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Abstract

In this paper we derive sufficient conditions for the permanence and ergodicity of a
stochastic predator–prey model with a Beddington–DeAngelis functional response. The
conditions obtained are in fact very close to the necessary conditions. Both nondegenerate
and degenerate diffusions are considered. One of the distinctive features of our results
is that they enable the characterization of the support of a unique invariant probability
measure. It proves the convergence in total variation norm of the transition probability to
the invariant measure. Comparisons to the existing literature and matters related to other
stochastic predator–prey models are also given.
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1. Introduction

In this paper we focus on stochastic predator–prey models with a Beddington–DeAngelis
functional response. In ecology, a functional response is the intake rate of a consumer as a
function of food density. It is associated with the numerical response that is the reproduction rate
of a consumer as a function of food density. Holling [6] initiated the study of functional response,
where he introduced several types of such responses. The so-called Holling-type II functional
response is characterized by a decelerating intake rate following from the assumption that the
consumer is limited by its capacity to process food. Similar to Holling-type functional response
with an extra term describing mutual interference by predators, Beddington [1] and DeAngelis
et al. [3] introduced the nowadays well-known Beddington–DeAngelis functional response; see
also [25] and the references therein. Such a model represents most of the qualitative features
of the ratio-dependent models but avoids the ‘low densities problem’.

As the building blocks of the bio- and eco-systems, the basic premise of the predator–prey
models is that species compete, evolve, and disperse for the purpose of seeking resources to
sustain their struggle and existence. Denote the two population sizes at time t by x(t) and y(t),
respectively. Then a general deterministic model called Kolmogorov’s predator–prey model
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takes the form
ẋ(t) = xf (x, y), ẏ(t) = yg(x, y).

When f (x, y) = b − py and g(x, y) = cx − d, we have the so-called Lotka–Volterra model.
In addition to the study of deterministic models, stochastic predator–prey models have

received increasing and resurgent attention. Stochastic models can be considered as the above
systems subject to Brownian motion perturbations. Rudnicki [21] provided a detailed analysis
for stability in distribution of a stochastic Lotka–Volterra model. Meanwhile, Mao et al. [19]
and Du and Sam [4] studied general stochastic Lotka–Volterra models using Lyapunov-type
functions and exponential martingale inequalities. Recently, Lotka–Volterra models in random
environments have also gained much attention [26]. In addition, there is a resurgent interest in
treating evolutionary games [5], in which Lotka–Volterra-type equations are one of the central
models. Concerning different functional responses, [17] and [18] dealt with the stochastic
predator–prey model with Holling functional response of the form

dx(t) = x(t)

(
a1 − b1x(t)− c1y(t)

1 + x(t)

)
dt + αx(t) dB1(t), (1.1)

dy(t) = y(t)

(
−a2 − b2y(t)+ c2x(t)

1 + x(t)

)
dt + βy(t) dB2(t), (1.2)

where ai , bi , ci , α, and β are appropriate constants, and Bi(·) are standard Brownian motions.
Ji et al. [10] studied the predator–prey model with modified Leslie–Gower and Holling-type
II schemes with stochastic perturbation; see also [9] in which stochastic ratio-dependent
predator–prey models were considered. Moreover, several stochastic models with the well-
known Beddington–DeAngelis functional response were also studied in [8], [16], and [24].
In ecology models, an important concept is stochastic permanence, which indicates that the
species will survive forever. Much effort has been devoted to finding the conditions needed for
stochastic permanence. In some of the aforementioned papers, using suitable Lyapunov-type
functions, some conditions for extinction or permanence were also provided and ergodicity
was investigated; see [8] and [18]. However, as shown later in Section 4 of this paper, their
conditions are restrictive and not close to a necessary condition. In other words, there is a
considerably large set of parameters satisfying neither their conditions for extinction nor for
permanence. Moreover, their results are not applicable to degenerate cases. Thus, although
interesting, their work leaves a sizable gap. One of the main goals of this paper is to close this
gap. We aim to provide a sufficient and almost necessary condition for permanence (as well as
ergodicity) for the following model with a Beddington–DeAngelis functional response:

dx(t) = x(t)

(
a1 − b1x(t)− c1y(t)

m1 +m2x(t)+m3y(t)

)
dt + αx(t) dB1(t), (1.3)

dy(t) = y(t)

(
−a2 − b2y(t)+ c2x(t)

m1 +m2x(t)+m3y(t)

)
dt + βy(t) dB2(t), (1.4)

where ai, bi, ci, mi are positive constants for i = 1, 2,m3 ≥ 0, α �= 0, β �= 0, and B1(·), B2(·)
are two mutually independent Brownian motions. When m3 = 0, the functional response is
said to be of Holling-type II. Moreover, in this paper, we also consider the degenerate case
B1(·) = B2(·).

The rest of the paper is arranged as follows. In Section 2 we derive a threshold that is used
to determine extinction and permanence. To establish the desired result, after considering the
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dynamics on the boundary, we obtain a threshold λ that enables us to determine the asymptotic
behavior of the solution. In particular, it is shown that if λ < 0, the predator will eventually
die out. In the λ > 0 case, the solution converges to a stationary distribution in total variation
norm. Moreover, ergodicity is established. In Section 2 we concentrate on the nondegenerate
case, whereas in Section 3 we treat the degenerate case B1(·) = B2(·). In the degenerate case,
under usual conditions imposed on the Lie algebra generated by the drift and the diffusion
coefficients, we investigate the controllability of the associated control systems and use certain
results in [15] to prove analogous results to the nondegenerate case; namely, the existence and
uniqueness of an invariant probability measure as well as the convergence in total variation of
the transition probability. Moreover, the support of the invariant measure is described. Finally,
in Section 4 we provide further discussion and insight. Among other things, we point out that
the techniques used in this paper can be applied to other stochastic predator–prey models.

2. Threshold between extinction and permanence

Let (�,F , {Ft }t≥0,P) be a complete filtered probability space with the filtration {Ft }t≥0
satisfying the usual condition, i.e. it is increasing and right-continuous while F0 contains all
P-null sets. Let B1(t) and B2(t) be two Ft -adapted, mutually independent Brownian motions.
It is well known that for any initial value (x(0), y(0)) ∈ R

2,◦
+ (the interior of R2+), there exists

a unique global solution to (1.3) and (1.4) that remains in R
2,◦
+ almost surely (a.s.); see [8]. To

proceed, we first consider the equation on the boundary:

dϕ(t) = ϕ(t)(a1 − b1ϕ(t)) dt + αϕ(t) dB1(t). (2.1)

By utilizing a comparison theorem, it is easy to check that x(t) ≤ ϕ(t) for all t ≥ 0 a.s. provided
that x(0) = ϕ(0) > 0 and y(0) > 0. If a1 ≤ α2/2, we can easily verify [7, Theorem 3.1(2),
p. 447] to show that limt→∞ ϕ(t) = 0 a.s. Hence, limt→∞ x(t) = 0 a.s., which implies that
limt→∞ y(t) = 0 a.s. For this reason, we suppose that a1 > α2/2 throughout the rest of this
paper.

Defining θ(t) = ln ϕ(t), (2.1) can be written as

dθ(t) =
(
a1 − α2

2
− b1 exp(θ(t))

)
dt + α dB1(t).

By solving the Fokker–Planck equation, we show that the process θ(t) has a unique stationary
distribution with density given by f ∗(x) = C exp(qx−a exp(x)), where q = 2a1/α

2 −1 > 0,
a = 2b1/α

2 > 0, and C is the normalizing constant. Since θ(t) = ln ϕ(t), it is easily seen that
ϕ(t) has a unique stationary distribution μ−(·) with density φ∗(x) = Cxq−1e−ax, x > 0. It
turns out that C = aq/	(q) with 	(·) being the gamma function and that μ−(·) is the gamma
distribution with parameters q and a.

By the strong law of large numbers type result [22, Theorem 3.16, p. 46], we deduce that

lim
t→∞

1

t

∫ t

0
ϕp(s) ds = aq

	(q)

∫ ∞

0
xp+q−1e−ax dx

= 	(p + q)

ap	(q)

:= Kp < ∞ a.s. for all p > 0. (2.2)
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In particular, with p = 1, K1 = q/a = (a1 − α2/2)/b1. This property implies that

lim
t→∞

1

t
ln ϕ(t) = lim

t→∞

(
1

t

∫ t

0

(
a1 − α2

2
− b1ϕ(s)

)
ds

)
+ α lim

t→∞
B1(t)

t
= 0.

Consequently,

lim sup
t→∞

1

t
ln x(t) ≤ 0 (2.3)

and

lim sup
t→∞

1

t

∫ t

0
xp(s) ds ≤ Kp. (2.4)

Let ψ(t) be the solution to

dψ(t) = ψ(t)

(
−a1 + c2

m2
− b2ψ(t)

)
dt + βψ(t) dB2(t).

Then y(t) ≤ ψ(t) for all t ≥ 0 a.s. provided that y(0) = ψ(0) > 0. Hence, with probability 1,
we have

lim sup
t→∞

1

t
ln y(t) ≤ 0, (2.5)

and

lim sup
t→∞

1

t

∫ t

0
yp(s) ds ≤ K̂p for some constant K̂p > 0. (2.6)

Define the threshold

λ := −a2 − β2

2
+

∫ ∞

0

c2x

m1 +m2x
μ−(dx) = −a2 − β2

2
+ aq

	(q)

∫ ∞

0

c2x
qe−ax

m1 +m2x
dx.

Theorem 2.1. If λ < 0 then the predator is eventually extinct, that is, limt→∞ y(t) = 0 a.s.
Moreover, as t → ∞ the distribution of x(t) converges weakly to μ−(·), that is, the gamma
distribution with parameters q = 2a1/α

2 − 1 and a = 2b1/α
2, respectively.

Proof. Let y(t) be the solution to

dy(t) = y(t)

(
−a2 − b2y(t)+ c2ϕ(t)

m1 +m2ϕ(t)

)
dt + βy(t) dB2(t),

where ϕ(t) is the solution to (2.1). By using the comparison theorem, y(t) ≤ y(t) a.s. given
that ϕ(0) = x(0) and y(0) = y(0). In view of the Itô formula and the ergodicity of ϕ(t), we
have

lim sup
t→∞

1

t
ln y(t) = lim sup

t→∞

(
1

t

∫ t

0

(
−a2 − β2

2
− b2y(s)+ c2ϕ(s)

m1 +m2ϕ(s)

)
ds + β

B2(t)

t

)

≤ lim
t→∞

1

t

∫ t

0

(
−a2 − β2

2
+ c2ϕ(s)

m1 +m2ϕ(s)

)
ds + β lim

t→∞
B2(t)

t

= λ < 0 a.s.

That is, y(t) converges to 0 at an exponential rate a.s. The remaining part of the assertion can
be proved by the arguments in [21, Lemma 7]. �
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Theorem 2.2. If λ > 0, the process (x(t), y(t)) has an invariant probability measure concen-
trated on R

2,◦
+ .

Proof. For any initial value (x(0), y(0)) ∈ R
2,◦
+ , we have

1

t
ln y(t) = −1

t

∫ t

0
b2y(s) ds + 1

t

∫ t

0

(
−a2 − β2

2
+ c2ϕ(s)

m1 +m2ϕ(s)

)
ds

− 1

t

∫ t

0

(
c2ϕ(s)

m1 +m2ϕ(s)
− c2x(s)

m1 +m2x(s)

)
ds

− 1

t

∫ t

0

(
c2x(s)

m1 +m2x(s)
− c2x(s)

m1 +m2x(s)+m3y(s)

)
ds + β

B2(t)

t

≥ 1

t

∫ t

0

(
−a2 − β2

2
+ c2ϕ(s)

m1 +m2ϕ(s)

)
ds

− 1

t

∫ t

0

(
c2

m1
(ϕ(s)− x(s))+

(
c2m3

m1m2
+ b2

)
y(s)

)
ds + β

B2(t)

t
. (2.7)

Letting t → ∞, (2.5) and (2.7) yield that

lim inf
t→∞

1

t

∫ t

0

(
c2

m1
(ϕ(s)− x(s))+

(
c2m3

m1m2
+ b2

)
y(s)

)
ds ≥ λ a.s. (2.8)

Similarly, we have

1

t
ln x(t) = 1

t

∫ t

0

(
a1 − α2

2
− b1ϕ(s)

)
ds

+ 1

t

∫ t

0

(
b1(ϕ(s)− x(s))− c1y(s)

m1 +m2x(s)+m3y(s)

)
ds + α

B1(t)

t

≥ 1

t

∫ t

0

(
a1 − α2

2
− b1ϕ(s)

)
ds + 1

t

∫ t

0

(
b1(ϕ(s)− x(s))− c1y(s)

m1

)
ds

+ α
B1(t)

t
. (2.9)

From (2.2), (2.3), and (2.9), it follows that

lim inf
t→∞

1

t

∫ t

0

(
−b1(ϕ(s)− x(s))+ c1

m1
y(s)

)
ds ≥ 0 a.s. (2.10)

Dividing both sides of (2.8) and (2.10) by c2/m1 and b1, respectively, and adding them side by
side, we have

lim inf
t→∞

1

t

∫ t

0
y(s) ds ≥ b1m

2
1m2λ

c1c2m2 + b1c2m1m3 + b1b2m
2
1m2

=: m > 0 a.s.

For 0 < h̄ < m < H < ∞, Hölder’s inequality yields that

1

t

∫ t

0
1{y(s)≥h̄} y(s) ds ≤

(
1

t

∫ t

0
1{y(s)≥h̄} ds

)1/2(1

t

∫ t

0
y2(s) ds

)1/2

,
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which implies that

lim inf
t→∞

1

t

∫ t

0
1{y(s)≥h̄} ds ≥

(
lim inf
t→∞

1

t

∫ t

0
1{y(s)≥h̄} y(s) ds

)2(
lim sup
t→∞

1

t

∫ t

0
y2(s) ds

)−1

≥
(

lim inf
t→∞

1

t

∫ t

0
y(s) ds − h̄

)2(
lim sup
t→∞

1

t

∫ t

0
y2(s) ds

)−1

≥ (m− h̄)2

K̂2
a.s. (2.11)

In addition, (2.4) and (2.6) imply that

lim sup
t→∞

1

t

∫ t

0
1{y(s)≥H } ds ≤ 1

H
lim sup
t→∞

1

t

∫ t

0
y(s) ds ≤ K̂1

H
a.s., (2.12)

lim sup
t→∞

1

t

∫ t

0
1{x(s)≥H } ds ≤ 1

H
lim sup
t→∞

1

t

∫ t

0
x(s) ds ≤ K1

H
a.s. (2.13)

It follows from (2.11)–(2.13) that for h̄ < m/2, H > 8(K1 + K̂1)K̂2/m
2,

lim inf
t→∞

1

t

∫ t

0
1{(x(s),y(s))∈A} ds ≥ (m− h̄)2

K̂2
− K1 + K̂1

H
>

m2

8K̂2
a.s., (2.14)

where A = {(x, y) : 0 < x ≤ H, h̄ ≤ y ≤ H }. By virtue of Fatou’s lemma, we have

lim inf
t→∞

1

t

∫ t

0
P(s, (x, y), A) ds ≥ m2

8K̂2
for all (x, y) ∈ R

2,◦
+ , (2.15)

where P(t, (x, y), ·) is the transition probability of (x(t), y(t)). By the invariance of M =
{x ≥ 0, y > 0} under (1.3) and (1.4), we can consider the Markov process (x(t), y(t)) on the
state space M. It is easy to show that (x(t), y(t)) has the Feller property. Thus, (2.15) implies
that there is an invariant probability measure μ∗ on M; see [20]. Since y(t) → 0 provided
that x(0) = 0, limt→∞ P(t, (0, y),K) = 0 for all compact set K ⊂ M. Thus, we must have
μ∗({x = 0, y > 0}) = 0 (equivalently μ∗(R2,◦

+ ) = 1). Furthermore, by the invariance of R
2,◦
+ ,

μ∗ is an invariant probability measure of (x(t), y(t)) on R
2,◦
+ . �

Since B1(·) and B2(·) are independent, the diffusion is nondegenerate. It is well known
that the existence of an invariant probability measure is equivalent to a positive recurrence.
Hence, the invariant probability is unique and the strong law of large numbers holds; see [14,
Theorems 3.1 and 3.3]. We have the following result.

Theorem 2.3. If λ > 0 then (1.3) and (1.4) have a unique invariant probability measure μ∗
with support R

2,◦
+ . Moreover,

(i) for any μ∗-integrable f (x, y) : R
2,◦
+ → R, we have

lim
t→∞

1

t

∫ t

0
f (x(s), y(s)) ds =

∫
f (x, y)μ∗(dx, dy) a.s. for all (x(0), y(0)) ∈ R

2,◦
+ ,

(ii) and
lim
t→∞ ‖P(t, (x, y), ·)− μ∗(·)‖ = 0 for all (x, y) ∈ R

2,◦
+ ,

where ‖ · ‖ is the total variation norm.
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Proof. Theorem 2.3(i) was proved in [14, Theorem 3.3]; we refer the reader to [12, Propo-
sition 5.1] (correction [13]) or [2] for the proof of Theorem 2.3(ii). �

As a direct corollary of Theorem 2.3, if λ > 0, systems (1.3) and (1.4) are stochastically per-
manent in the sense that for any ε > 0, there is some δ ∈ (0, 1) such that lim inf t→∞ P(t, x, y,

[δ, δ−1]2) > 1−ε. Moreover, from (2.4) and (2.6), it follows that we have the following limits:

lim
t→∞

1

t

∫ t

0
xp(s) ds =

∫
xpμ∗(dx, dy) a.s. for all (x(0), y(0)) ∈ R

2,◦
+ , p > 0,

lim
t→∞

1

t

∫ t

0
yp(s) ds =

∫
ypμ∗(dx, dy) a.s. for all (x(0), y(0)) ∈ R

2,◦
+ , p > 0.

3. Degenerate case

Suppose that B1(·) = B2(·) = W(·). We consider the following system:

dx(t) = x(t)

(
a1 − b1x(t)− c1y(t)

m1 +m2x(t)+m3y(t)

)
dt + αx(t) dW(t), (3.1)

dy(t) = y(t)

(
−a2 − b2y(t)+ c2x(t)

m1 +m2x(t)+m3y(t)

)
dt + βy(t) dW(t). (3.2)

Owing to the symmetry of the Brownian motion, we can suppose that α > 0. Since the
estimates in the previous section still hold for this case, we have limt→∞ y(t) = 0 when λ < 0
while x(t) converges weakly to the stationary distribution μ− of ϕ(t). In what follows, we
suppose that λ > 0 for which the process has an invariant probability measure μ∗ on R

2,◦
+ .

Setting ξ(t) = ln x(t) and η(t) = ln y(t), (3.1) and (3.2) can be expressed as

dξ(t) =
(
a1 − α2

2
− b1eξ(t) − c1eη(t)

m1 +m2eξ(t) +m3eη(t)

)
dt + α dW(t), (3.3)

dη(t) =
(

−a2 − β2

2
− b2eη(t) + c2eξ(t)

m1 +m2eξ(t) +m3eη(t)

)
dt + β dW(t). (3.4)

Denote by (ξu,v(t), ηu,v(t)) the solution with initial value (u, v) to (3.3) and (3.4) and let
P̂ (t, (u, v), ·) be its transition probability. Put

A(u, v) =

⎛
⎜⎜⎝ a1 − α2

2
− b1eu − c1e

v

m1 +m2eu +m3ev

−a2 − β2

2
− b2ev + c2eu

m1 +m2eu +m3ev

⎞
⎟⎟⎠ , B(u, v) =

(
α

β

)
.

To proceed, we first recall the notion of the Lie bracket. If X(x) = (X1, X2)
� and Y (x) =

(Y1, Y2)
� are vector fields on R2 then the Lie bracket [X, Y ] is a vector field given by

[X, Y ]i (x) =
(
X1
∂Yi

∂x1
(x)− Y1

∂Xi

∂x1
(x)

)
+

(
X2
∂Yi

∂x2
(x)− Y2

∂Xi

∂x2
(x)

)
, i = 1, 2.

We impose the following condition.

Assumption 3.1. The Lie algebra g(u, v) generated byA(u, v), B(u, v) satisfies the following:
dim g(u, v) = 2 at every (u, v) ∈ R2. In other words, we say that the set of vectors
A,B, [A,B], [A, [A,B]], [B, [A,B]], . . . spans R2.
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This assumption appears to be satisfied for most practical situations. It seems to be satisfied
for any ai, bi, ci, m1,m2,m3, α > 0, i = 1, 2, β �= 0, and a1 − α2/2 > 0, although verifying
this assumption for our model in general involves cumbersome calculations. For specific
parameters, the assumption can be verified by direct calculations. Note that the set of (u, v)
at which vectors A,B, [A,B], [A, [A,B]], [B, [A,B]], . . . do not span R2 are the roots of a
system det(A,B) = 0, det(A, [A,B]) = 0, . . . each of which is a polynomial equation of
unknowns eu, ev . Thus, we can show that there is no (u, v) satisfying the above system of
equations after taking into account a sufficient number of these equations.

To describe the support of the invariant measure μ∗ and to prove the ergodicity of (3.3)
and (3.4), we need to investigate the following control system:

u̇φ(t) = αφ(t)+ a1 − α2

2
− b1euφ(t) − c1evφ(t)

m1 +m2euφ(t) +m3evφ(t)
, (3.5)

v̇φ(t) = βφ(t)− a2 − β2

2
− b2evφ(t) + c2euφ(t)

m1 +m2euφ(t) +m3evφ(t)
, (3.6)

where φ is taken from the set of piecewise continuous real-valued functions defined on R+. Let
(uφ(t, u, v), vφ(t, u, v)) be the solution to (3.5) and (3.6) with control φ and initial value (u, v).
Denote by O+

1 (u, v) the reachable set from (u, v), that is, the set of (u′, v′) ∈ R2 such that
there exists a t ≥ 0 and a control φ(·) satisfying uφ(t, u, v) = u′, vφ(t, u, v) = v′. It should
be noted that Assumption 3.1 guarantees the accessibility of (3.5) and (3.6), i.e. O+

1 (u, v) has
a quality, nonempty interior for every (u, v) ∈ R2; see [11]. We first recall some concepts
introduced in [15]. Let U be a subset of R2 satisfying the property that for any w1, w2 ∈ U ,

we have w2 ∈ O+
1 (w1). Then there is a unique maximal set V ⊃ U such that this property

still holds for V . Such a V is called a control set. A control set C is said to be invariant if
O+

1 (w) ⊂ C for all w ∈ C.
Putting zφ = vφ − (β/α)uφ , we have an equivalent system

u̇φ(t) = αφ(t)+ g(uφ(t), zφ(t)), żφ(t) = h(uφ(t), zφ(t)), (3.7)

where

g(u, z) = a1 − α2

2
− b1eu − c1ez+(β/α)u

m1 +m2eu +m3ez+(β/α)u
,

and

h(u, z) = −
(
a2 + β2

2
+ β

α

(
a1 − α2

2

))
−b2ez+(β/α)u+ β

α
b1eu+ c2eu + (β/α)c1ez+(β/α)u

m1 +m2eu +m3ez+(β/α)u
.

Denote by O+
2 (u, z) the set of (u′, z′) ∈ R2 such that there is a t > 0 and a control φ(·) such

that uφ(t, u, z) = u′, zφ(t, u, v) = z′.

Claim 3.1. For any u0, u1, z0 ∈ R, and ε > 0, there exists a control φ and some T > 0 such
that uφ(T , u0, z0) = u1, |zφ(T , u0, z0)− z0| < ε.

For the proof, suppose that u0 < u1 and let ρ1 = sup{|g(u, z)|, |h(u, z)| : u0 ≤ u ≤
u1, |z− z0| ≤ ε}. We choose φ(t) ≡ ρ2 with (αρ2ρ

−1
1 −1)ε ≥ u1 −u0. It is easy to check that

with this control, there is aT ∈ [0, ερ−1
1 ] such thatuφ(T , u0, z0) = u1, |zφ(T , u0, z0)−z0| < ε.

If u0 > u1, we can construct φ(t) similarly.
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Claim 3.2. For any z0 > z1, there is a u0 ∈ R, a control φ, and some T > 0 such that
zφ(T , u0, z0) = z1 and that uφ(t, u0, z0) = u0 for all 0 ≤ t ≤ T .

Indeed, ifβ > 0 and −u0 is sufficiently large, then there is aρ3 > 0 such thath(u0, z) < −ρ3
for all z1 ≤ z ≤ z0. This property, combined with (3.7), implies the existence of a control φ
and a T > 0 satisfying the desired claim. In the β < 0 case, choosing u0 to be sufficiently
large, we have the same result.

Claim 3.3. If 0 < β < α, for any z0 < z1, if u0 is sufficiently large, infz∈[z0,z1] h(u0, z) >

0, which implies that there is a control φ and a T > 0 satisfying zφ(T , u0, z0) = z1 and
uφ(t, u0, z0) = u0 for all 0 ≤ t ≤ T .

Lemma 3.1. Suppose that β < 0 or β ≥ α. Let c∗ := sup{z : supu∈R{h(u, z)} > 0 for all z ≤
z.}. Then c∗ > −∞, (c∗ may be ∞) and for any (u, z) ∈ R2, O+

2 (u, z) ⊃ {(u′, z′) : z′ ≤ c∗}.
Proof. Note that

λ = −a2 − β2

2
+

∫ ∞

0

c2x

m1 +m2x
μ−(dx) > 0.

In view of Jensen’s inequality,

∫ ∞

0

c2x

m1 +m2x
μ−(dx) ≤ c2

∫ ∞
0 xμ−(dx)

m1 +m2
∫ ∞

0 xμ−(dx)
= c2(a1 − α2/2)b−1

1

m1 +m2(a1 − α2/2)b−1
1

.

If eu = (a1 − α2/2)b−1
1 , we have

h(u, z) = c1(a1 − α2/2)b−1
1

m1 +m2(a1 − α2/2)b−1
1 +m3ez+(β/α)u

−
(
a2 + β2

2

)
+ b2ez+(β/α)u

+ (β/α)c1ez+(β/α)u

m1 +m2eu +m3ez+(β/α)u
.

Since
c1(a1 − α2/2)b−1

1

m1 +m2(a1 − α2/2)b−1
1

−
(
a2 + β2

2

)
> 0,

h(u, z) > 0 when ez is sufficiently small. Now we move to the second assertion. Note
that it follows directly from the continuous dependence of solutions on initial values that

if O+
2 (w2) ⊂ O+

2 (w1) provided w2 ∈ O+
2 (w1)(ω1, ω2 ∈ R2). For (u, z) ∈ R2, define

zu,z = sup{z1 : there exists u1 such that (u1, z1) ∈ O+
2 (u, z)}. For any (u1, z1) ∈ R2, it

is easy to derive from Claims 3.1 and 3.2 that O+
2 (u1, z1) ⊃ {(u′, z′) : z′ ≤ z1}. Hence,

O+
2 (u, z) ⊃ {(u1, z1) : z1 ≤ zu,z}. If zu,z < c∗ there is some û ∈ R such that h(̂u, zu,z) > 0.

Since h(·) is continuous, there is an ẑ > zu,z such that inf{h(̂u, z) : z ∈ [zu,z, ẑ]} > 0. As
a result, there is a control φ and a T > 0 such that zφ(T , û, zu,z) = ẑ and uφ(t, û, zu,z) =
û for all t ∈ [0, T ]. That is, (̂u, ẑ) ∈ O+

2 (̂u, zu,z) ⊂ O+
2 (u, z), which contradicts the definition

of zu,z. The proof is complete. �
Proposition 3.1. The control system in (3.5) and (3.6) has only one invariant control set C. If
0 < β < α, C = R2. If β < 0 or β ≥ α, C = {(u, v) : v − (β/α)u ≤ c∗}.
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Proof. If 0 < β < α, it follows from Claims 3.1, 3.2, and 3.3 that for any (u1, z1), (u2, z2) ∈
R2, (u2, z2) ∈ O+

2 (u1, z1). Hence, for any (u1, v1), (u2, v2) ∈ R2, we have (u2, v2) ∈
O+

1 (u1, v1). This implies that R2 is a unique invariant control set. Now, consider the case
β < 0 or β ≥ α for which the conclusion of this proposition is a direct corollary of Lemma 3.1
if c∗ = ∞. If c∗ < ∞, it is seen from the definition of c∗ that h(u, c∗) ≤ 0 for all u ∈ R.
Consequently, for all control φ, we have zφ(t, u, z) ≤ c∗ for all t ≥ 0 provided that z ≤ c∗.

In other words, O+
2 (u, z) ⊂ {(u′, z′) : z′ ≤ c∗}. This claim combined with Lemma 3.1 implies

that O+
2 (u, z) = {(u′, z′) : z′ ≤ c∗} for all u ∈ R, z ≤ c∗. As a result, {(u′, z′) : z′ ≤ c∗}

is an invariant control set for (3.7). The uniqueness of this invariant control set is obtained

with the property that {(u′, z′) : z′ ≤ c∗} ⊂ O+
2 (u, z) for every (u, z) ∈ R2. Equivalently,

C := {(u, v) : v − (β/α)u ≤ c∗} is a unique invariant control set for (3.5) and (3.6). �
Note that if λ > 0, there is an invariant probability measure π∗ of (3.3) and (3.4) that is

associated with μ∗ of (3.1) and (3.2). Since there is only one invariant control set C, it follows
from Assumption 3.1 that π∗ is the unique invariant probability measure with support C.
Moreover, for all (u, v) ∈ C and a π∗-integrable function f , we have

P

{
lim
t→∞

1

t

∫ t

0
f (ξu,v(s), ηu,v(s)) ds =

∫
R2
f (u′, v′)π∗(du′, dv′)

}
= 1. (3.8)

These results are proved in [15]. Moreover, from [12, Proposition 5.1], it follows that

lim
t→∞ ‖P̂ (t, (u, v), ·)− π∗(·)‖ → 0 for all (u, v) ∈ C, (3.9)

where ‖ · ‖ is the total variation norm, if we can verify the following Hörmander condition.

Assumption 3.2. The ideal g0 in g generated by B satisfies dim g0(u, v) = 2 at every (u, v) ∈
C. In other words, the set of vectors B, [A,B], [B, [A,B]], [B, [B,A,B]], . . . spans R2.

We aim to prove that (3.8) (under Assumption 3.1) and (3.9) (under Assumption 3.2) hold
for all (u, v) ∈ R2. We need only consider the case β < 0 or β ≥ α since C = R2 in the
0 < β < α case.

Proposition 3.2. Suppose that β ≥ α, λ > 0. Then, for each initial value (u, v) ∈ R2, we
have τu,vC◦ a.s. with τu,vC◦ = inf{t > 0 : (ξu,v(t), ηu,v(t)) ∈ C◦}.

The proof of this proposition is divided into several lemmas. We consider only the c∗ < ∞
case since the assertion is trivial if c∗ = ∞. Let us first explain the idea of the proof. Denote
d1 = lnH, d2 = ln h̄, where h̄, H are defined as in the proof of Theorem 2.2. Since the process
is recurrent relative to Â := {(u, v) : u ≤ d1, d2 ≤ v ≤ d1}, in order to show τ

u,v
C◦ < ∞,

we need to estimate (uniformly) the probability of entering C◦ from Â. The difficulty is that
Â is not compact. Therefore, we divide Â into Â1 = {(u, v) : u < d5, d2 ≤ v ≤ d1} and
Â2 = Â \ Â1, where −d5 is sufficiently large. Noting that Â2 is compact and using the support
theorem and the Feller property, we can obtain a positive lower bound for the probability of
entering C from Â2. To obtain a similar result for Â1, we will analyze the property of the drift
when −u is sufficiently large and then estimate using the exponential martingale inequality.

Fix 0 < δ < min{a1 − α2/2, a2 + β2/2}. Thus, there is a d3 < d2 such that for all
u ≤ αβ−1(d3 − c∗), v ≤ d3, we have

a1− α2

2
−b1eu− c1ev

m1 +m2eu +m3ev
≥ δ and −a2− β2

2
−b2ev+ c2eu

m1 +m2eu +m3ev
≤ −δ.
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E1 E2 D

Figure 1: Illustration of E1, E2, and D. The dashed line is the boundary {v = c∗ + (β/α)u} of C. The
arrows are the vector field of the drift.

Let d4 ≤ min{(α/β)(d3 − c∗), d3} − �, where � > 0 is chosen such that 2 exp(−δ�/(α +
β)2) < 1. Construct open sets D = {(u, v) ∈ R2 : u < (α/β)(d3 − c∗), v < d3} and
E = {(u, v) ∈ R2, u, v ≤ d4}. Then put E1 = E◦ ∩ C◦, E2 = E \ E1; see Figure 1.

Lemma 3.2. Suppose that β ≥ α. There is a p̃ > 0 such that

P

{
ξu,v(σ

u,v
D ) = α

β
(d3 − c∗), ηu,v(σu,vD ) < d3

}
≥ p̃1 for all (u, v) ∈ E,

where σu,vD is the first time (ξu,v(t), ηu,v(t)) exits D.

Proof. Define

T̂u,v = 2

δ

(
α

β
(d3 − c∗)− u+ �

)
.

By the well-known exponential martingale inequality, we have

P(�1) > p̃1 := 1 − 2 exp(−δ�/(α + β)2),

where

�1 :=
{
ω : sup

0≤t≤T̂u,v

{
|W(t)| − δ

2(α + β)
t

}
<

�

α + β

}
.

For ω ∈ �1 and u, v ≤ d4, from the properties of �1, (3.3), and (3.4), it follows that

ξu,v(σ
u,v
D ∧ T̂u,v) ≥ u+ δ(σ

u,v
D ∧ T̂u,v)− αδ

2(α + β)
(σ
u,v
D ∧ T̂u,v)− α�

α + β

≥ u− �+ δ

2
(σ
u,v
D ∧ T̂u,v), (3.10)

and that

ηu,v(σ
u,v
D ∧ T̂u,v) ≤ d4 − δ(σ

u,v
D ∧ T̂u,v)+ βδ

2(α + β)
(σ
u,v
D ∧ T̂u,v)+ � < d3. (3.11)
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If σu,vD > Tu,v , from (3.10), it follows that ξu,v(T̂u,v) ≥ u− �+ (δ/2)T̂u,v ≥ (α/β)(d3 − c∗)
which is a contradiction. Hence, σu,vD ≤ Tu,v for all ω ∈ �1. Furthermore, (3.11) implies that
for ω ∈ �1, ηu,v(σu,vD ) = ηu,v(σ

u,v
D ∧ T̂u,v) < d3 and consequently ξu,v(σu,vD ) = (α/β)(d3 −

c∗). As a result,

P

{
ξu,v(σ

u,v
D ) = α

β
(d3 − c∗), ηu,v(σu,vD ) < d3

}
≥ P(�1) ≥ p̃1 for all (u, v) ∈ E.

The lemma is proved. �
Lemma 3.3. Suppose that β ≥ α. There are d5 ∈ R, p̃2 > 0, and T > 0 such that

P{τu,vE ≤ T } ≥ p̃2 for all u ≤ d5, d2 ≤ v ≤ d1,

where τu,vE is the first time (ξu,v(t), ηu,v(t)) enters E.

Proof. It is readily seen that there are σ1 < d4, G1 > 0, and δ1 > 0 such that

sup
u≤σ1,v∈R

{
a1 − α2

2
− b1eu − c1ev

m1 +m2eu +m3ev

}
≤ G1,

and that

sup
u≤σ1,v∈R

{
−a2 − β2

2
− b2ev + c2eu

m1 +m2eu +m3ev

}
< −δ1.

Fix δ2 > 0. Define T = 2((d1 − d4 + δ2)/δ1) and d5 = σ1 − δ2 − (G1 + δ1/2)T and the
stopping time

ζ u,v = inf{t > 0 : ξu,v(t) ≥ σ1 or ηu,v(t) ≤ d4}.
By the exponential martingale inequality, we have P{�2} > p̃2 := 1−exp(−δ1δ2/(α+β)2) >
0, where

�2 :=
{
ω : sup

0≤t≤T

{
W(t)− δ1

2(α + β)
t

}
<

δ2

α + β

}
.

For ω ∈ �2 and u < d5, d2 ≤ v ≤ d1, from the properties of �2 and (3.3) and (3.4), it follows
that

ξu,v(ζ u,v ∧ T ) < u+G1(ζ
u,v ∧ T )+ αδ1

2(α + β)
(ζ u,v ∧ T )+ αδ2

α + β

≤ d5 + δ2 +
(
G1 + δ1

2

)
T

= σ1, (3.12)

and that

ηu,v(ζ u,v ∧ T ) < d1 − δ1(ζ
u,v ∧ T )+ βδ1

2(α + β)
(ζ u,v ∧ T )+ βδ2

α + β

≤ d1 + δ2 − δ1

2
(ζ u,v ∧ T ). (3.13)

If ζ u,v > T , from (3.13), we deduce that ηu,v(T ) < d1 + δ2 − (δ1/2)(T ) = d4, which
contradicts the definition of ζ u,v . Hence, for ω ∈ �2, we have ζ u,v ≤ T . Moreover, (3.12)
implies that ξu,v(ζ u,v) < σ1. In view of the definition of ζ u,v , we have ηu,v(ζ u,v) = d4 in �2,
consequently τu,vE ≤ T in �2. As a result, for any u ≤ d5, d2 ≤ v ≤ d1, P{τu,vE ≤ T } ≥
P(�2) ≥ p̃2. �
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Lemma 3.4. Suppose that β ≥ α, λ > 0. For any (u, v) ∈ R2, the process (ξu,v(t), ηu,v(t))
is recurrent relative to E, that is, there is a sequence of random variables {tn(ω)} such that
tn(ω) ↑ ∞ as n → ∞ and that (ξu,v(tn), ηu,v(tn)) ∈ E for all n ∈ N for almost all ω.

Proof. Since E1 ⊂ O+
1 (u, v) for all (u, v) ∈ R2, it follows from the support theorem (see

[7, Theorem 8.1, p. 518] or [23]) for diffusion processes, that there is a Tu,v > 0 such that
P{(ξu,v(Tu,v), ηu,v(Tu,v)) ∈ E1} > 2pu,v > 0. Since the process (ξ(t), η(t)) is Feller and E1

is an open set, there is a neighborhoodVu,v of (u, v) such that for P{(ξu′,v′
(Tu,v), η

u′,v′
(Tu,v)) ∈

E1} > pu,v for all (u′, v′) ∈ Vu,v . Let d5 be as in Lemma 3.3, we consider the compact set
K = {(u, v) : d5 ≤ u ≤ d1, d2 ≤ v ≤ d1}. By the Heine–Borel theorem, there is a finite number
of Vui,vi , i = 1, . . . , n such that K ⊂ ⋃n

i=1 Vui,vi . Letting T K = max{Tui,vi , i = 1, n} and
pK = min{pui,vi , i = 1, n}, we claim that for any (u, v) ∈ K , P{τu,vE ≤ TK} ≥ P{τu,vE1

≤
TK} ≥ pK > 0. Combining this result with the conclusion of Lemma 3.3, we derive that there
are T̂ > 0, p̂ > 0 such that

P(τ
u,v
E < T̂ ) ≥ p̂ for all (u, v) ∈ Â := {(u, v) : u ≤ d1, d2 ≤ v ≤ d1}. (3.14)

Since (2.14) is equivalent to

1

t

∫ t

0
1{(ξu,v(s),ηu,v(s))∈Â} ds > 0 a.s. for all (u, v) ∈ R2,

the process (ξu,v(t), ηu,v(t)) is recurrent relative to Â. Using this property, the strong Markov
property, and (3.14), we can conclude the recurrence relative to E of (ξu,v(t), ηu,v(t)). �

Proof of Proposition 3.2. Since (ξu,v(t), ηu,v(t)) is recurrent relative to Â and E, we can
define the following sequences of stopping times:

ς1 = inf{t > 0 : ξu,v(t), ηu,v(t)) ∈ E},
υn = inf{t > ςn : ξu,v(t), ηu,v(t)) ∈ Â},

ςn+1 = inf{t > υn : ξu,v(t), ηu,v(t)) ∈ E},
which are finite a.s.

We also define ιn = inf{t > ςn : ξu,v(t), ηu,v(t)) /∈ D}. Since E � D � Âc, it
is easy to see that ςn < ιn < υn. Consider a sequence of events On := {ξu,v(ιn) =
(α/β)(d3 − c∗), ηu,v(ιn) < d3}. If we are in the time ςn then On is the future information,
while we already know whether On−1 has happened. Moreover, it follows from Lemma 3.2
that P(Oc

n | ξu,v(ςn) = u′, ηu,v(ςn) = v′) ≤ 1 − p̃1 for all (u′, v′) ∈ E. Hence, using the
strong Markovian property of (ξu,v(t), ηu,v(t)), we can prove that

P

( n⋂
k=1

Oc
k

)
≤ (1 − p̃1)

n → 0 as n → ∞.

This means that almost surely, On must occur for some n = n(ω). Whenever On occurs, we
have (ξu,v(ιn), ηu,v(ιn)) ∈ C◦. The proof is complete. �

For the β < 0 case, we have a similar result.

Proposition 3.3. Suppose that β < 0, λ > 0. Then, for each initial data (u, v) ∈ R2,
τ
u,v
C◦ < ∞ a.s.
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Proof. We only consider the c∗ < ∞ case for which C = {(u, v) : v ≤ c∗ − ru} with
r = −β/α > 0. Let Â be as in the proof of Lemma 3.4. Divide Â into Â1 and Â2 defined by
Â1 = Â∩C◦ and Â2 = Â\ Â1. It is easy to see that Â2 is compact. Using the same arguments
as in the proof of Lemma 3.4, we can find T Â2

> 0 such that inf(u′,v′)∈Â2
P(τ

u′,v′
C◦ < T Â2

) > 0.

Since Â1 ⊂ C◦, we have

inf
(u′,v′)∈Â

P(τ
u′,v′
C◦ < T Â2

) = inf
(u′,v′)∈Â2

P(τ
u′,v′
C◦ < T A2) > 0.

Moreover, since (ξu,v(t), ηu,v(t)) is recurrent relative to Â, we can use the strong Markov
property to obtain the desired conclusion. �

We complete this section by presenting the following theorem.

Theorem 3.1. Suppose that α, β �= 0, λ > 0, and Assumption 3.1 holds. Then, (3.3) and
(3.4) have a unique invariant probability measure π∗ satisfying that for any π∗-integrable
function f ,

P

{
lim
t→∞

1

t

∫ t

0
f (ξu,v(s), ηu,v(s)) ds =

∫
R2
f (u′, v′)π∗(du′, dv′)

}
= 1 for all (u, v) ∈ R2.

Moreover, if Assumption 3.2 is satisfied, the transition probability P̂ (t, (u, v), ·) converges to
π∗(·) in total variation as t → ∞.

Proof. The assertions can be proved using (3.8), (3.9), and Propositions 3.2 and 3.3. �

4. Discussion

We compare our results with some of the recent results in the literature. In [8, Theorem 4.1],
under the conditions c2/m2 < a2 + β2/2 and a1 > α2/2, it was proved that the predator will
eventually die out while the distribution of x(t) converges weakly to the stationary distribution
of u(t). In contrast, using Theorem 2.1 of this paper, we obtain the same conclusion provided
that a1 > α2/2 and λ < 0. Note that λ < 0 is equivalent to

λ̃ :=
∫ ∞

0

c2x

m1 +m2x
μ−(dx) < a2 + β2

2
.

It is easy to verify that λ̃ < c2/m2, which indicates that our result on the extinction of the
predator is sharper. Furthermore, a suitable Lyapunov function was used in [8] to obtain the
ergodicity of system (1.3) and (1.4) for the nondegenerate case as follows; see [8, Theorem 3.1].

Theorem 4.1. Assume that (c2 − a2m2)a1/b1 > a2m1, b1 > a1m2/(m1 + m2x
∗), and α >

0, β > 0 such that δ < min{c2(b1 − m2(a1 − b1x
∗)/m1)(m1 + m3y

∗)(x∗)2, b2c1(m1 +
m2x

∗)(y∗)2}, where δ = c2x
∗α2/2 + c1y

∗β2/2 and (x∗, y∗) is the equilibrium of the deter-
ministic system

ẋ(t) = x(t)(a1 − b1x(t))− c1y(t)

m1 +m2x(t)+m3y(t)
) dt, (4.1)

ẏ(t) =
(

−a2 − b2y(t)+ c2x(t)

m1 +m2x(t)+m3y(t)

)
dt. (4.2)

Then there is a stationary distribution π(·) for the system in (1.3) and (1.4) and it has ergodic
property.

https://doi.org/10.1017/jpr.2015.18 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2015.18


Stochastic predator–prey models 201

To show that the assumption in [8] is more restrictive than our assumption of ergodicity, letG
be the space of the positive parameters (ai, bi, ci, mj , α, β), i = 1, 2, j = 1, 2, 3, a1 > α2/2,
and

G+ = {(ai, bi, ci, mj , α, β) : λ > 0}, G− = {(ai, bi, ci, mj , α, β) : λ < 0}.
It is easy to check that λ is a continuous function of parameters. Hence, G+ and G− are
open. Moreover, the closure cl(G−) = {λ ≤ 0} = (G+)c, which is a necessary condition
for the extinction of the predator. Let J be the set of parameters satisfying the assumption of
Theorem 4.1, we must have G− ∪ J = ∅. Since J is open, cl(G−) ∪ J = ∅ or, equivalently,
J ⊂ G+.

We will show that J is a proper subset of G+. Choose a1, b1, c1, a2, c2,mi, i = 1, 3, α, β
such that λ > 0. This choice can be performed by taking a1 sufficiently large. Now fix these
parameters. Since λ does not depend on b2, we claim the ergodicity holds for all b2 > 0. It
can be proved that there existsM > 0 independent of b2 such that x∗, y∗ < M , where (x∗, y∗)
is the positive equilibrium of (4.1) and (4.2) (if it exists). Thus, for sufficiently small b2 such
that δ > b2c1(m1 +m2x

∗)(y∗)2, the assumption of Theorem 4.1 does not hold while λ > 0.
Next we look at them1 = 1,m2 = 1, andm3 = 0 cases for which the functional response is

said to be Holling-type-II (see (1.1) and (1.2)). We will make a comparison with the findings
in [18] in which the authors proved that if a1 −α2/2 > 0 and c2 + a2 −β2/2 < 0, the predator
will be extinct while x(t) converges weakly to the stationary distribution of φ(t). Moreover, it
was shown that the system is persistent in time-average if

a1 − α2

2
> 0, a2 − β2

2
> 0,

a1 − α2/2

c1
>
c2 + a2 − β2/2

b2
.

In the same manner as in the previous part, we can show that our conditions for extinction or
permanence and ergodicity are weaker than those in [18].

We have investigated (1.3) and (1.4) and (3.1) and (3.2) when λ �= 0. Note that the set
{λ = 0} has Lebesgue measure 0 in the space of parameters G. Although the set {λ = 0} is
negligible with respect to the Lebesgue measure, it is still interesting to explore the asymptotic
behavior of the solution in this critical case. The question of asymptotic behavior corresponding
to λ = 0 remains open. To treat this case, new techniques are needed. Moreover, it seems that
our methods are applicable to stochastic predator–prey models with different types of functional
responses as well as different diffusion coefficients. Furthermore, our method can be applied
to stochastic models with Markovian switching.
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