicator function of an interval
plus a constant background state. Such profile functions are, up to renormalization,
equal to the profile functions of travelling waves in the hard-sphere model for the
atomic chain, in which all atomic interactions are described by elastic collisions.
Thus, the effect of localization can often be linked in a natural way to the high
energy limit of travelling waves. For more details we refer the reader to [2,7,13,22].

In this section we discuss the localization phenomenon in our context, and aim at
deriving a localization criterion for wavetrains. To keep the presentation simple we
consider only non-negative and unimodal profile functions, that is, we investigate
the localization of solutions to (2.7) with L < ∞, A = Ā and S = U ∩N . Moreover,
for our purposes it is sufficient to assume that the localized limit profile is given by

WCL(ϕ) = χ[−1/2,1/2](ϕ) =

⎧⎨
⎩

1 if |ϕ| � 1
2 ,

0 if |ϕ| > 1
2 ,

(3.3)

(see figure 4). It is easy to check that this profile satisfies

‖WCL‖2 = 1, (ĀWCL)(ϕ) = max{1 − |ϕ|, 0}, P(WCL) = 2
∫ 1

0
Φ(s) ds.

(3.4)
In what follows we consider sequences (Φn)n of rescaled potentials, where each
Φn : [0, 1] → R satisfies assumption 2.4. Moreover, we refer to a sequence of profile
functions Wn ⊂ L2 as a corresponding sequence of maximizers, if Wn is a maxi-
mizer of Pn in S1/2 for each n, where Pn is the potential energy functional (2.8)
corresponding to Φn.

We say that a sequence of such potentials (Φn)n has the complete localization
property on [0, 1] if any corresponding sequence of maximizers converges strongly
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in L2 to WCL. Our main result in this section is a necessary condition for the
complete localization of wavetrains and is implied by the following observation.

Lemma 3.3. We have ‖ĀW‖∞ < ‖ĀWCL‖∞ = 1 for any W ∈ S1/2 with W 
=
WCL.

Proof. W ∈ U ∩ N implies ‖ĀW‖∞ = (ĀW )(0), and Hölder’s inequality provides

(ĀW )2(0) =
( ∫ 1/2

−1/2
W (ϕ) dϕ

)2

=
( ∫ 1/2

−1/2
WCL(ϕ)W (ϕ) dϕ

)2

�
(∫ 1/2

−1/2
WCL(ϕ)2 dϕ

)(∫ 1/2

−1/2
W (ϕ)2 dϕ

)
=

∫ 1/2

−1/2
W (ϕ)2 dϕ (3.5)

� 1 = (ĀWCL)2(0). (3.6)

Moreover, the estimate in (3.5) is strict unless there exists a constant c such that

W (ϕ) = cWCL(ϕ) for almost all ϕ ∈ [− 1
2 , 1

2 ], (3.7)

whereas the estimate in (3.6) is strict except for∫ 1/2

−1/2
W (ϕ)2 dϕ = 1. (3.8)

Now suppose that both (3.7) and (3.8) are satisfied. Then we have c = 1, and the
norm constraint ‖W‖2

2 � 1 implies W (ϕ) = 0 = WCL(ϕ) for almost all ϕ /∈ [− 1
2 , 1

2 ],
and hence W = WCL.

Lemma 3.4. The sequence (Φn)n has the complete localization property on [0, 1]
provided that the following two conditions are satisfied.

(i) Pn(WCL) = 1 for all n.

(ii) Φn converges uniformly and essentially monotonically to 0 on each interval
[0, r0] with 0 < r0 < 1. That means for any r0 we have sup0�r�r0

Φn(r) → 0
as n → ∞, and there exists n0(r0) such that

0 � Φn2(r) � Φn1(r)

for all n2 > n1 > n0(r0) and all 0 � r � r0.

Proof. First we additionally assume that Wn → W∞ weakly in L2, and suppose for
contradiction that W∞ 
= WCL. Then, ‖ĀW∞‖∞ < 1 thanks to lemma 3.3, and
since ĀWn → ĀW∞ pointwise and ‖ĀWn‖∞ = (ĀWn)(0) we find some 0 < r0 < 1
such that ‖ĀWn‖∞ � r0 for almost all n. Therefore, Pn1(Wn2) � Pn2(Wn2) holds
for all n2 � n1 and all sufficiently large n1, and since each Wn is a maximizer for
Pn, we also have Pn2(Wn2) � Pn2(WCL) � 1. We conclude that Pn1(Wn2) � 1 and,
passing to the limits n2 → ∞ and n1 → ∞, we obtain lim infn→∞ Pn(W∞) � 1.
However, ‖ĀW∞‖∞ � r0 < 1 implies limn→∞ Pn(W∞) = 0, which is the desired
contradiction. The result obtained so far implies that WCL is the unique accumu-
lation point of a maximizing sequence, and this yields the weak convergence to
WCL for any maximizing sequence. Finally, the strong convergence follows from
1 = ‖WCL‖2 = ‖Wn‖2 for all n.
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Figure 5. Profile functions W with γ = 1
2 , L = 2 and potentials Φq as in remark 3.5. This

example describes the wavetrains for homogeneous potentials in the limit of increasing
degree: (a) q = 4; (b) q = 6; (c) q = 10; (d) q = 20; (e) q = 50; (f) q = 100.
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Figure 6. (a) Speed σ and (b) potential energy P(W )
versus q for the wavetrains from figure 5.

Note that the two conditions from lemma 3.4 imply Φn(r) → 0 for all 0 � r < 1,
but Φn(1) → ∞ as n → ∞, and for this reason it is not clear whether or not
the complete localization (convergence of maximizers) implies the convergence of
maxima. The simulations from figure 6, however, provide evidence for

lim inf
n→∞

Pn(Wn) > 1 = lim
n→∞

Pn(WCL).

Our first application concerns the maximizer for homogeneous potentials of large
degree. For an illustration we refer the reader to the numerical results in figures 5
and 6.

Example 3.5. The family of potentials Φq(r) = 1
2 (q + 1)rq with c > 0 and q > 2

has the complete localization property on [0, 1] for q → ∞.
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Proof. Pq(WCL) = 1 follows from (3.4) by a direct computation and, for fixed
0 < r0 < 1, we choose q0 such that 1 + (q0 + 1) ln r0 < 0. Then we find

∂q( 1
2 (q + 1)rq) = 1

2rq(1 + (q + 1) ln r) < 0 for all 0 � r < r0 and q > q0.

The second candidate for the complete localization property is related to the
limit γ → ∞ for fixed potential Φ. We consider the rescaled potentials

Φγ(r) :=
Φ(

√
2γr)

2
∫ 1
0 Φ(

√
2γs) ds

(3.9)

with corresponding energy functionals Pγ , and note that the two optimization prob-
lems

P → max on Sγ and Pγ → max on S1/2

are equivalent due to W ∈ Sγ ⇔ W/
√

2γ ∈ S1/2.

Example 3.6. For Φ as in (3.2) the rescaled potentials Φγ from (3.9) have the
complete localization property on [0, 1] for γ → ∞.

Proof. Pγ(WCL) = 1 holds by construction, and for each 0 < r0 < 1 we can find γ0
such that ∂γΦγ(r) < 0 for all 0 � r � r0 and γ � γ0.

More generally, the family (Φγ)γ can be expected to have the complete localiza-
tion property for γ → ∞ provided that Φ grows faster than every polynomial. The
super-polynomial growth condition is necessary as, for every homogeneous potential
of degree q, we have Φγ ≡ Φ1. This reflects the scaling

W � λW, σ2 � λq−2σ2

and shows that the wavetrains for homogeneous or polynomial potentials do not
localize in the limit γ → ∞.

4. Solitons

In this section we study soliton solutions to (2.7). We set

L = ∞, A = Ā, S = U ∩ N .

Moreover, we assume that the potential energy P is genuinely superquadratic (see
definition 4.4) and show that, for each γ > 0, there exists a maximizer of P in
Sγ = U ∩ N ∩ Bγ , which is a soliton according to theorem 2.3.

In what follows, we set
P (γ) := sup

W∈Sγ

P(W ),

and for comparison with the harmonic case we introduce

Pharm(γ) := sup
W∈Sγ

Pharm(W ), (4.1)
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with

Pharm(W ) =
∫ L

−L

Φharm((AW )(ϕ)) dϕ = 1
2β‖AW‖2

2

being the energy functional corresponding to Φharm(r) = 1
2βr2. Next we show

Pharm(γ) = βγ by studying the maximizing sequence (Un)n ⊂ Sγ defined as

Un(ϕ) =

⎧⎪⎨
⎪⎩

√
2γ√
n

cos
(

π

2n
ϕ

)
for |ϕ| � n,

0 for |ϕ| � n.

(4.2)

Lemma 4.1. We have βγ � Pharm(Un) � βγ(1 − O(n−2)) for all n, and hence

Pharm = supPharm|Sγ = supPharm|Bγ = βγ.

Proof. A direct calculation shows 1
2‖Un‖2

2 = γ as well as

(AUn)(ϕ) =

⎧⎨
⎩Θ

(
π

4n

)
Un(ϕ) for |ϕ| � n − 1

2 ,

0 for |ϕ| � n + 1
2

and
0 � (AUn)(ϕ) = O(n−3/2) for ||ϕ| − n| � 1

2 ,

where we used the identity Un(n − 1
2 ) = (

√
2γ/

√
n) cos( 1

2π(1 − 1/2n)). Moreover,
we have

Pharm(Un) � βγΘ

(
π

4n

)2 ∫ 1−1/2n

−1+1/2n

cos
(

π

2
ϕ

)2

dϕ � βγ(1 − O(n−2)),

and this implies Pharm(Un) → βγ as n → ∞. Finally, due to lemma 2.5 we find

Pharm(W ) = 1
2β

∫
R

|(AW )(ϕ)|2 dϕ = β 1
2‖AW‖2

2 � 1
2β‖W‖2

2

for all W ∈ Bγ , and the proof is complete.

Corollary 4.2. We have P (γ) � βγ = Pharm(γ) for all γ � 0.

Proof. Since the case β = 0 is trivial we suppose that β > 0. Some elementary
analysis shows that the sequence (Un)n from (4.2) satisfies

P(Un) ≈
∫

|ϕ|�n−1/2
Φ

(
Θ

(
π

4n

)
Un(ϕ)

)
dϕ

≈ 1
2

∫
|ϕ|�n−1/2

Un(ϕ)2
(

β + o

(
1√
n

))
dϕ

≈ βγ,

where all approximation errors tend to 0 as n → ∞.
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peak

'fat' tail

weak limit W   (  )ϕ∞

(a) (b)

Figure 7. On the weak convergence in U ∩ N ∩ Bγ : (a) Wn(ϕ) versus ϕ; (b) Wn+m(ϕ)
versus ϕ. A weakly convergent sequence may fail to converge strongly due to the formation
of a peak at the origin and/or a ‘fat’ tail.

As mentioned in the introduction, solitons are genuinely nonlinear phenomena. In
particular, the harmonic chain does not allow for solitons, and thus the supremum
in (4.1) cannot be attained.

Remark 4.3. For β > 0 there is no maximizer for Pharm.

Proof. Suppose, for contradiction, the existence of a maximizer Wmax for Pharm in
Bγ . Then the Lagrangian multiplier rule implies that there exists a (non-negative)
Lagrangian multiplier σ2 such that

σ2Wmax = ∂P[Wmax] = βĀ2Wmax.

In particular, Wmax is an L2-eigenfunction to Ā2 with corresponding eigenvalue
σ2/β. This is the desired contradiction because the point spectrum of Ā2 is empty
due to lemma 2.5.

4.0.1. On the weak convergence of unimodal, even and non-negative functions

For the sake of clarity we proceed with some remarks on the strong compactness
of weakly convergent sequences from U ∩ N ∩ L2 as this problem becomes relevant
in our existence proof for solitons. Strong compactness criteria are, in principle,
provided by the concentration compactness method from [17], but since we consider
only functions from U ∩ N here, the arguments are simplified.

Consider a sequence (Wn)n ⊂ Sγ = U ∩ N ∩ Bγ that converges weakly in L2 to
some limit W∞ ∈ Sγ . Passing to a subsequence, we can always assume that γn =
1
2‖Wn‖2

2 → γ̄∞ for some γ̄∞ with γ∞ � γ̄∞ � γ, where γ∞ = 1
2‖W∞‖2

2. For γ∞ =
γ̄∞ the convergence of norms forces the convergence Wn → W∞ to be strong in L2,
and we are done in this case.

In the case where γ̄∞ > γ∞ the convergence cannot be strong as some amount
of the ‘mass’ of the measures µn = Wn(ϕ)2 dϕ disappears when passing to µ∞ =
W∞(ϕ)2 dϕ. However, since all functions are non-negative, unimodal and even, the
annihilation of mass is governed by only two elementary processes (see figure 7).
The weakly convergent sequence can form a peak at the origin and/or a ‘fat’ tail,
where ‘fat’ means

lim
L→∞

lim
n→∞

∫ −L

−∞
W 2

n(ϕ) dϕ +
∫ ∞

L

W 2
n(ϕ) dϕ > 0,

so that some non-negligible amount of the norm is transferred to infinity.
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The first observation is that a peak does not contribute to the potential energy P.
In fact, if the height of the peak is of order 1/ε with ε � 1, then the norm constraint
1
2‖W‖2 � γ implies that the width of the peak is of order ε2, and thus the peak
disappears after applying the averaging operator A. More rigorously, lemma 2.5
guarantees that AWn converges strongly to AW∞ on each compact subset of R.
Consequently, if the strong convergence fails due only to the formation of a peak,
we still have P(Wn) → P(W∞).

The formation of a tail, however, is much more crucial as this, in general, implies
P(Wn) � P(W∞). Recall the maximizing sequence Un for Pharm from (4.2) having
the property that all mass of the measures Un(ϕ)2 dϕ is contained in a fat ‘tail’ with
increasing support and decreasing height, so that the weak limit is zero. Even worse,
since the spectrum of A2 = β−1∂Pharm is continuous, each maximizing sequence
for Pharm is expected to have this property, so we conclude that the formation of
tails is directly related to the non-existence of solitons for the harmonic chain.

Our strategy to prove the existence of solitons for nonlinear potentials is to show
that each sequence that maximizes P in Sγ is localized, so a ‘fat’ tail cannot be
formed. To this end we restrict our considerations to superquadratic potentials and
derive suitable tightness results.

4.1. Existence of solitons for genuinely superquadratic P
For the remainder of this section we require superquadratic growth conditions.

We start with the assumptions concerning the energy functional P as they appear
naturally in our existence proof. In §§ 4.2 and 4.3 we discuss the corresponding
properties of the atomic interaction potential Φ.

Definition 4.4. The functional P is called superquadratic on Sγ with γ > 0 if

P(sW ) � s2P(W ) for all W ∈ Sγ and all 1 � s �
√

2γ

‖W‖2
. (4.3)

Moreover, P is called genuinely superquadratic on Sγ if, in addition,

P (γ) > Pharm(γ) = βγ.

Note that, for each γ > 0, the harmonic functional Pharm is superquadratic, but
not genuinely superquadratic in Sγ .

Remark 4.5. Let P be superquadratic on Sγ . Then it is superquadratic on Sγ̃ for
all 0 � γ̃ � γ, and we have

P (γ2)
γ2

� P (γ1)
γ1

� β

for all 0 � γ1 � γ2 � γ. In particular, if P is genuinely superquadratic for γ1 � γ,
so it is for every γ2 with γ1 � γ2 � γ.

Remark 4.6. Let P be a superquadratic on Sγ . Then we have

〈∂P[W ], W 〉 � 2P(W ) (4.4)

for all W ∈ Sγ .
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Proof. In view of the continuity properties of P and ∂P it is sufficient to consider
the case ‖W‖2 < γ. For sufficiently small ε, (4.3) implies

ε−1(P((1 + ε)W ) − P(W )) � ε−1((1 + ε2) − 1)P(W ) = (2 + ε)P(W ),

and the limit ε → 0 gives (4.4).

We now formulate our main technical result concerning the tightness of maximiz-
ing sequences. Roughly speaking, ‘fat’ tails are not energetically optimal as their
contributions to P and Pharm are comparable, and peaks are not optimal as they
do not contribute to the potential energy at all. These naive explanations can be
stated rigorously as follows.

Lemma 4.7. For any δ > 0, the set

Sγ,δ = {W ∈ Sγ : P(W ) − β 1
2‖W‖2

2 � δ}

is closed under weak convergence.

Proof. Let (Wn)n ⊂ Sγ be a given sequence such that Wn → W∞ as n → ∞ weakly
in L2, and P(Wn) � βγn + δ with γn = 1

2‖Wn‖2
2. Without loss of generality, we can

assume that 1
2‖Wn‖2

2 → γ̄∞ for some γ̄∞ with γ∞ � γ̄∞ � γ and γ∞ = 1
2‖W∞‖2

2.
It remains to show that P(W∞) � βγ∞ + δ. For n ∈ N ∪ {∞} we set

W̃n := Wn|[−m,+m], Ŵn := Wn − W̃n, (4.5)

where m > 0 is some constant to be chosen below, and this definition implies

‖Wn‖2
2 = ‖W̃n‖2

2 + ‖Ŵn‖2
2. (4.6)

Our strategy for this proof is to establish the approximations

P(Wn) ≈ P(W̃n) + P(Ŵn), P(Ŵn) ≈ Pharm(Ŵn),

where the approximation error becomes arbitrarily small if both m and n are suffi-
ciently large. To show this, we fix ε > 0 and suppose m to be sufficiently large such
that

1
2‖Ŵ∞‖2

2 + |P(W∞) − P(W̃∞)| +
∫ m

m−1
W∞(ϕ) dϕ � ε. (4.7)

Such a choice for m exists as W̃∞ → W∞ strongly in L2 as m → ∞. Since m is
finite lemma 2.5 provides AW̃n → AW̃∞ strongly in L2 as n → ∞, and thus we
find

|‖W̃∞‖2
2 − ‖W̃n‖2

2| + |P(W̃∞) − P(W̃n)| +
∣∣∣∣
∫ m

m−1
W∞(ϕ) − Wn(ϕ) dϕ

∣∣∣∣ � ε (4.8)

for all sufficiently large n. Moreover, combining 1
2‖Ŵ∞‖2

2 � ε and |‖W̃∞‖2
2 −

‖W̃n‖2
2| � ε with (4.6) and γn → γ̄∞ shows

1
2‖Ŵn‖2

2 = γn − 1
2‖W̃n‖2

2 � γ̄∞ − 1
2‖W̃∞‖2

2 + Cε � γ̄∞ − γ∞ + Cε (4.9)
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with C being independent of n and ε. In virtue of∫ m

m−1
W∞(ϕ) dϕ � ε and

∣∣∣∣
∫ m

m−1
W∞(ϕ) − Wn(ϕ) dϕ

∣∣∣∣ � ε,

and since all functions Wn are unimodal, non-negative and even, we also obtain

0 � (AŴn)(ϕ) � (AWn)(ϕ) � (AWn)(m − 1
2 ) �

∫ m

m−1
Wn(ϕ̃) dϕ̃ � 2ε

for large n and all ϕ with |ϕ| � m − 1
2 . This provides

‖AŴn‖∞ � Cε,

∫
||ϕ|−m|�1/2

Φ(AWn) dϕ � Cε (4.10)

and, exploiting the expansion of Φ(r) for small r from (2.9), we find

P(Ŵn) � 1
2 (β + o(ε))

∫
R

(AŴn)(ϕ)2 dϕ

� 1
2 (β + o(ε))‖Ŵn‖2

2

� β(γ̄∞ − γ∞) + Cε (4.11)

due to (4.9). Finally, by (4.5), we have

P(Wn) =
∫

|ϕ|�m−1/2
Φ(AWn) dϕ +

∫
||ϕ|−m|�1/2

Φ(AWn) dϕ

+
∫

|ϕ|�m+1/2
Φ(AWn) dϕ

=
∫

|ϕ|�m−1/2
Φ(AW̃n) dϕ +

∫
||ϕ|−m|�1/2

Φ(AWn) dϕ

+
∫

|ϕ|�m+1/2
Φ(AŴn) dϕ

� P(W̃n) +
∫

||ϕ|−m|�1/2
Φ(AWn) dϕ + P(Ŵn),

and |P(W∞) − P(W̃∞)| � ε and |P(W̃∞) − P(W̃n)| � ε combined with (4.10) and
(4.11) imply

P(Wn) � P(W̃∞) + P(Ŵn) + Cε � P(W∞) + β(γ̄∞ − γ∞) + Cε.

Using Wn ∈ Sγ,δ we conclude that P(W∞) � γ∞ + δ − Cε, and this completes the
proof because ε was chosen arbitrarily.

As a direct consequence of lemma 4.7 we find in the genuinely superquadratic
case that each maximizing sequence must be localized and hence contain a strongly
convergent subsequence.
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Corollary 4.8. Let P be genuinely superquadratic on Sγ , and suppose that the
sequence (Wn)n ⊂ Sγ is a maximizing sequence for P on Sγ , which means that

lim
n→∞

P(Wn) = P (γ) = βγ + δ > Pharm(γ)

for some δ > 0. Then there exists a subsequence, still denoted by (Wn)n, and
W∞ ∈ ∂Sγ such that Wn → W∞ strongly in L2, and hence P(W∞) = P (γ).

Proof. We choose the subsequence and W∞ ∈ Sγ such that Wn → W∞ weakly
in L2. Thanks to (4.3) we know that P(sWn) � s2P(Wn) for all s > 1, and this
implies γn = 1

2‖Wn‖2
2 → γ as n → ∞, because otherwise the sequence (Wn)n could

not be maximizing. Therefore, with

W̃n =
√

2γ√
2γn

Wn ∈ ∂Sγ

we find P(W̃n) → βγ + δ and W̃n → W∞ weakly in Sγ , and lemma 4.7 provides

P(W∞) � βγ∞ + δ

with γ∞ = 1
2‖W∞‖2

2 � γ. In order to show W∞ ∈ ∂Sγ we again use (4.3) and find

βγ + δ = P (γ) � P
(√

γ

γ∞
W∞

)
� γ

γ∞
P(W∞) � γ

γ∞
(βγ∞ + δ) � βγ +

γ

γ∞
δ.

Since δ > 0 we conclude that γ∞ = γ, which means ‖Wn‖2 → ‖W∞‖2, and this
implies that the convergence Wn → W∞ is strong in L2.

The combination of theorem 2.3 and corollary 4.8 immediately provides the
desired existence result for non-negative and unimodal solitons.

Corollary 4.9. If P is genuinely superquadratic on Sγ , then there exists a max-
imizer W of P in Sγ . This maximizer is a non-negative and unimodal soliton with
1
2‖W‖2

2 = γ.

Finally, we characterize the soliton speed of maximizers of P.

Remark 4.10. The soliton from corollary 4.9 is supersonic, which means that σ2 >
β.

Proof. Testing (2.7) with W , and using (4.4), we find σ2‖W‖2
2 � 2P(W ) > 2βγ.

4.2. Criteria for superquadratic P
Definition 4.11. The potential Φ is called superquadratic on the interval [0,

√
2γ]

if
Φ(sr) � s2Φ(r)

holds for all r � 0 and all s � 1 with rs ∈ [0,
√

2γ].

Remark 4.12. If the potential Φ is superquadratic on the interval [0,
√

2γ], then
P is superquadratic on Sγ .
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Proof. Let W ∈ Sγ be fixed, and let s be arbitrary with 1 � s � √
2γ/‖W‖2.

For all r = (AW )(ϕ) �
√

‖W‖2 we have rs � √
2γ, and hence Φ(s(AW )(ϕ)) �

s2Φ((AW )(ϕ)) for (almost) all ϕ ∈ R. Finally, integration with respect to ϕ yields
the desired result.

Definition 4.11 implies that Φ is superquadratic on the interval [0,
√

2γ] if and
only if the function

βΦ(r) := 2
Φ(r)
r2 (4.12)

is non-decreasing on [0,
√

2γ] (note that βΦ(0) = β in the sense of assumption 2.4).
To obtain further characterizations of superquadratic growth we consider the fol-
lowing differential inequalities:

(C1) Φ′(r)r − 2Φ(r) � 0 for all r ∈ [0,
√

2γ];

(C2) Φ′′(r)r − Φ′(r) � 0 for all r ∈ [0,
√

2γ];

(C3) Φ′′′(r) � 0 for all r ∈ [0,
√

2γ].

Remark 4.13. For all γ > 0 and all sufficiently smooth potentials Φ with Φ(0) =
Φ′(0) = 0, we have

(C3) =⇒ (C2) =⇒ (C1),

where (C1) holds if and only if Φ is superquadratic on [0,
√

2γ].

Proof. (C3) is equivalent to d(Φ′′(r)r − Φ′(r))/dr � 0, and in view of Φ′′(0)0 −
Φ′(0) = 0 we find (C3) ⇒ (C2). Moreover, the implication (C2) ⇒ (C1) can be
proven similarly, and (C1) is equivalent to dβΦ(r)/dr � 0.

We proceed with a remark concerning the relation between superquadratic growth
and the convexity of Φ. In our context, of course, non-convex superquadratic poten-
tials are forbidden, but solitons can still be shown to exist for such potentials
(see [10] and our comments below).

Remark 4.14. (C2) implies the convexity of Φ (on the interval [0,
√

2γ]), but there
exist non-convex potentials satisfying (C1).

Proof. Suppose that Φ satisfies (C2). Then, the comparison principle for ordinary
differential equations gives Φ′(r) � βr for some β � 0, and (C2) implies Φ′′(r) � β
for all r > 0. Now let η > 0 be arbitrary, and consider the potential

Φη(r) = r2(1 + 2π−1 arctan(η(r − 1))),

which is superquadratic on [0,∞) as the function βΦη
is strictly increasing by

construction. A direct calculation yields

Φ′′
η(1 + η−1) = π−1(3 + 3π + 2η − η2),

hence Φη is not convex for large η.

Another remark concerns the convexity of forces, which become important in the
context of atomistic Riemann problems [14].
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Remark 4.15. (C3) implies the convexity of Φ′ (on the interval [0,
√

2γ]), but there
exist potentials Φ that satisfy (C2) with non-convex derivative.

Proof. The first statement is obvious, and to obtain the second claim we argue as
follows. We choose a non-negative, but not monotonically increasing, function h
with h(0) = 0, and compute Φ′ as solution to the ordinary differential equation
h(r) = Φ′′(r)r − Φ′(r). Then each local extremum of h for r > 0 is a turning point
of Φ′, and vice versa.

4.3. Criteria for genuinely superquadratic P
In order to complete the existence proof for solitons we must show that, for

a given superquadratic potential Φ, the corresponding energy functional P is in
fact genuinely superquadratic on Sγ . In the simplest case there is no harmonic
contribution to P, and then there exist solitons with arbitrary small γ. This holds
in particular for all homogenous potentials Φ(r) = crα with c > 0 and α > 2.

Remark 4.16. Let Φ be superquadratic on [0,∞) with β = Φ′′(0) = 0 and Φ(r) > 0
for all r > 0. Then P is genuinely superquadratic on Sγ for all γ > 0.

The case when β > 0 is more involved and needs a better understanding of the
balance between the harmonic and anharmonic contributions to P. Our strategy in
this case is to find a particular function W0 such that P(W0) > 1

2β‖W0‖2
2, and this

in turn implies the existence of solitons for all γ � 1
2‖W0‖2

2.

Lemma 4.17. Suppose that Φ is superquadratic on [0,∞) and that the function βΦ

from (4.12) satisfies limr→∞ βφ(r) > 3
2β = 3

2βΦ(0). Then P is genuinely super-
quadratic on Sγ for all sufficiently large γ.

Proof. For fixed 0 < ε < 1 and W =
√

2γWCL with WCL as in (3.3) we find

P(W ) = 2
∫ 1

0
Φ(

√
2γs) ds

� 2γ

∫ 1

0
βΦ(

√
2γs)s2 ds

� 2γβΦ(0)
∫ ε

0
s2 ds2γβΦ(ε

√
2γ)

∫ 1

ε

s2 ds

= 2
3βγ

(
ε3 +

βΦ(
√

2γε)
β

(1 − ε3)
)

,

and conclude that P(W ) > βγ for all sufficiently large γ.

Lemma 4.17 implies the existence of solitons for weakly superquadratic potentials
as for instance

Φ(r) = 1
2βr2(1 + c ln(1 + r)), Φ(r) = 1

2βr2(1 + d arctan(r))

with β � 0, c > 0 arbitrary and d > 0 sufficiently large.
Next we evaluate the sequence (Un)n from (4.2) and find an existence criterion

for solitons that is very close to that given in [10].
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Lemma 4.18. Let Φ be superquadratic on [0,∞), and suppose

Φ(r) � 1
2βr2 + εrp

for all r � 0 with two constants ε > 0 and p > 2. Then there exists γ0 > 0 such that
P is genuinely superquadratic on Sγ for all γ > γ0. Moreover, β = 0 or 2 < p < 6
implies γ0 = 0.

Proof. Let γ > 0 be arbitrary and consider the sequence (Un)n from (4.2). Then,

P(Un) − Pharm(Un) � εPnl(Un)

with

Pnl(Un) =
∫

R

(AUn)p dϕ

�
∫

|ϕ|�n−1/2

(
Θ

(
π

4n

)
Un

)p

dϕ

�
(

Θ

(
π

4n

))p(2γ

n

)p/2

n

∫ 1−1/2n

−1+1/2n

(cos( 1
2πϕ))p dϕ

� cn1−p/2.

We conclude that

P(Un) � Pharm(Un) + cγp/2n1−p/2 > 0

for some positive constant c > 0, and according to lemma 4.1 there exists a constant
c̃ > 0 such that

P(Un) � cγp/2n1−p/2 + βγ(1 − c̃n−2).

Finally, for β = 0, or sufficiently large γ, or −1 + 1
2p < 2 and n large, we find

P(Un) > βγ.

As an application of lemma 4.18 we find the following existence result for uni-
modal solitons with non-negative W . Let Φ be analytic with non-negative coeffi-
cients, i.e.

Φ(r) = 1
2βr2 +

∞∑
i=3

κir
i

with κi � 0 for all i � 3. Then Φ is superquadratic on [0,∞) and genuinely super-
quadratic for large γ. Moreover, if at least one of the coefficients κ3, κ4 and κ5 is
positive, then Φ is genuinely superquadratic for all γ > 0.

Since the travelling wave equation (2.7) is invariant under the reflection symmetry

W � −W, Φ(r) � Φ(−r),

we also find existence results for solitons with nonpositive W . For instance, the
Toda potential ΦToda(r) = e−r + r − 1 is not superquadratic for r � 0 but the
reflected potential Φ̃Toda(r) = er − r − 1 has solitons with arbitrary small γ (see
lemma 4.18). Consequently, the Toda chain allows for solitons with W � 0.
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Finally, we summarize some other superquadratic growth conditions for Φ under
which the existence of solitons was proven by other authors.

(i) Φ′(r)r > 2Φ(r): Friesecke and Wattis [10] prove the existence of supersonic
solitons with prescribed potential energy P � P0 above some critical value
P0 � 0. Moreover, Φ(r) = 1

2βr2 + εrp(1 + o(r)) with ε > 0 and p as in
lemma 4.18 implies P0 = 0.

(ii) Φ(r) = 1
2βr2 + Φnl(r) and Φ′

nl(r)r � αΦnl(r) for all r � 0 and some α > 2:
Smets and Willem [21] establish the existence of solitons with prescribed
supersonic speed σ2 > β = Φ′′(0).

(iii) Φ′
nl(r)r � αΦnl(r) for all r � 0 and some α > 2, or Φ′′

nl(r)r � α̃Φ′
nl(r) for all

r � 0 and some α̃ > 1: Pankov and Pflüger [18] prove under both assumptions
the existence of a family of solitons parametrized by σ2 > β = Φ′′(0).

(iv) Φ′(r) � 0 for all r � 0 and lim infr→∞ r−α(Φ′(r)r − αΦ(r)) > 0 and some
α > 2: Schwetlick and Zimmer [19] show that for each supersonic speed σ2 >
σcrit � β = Φ′′(0) there exists a soliton.

All these existence results imply that the soliton profile W belongs to N , but since
they do not require the convexity of Φ, they do not provide W ∈ U .

4.4. Solitons as limits of wavetrains

It is natural to investigate whether wavetrains converge to solitons when the peri-
odicity length L tends to ∞. In this section we establish such a convergence result
for unimodal and non-negative wavetrains. To this end we allow for arbitrary values
of L ∈ (0,∞] and write AL for the operator A acting on L2([−L, L]). Consequently,
we introduce

SL,γ := U ∩ N ∩ BL,γ ,

where BL,γ denotes the ball of radius
√

2γ in L2([−L, L]), and consider

PL := sup
W∈SL,γ

∫ L

−L

Φ((ALW )(ϕ)) dϕ.

Moreover, we define an embedding operator EL : SL,γ → S∞,γ by

(ELWL)(ϕ) =

{
WL(ϕ) for |ϕ| � L,

0 otherwise.

Inspired by the notion of Γ -convergence we show that the energy of each periodic
profile can be approximated by localized profiles and prove that each localized
profile can be recovered by periodic profiles.

Lemma 4.19. For each γ > 0 and L < ∞ there exists a constant CL,γ of order
o(

√
γ/L) such that

P∞(ELWL) + CL,γ � PL(WL) � P∞(ELWL) (4.13)
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holds for all WL ∈ SL,γ . Moreover, for any W∞ ∈ S∞,γ there exists a family of
functions (WL)L<∞ such that

PL(WL) L→∞−−−−→ P∞(W∞). (4.14)

Proof. First let WL ∈ SL,γ be fixed, and note that

(A∞ELWL)(ϕ) = (ELALWL)(ϕ), ||ϕ| − L| � 1
2 , (4.15)

hold by construction. For ||ϕ| − L| � 1
2 we have 0 � WL(ϕ) � WL(L − 1) due to

WL ∈ U ∩ N , and hence

0 � (A∞ELWL)(ϕ) � (ELALWL)(ϕ) �
∫ ϕ+1/2

ϕ−1/2
WL(ϕ̃) dϕ̃ = WL(L − 1).

Moreover, WL ∈ U ∩ N gives (A∞ELWL)(ϕ) � (ELALWL)(ϕ) and

2γ �
∫ L−1

−L+1
WL(ϕ)2 dϕ � 2(L − 1)(WL(L − 1))2,

and we therefore have

0 � (A∞ELWL)(ϕ) � (ELALWL)(ϕ) � ε :=
√

γ

L − 1
, ||ϕ| − L| � 1

2 . (4.16)

The estimate (4.13) now follows from (4.15) and (4.16) via

0 � PL(WL) − P∞(ELWL)

�
∫ ∞

−∞
Φ((ELALWL)(ϕ)) − Φ((A∞ELWL)(ϕ)) dϕ

�
∫

||ϕ|−L|�1/2
Φ((ELALWL)(ϕ)) − Φ((A∞ELWL)(ϕ)) dϕ

� f(ε),

where f(ε) = 2ε sup0�r�ε Φ′(r) = o(ε). Now let W∞ ∈ S∞,γ be fixed, and define
WL ∈ SL,γ by

(WL)(ϕ) = W∞(ϕ) for |ϕ| � L.

Then, in general we have W∞(ϕ) 
= (ELW )L(ϕ) = 0 for ϕ > L but always ELWL →
W∞ strongly in L2(R) as L → ∞. This implies P∞(ELWL) − P∞(W∞) → 0, and
due to (4.13) we find (4.14).

Lemma 4.19 now provides the convergence of suprema.

Corollary 4.20. We have PL(γ) L→∞−−−−→ P∞(γ).

Proof. For given L < ∞, let WL be a maximizer of P on SL,γ . Then (4.13) implies

PL(γ) � P∞(ELWL) + o

(√
γ

L

)
� P∞(γ) + o

(√
γ

L

)
,
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and hence lim supL→∞ PL(γ) � P∞(γ). Moreover, in view of (4.14) we have

P∞(W∞) � lim inf
L→∞

PL(γ)

for all W∞, and this shows P∞(γ) � lim infL→∞ PL(γ).

We finally show that solitons can be constructed as limits of wavetrains. More
precisely, corollary 4.20 combined with corollary 4.8 provides the following conver-
gence result for maximizers.

Corollary 4.21. Let P be genuinely superquadratic on Sγ , and, for each L < ∞,
let WL be a maximizer of P in SL,γ . Then, for any sequence (Ln)n with Ln → ∞
there exist a subsequence, still denoted by Ln, and a maximizer W∞ ∈ S∞,γ , such
that ELnWLn

→ W∞ strongly in L2(R).
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