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Global stability of buoyant jets and plumes
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The linear global stability of laminar buoyant jets and plumes is investigated
under the low-Mach-number approximation. For Richardson numbers in the range
10−4 6Ri6 103 and density ratios S= ρ∞/ρjet between 1.05 and 7, only axisymmetric
perturbations are found to exhibit global instability, consistent with experimental
observations in helium jets. By varying the Richardson number over seven decades,
the effects of buoyancy on the base flow and on the instability dynamics are
characterised, and distinct behaviour is observed in the low-Ri (jet) and in the high-Ri
(plume) regimes. A sensitivity analysis indicates that different physical mechanisms
are responsible for the global instability dynamics in both regimes. In buoyant jets
at low Richardson number, the baroclinic torque enhances the basic shear instability,
whereas buoyancy provides the dominant instability mechanism in plumes at high
Richardson number. The onset of axisymmetric global instability in both regimes is
consistent with the presence of absolute instability. While absolute instability also
occurs for helical perturbations, it appears to be too weak or too localised to give
rise to a global instability.

Key words: buoyancy-driven instability, jets, plumes/thermals

1. Introduction
Vertical injection of light fluid into a denser ambient creates a flow that either

bears the characteristics of a jet, if the injected momentum is dominant over the
buoyant forces, or those of a plume, if the momentum that is generated by buoyancy
is dominant over the momentum that is imparted at the orifice.

The instability behaviour of jets is known to be strongly affected by density
variations, even if buoyancy is not taken into account. Monkewitz & Sohn (1988)
found that jets at a jet-to-ambient density ratio below 0.72 in zero gravity display
absolute instability, which leads to the self-sustained formation of ring vortices
at a well-defined frequency. This phenomenon has been observed experimentally
(Sreenivasan, Raghu & Kyle 1989; Monkewitz et al. 1990; Boujemaa, Amielh &
Chauve 2004; Hallberg & Strykowski 2006) and numerically (Lesshafft et al. 2006;
Nichols, Schmid & Riley 2007). Lesshafft & Huerre (2007) established that the
absolute instability arises from non-buoyant baroclinic effects. Mollendorf & Gebhart
(1973) included the action of buoyancy in the form of weak forcing terms in a local
instability analysis. Recently, Coenen et al. (2017) performed a global instability
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analysis for light jets in the zero-Mach-number limit, achieving good agreement with
the helium jet experiments of Hallberg & Strykowski (2006). A small Richardson
number in these experiments characterises buoyant effects as being small, and the
global analysis confirms that their impact on the instability behaviour is negligible in
this regime.

The instability of plumes, at high Richardson numbers, has received far less
attention from a theoretical perspective. Wakitani (1980) and Riley & Tveitereid
(1984) investigated the local instability characteristics, both temporal and spatial,
of self-similar plumes within the limits of the Boussinesq approximation. Under
the same assumption, Chakravarthy, Lesshafft & Huerre (2015) considered the
convective/absolute nature of local instability in plumes, both in the self-similar
regime far removed from the buoyancy source, and in the near-source region for
one particular configuration. It was established that helical perturbations of azimuthal
wavenumber m= 1 undergo a transition to absolute instability, due to a saddle point
in the dispersion relation that is conditioned on the presence of buoyancy. However,
the associated growth rates seem to be small, and their relevance for global and
non-Boussinesq dynamics remains to be proved. The axisymmetric mode was found
to be at most convectively unstable.

The instability of internal plumes in a confined domain appears to be a separate
subject. In direct numerical simulations performed in the Boussinesq limit, Lopez &
Marques (2013) document a sequence of global state bifurcations in such closed flows,
occurring at successive critical Rayleigh numbers. A linear global instability analysis
of the same configuration (Lesshafft 2015) suggests that at least the first of these
bifurcations arises due to pressure feedback between the top and bottom solid walls.

Numerous experiments have been performed on plumes with large density
differences, where the Boussinesq approximation is not justified. Subbarao & Cantwell
(1992) conducted helium-air experiments, and they reported periodic axisymmetric
puffing at Reynolds and Richardson numbers, Re and Ri, above critical values. Similar
observations were made by Cetegen & Kasper (1996) for a larger range of Ri. A
power law was obtained in the latter study that relates the puffing Strouhal number to
Re and Ri. These experimental findings were corroborated by numerical simulations
(Jiang & Luo 2000; Satti & Agrawal 2006) and in additional recent experiments by
Bharadwaj & Das (2017). Through systematic variation of the gravity parameter, Satti
& Agrawal (2006) demonstrated that the onset of self-sustained oscillations in their
setting is contingent on the presence of gravity. The large majority of experiments and
simulations suggest a dominant role of axisymmetric instability structures, contrary
to the conclusions drawn from local instability analysis of self-similar Boussinesq
plumes by Chakravarthy et al. (2015).

The present investigation addresses the linear instability of buoyant jets and plumes
in a global and non-Boussinesq framework. The low-Mach-number approximation of
McMurtry et al. (1986) is used in a form where density variations arise from heating
of a single-species fluid. This formulation allows one to examine the stability of
buoyant jets and plumes on a continuous scale provided by the Richardson number,
while the density ratio as an independent parameter characterises the departure from
the Boussinesq condition. Special attention will be given to the physical origin of
flow instability, by means of sensitivity analysis.

A similar approach has been pursued by Bharadwaj & Das (2017) in their analysis
of helium plumes. That study demonstrated close agreement between the occurrence
of self-excited puffing in experiments and the onset of global linear instability.
Furthermore, the linear analysis was shown to accurately predict the puffing frequency,
even far from the instability threshold.
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The paper is organised in the following manner. Section 2 introduces the governing
equations and the numerical procedures employed for the computation of base flows
and their instability characteristics in global and local frameworks. Global instability
results are presented in § 3, followed by a discussion of the relevant physical
mechanisms in § 4. The global results are complemented by a local absolute/convective
analysis in § 5, which provides a link with the study by Chakravarthy et al. (2015)
of local instability in Boussinesq settings. Conclusions are offered in § 6.

2. Problem formulation
2.1. Governing equations

A calorically perfect fluid is injected into an unstratified quiescent ambient of the
same fluid at lower temperature, from a circular orifice in an adiabatic wall. In order
to model a flow with strong density variations but negligible compressibility, a low-
Mach-number approximation of the compressible Navier–Stokes equation is used. This
approximation, which retains all the effects of variable density in the convective terms,
but discards the compressible dependency of density on pressure, was introduced by
McMurtry et al. (1986) for a study of non-buoyant jets in the limit of zero Mach
number. It was then extended to include a buoyancy term by Nichols et al. (2007)
and Chandler (2010), and their formulation is used in the present investigation. The
dimensional governing equations in this approximation are given by

∂ρ̃

∂t
+ div(ρ̃ũ)= 0, (2.1a)

ρ̃
Dũ
Dt
=−grad p̃+µ

[
1ũ+

1
3

grad(div ũ)
]
+ g(ρ̃∞ − ρ̃)ez, (2.1b)

ρ̃Cp
DT̃
Dt
= α1T̃, (2.1c)

ρ̃RT̃ = p0, (2.1d)

where ρ̃, ũ, p̃, T̃ denote the dimensional density, velocity, pressure and temperature,
ρ̃∞ is the ambient density, g is the acceleration due to gravity, α is the thermal
conductivity, Cp is the specific heat, µ is the dynamic viscosity, and R is the specific
gas constant. Note that the pressure in this formulation is split into a thermodynamic
component p0, which is constant throughout the flow, and a fluctuating hydrodynamic
component p̃. While the continuity and momentum equations (2.1a) and (2.1b) are of
the same form as in the fully compressible case, the energy equation (2.1c) simplifies
to a simple advection–diffusion equation for temperature.

In dimensionless form, scaled with the nozzle radius R, the inlet centreline velocity
ũj, the temperature difference T̃j − T̃∞ between inflowing and ambient fluid, and the
ambient density ρ̃∞, equations (2.1) become

∂ρ

∂t
+ div(ρu)= 0, (2.2a)

ρ
Du
Dt
=−grad p+

1
ReS

[
1u+

1
3

grad(div u)
]
+

Ri
S− 1

(1− ρ)ez, (2.2b)

ρ
DT
Dt
=

1
PrReS

1T. (2.2c)

ρ(1+ T(S− 1))= 1. (2.2d)
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A reduced temperature T = (T̃ − T̃∞)/(T̃j− T̃∞) is used, and in all further calculations,
this variable is expressed in terms of ρ by use of (2.2d). The flow is characterised by
the following parameters:

Prandtl number Pr=
µCP

α
, (2.3)

density ratio S=
ρ̃∞

ρ̃j
, (2.4)

Reynolds number Re=
ρ̃jũjR
µ

and (2.5)

Richardson number Ri= gR
(ρ̃∞ − ρ̃j)

ρ̃jũ2
j

. (2.6)

In the homogeneous limit S→ 1, the state equation (2.2d) prescribes ρ → 1, and
the system (2.2) is then identical to the Boussinesq equations used in Chakravarthy
et al. (2015), provided ρ − 1 is taken to be of order S − 1; the present formulation
is therefore consistent with our earlier study. A rigorous derivation of the Boussinesq
equations and a discussion on the underlying assumptions may be found in Tritton
(2012).

2.2. Base flow

In a cylindrical coordinate system (r, θ, z), the flow variables q = (ρ, u, p, T)T are
split into steady and unsteady components as

q(r, θ, z, t)= q(r, θ, z)+ q′(r, θ, z, t). (2.7)

The numerical tools used for the construction of the base flow, as well as for the
linear perturbation analysis described in § 2.3, are very similar to those employed
by Coenen et al. (2017), except that density variations are modelled as an effect
of heating, rather than species mixing. Equations (2.2) are discretised with finite
elements in FreeFEM++, and a steady axisymmetric solution q is obtained from
Newton–Raphson iterations (Garnaud et al. 2013). The numerical domain is 80 radii
long in the streamwise direction and 30 radii in the transverse direction. Iterations are
performed until all flow quantities are converged to within 10−9 times their maximum
values. At the inlet, z= 0, boundary conditions

uz =
1
2
+

1
2

tanh
[

5
2

(
1
r
− r

)]
, ur = 0 and ρ = 1−

(
1−

1
S

)
uz (2.8a−c)

are prescribed for the axial velocity uz, the radial velocity ur and the density ρ.
The initial shear layer momentum thickness is 10 % of the nozzle radius. All other
boundary conditions are specified as

1
Re
∂u
∂r
− per = 0, ρ = 1 at r= rmax, (2.9a,b)

1
Re
∂u
∂z
− pez = 0,

∂ρ

∂z
= 0 at z= zmax, (2.9c,d)

∂uz

∂r
= ur =

∂ρ

∂r
=
∂p
∂r
= 0 at r= 0. (2.9e)
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FIGURE 1. (Colour online) Axisymmetric steady base flows obtained for Ri= 10−4 (a,b)
and for Ri= 103 (c,d). Axial velocity (a,c) and density (b,d) are shown in the (r, z) plane.

These boundary conditions are obtained from the kinematic constraints on the axis
(Khorrami, Malik & Ash 1989), and by imposing zero normal stresses at rmax and
zmax, together with Dirichlet and Neumann conditions for the density.

As the objective is to characterise the role of buoyancy in the instability dynamics,
the main parameters to be varied are the Richardson number and the density ratio. The
ranges of parameters 10−4 6Ri6 103 and 1.056 S6 7 will be investigated. The effect
of the Reynolds number above a value of 100 is found to be weak, and a standard
value of Re= 200 (in some cases Re= 500) will be used, while Pr= 0.7 is maintained
throughout.

For a strong density ratio S= 7, and the two extreme values Ri= 10−4 and Ri= 103,
steady base flow profiles of axial velocity and density are shown in figure 1. The
flow at low Ri is dominated by the momentum of the injected fluid, which diffuses
radially with axial distance under the effect of viscosity. This is clearly the case of
a jet, in a configuration where buoyancy has no noticeable impact on the base flow
dynamics, despite the strong density variations. The flow at high Ri, in contrast, is
principally driven by the buoyancy force, as the injected momentum is negligibly weak
in comparison. The fluid in this case is not pushed out of the orifice, but rather pulled
out by buoyancy, forming a slender rising column around the axis (note the different
radial scales in figure 1). This flow is characteristic of a plume, and it is often called
a ‘lazy’ plume, as the momentum at its base is much lower than that of a self-similar
profile, where momentum and buoyancy are in balance.
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FIGURE 2. Variations of the centreline velocity along z. (a) Ri= 10−4; (b) Ri= 103.

Between the two extremes shown in figure 1, the aspect of the base flow at
different Richardson numbers changes gradually. Cases with Ri < 1 will be denoted
‘buoyant jets’ in the following, as opposed to ‘plumes’ with Ri> 1. Vertical variations
of the centreline velocity are shown in figure 2 for the same two configurations
as in figure 1. The jet, at Ri = 10−4, exhibits a short potential core region, where
the centreline velocity is constant, followed by hyperbolic decay. The plume flow,
at Ri = 103, accelerates progressively with vertical distance from the inlet, and the
centreline velocity approaches asymptotically a limit value in the self-similar regime
(Yih 1988). Buoyant jets at low but finite Richardson number behave as plumes at
large distances from the nozzle, when their excess momentum is sufficiently diffused.
While a jet entrains ambient fluid only through momentum diffusion, entrainment
into a plume tends to be much stronger due to its continuous production of axial
momentum. The plume base flow presented in figure 1(c,d) is particularly marked by
radial entrainment close to z= 0.

2.3. Linear stability problem
Infinitesimal perturbations of a steady base flow are sought with a global ansatz

[ρ ′, u′, p′, T ′]T = [ρ̂(r, z), û(r, z), p̂(r, z), T̂(r, z)]Tei(mθ−ωt)
+ c.c. (2.10)

The integer m denotes the azimuthal wavenumber and ω = ωr + iωi is a complex
frequency. Upon linearising the governing equations (2.2), and substitution of (2.10),
the linear perturbation equations are found as

−iωρ̂ + divm(ρ̂ u+ ρ û)= 0, (2.11a)

−iωρû+ ρ[(gradmu) · û+ (gradmû) · u] + ρ̂(gradmu) · u

=−gradmp̂−
Ri

S− 1
ρ̂ez +

1
ReS

[
∆mû+

1
3

gradm(divmû)
]
, (2.11b)

−iωρT̂ + ρ[(gradmT) · û+ (gradmT̂) · u] + ρ̂(gradmT) · u=
1

PrReS
∆mT̂, (2.11c)

ρ̂ + ρ2T̂(S− 1)= 0. (2.11d)

Differential operators in the above equations are written with a subscript m in order
to indicate that azimuthal derivatives are replaced with a factor im; these operators
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are documented in appendix A. While the base flow is taken to be swirl free, uθ =
0, the azimuthal perturbation velocity u′θ may in general be non-zero. Homogeneous
Dirichlet conditions are imposed on û and ρ̂ at the inlet, z= 0, and a homogeneous
Neumann condition is prescribed for p̂. On the axis, depending on the azimuthal mode
considered, appropriate boundary conditions as detailed in Khorrami et al. (1989) and
Chakravarthy et al. (2015) are enforced. On the outer boundaries at rmax and zmax, no-
stress conditions consistent with (2.9) are used.

The system (2.11) is cast into the form of an eigenvalue problem

ωBq̂= Lq̂. (2.12)

According to the ansatz (2.10), the real part of the eigenvalue, ωr, represents
the oscillation frequency while the imaginary part, ωi, is the growth rate of the
perturbation. As before, the variable T̂ is eliminated through the equation of state
(2.11d). So-called global eigenmodes are computed by resolving ρ̂, û and p̂ in both r
and z, such that spatial variations of the base flow and the perturbation quantities are
accounted for without further limiting assumptions (Theofilis 2003). The eigenvalue
problem (2.12) is then solved with an iterative shift-invert Arnoldi algorithm, in the
same way as in Garnaud et al. (2013), with an accuracy close to machine precision.

In addition, a local analysis is performed in § 5, in order to identify the absolute
mode in a parallel base flow (Huerre & Monkewitz 1990). Perturbations (2.10) are
then Fourier-transformed in z, leading to the standard ansatz

[ρ̂(r, z), û(r, z), p̂(r, z), T̂(r, z)]T = [ρ̌(r), ǔ(r), p̌(r), Ť(r)]Teikz. (2.13)

3. Global spectra and eigenfunctions

Instability results obtained from the global formulation (2.10) are presented first for
axisymmetric modes, m= 0, since experimental and numerical evidence suggests their
leading role in the self-sustained dynamics of plumes, as discussed in § 1. A brief
discussion of helical perturbations, m= 1, follows in § 3.2.

3.1. Axisymmetric perturbations

Eigenvalues ω obtained for two configurations, Ri = 10−4 and 103, with otherwise
identical parameters S= 7 and Re= 200, are presented in figure 3 as black symbols.
These are the two extreme jet and plume cases discussed in § 2.2.

The jet, at Ri = 10−4 (figure 3a), exhibits one unstable mode with ω = 0.558 +
0.025i. When buoyancy effects are eliminated, by setting Ri = 0 in the perturbation
equations but still using the same base flow, eigenvalues shown as red crosses are
obtained; visibly, the buoyancy term in the perturbation equations has no significant
impact on the instability dynamics. This observation, as well as the overall appearance
of the spectrum, is fully consistent with the non-buoyant and slightly buoyant results
of Coenen et al. (2017), and many more details on the unstable eigenmode of pure
jets are provided in their study.

The plume, at Ri = 103 (figure 3b), possesses five unstable modes, one being
strongly dominant with ω = 29.4+ 11.3i. When the perturbation Richardson number
is set to zero in this configuration, all unstable modes vanish from the spectrum. It
can be concluded that buoyancy plays a determining role for the instability of this
plume, not only by setting up the base flow, but also by the coupling of density and
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FIGURE 3. (Colour online) Global spectra of axisymmetric perturbations (m= 0), for the
two configurations shown in figure 1. (a) Ri = 10−4, jet case; (b) Ri = 103, plume case.
Re= 200 and S= 7 are set identically for both cases. True eigenvalues (E) are compared
to their counterparts (+) that are obtained when the buoyancy term in (2.11b) is removed.

velocity perturbations. It is also noted that the high-Ri plume base flow is not subject
to the non-buoyant instability that affects the low-Ri jet.

Unstable eigenvalues of the plume take on significantly higher values, both in their
real and in their imaginary parts, than those of the jet. This is clearly a result of the
scaling with the inflow centreline velocity, which appropriately characterises a jet, but
is less pertinent for ‘lazy’ plumes. A common scaling is employed here for the sake of
consistency across the full range of Richardson number values; if only high-Ri plumes
were considered, a buoyancy-based velocity scaling would be more suitable.

The distinct nature of the instability modes of the jet and the plume flows is also
apparent in the shape of their eigenfunctions. Figure 4 shows the spatial distribution
of the axial velocity amplitude in the dominant modes for the two respective cases.
At low Richardson number, the maximum perturbation amplitude is found on the
centreline, 12 radii downstream of the nozzle. Perturbations are confined inside the
jet column, as documented in more detail by Coenen et al. (2017). In the high-Ri
plume, the spatial eigenmode structure is very different: the maximum amplitude is
located inside the mixing layer very close to the inflow, in the region where the
density gradient in the base flow is maximal.

In the reference experiments by Cetegen & Kasper (1996) and Bharadwaj & Das
(2017), a slightly different definition is chosen for the Richardson number, which
corresponds to 2Ri/S in our nomenclature. Variations of the dominant eigenvalue
in the present analysis are therefore presented as functions of Ri/S in figure 5 in
order to facilitate a comparison. The baseline case, with Re= 200, S= 7 and inflow
conditions (2.8), is represented by solid circles. Eigenvalues of this configuration
display continuous variations both in the Strouhal number St = ωr/(2π) and in the
growth rate ωi. Strouhal number values are asymptotically constant in the low-Ri/S
regime, whereas they follow a power law at values Ri/S> 0.1. A regression fit yields
the dependence St = 0.55(Ri/S)0.43, which is in good agreement with experimental
results in the range 1 6 Ri/S 6 250: after conversion to the present definition of
the Richardson number, the power law determined by Cetegen & Kasper (1996) in
this regime is given by St = 0.52(Ri/S)0.38 (shown as a line in figure 5a), and the
corresponding measurements of Bharadwaj & Das (2017) for plumes from an orifice
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FIGURE 4. (Colour online) Spatial distributions of axial velocity eigenfunctions ûz,
corresponding to the most unstable modes of the two respective cases shown in figure 3.
(a) Jet at Ri= 10−4, S= 7 and Re= 200; (b) plume at Ri= 103, S= 7 and Re= 200.

convert to St = 0.51(Ri/S)0.39. A different scaling, measured as St ∝ (Ri/S)0.28 for
Ri/S > 250 by Cetegen & Kasper (1996), is outside the parameter range considered
here. The growth rate in the baseline configuration, shown in figure 5(b), increases
monotonically with Ri/S, and it is positive throughout.

Eigenvalues from three other flow configurations are included in figure 5 in order
to assess the sensitivity of the instability with respect to the Reynolds number, to the
density ratio and to the inlet velocity profile. With the standard profile (2.8), parameter
combinations Re=500, S=7 (open circles) and Re=200, S=4.5 (squares) are chosen.
The Strouhal number values in figure 5(a) are barely affected by these changes, and
the growth rates in figure 5(b) follow a similar trend as in the baseline case. The less
heated configuration (squares) is stable at Ri < 0.1, consistent with the analysis by
Coenen et al. (2017).

Triangle symbols indicate results for a special case where Re= 200 and S= 7 are
maintained, but the velocity inlet profile is changed to a parabolic pipe flow, while the
density profile is still given by (2.8). This flow case is introduced in order to better
approach the experimental conditions of Subbarao & Cantwell (1992) and Cetegen
& Kasper (1996), where the fluid exits from a nozzle as a developed laminar pipe
flow. This change in the velocity profile has barely any effect on the Strouhal number
across all Ri/S values, but it does inhibit the global instability in the low-Ri/S regime.
The latter is consistent with the absence of self-excited behaviour at low Ri in the
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FIGURE 5. (a) Strouhal number and (b) growth rate of the global eigenvalue ω, as a
function of Ri/S. Legend: (u) Re= 200, S= 7; (E) Re= 500, S= 7; (@) Re= 200, S=
4.5; (A) Re = 200, S = 7, with parabolic inlet velocity profile. All other configurations
take the inlet velocity profile (2.8). (——) Power law from the Cetegen & Kasper (1996)
experiments, rescaled to match the present definition of Ri.

experiments of Subbarao & Cantwell (1992) and Cetegen & Kasper (1996), and in
the simulations of Satti & Agrawal (2006).

As the effect of heating enters the problem both through the density ratio S
and through the Richardson number Ri, the onset of instability is examined for
independent variations of these two parameters. The main results of the local (see
§ 5) and global instability analyses are summarised in the state diagram in the (Ri, S)
plane shown in figure 6. The thin line delineates the neutral boundary separating
locally convectively unstable inlet base flows (in white below the curve) from locally
absolutely unstable ones (in blue and red above the curve). The thick neutral line
separates the globally stable states (in white and blue below the curve) from the
globally unstable states (in red above the curve). In the white area, convective
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FIGURE 6. (Colour online) Instability regimes in the S–Ri plane for the axisymmetric
mode at Re= 200. The thick line denotes the global stability boundary, and the thin line
denotes the boundary between local convective and absolute instability of the inlet profile.

instability prevails, and in the blue and red areas, absolute instability prevails. Along
a diagonal line in the state diagram, the flow changes from convectively unstable to
absolutely unstable to globally unstable, once the absolutely unstable region is large
enough. For buoyant jets (low Ri) and plumes (large Ri) the same sequence takes
place as S increases at a given Ri. Note that the globally unstable domain is reached
much ‘sooner’ for plumes than for buoyant jets. The dip in the global stability neutral
curve for Ri of order unity signals a gradual shift from a shear-dominated instability
to a buoyancy-dominated instability, as further discussed in § 4.

3.2. Helical perturbations
The local analysis of plumes in the Boussinesq limit S→ 1 by Chakravarthy et al.
(2015) concluded that absolute instability only occurs for helical perturbations,
m = 1, whereas axisymmetric perturbations in that setting were found to be only
convectively unstable. Although the global instability of axisymmetric eigenmodes in
non-Boussinesq situations, as documented above, appears to be fully consistent with
experimental and numerical observations of self-excited behaviour, the possibility of
helical global instabilities remains to be explored.

Eigenvalues pertaining to helical instability modes are displayed in figure 7 for
two different calculations, both for the same physical parameter setting S= 7, Ri= 1
and Re = 200. One case, represented by blue unfilled circles, was computed with
the same boundary conditions as all previous results. A branch of regularly spaced
modes is seen to be unstable over the interval 0.8 6 ωr 6 4. The features of this
branch are very similar to several jet cases discussed by Coenen et al. (2017), as
well as observations made in many different flow cases, especially in the boundary
layer calculations by Åkervik et al. (2008). In a recent study (Lesshafft 2017), the
occurrence of such ‘arc branches’ is ascribed to the presence of spurious pressure
feedback from the downstream end of a truncated flow domain, and it is predicted
that artificial damping near the outflow should be effective in reducing the growth
rate of such unphysical modes.
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FIGURE 7. (Colour online) Global spectrum of helical perturbations (m = 1), for the
configuration S = 7, Ri= 1 and Re= 200. Results from two calculations are shown: (E)
without absorbing layer; (u) with absorbing layer at z> 30.

Indeed, if artificial damping is applied in an ‘absorbing layer’ (Colonius 2004) at
z> 30, the growth rates of the arc branch modes decrease, and all modes recede to
the stable half-plane if the damping is sufficiently strong. Such a case is represented
by red filled circles in figure 7, where a damping term −λ(z)q̂ has been added to
the right-hand side of (2.12). The damping coefficient λ(z) ramps up from zero to
16, over the interval 30 < z < 50, according to equation (2.4) of Chomaz (2003).
No unstable helical modes are found with this boundary treatment. In contrast, the
same artificial damping has no discernible effect on the unstable eigenvalues for
axisymmetric perturbations shown in figure 3. This behaviour is in full agreement
with the arguments of Lesshafft (2017), as m = 0 perturbations are locally stable
in the downstream flow region, whereas m = 1 perturbations remain convectively
unstable, as will be shown in § 5.

4. Influence of buoyant, baroclinic and shear-related mechanisms

The results discussed in § 3.1 suggest that different mechanisms drive the global
instability dynamics in the low- and the high-Ri regimes. These mechanisms are
investigated in the present section, on the basis of the formalism proposed by
Marquet & Lesshafft (2015). This formalism is introduced here in a slightly different
and weaker manner, which is sufficient for the present purpose.

A sensitivity analysis is to be performed, in order to quantify the influence of
the various forces in the momentum equation onto the unstable growth of velocity
perturbations. The latter are governed by the equation

− iωû= C + S +P +B+ V, (4.1)

with the right-hand-side terms

C =−(grad û) · u, (4.2a)
S =−(grad u) · û, (4.2b)
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P =−
grad p̂
ρ
+
ρ̂ grad p
ρ2 , (4.2c)

B=−
Ri

S− 1
ρ̂

ρ2 ez, (4.2d)

V =
1

ReS

[
1
ρ

(
1û+

grad(div û)
3

)
−
ρ̂

ρ2

(
1u+

grad(div u)
3

)]
. (4.2e)

These individual terms represent the mechanisms of base flow convection C, base
flow shear S , pressure force P , buoyancy B, and viscous diffusion V . As only
axisymmetric m = 0 perturbations are considered in this chapter, it is not necessary
to append a subscript m to the differential operators.

For a better physical discussion, the pressure force can be split into a divergence-
free (baroclinic) and a curl-free (barotropic) component; the former is linked to the
baroclinic torque in the vorticity equation, after application of the curl operator to
(4.1), whereas the latter does not affect the evolution of perturbation vorticity.

A Helmholtz decomposition is performed on the pressure force P , such that

P = curlA− gradφ, (4.3)

where A and φ are found from

A=
1

4π
(curlP)⊗ (1/r), (4.4a)

φ =
1

4π
(divP)⊗ (1/r). (4.4b)

The operator ⊗ denotes a convolution over the entire volume V of the numerical
domain, and r represents any position in V . This decomposition is performed
numerically, such that P =P1+P2 is explicitly obtained, with a baroclinic component
P1 and a barotropic component P2.

Further analysis is restricted to the action of shear, baroclinic and buoyant forces,
because all other contributions are found to be strictly stabilising at all Richardson
numbers. The dependence of an eigenvalue ω on these three components is obtained
by introducing small variations into (4.1),

− iωû= C + (1+ εS)S + (1+ εP)P1 +P2 + (1+ εB)B+ V, (4.5)

from where sensitivities can be defined as

∂Sω=
∂ω

∂εS
=
〈q̂†
, S〉

〈q̂†
, Bq̂〉

, ∂Pω=
∂ω

∂εP
=
〈q̂†
,P1〉

〈q̂†
, Bq̂〉

, ∂Bω=
∂ω

∂εB
=
〈q̂†
,B〉

〈q̂†
, Bq̂〉

. (4.6a−c)

Note that the terms S , P1 and B contain components of the eigenvector q̂, and that
q̂† is the associated adjoint eigenvector, defined with respect to the scalar product
〈·, ·〉. A standard non-weighted discrete scalar product has been chosen in the present
calculations, but the scalar quantities ∂ω in (4.6) are independent of this choice, as
demonstrated by Marquet & Lesshafft (2015).

The sensitivities (4.6) are interpreted in the following way. An infinitesimally
small positive value εS proportionally increases the strength of the shear-related
force term, resulting in an eigenvalue variation δω = εS∂Sω. If the imaginary part of
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FIGURE 8. (Colour online) Sensitivity of the growth rate with respect to (q) shear,
(u) baroclinic and (p) buoyancy terms, as functions of the Richardson number, with
parameters S= 7 and Re= 200.

∂Sω is positive, then S has a destabilising effect; if it is negative, then S acts in a
stabilising way. The same reasoning applies to ∂Pω and ∂Bω. The three sensitivities are
commensurate, so that a larger absolute value of one compared to another indicates
a stronger stabilising or destabilising effect.

Results from this analysis are presented in figure 8 over the full range of Ri
values, for the standard setting S = 7 and Re = 200. Imaginary values of ∂Sω, ∂Pω

and ∂Bω are shown in two separate diagrams for low and high Richardson numbers,
for better readability. In the jet regime Ri < 1, the strongest destabilising force
is due to the base flow shear. At very low Ri, the effect of buoyancy vanishes,
while the baroclinic force provides a small additional destabilisation. The local
analysis of Lesshafft & Huerre (2007) demonstrated that the baroclinic torque is
the determining ingredient that renders a non-buoyant heated jet absolutely unstable,
through co-operation with the basic shear instability. The present global results are
consistent with that conclusion. In the plume regime Ri > 1, the buoyancy force
becomes strongly destabilising, dominating all other contributions for Ri > 5. Shear
and baroclinic effects are negligible in comparison at very high Ri; the baroclinic
force even becomes stabilising above Ri= 100.

It is concluded that the observed global instability in the jet and plume regimes
indeed involve distinct physical mechanisms. In buoyant jets at low Richardson
number, the dynamics are driven by a shear instability, which is strengthened by a
baroclinic force. In high-Ri plumes, the instability arises principally from buoyancy
effects. These conclusions are fully consistent with the results of Bharadwaj & Das
(2017), who observed that the leading eigenmode could be stabilised through artificial
compensation of the baroclinic torque at low Ri, and through suppression of the
buoyancy force at high Ri.

5. Local analysis

The results so far have shown a dominance of axisymmetric global instabilities,
which is in stark contrast to our earlier local analysis in the S→ 1 Boussinesq limit
(Chakravarthy et al. 2015), where absolute instability was found only for helical
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FIGURE 9. Variation of the absolute frequency ω0 with streamwise location z for the
axisymmetric mode m= 0 and Ri= 10−4 (a,c) and Ri= 102 (b,d) at S= 7, Re= 200.

perturbations. The absolute/convective nature of local instability in non-Boussinesq
settings is now investigated.

The same algorithm as in Chakravarthy et al. (2015) is used for tracking
saddle points of the local dispersion relation in the complex k plane. Again, the
group-velocity root-finding procedure of Lesshafft & Marquet (2010) has been found
to be more efficient and robust than the classical Briggs or the cusp map methods
(see Schmid & Henningson 2001).

5.1. Axisymmetric perturbations, m= 0

For the standard setting S = 7 and Re = 200, and for Richardson numbers of 10−4

and 102, variations of the absolute frequency ω0 along the streamwise z direction are
shown in figure 9. In the more extreme case Ri = 103, numerical difficulties led to
unreliable results. In both configurations, the flow is found to be absolutely unstable
(ω0,i > 0) over a streamwise interval of 6 or 7 radii downstream of the inlet. In the
weakly non-parallel case of Ri = 10−4, the real part ω0,r shows moderate variations
around a value of 0.5, in reasonable agreement with the global frequency ωr = 0.56
as given in figure 5(a). In the strongly non-parallel setting Ri = 102, ω0,r displays
a variation between 1.3 and 80 over the absolutely unstable interval. This is not
inconsistent with the global frequency ωr = 10.99, but it does not provide a means
of predicting ωr at leading order.
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FIGURE 10. Absolute growth rate ω0,i of helical perturbations, for Re= 200 and Ri= 1:
(a) at the inlet, as a function of the density ratio S; (b) as a function of z, for S= 7.

Nonetheless, the link between local absolute and global instability of axisymmetric
perturbations is very plausibly confirmed by these results, both in the low- and in
the high-Richardson-number regime. The neutral curve for the onset of absolute
instability in the (Ri, S) plane is reported in figure 6 for axisymmetric perturbations
at z = 0. It is found that the transition from convective to absolute local instability
at the inlet, with increasing Ri and S, occurs before global instability sets in. This is
consistent with the common observation, both in model problems (Chomaz, Huerre &
Redekopp 1991) and in slowly varying flow (e.g. Lesshafft, Huerre & Sagaut 2007),
that absolute instability must prevail over a sufficiently long streamwise region with
sufficient growth rate in order to prompt a global instability.

5.2. Helical perturbations, m= 1
The saddle point in the complex k plane that is associated with helical absolute
instability in the study of Chakravarthy et al. (2015) is also recovered in the analysis
of the present inflow profiles. The absolute growth rate ω0,i for m = 1 perturbations
at z = 0 is displayed in figure 10(a) as a function of S, for parameters Ri = 1
and Re = 200. A unity Richardson number is chosen here for comparison with the
analysis in § 3 of Chakravarthy et al. (2015), but higher values of Ri lead to the same
conclusions. The density ratio S characterises the departure from the Boussinesq limit,
and it is seen to have a very weak effect on the growth rate ω0,i of the absolute
helical mode.

The spatial variation of ω0,i, over a short interval of z adjacent to the inlet, is
shown in figure 10(b) for the highly non-Boussinesq setting S= 7; values beyond this
streamwise region could not be obtained with sufficient confidence, due to numerical
difficulties. The absolute helical growth rate at S = 7 displays the same qualitative
characteristics as the one described in Chakravarthy et al. (2015) for the Boussinesq
limit: the growth rate declines quickly downstream of the inlet, perhaps asymptotically
tending towards zero. It is not surprising that under these conditions the weak absolute
instability of m= 1 perturbations does not lead to a global flow destabilisation, as was
found in § 3.2.
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6. Conclusions
The linear instability dynamics in spatially developing buoyant jets and plumes have

been investigated for a wide range of values of the Richardson number and the fluid
density ratio. In the limit of zero Mach number, all variable-density effects have been
taken into account in the mathematical formulation, so that configurations outside the
realm of validity of the Boussinesq approximation could be considered.

Axisymmetric global instability modes have been found and documented over the
entire investigated range of parameters, whereas no helical global instability could
be identified. Some doubts remain only in the regime of very high Richardson
number, Ri > 100, where spurious helical modes could not be entirely stabilised
due to numerical limitations. The preponderance of axisymmetric instability is in
agreement with experimental observations by Subbarao & Cantwell (1992), Cetegen
& Kasper (1996) and Bharadwaj & Das (2017), who reported axisymmetric puffing
in free plumes. The present global analysis furthermore reproduces the experimentally
measured frequencies with satisfactory accuracy. In particular, the experimental power
law ωr ∝ (Ri/S)0.38 has been retrieved as ωr ∝ (Ri/S)0.43 in the present calculations. It
is noted that Bharadwaj & Das (2017) found even closer agreement from their linear
analysis, which was designed to specifically model helium plumes, as opposed to
thermal plumes in the present study.

The physical mechanisms behind global instability have been characterised by
means of a sensitivity analysis. As proposed by Marquet & Lesshafft (2015), the
sensitivity of the perturbation growth rate with respect to individual terms in the
linear equations has been evaluated, which provides a quantitative measure for the
stabilising or destabilising role of mechanisms represented by these terms. The main
conclusion is that instability in the low-Ri jet regime is caused primarily by a shear
mechanism, aided by a baroclinic force that arises from density variations, whereas
the instability in the high-Ri plume regime is brought about principally by way of the
buoyancy force, with a small contribution from shear. Nothing in the results indicates
an abrupt switching between two distinct instability modes; the most unstable mode
appears instead to vary smoothly as a function of Ri, with a gradual shift from the
dominance of one mechanism to a dominance of the other.

These global results contrast with the conclusions of Chakravarthy et al. (2015), on
the basis of local analysis in the Boussinesq limit, that the instability dynamics of
self-similar plumes are dominated by helical perturbations. In particular, that earlier
study showed axisymmetric perturbations to be only convectively unstable, whereas
helical perturbations exhibit absolute instability, as well as larger temporal growth
at real wavenumbers than axisymmetric modes. The global analysis in the present
study was performed on base flows that develop from an orifice with prescribed inlet
profiles, and that only relax asymptotically in the streamwise direction towards a self-
similar flow solution. Close to the orifice, these base flows are markedly different
from self-similar conditions, and this is the flow region where unstable axisymmetric
perturbations reside in high-Ri plumes, according to the present results (see figure 4b).
Global instability in low-Ri buoyant jets has been shown to depend on baroclinic
effects, which are absent in the Boussinesq approximation. The Boussinesq framework
used by Chakravarthy et al. (2015) is therefore inappropriate for an instability analysis
in this regime.

It has finally been demonstrated, for selected configurations, that the global
instability characteristics are consistent with the absolute or convective nature of local
instability. All globally unstable settings in the (Ri, S) plane, with Re= 200, feature
an absolutely unstable flow region in the vicinity of the inflow. In the examined
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cases, the absolute growth rate of axisymmetric perturbations is significantly larger
than that of helical perturbations, and it remains positive over a longer streamwise
region. Although absolute instability also arises for helical perturbations, it appears
to be too weak to set off a global instability.

It must be cautioned that the conclusions drawn from the present results may
not be easily extendable to generic plume and jet flows. In particular, the instability
characteristics seem to be rather sensitive to details of the inflow profiles: with similar
but not identical inflow profiles, axisymmetric perturbations are absolutely unstable
in the present settings, but convectively unstable in the configuration of Chakravarthy
et al. (2015). Test calculations, documented in Chakravarthy (2015), indicate that
the functional shape of the density profile has a marked influence on the local
stability characteristics, even when the mixing layer thickness is matched. Subbarao
& Cantwell (1992) point out, for instance, that helium release and diffusion flames
create plumes with very distinct density variations, which therefore may present quite
different instability dynamics. It can also not be ruled out that nonlinear effects alter
the threshold of global instability (Couairon & Chomaz 1997). The influence of the
Prandtl number has not been investigated in this study, but it has been shown by
Lakkaraju & Alam (2007) that the instability behaviour of planar plumes undergoes
qualitative changes as Pr is varied far from unity.
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Appendix A. Differential operator definitions for azimuthally decomposed field
quantities

The operators for divergence, gradient, Laplacian and advection in cylindrical
coordinates in equations (2.11) are written with a subscript m. This is meant to express
that azimuthal derivatives of perturbations (2.10) are included in these operators in
the form of terms in m, such that formally

grad (û eimθ)= (gradmû) eimθ , (A 1a)
div (û eimθ)= (divmû) eimθ , (A 1b)
∆(û eimθ)= (∆mû) eimθ , (A 1c)

and accordingly for all other flow variables. All relevant terms from the (2.11) are
written out below for the sake of completeness:

divm(ρ̂u+ ρu)=
1
r
∂r(rρ̂ur + rρûr)+

im
r
ρûθ + ∂z(ρ̂uz + ρûz), (A 2)

(gradmu) · û= [ûr∂rur + ûz∂zur]er +
ûθur

r
eθ + [ûr∂ruz + ûz∂zuz]ez, (A 3)

(gradmû) · u = [ur∂rûr + uz∂zûr]er + [ur∂rûθ + uz∂zûθ ]eθ
+ [ur∂rûz + uz∂zûz]ez, (A 4)
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(gradmT) · û= ûr∂rT + ûz∂zT (A 5)

(gradmT̂) · u= ur∂rT̂ + uz∂zT̂, (A 6)

gradmp̂= ∂rp̂ er +
im
r

p̂ eθ + ∂zp̂ ez, (A 7)

gradm(divmû) =
[
∂r
∂r(rûr)

r
−

2im
r2

ûθ +
im
r
∂rûθ + ∂rzûz

]
er

+
1
r

[
im∂rûr +

im
r

ûr −
m2

r
ûθ + im∂zûz

]
eθ

+

[
∂rzûr +

∂zûr

r
+

im
r
∂zûθ + ∂zzûz

]
ez, (A 8)

∆mû =
[
∂r
∂r(rûr)

r
−

m2

r2
ûr + ∂zzûr −

2im
r2

ûθ

]
er

+

[
∂r
∂r(rûθ)

r
−

m2

r2
ûθ + ∂zzûθ +

2im
r2

ûr

]
eθ

+

[
∂r(r∂rûz)

r
−

m2

r2
ûz + ∂zzûz

]
ez, (A 9)

∆mT̂ =
∂r(r∂rT̂)

r
−

m2

r2
T̂ + ∂zzT̂. (A 10)
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