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Pattern-forming instability in various fields is an interesting research topic because of
its complex physical nature and numerous applications. In this paper, we experimentally
study capillary surface waves and patterns formed on a liquid film, cast on a plane
substrate without physical walls, but pinned to the substrate edges, and subjected
to multi-axis horizontal (lateral) oscillations (55–333 Hz). The effect of single-axis
ultrasonic horizontal vibrations (20–170 kHz) was also investigated. We show that
using substrates with different geometrical shapes and various travelling paths created
by multi-axis vibrations with a phase angle difference between the axes produce a
plethora of standing and travelling wave patterns on the liquid film surface. We report
perfect standing square and spiral-like patterns for low-frequency multi-axis horizontal
vibrations, which are commonly observed for vertical vibrations, while the mechanisms
of momentum transfer to the liquid film from the vibrating substrate are different in
vertical and horizontal vibrations. Other patterns forming on the liquid film surface in
our experiments include lines/stripes, circles, swirls, pentagons, triangles, etc. It is also
reported that low-frequency excitations create harmonic travelling waves and standing
patterns, while the frequency of response waves generated by the application of ultrasonic
horizontal vibrations is several orders of magnitude less than the excitation frequency.
No subharmonic cross-waves are observed in this study, which strengthens the idea that
plane substrates (without walls) are a good approximation for the theoretical case of a
horizontally vibrated liquid film with infinite lateral length.

Key words: thin films, pattern formation, capillary waves

1. Introduction

Instability in a system is an intriguing nonlinear dynamics problem. In hydrodynamic
systems with interfaces subjected to disturbances such as external vibrations, instability
may appear as standing wave patterns or travelling waves at the interface of two fluids.

† Email address for correspondence: morteza.eslamian@gmail.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6584-5205
https://orcid.org/0000-0002-8096-1447
mailto:morteza.eslamian@gmail.com
https://doi.org/10.1017/jfm.2020.468


900 A30-2 T. Khan and M. Eslamian

This diverse area of research started with the Faraday’s work (Faraday 1831). He observed
that a water surface in a container subjected to piston-like vertical vibrating motion
becomes unstable, provided that the forcing amplitude is larger than a threshold, leading
to the formation of square-pattern standing waves with a response frequency half of the
excitation frequency (subharmonic). At present, almost two centuries later, a vibrated
liquid interface is still an active topic due to the complex underlying physics, as well
as its applications, a recent bridging theory of a quantum-hydrodynamic analogue being
a case in point (Bush 2015; Oza et al. 2017; Couchman, Turton & Bush 2019). Since
the work of Faraday, most attention has been given to vertical excitations, and rather
few experimental and theoretical/numerical studies can be found on horizontally forced
systems. Vertical and horizontal vibrations affect the liquid surface differently, in that
the vertical vibrations modulate the gravitational acceleration and hydrostatic pressure
gradient, while the horizontal vibrations cause a shear flow phenomenon along the
direction of forcing. First, we briefly review some key studies on vertically vibrated liquids,
particularly those reporting pattern formation, followed by studies on horizontally vibrated
liquids, the latter being the focus of this current work.

Theoretically, the problem of inviscid fluid under vertical vibrations was addressed by
Benjamin & Ursell (1954), where they performed a linear stability analysis of the free
liquid surface. Later, it was revisited to include viscous effects (Kumar & Tuckerman 1994;
Beyer & Friedrich 1995). However, linear analysis does not provide significant insight into
the shapes of the patterns formed. In linear stability analysis, the governing Navier–Stokes
equations are linearized about a flat interface and a zero-velocity field. Such linearized
equations only depend on the wavenumber and are independent of the orientation of each
wave. Thus, a nonlinear approach is required to understand pattern selection (Milner 1991;
Miles 1993; Chen & Viñals 1999; Skeldon & Guidoboni 2007). Recent numerical studies
have captured a range of surface patterns formed on the liquid film interface (Perinet, Juric
& Tuckerman 2009; Kahouadji et al. 2015; Kentaro & Takeshi 2015). Experimentally, for
vertical vibrations, various patterns other than the classical squares (Douady & Fauve
1988; Douady 1990) have been reported for large-aspect-ratio systems, i.e. where the
length scale of the container is much larger than the wavelength of the patterns (L � λ).
These patterns include parallel lines, circles, spirals, hexagons, triangular patterns and
quasi-patterns of eightfold and twelvefold symmetry (Christian, Alstrom & Levinsen
1992; Edwards & Fauve 1993, 1994; Müller 1993; Binks & van de Water 1997; Ding
& Umbanhowar 2006). Experiments in the ultrasonic range (40–170 kHz) have been
conducted as well (Rahimzadeh, Ahmadian-Yazdi & Eslamian 2018), where the substrate
geometry and boundaries have been found to dictate or affect the pattern formation;
in particular, a square substrate produces a checked pattern, while a circular petri dish
produces circular-shaped travelling and standing waves. In another study by Rajchenbach,
Clamond & Leroux (2013) for large-amplitude excitations, standing waves having twice
the excitation amplitude were observed with a star-shaped and polygonal pattern in
rectangular and circular containers. For shallow depths (1–2 mm) in a Hele-Shaw cell, Li,
Yu & Liao (2015) discussed a new family of two-dimensional (2-D) Faraday waves. They
found that for such low film thicknesses, the observed waves were quite different from the
traditional Faraday waves. At the extreme (maximum) position of the wave, all the liquid
was held in the crest (trough) and the trough (crest) became a long horizontal line, close
to the bottom of the cell. Arbell & Fineberg (2002) have also reported superlattice-like
patterns with temporal excitation of two frequencies.

In the case of horizontal vibrations, Yih (1968) performed the first theoretical treatment
of the problem using long-wave approximation for an unbounded liquid layer. It was
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Study on travelling and standing pattern formation 900 A30-3

extended by Or (1997) for arbitrary wavenumbers and a mathematical argument was
presented stating that for unbounded layers, only synchronous (harmonic) solutions
are possible in the presence of horizontal vibrations, unlike the vertical vibrations for
which both harmonic and subharmonic solutions are possible. On the experimental
front, studies have been performed using cylindrical and rectangular containers. Some
earlier works (Hutton 1963; Miles 1976, 1984) observed both harmonic and chaotic
regimes in cylindrical containers. In rectangular channels, cross-waves can also form (in
addition to the primary waves), due to the presence of the sidewalls. Such cross-waves
are subharmonic in nature and usually perpendicular to the axis of vibration (Varas &
Vega 2007). Porter et al. (2012) investigated patterns under low-frequency (40–100 Hz)
horizontal vibrations. They concluded that the cross-waves were oblique in nature,
with angles between 50° and 80°. Similar findings related to the obliqueness of the
cross-waves were reported in Pérez-Gracia et al. (2013, 2014). It was further concluded
that the subharmonic cross-waves form because of the parametric instability caused by
the combination of primary harmonic surface waves and oscillatory bulk flow of the fluid.
The cross-waves were observed to be concentrated near the boundary edges or walls. In a
series of works, Bestehorn and co-workers solved the nonlinear Navier–Stokes equations
numerically for a laterally unbounded liquid film (Bestehorn 2013; Bestehorn, Han & Oron
2013; Richter & Bestehorn 2019) and proposed the idea of 2-D and three-dimensional
excitations, i.e. combined horizontal and vertical oscillation. For one-dimensional (1-D)
or single-axis horizontal vibrations, stripes or step-like patterns perpendicular to the
excitation, and for 2-D horizontal excitation (which was called circular excitation),
coarsening and large depressions on the surface were reported.

The rarity of experiments on horizontal vibrations is evident in the literature. In
addition, in the experimental studies, the lateral walls of the container that holds the liquid
act as a wavemaker, preventing a natural and homogeneous base flow. Additionally, the
travelling surface waves hit the ‘hard’ boundaries (walls) of the container and are reflected
with a change in polarity, i.e. a crest hitting the boundary is reflected as a trough and
vice versa. These reflected waves can then further complicate the dynamics of the liquid
surface. Some remedies have been suggested, in theory, to limit the sidewall effects, e.g.
by considering an annular ring cell with a large radius for the experiments (Bestehorn
2013). Further, with large-aspect-ratio systems (L � λ), it is expected to achieve a better
approximation for the ideal situation of infinite lateral length (Edwards & Fauve 1994). In
recent work (Khan & Eslamian 2019), we studied the problem of a liquid layer, cast on
a flat rectangular glass substrate without physical side walls, having contact lines pinned
to the edges, where the substrate was subjected to single-axis (1-D) lateral vibrations.
The ‘soft boundaries/lateral walls’ were created by the pinned edges of the liquid. The
studied problem showed an interesting mixed behaviour with the characteristics common
to theoretically unbounded liquid layers, fluid inside a walled container and a flattened
droplet.

The present study is a continuation of our previous work on 1-D horizontal vibrations
(Khan & Eslamian 2019) and is intended to study different patterns formed on a liquid
film pinned to a substrate, subjected to low-frequency (55–333 Hz) multi-axis (x and
y, both in horizontal directions) forcing. The substrates are square, circular, triangular,
elliptical and stadium-shaped, and the response of the liquid film is in the form of
standing and/or travelling wave patterns. We analyse the formation of the travelling and
standing waves that coexist in some cases by wave superposition and demonstrate the
reason behind such coexistence of waves. The liquid film surface is also probed under
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FIGURE 1. (a) Schematic representation of a multi-axis vibrator, where the red arrows show
possible directions (x and y) of forcing. (b) The 2-D view showing the xz plane of a vibrated
(square) substrate secured on the vibrator with a wavy liquid surface, and average undisturbed
liquid film/layer thickness h0 shown as dotted lines. In this experimental work, the liquid is
pinned to the substrate edges, forming soft walls at the menisci, as shown. The waves shown are
not to scale. The details of the meniscus and the parameter definitions are given in appendix A.

the effect of ultrasonic horizontal vibrations (20–170 kHz). The various excited patterns
are found to depend on the substrate geometry and the interplay between the phases of
the vibrational axes. It is observed that for low-frequency vibrations, the standing wave
pattern and the travelling waves have the same frequency as that of the forcing frequency
(harmonic); however, for ultrasonic vibrations, the frequency of the observed pattern
and travelling waves is several orders of magnitude lower than the forcing frequency.
No subharmonic cross-waves are observed in our experiments. For the square substrate
under multi-axis excitation, a perfect square pattern of standing waves is observed, like
the classical squares reported in the Faraday experiments for vertical vibrations (Douady
& Fauve 1988; Douady 1990). Furthermore, circle and spiral patterns are observed for
the circular substrate in single- and multi-axis excitations, respectively, which were also
reported by Edwards & Fauve (1994) for vertical vibrations. Other patterns observed in
our experiments are lines (square substrate under 1-D vibration), swirls (stadium substrate
under 2-D vibration), pentagons (circular substrate under ultrasonic vibration), etc. We
also report the phenomena of pattern switching when there is a phase difference of 90°
between the two axes of vibrations on a square substrate. Several of the above-mentioned
phenomena are reported, to the best of our knowledge, for the first time.

Here, we consider a viscous, isothermal and incompressible liquid layer with a free
surface in contact with air, where the liquid contact lines are pinned to the edges of
the substrate. The substrate is mounted on a high-precision vibrating device, capable of
moving in two lateral directions (x- and y-axes), as shown in figure 1. The mean film
thickness is h0, and the fluid properties like density ρ, surface tension σ and kinematic
viscosity ν are assumed constant. In appendix A, we provide a brief overview of the
equations governing the motion of a liquid film along with proper boundary conditions,
i.e. pinned boundary conditions as realized in this work.

2. Experimental set-up

Figure 2 shows the experimental set-up for the top-view and side-view imaging. To
cast a film of a desirable thickness on a certain substrate with known dimensions and
area, a pre-calculated amount of deionized and distilled water was weighted with a precise
digital balance having 0.1 mg readability (Mettler Toledo, USA). It was then transferred
onto a horizontally levelled substrate and spread to make a film pinned on all edges of the
substrate. To facilitate liquid spreading and avoid dewetting, and to improve reliability and
repeatability of the experiments, the glass substrates were first washed in an ultrasonic
bath and then were UV-treated, in order to increase the surface energy and remove
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FIGURE 2. Experimental set-up for (a) top-view imaging and (b) side-view imaging. The
low-frequency vibrator is shown here with double-headed arrows, indicating the possible forcing
directions. The images on the right show the film surface as viewed in each case.

contaminants. An adhesive double-sided transparent tape was employed to attach and
secure the bottom of the substrate to the vibrator surface.

A high-speed CMOS camera (FASTCAM Photron SA3, Model 120 K, Japan) was
used to capture top-view images of the liquid film surface. The camera was placed
perpendicular to the film surface and set at 2000 frames per second. The image resolution
was adjusted for various substrates to obtain the best-quality images at a desired field
of view. Table 1 presents the different substrates used in these experiments with their
respective image resolutions. These image resolutions are for the xy plane (top view)
and suggest the uncertainty or maximum precision with which we can measure the
wavelengths of patterns for each particular case. Raw images were processed using
ImageJ software to extract greyscale images, in order to enhance the clarity. Surface wave
amplitude measurement was conducted using side-view imaging with a CCD camera
(Biolin Scientific, Sweden). The details of wave amplitude measurement are given in
appendix B.

The low-frequency vibrating device is a multi-axis motion generator voice coil (H2W
Technologies, Santa Clara, CA, USA) controlled by SPiiPlus MMI Application Studio
software and an EtherCAT controller (ACS Motion Control Ltd, Israel). The voice coil
employs a linear magnetic encoder (part number 001, RLS d.o.o., Ljubljana, Slovenia),
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Geometry Resolution (μm)

Square (s = 50 mm) 46
Square (s = 25 mm) 28
Circle (d = 50 mm) 48
Circle (d = 15 mm) 24
Ellipse (a = 40 mm, b = 20 mm) 39
Ellipse (a = 20 mm, b = 10 mm) 25
Equilateral triangle (s = 40 mm) 40
Equilateral triangle (s = 20 mm) 24
Stadium shape (c = 12.5 mm, r = 6.25 mm) 24

TABLE 1. Substrate geometries and dimensions along with the associated image resolution per
pixel. Parameters: s, side length (square or triangle); d, diameter (circle); a, major axis; b, minor
axis (ellipse); c, rectangular length; r, radius of semicircles (stadium shape).

able to move with a resolution of 1 μm with repeatability better than the resolution,
according to the manufacturer datasheet. The device can generate high-precision
oscillatory motion in two lateral axes, x and y, either separately or simultaneously.
However, it should be made clear that the device does not generate any motion in the
vertical direction (z-axis). The frequency ( f ) and amplitude (a) of the excitations could be
controlled by adjusting the motion parameters such as velocity, acceleration, deceleration
and jerk with the help of the software (SPiiPlus MMI Application Studio). The software
displays the signal ‘feed-back position’ of the vibrator while in motion. The graphical form
of this feedback position provides the amplitude and frequency as shown in figure 3. Since
the vibrator could move back and forth within 1 μm around the centre, the minimum
possible excitation amplitude is 0.5 μm. In simultaneous vibrations of x- and y-axes,
which will be referred to as 2-D excitations hereafter, both axes move together. However,
the phase difference φ between the vibration waves exerted on the two perpendicular
axes could alter the path followed by the vibrating plate and subsequently the substrate
placed on top of it. In order to determine the actual path as a result of this phase
difference, the position of the centroid of the substrate (in the xy plane) was measured
at 30 equal time steps during one cycle. It was observed that for the in-phase (φ ≈ 0°)
and out-of-phase (φ ≈ 180°) excitations, the paths were similar (mirror image). However,
for the out-of-phase (φ ≈ 90°) excitation, the path was different, as shown in figure 3. All
three phase angles were used in this experimental study.

In some tests, high-frequency 1-D ultrasonic horizontal vibrations were applied to the
substrate. For this purpose, a disc-type Langevin ultrasonic transducer having a fixed
resonant frequency operating at an input power of 50 W was mounted inside a steel box to
generate vertical vibrations on the top surface of the box. The box was then tilted 90° and
the substrates were placed on the side wall of the box to generate horizontal vibrations.
A signal generator was used to actuate the transducer (Yuhuan Clangsonic Ultrasonic Co.
Ltd, Zhejiang, China). The detailed characterization of the ultrasonic vibrators by laser
beams is provided elsewhere (Gholampour, Brian & Eslamian 2018).

Table 2 shows the range of input parameters used in the experiments. With our
low-frequency vibrator, there is a limit for the maximum achievable amplitude for various
frequencies before the vibrator stops the motion due to overcurrent. This maximum
amplitude depends on the value of the excitation frequency, i.e. for a higher frequency,
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FIGURE 3. (a,c,e) Wave profiles of the 2-D excitations. (b,d, f ) Paths followed by the centroid
of the substrate in the xy plane. For (a,b) φ = 0°, (c,d) φ = 90° and (e, f ) φ = 170°. Yellow and
green curves represent the motion of x- and y-axes, respectively. The excitation amplitude (a)
was held as 1 mm on both axes to see the path accurately.

the maximum achievable amplitude is smaller than that for a lower frequency. Here, we
performed all the tests at the maximum amplitude that was possible to achieve for a certain
frequency, e.g. for f = 55 Hz, the amplitude a = 100 μm, whereas for f = 333 Hz, a = 5
μm. We should mention that changing the excitation amplitude at a fixed forcing frequency
results in a change in the amplitude of the induced surface waves and hence the wave
visibility, as reported in a previous work (Khan & Eslamian 2019). As listed in table 2,
the liquid film thickness throughout this work is ∼1.25 mm. The effect of the liquid film
thickness has been previously studied for low-frequency horizontal vibrations (Khan &
Eslamian 2019) and for ultrasonic vibrations (Rahimzadeh et al. 2018). In brief, as the
film thickness is increased, the surface wave amplitude decreases. For very thin films, the
waves are not formed on the surface, as very high amplitudes of vibration would be needed
to excite the film. Effectively, the surface waves are best visible in a certain window of film
thickness, and in this work we have chosen the liquid film thickness in that window.

We argue that our experiments with pinned contact lines resemble more the theoretical
case of waves on an unbounded film than waves within containers with hard physical walls.
Application of larger substrates would result in a decrease in the effect of the meniscus and
the pinned walls; however, the maximum size of the substrate was dictated by the size of
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Parameter Value

Low-frequency vibrations (Hz) 55–333
Amplitude of low-frequency vibrations (μm) 5–100
High-frequency ultrasonic vibrations (kHz) 20, 40, 68, 170
Amplitude of ultrasonic vibrations (nm) 0.5–664
Liquid film average thickness (mm) ∼=1.25

TABLE 2. Range of the experimental input parameters.

the vibration generator and the field of view of the camera. The substrate holder (vibrating
plate) of the multi-axis vibration generator device is 7 cm × 11 cm (figure 2a). Therefore,
to ensure that the substrate is well attached to the vibration holder, it is desirable to use a
substrate that fits within the boundaries of the vibration holder. In addition, for larger-area
substrates, the camera should be mounted at a greater distance to ensure that the entire film
remains in the camera’s field of view, which compromises the fine details of the patterns
and capillary waves (resolution). Considering a trade-off between the substrate size and
the field of view/resolution, the maximum substrate size we used in the experiments was
5 cm × 5 cm.

3. Results and discussion

3.1. Characteristics of surface waves
For both 1-D and 2-D excitations, we measured the frequency of the standing waves
formed on the surface, and found that for low-frequency vibrations, the frequency of
the standing waves was the same as the excitation frequency (harmonic oscillations), as
also found previously for a rectangular substrate with only 1-D primary standing waves
(Khan & Eslamian 2019). This agrees with the mathematical arguments of Or (1997) for
horizontal vibrations where shear forces play the major role. A representative case showing
the complete spatiotemporal evolution during one cycle of a square pattern is demonstrated
in appendix C.

In contrast, for ultrasonic vibrations, the measured frequency of the surface waves
was several orders of magnitude lower than the excitation frequency, in agreement with
the findings of previous work (Rahimzadeh et al. 2018). Interestingly, for three of the
ultrasonic excitation frequencies, where instability appeared (20, 40 and 68 kHz), the
surface waves had the same frequency, i.e. ∼250 Hz. For a frequency of 170 kHz,
the surface remained stable and no waves were detected. Although at this high frequency
the amplitude of vibration was small, i.e. ∼0.5 nm (Gholampour et al. 2018), this
experimental observation is in qualitative agreement with the theoretical work of Shklyaev,
Alabuzhev & Khenner (2009), who suggested that film stability could be achieved for
very-high-frequency ultrasonic horizontal vibrations.

The wavelength was measured for different cases using surface profiles obtained through
image processing. Some representative greyscale images with surface profiles are shown
in figure 4, for both 1-D and 2-D horizontal vibrations. A central region of the film surface
was specified, excluding ∼2.5 mm from each edge, to minimize the effect of the curvature
on wavelength measurement. The wavelength was measured multiple times and average
values and standard deviations are reported in table 3. The wavelength was found to be
a function of the excitation frequency only and independent of the substrate geometry,
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FIGURE 4. Greyscale images and the associated surface profile through the mid-plane in the
x-axis, as shown by red lines in (c), of representative cases. Greyscale unit represents the
wave amplitude. (a) Square substrate (s = 25 mm) under 1-D vibration (x-axis) at f = 55 Hz,
1 greyscale unit = 9.1 ± 0.8 μm, (b) square substrate (s = 50 mm) under 1-D vibration (x-axis)
at f = 165 Hz, 1 greyscale unit = 2.2 ± 0.3 μm, and (c) circular substrate (d = 50 mm) under 2-D
vibration at f = 165 Hz.

f (Hz) λ, theory (mm) λ, experiment (mm) Difference (%)

55 5.30 4.75 ± 0.04 10.5
100 3.56 3.10 ± 0.03 12.9
165 2.53 2.13 ± 0.05 15.8
200 2.24 1.89 ± 0.04 17.5
250 1.93 1.51 ± 0.04 19.8
333 1.59 1.25 ± 0.04 21.1

TABLE 3. Theoretical (dispersion relation) and experimental values of wavelengths for
different excitation frequencies of surface waves formed on a square substrate.

amplitude and direction of vibration. Given the small and millimetre-range wavelengths,
the waves are ‘capillary waves’ and thus dominated by surface tension.

Table 3 also lists the theoretical (calculated) wavelengths and the relative errors.
The theoretical values are obtained by the dispersion relation in potential flows, ω2 =
tanh(kh)[gk + (σ/ρ)k3], where ω = 2πf is the angular frequency in rad s−1, k = 2π/λ is
the wavenumber and g, σ and ρ are the gravitational acceleration, surface tension and
density of the fluid, respectively (e.g. Currie 2013). The values of σ and ρ for water
were taken as 0.072 N m−1 and 1000 kg m−3, respectively. Figure 5 shows a graphical
representation of the data in table 3 for wavenumber k = 2π/λ. Gravity in the dispersion
relation has an insignificant effect, as mentioned before.
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FIGURE 5. The theoretical (dispersion relation) and experimental wavenumber k = 2π/λ of
surface waves on a liquid film cast on a square substrate against the frequency of excitation.

Table 3 shows that with increasing frequency, the difference between the experimental
and theoretical values increases, i.e. at lower frequencies the dispersion relation provides
a better prediction of the wavelengths; however, as frequency increases, the quantitative
difference between the two values increases. The difference between the experimental
measurements and the calculated wavelengths using the ideal dispersion relation is
attributed to multiple effects, such as the viscous nature of water, nonlinear effects due
to the non-negligible rate of change of the wave amplitude with respect to the lateral
lengths (breakdown of the long-wave approximation), the three-dimensional nature of the
flow field rather than a 2-D approximation, the presence of the pinned contact lines and
the meniscus instead of an unbounded liquid layer, none of which are accounted for in the
dispersion relation. The viscous and nonlinear effects play a more important role with an
increase in the excitation frequency. Similar deviations from the linear dispersion relation
have been observed in vertical vibration experiments for oscillating blobs or oscillons
(Shats, Xia & Punzmann 2012).

The results presented in table 3 and figure 5 are for liquid films subjected to 1-D
horizontal vibrations. However, the same numbers were obtained when the substrate was
subjected to 2-D vibrations with identical frequencies. As shall be seen later in § 3.3,
2-D excitation with similar frequencies on both axes produces a square and transitioning
line pattern. The wavelength in these patterns is the same along both axes (x and y),
confirming the validity of the dispersion relation for 2-D vibrations. For 2-D excitation
with different frequencies applied on each axis (to be discussed later), the dispersion
relation still holds valid especially near the boundaries. However, the waves produced
with different wavelengths (due to different excitation frequencies on each axis) interfere
and form a complex pattern.

In this section, the overall frequency and wavelength response of a liquid film subjected
to 1-D and 2-D horizontal vibrations have been provided and discussed. In the next
sections, we present the results related to the patterns formed on a liquid film surface
for various geometries under different conditions of applied horizontal vibrations.

3.2. Low-frequency 1-D vibrations
For rectangular and square-walled containers subjected to 1-D vibration, cross-waves are
usually formed as reported in the literature and mentioned earlier in the introduction.
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ky

kx

FIGURE 6. Fourier transform for figure 4(a). The two bright points along the horizontal
direction correspond to the vertical line pattern showing the absence of cross-waves.

In our experiments, the liquid film is pinned to the substrate edges, forming soft walls;
as such, for square substrates under low-frequency 1-D vibrations, only parallel lines or
stripe patterns are observed and cross-waves are absent. The orientation of the line pattern
is perpendicular to the direction of the forcing, as previously seen in figure 4(a,b). We
observed that upon activation of the vibrator, two counter-propagating waves initiate and
travel from the edges of the substrate and perpendicular to the actuated axes and meet at
the centre. For substrates with not very large aspect ratios (figure 4a), i.e. the substrate
length is still larger than the wavelength but few waves fit within the substrate length,
these counter-propagating waves fully superpose along the whole length of the substrate
and form a standing wave pattern. The entire surface of the liquid moves up and down
with a frequency the same as the excitation frequency. However, for larger substrates
(L � λ; figure 4b), we observed that the entire surface does not move up and down as
that observed in the standing waves. Instead, the waves travelling from the edges meet
at the centre and only near the substrate centre do the standing wave patterns form; on
the rest of the surface travelling waves can be seen moving towards the middle from the
edges perpendicular to the excitation. The formation of line patterns and the absence of
cross-waves lend credence to the idea that substrates without physical walls are a better
approximation of the theoretical case of an unbounded film than containers with hard
physical walls.

The absence or attenuation of cross-waves was confirmed by taking the Fourier
transform of such cases. Fourier transform decomposes an image into sine and cosine
components and the output is presented in the frequency domain. As a representative case,
the fast Fourier transform of figure 4(a) is shown in figure 6. The vertical line pattern in
the spatial domain is reduced to two bright spots along the x-axis in the frequency domain.
A third bright spot can also be seen in the centre, which is the mean value of the spatial
image. The two bright spots, equally distant from the centre, correspond to the peaks and
valleys of the pattern. Had there been any cross-waves, similar bright spots (or even less
bright) would have also appeared in the vertical direction (y-axis) along the centre.

For the circular substrate, the wave pattern was slightly different for small (d = 15 mm)
and large (d = 50 mm) circles under the effect of 1-D vibration. For the small circle
(d = 15 mm), a complete circular pattern is observed as shown in figure 7. Furthermore, a
close inspection reveals that as we follow the individual travelling waves along a circular
path, the crests are replaced by troughs and vice versa on the upper and lower portions of
the circle, with respect to the x-axis, as shown with the arrows.

For the large circular substrate (d = 50 mm), a broken or incomplete circular pattern
is observed (figure 8). Travelling waves move towards the centre from the circumference
along the direction of vibration. These counter-directional travelling waves meet at the
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FIGURE 7. Circular pattern for a small circular substrate (d = 15 mm) excited at f = 200 Hz
(y direction). The wave profiles passing through the mid-plane (marked by dashed lines in
greyscale image) along the x and y directions are also shown.

centre of the circle, superpose and form standing waves in the middle of the substrate. The
waves are stronger along the axis of vibration (y-axis here), and as they move along the
other axis (x-axis), the amplitude of these travelling waves decreases. The wave profiles
along x- and y-axes, passing from the mid-plane of the substrate in both directions, show
that along the x-axis only in the middle of the substrate a standing wave is formed. There
are no waves on the sides as can be seen from the random signals (figure 8b). Along the
y-axis, a stable wave pattern is seen from the profile, which is only distorted near the top
edge (∼45–50 mm), due to light reflection (figure 8c). It is noteworthy that this broken
circular pattern on the large circular substrate (d = 50 mm) is subtly more pronounced at
higher frequencies as can be seen from figure 8(d,e). The wave attenuation is promoted
along the non-vibrating axis (x-axis here) with increasing frequency.

Using side-view imaging, the amplitude of the travelling waves was measured at
different points along half of the circumference of the circle, shown by red dashed line
in figure 8(a) (lower hemisphere). The results shown in figure 9 confirm that at two ends
of the x-axis (non-vibrational axis), the wave amplitude is zero and as we move along the
circle circumference, the amplitude increases.

The triangular substrate under 1-D excitation presents an interesting and intriguing
wave interaction phenomenon involving a combination of standing and travelling waves.
A diamond-shaped pattern was observed for both small and large equilateral triangles
as shown in figure 10. The waves travelling from the left and right sides of the triangle
superposed to form such a pattern. It is worth mentioning that this was not a purely
standing wave pattern, i.e. the entire surface of the liquid was not moving up and down
with a diamond pattern. This will be analysed and elaborated in the following.

The pattern of figure 10 is formed due to the superpositioning of two counter-moving
travelling waves as shown by the illustration in figure 11. The harmonic waves are produced
along the dotted sides of the substrate, propagating at an angle with respect to the
horizontal direction. Since the direction of forcing is along the x-axis, the bottom side of
the triangle will not produce waves of its own. The two wave vectors with their constituent
components are shown in figure 11(b).

In an arbitrary direction r in the xy plane, the wave equation with wave vector denoted
by k pointing in the direction of propagation and wave amplitude ε is written as follows:

η(r, t) = ε sin(k · r − ωt) = ε sin(k1x + k2 y − ωt). (3.1)
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FIGURE 8. Circular pattern for large circular substrate (d = 50 mm) excited at various
frequencies (y direction). For f = 100 Hz (a), the wave profiles through the mid-plane (marked
by dashed lines in greyscale image) along x- (b) and y- (c) axes are shown. (d,e) Circular pattern
at f = 55 and 165 Hz. With increasing frequency, dissipation along the non-vibrating x-axis is
more prominent due to higher wavenumber.
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FIGURE 9. Variation in surface wave amplitude along the lower half of the circumference of
the large circle (d = 50 mm), manifested by the red dashed line as shown in figure 8(a).

Thus, the wave equations for the two harmonic waves, having equal amplitudes, as shown
in figure 11 will be in the following form, considering the inclination angle of the wave
vectors:

η1 (x, y, t) = ε
[
sin

(
−k1x cos

π

3
+ k1 y sin

π

3
− ωt

)]
, (3.2)

η2 (x, y, t) = ε
[
sin

(
k2x cos

π

3
+ k2 y sin

π

3
− ωt

)]
. (3.3)
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3 mm 6 mm 3 mm 

(a) (b) (c)

FIGURE 10. Diamond- or lozenge-shaped pattern for equilateral triangular substrate as a result
of 1-D vibration applied along the x-axis. Instantaneous greyscale images for (a) s = 20 mm,
f = 100 Hz, (b) s = 40 mm, f = 100 Hz and (c) s = 20 mm, f = 200 Hz.

Forcing

k1sin θ k2sin θ
k2k1

k2cos θ–k1cos θ

π  – θ θ

(a)

(b)

FIGURE 11. (a) Triangular substrate shown along with the direction of vibration. Harmonic
travelling waves are produced along the dotted sides. The red arrows show the direction of
propagation, while the blue lines represent the waves. (b) The wave vectors are decomposed
along x- and y-axes.

Since the two wave vectors here are generated by identical excitation frequencies, adding
the two equations and assuming k = k1 = k2 yield the following:

η1 + η2 = 2ε sin
(

ky sin
π

3
− ωt

)
cos

(
kx cos

π

3

)
. (3.4)

We note that the first trigonometric term on the right-hand side oscillates with respect to y
and t and the second term oscillates with respect to x only. Therefore, the above form of the
two waves, i.e. travelling and interacting at an angle to each other, shows that the resultant
superposed wave has the characteristics of both the travelling and standing waves. The y
component of the waves sin (ky sin (π/3) − ωt) remains a travelling wave, because it is
time-dependent, while the x component of the waves cos (kx cos (π/3)) forms a standing
wave.

The mixed behaviour of the resultant wave is validated by observing the spatiotemporal
evolution of the liquid surface for a complete cycle. As an example, surface evolution for
the case shown in figure 10(c) is presented in figures 12 and 13, along x and y directions,
respectively.

Figure 12 (x-direction profile) shows that from t = 0 to 0.5 ms, the wave amplitude
decreases. At t = 1 ms, the profile shows that the wave is changing direction. The red
arrow points to the wavy pattern having become random, implying the absence of a
sinusoidal pattern and the formation of a smooth surface. However, the surface is not
completely smooth due to the presence of waves in the y direction. At t = 1.5 ms, the
pattern re-emerges. At t = 2 ms, the amplitude of the wave is seen to increase. At t = 2.5
and 3 ms, the wave amplitude decreases and at t = 3.5 ms, the wave pattern again changes
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FIGURE 12. Temporal evolution of the wave in the x direction for the case shown in figure
10(c). The standing wave pattern can be seen during the evolution. At t = 1 ms and t = 3.5 ms,
the standing pattern changes direction. The red arrows point to such locations precisely, where
the profile is about to change direction. The abscissa of the profile shows the distance along the
mid-plane (mm) in the x direction and the ordinate shows the amplitude in arbitrary greyscale
units, where 1 greyscale unit = 2.2 ± 0.2 μm.
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FIGURE 13. Temporal evolution of the wave in the y direction for the case shown in figure
10(c). The red arrow points at a specific spot in space that travels in time from left to right. The
abscissa shows the distance along the mid-plane (mm) in the y direction and the ordinate shows
the amplitude in arbitrary greyscale units, where 1 greyscale unit = 2.4 ± 0.2 μm.

direction and the wavy profile is changed to a random signal as indicated by the red arrow.
From t = 4 ms and onwards, we see that the pattern forms again, but now the crests are
replaced with troughs and vice versa. At t = 5 ms, the cycle completes.

The temporal evolution along the y-axis shows the travelling nature of the surface profile
with no standing pattern (figure 13). It is observed that the wave profile is inherently

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.468


900 A30-16 T. Khan and M. Eslamian

2 mm 4 mm

(a) (b)

FIGURE 14. Two different patterns in an elliptical substrate simultaneously under 1-D vibration
applied along the minor axis (x-axis). Purely harmonic standing waves appear around the
substrate centre. Above and below the minor axis, a pattern of travelling waves forms due to
superposition of the waves: (a) a = 20 mm, b = 10 mm and f = 333 Hz; (b) a = 40 mm, b = 20
mm and f = 100 Hz. The red arrow in (a) shows the direction of forcing. Note that the waves
are initiated from the left and right sides of the substrate. Supplementary movie 1 (available at
https://doi.org/10.1017/jfm.2020.468) provides additional insight (a = 20 mm, b = 10 mm, 1-D
vibration at f = 200 Hz).

different from that of figure 12, in that it does not change direction. Instead, tracing a
particular spatial point as shown in figure 13 by the red arrows reveals that the wave travels
in time and after 5 ms a new wave appears.

For an elliptical substrate, the curved boundaries produce two simultaneous patterns
of travelling and standing waves when subjected to 1-D vibration along the minor axis,
as shown in figure 14. Around the middle part, where the boundaries of the ellipse are
relatively straight, pure harmonic standing waves (with somewhat parallel-line pattern)
form by the counter-directional waves travelling along the same line. However, above and
below this part, the two travelling waves (which are mirror images of each other) form a
travelling pattern, as a result of superpositioning.

When vibration is applied along the major axis (here the y-axis), again the pattern
formed is a combination of travelling and standing waves, but with a different shape, as
shown in figure 15. Given the shape of the ellipse, waves start from the upper and lower
sides and move towards the centre, effectively moving from a smaller to a larger area. This
expanding or diverging motion of the travelling waves causes dissipation in wave energy.
Thus, for a small substrate of size a = 20 mm, b = 10 mm, standing waves appear only
near the centre, while for a larger substrate with size a = 40 mm, b = 20 mm, the waves
almost completely dissipate upon reaching the centre.

3.3. Low-frequency 2-D vibrations
In § 3.2, we observed that applying vibration only along one axis (1-D vibration) but on
a substrate other than square or rectangular, such as triangular, generates waves in both
x and y directions, in a Cartesian coordinate system, resembling 2-D vibrations. In this
section, we extend the scope and apply vibrations on x and y directions for several substrate
geometries. As mentioned in § 2, for 2-D vibrations, the phase difference between the two
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2 mm 4 mm

(a) (b)

FIGURE 15. Patterns formed by the waves at f = 165 Hz due to vibrations along the major axis
(y-axis). (a) The case with a = 20 mm and b = 10 mm shows standing waves in the centre only.
(b) The case with a = 40 mm and b = 20 mm shows that the travelling waves moving along the
major axis dissipate near the centre, and hence no standing waves form. The arrow in (a) shows
the direction of forcing. Note that the waves are initiated from the top and bottom of the substrate.

lateral axes can alter the path followed by the vibrator and subsequently by the substrate.
The different paths pursued by the substrate cause different patterns on the film surface,
which will be discussed here.

For circular substrates, a spiral-like pattern is formed by the travelling and standing
waves when the phase difference between the two axes is φ ≈ 90° (figure 16). A spiral
pattern was also observed by Edwards & Fauve (1994) for vertical vibrations. At this
phase difference, the path of the substrate centroid trajectory is like an elongated circle
(cf. figure 3b), causing the formation of a spiral pattern on the film surface. The spiral
rotates clockwise while oscillating in the vertical direction at the same frequency as that of
the excitation. The instantaneous wave profiles along x- and y-axes show slightly different
behaviours. Along the x-axis, the waves are smooth and pronounced, whereas along the
y-axis, on the upper half of the circle, the waves are less strong as compared to the
lower half. This can be observed from the greyscale image and the y profile in figure 16.
Supplementary movie 2 shows spiral motion for the substrate with d = 50 mm subjected
to excitation of f = 165 Hz and φ ≈ 90°.

For φ ≈ 0° and φ ≈ 180°, the pattern is similar to that of the 1-D excitation (figures 7
and 8), i.e. a circular pattern of standing waves forms; however, the position of the
weak (or strong) part of the wave pattern is displaced or rotated about 45°, as shown
in figure 17. The path followed by the substrate for such phase difference is shown in
figure 3(b, f ). The substrate moves at nearly 45° from the vertical and horizontal axes and
this tilt subsequently appears in the wave pattern. The wave profiles along x- and y-axes
show a smooth wavy structure. In the middle of the surface, where the counter-moving
travelling waves reinforce each other to form a standing wave, we see an increase in the
wave amplitude as indicated by the wave amplitude in greyscale units.

When different frequencies of vibrations are applied to the two axes, a complex
broken-spiral-type pattern is formed. Interestingly, in figure 18(a), it is observed that when
the frequencies of the two axes are very close to each other (here 200 and 165 Hz for
x- and y-axes, respectively), a complete spiral is still formed, similar to the case when the
excitation frequencies of both axes are identical.
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FIGURE 16. Spiral-like pattern for d = 15 mm, f = 200 Hz under 2-D vibrations with φ ≈ 90°
phase difference between vibrations applied on the two axes. The wave profile for the greyscale
image is shown in the x and y directions passing through the mid-plane (marked by dashed line).
On the two graphs, ‘0’ of the abscissa refers to the left and bottom of the substrate, respectively.
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FIGURE 17. Tilted circular pattern for d = 50 mm, f = 55 Hz under 2-D vibrations with
φ ≈ 180°. The red dashed line shows the axis of tilt/rotation. The wave profile for the greyscale
image is shown in the x and y directions along the centreline.
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FIGURE 18. Patterns formed with the application of different frequencies applied on the lateral
axes: (a) d = 15 mm, f = 200 Hz (x-axis), 165 Hz (y-axis); (b) d = 15 mm, f = 333 Hz (x-axis),
200 Hz (y-axis); (c) d = 50 mm, f = 333 Hz (x-axis), 165 Hz (y-axis).

For a square substrate under 2-D vibrations with a phase difference φ ≈ 0° or 180°, a
square pattern of standing waves was formed. The travelling waves moved towards the
centre from all edges and superposed to form a standing square pattern. The equations of
such waves coming from all four edges of the substrate are written as follows, where the
first two waves move in the x direction, in positive and negative directions, respectively,
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FIGURE 19. Square pattern and wave profiles in the x and y directions passing through
mid-plane (marked by dashed lines in greyscale image) for square substrate (s = 25 mm) excited
by 2-D vibrations at f = 55 Hz on both x- and y-axes. This pattern was observed for a phase
lag of φ ≈ 0° and 180° between the two excitations. Supplementary movie 3 provides additional
insight.

and the following two waves in the y direction, again in positive and negative directions:

η1(x, t) = ε sin (kx − ωt), (3.5)

η2(x, t) = ε sin (kx + ωt), (3.6)

η3( y, t) = ε sin (ky − ωt), (3.7)

η4( y, t) = ε sin (ky + ωt). (3.8)

The superposition of these waves results in

η = 2ε(cos ωt)[sin(kx) + sin(ky)]. (3.9)

The equation of the resultant wave is a separable function of space and time. Thus, a
standing pattern with wavenumber of k in the x and y directions is formed, which moves up
and down in time with a frequency of f = 2π/ω, which is equal to the excitation frequency.
Figure 19 shows such a square pattern where f = 55 Hz was applied on both lateral
axes, simultaneously. The corresponding movie for this case is given as supplementary
movie 3.

Within a few milliseconds after switching on the vibrator, a square pattern is completely
formed. The bright and dark regions denote the crests and troughs, respectively. A square
pattern can be seen in which a trough (dark region) is surrounded by four crests (bright
regions). At mid-cycle, the positions of all the crests and troughs are swapped, i.e. due
to up and down motion, a crest becomes a trough and vice versa, while maintaining the
square pattern. The instantaneous surface profiles, passing through the mid-plane, are also
shown for the x and y directions. It is evident from the wave profiles that the wavelengths
(λ) along both axes are similar. The complete spatiotemporal evolution of a cycle alongside
the instantaneous profiles for a square pattern is detailed in appendix C (figure 27).

For φ ≈ 90°, a line pattern switching from one axis to another during the cycle was
formed. Figure 20 shows the spatiotemporal evolution of the said pattern ( f = 55 Hz
applied along both axes). The first image at t = 0 ms marks the beginning of the cycle
and a horizontal line pattern is seen. The surface profiles (x and y) at each instantaneous
moment provide further details of the line pattern. These wave profiles are generated for
the mid-plane passing along the x and y directions. It can be observed that at t = 0 ms,
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FIGURE 20. Several snapshots of the spatiotemporal evolution of the line pattern switching
from one axis to the other at f = 55 Hz (along both axes) for φ ≈ 90° and s = 25 mm. The surface
profiles are extracted for mid-plane (shown by dashed lines in t = 0 ms). In the surface profiles,
the abscissa represents the distance along the mid-plane from left to right (x-axis profile) and top
to bottom (y-axis profile) while the ordinate depicts the greyscale unit. Supplementary movie 4
and figure 28 of appendix C provide additional insight.

the x-axis profile merely shows a noise signal confirming the absence of a regular wave
structure along this direction, whereas the y-axis profile shows the sinusoidal pattern (line
pattern). The same can be observed through wave profiles for the rest of the instantaneous
snapshots. At t = 4.5 ms, the horizontal line pattern switches to a vertical line pattern.
At t = 9 ms, again the line pattern becomes parallel to the horizontal axis. Now we see
that the crests and troughs have interchanged with respect to t = 0 ms. At t = 13.5 ms, the
switching towards the vertical axis takes place again with crests and troughs swapped with
respect to t = 9 ms. At t = 18 ms (not shown in the figure), the same pattern as for t = 0
ms is regained and the cycle is complete. In between switching from one line pattern to
another, momentarily a square pattern was also formed only at the middle of the substrate.
The frequency of the oscillations of these standing and transitioning lines was the same as
that of the excitation. During one complete cycle, line switching from one axis to another
occurred four times. The wave field during the transitioning period (line switching) is
shown in detail from t = 0 to 4.5 ms in appendix C (figure 28) alongside the wave profiles.
The dynamic motion and transitioning of the line pattern from one axis to another can find
a potential application in creating liquid metamaterials with tunable properties as recently
reported by Francois et al. (2017). These metamaterials can be created by guiding matter
into spatial structures through the movement of the wave field.

In figures 19 and 20, while excitation frequencies are identical on both axes, a different
pattern emerges only due to a 90° change in the phases of the applied excitations between
the two axes, where a standing square pattern (figure 19) is shifted to switching line pattern
(figure 20). It is important to mention that classic squares have been reported commonly
in Faraday experiments for vertical vibrations (Douady & Fauve 1988; Douady 1990),
similar to patterns of figure 19. However, to the best of our knowledge, this is the first
time that such square and spiral patterns (figure 16) with horizontal vibrations (2-D) and
axis switching (figure 20) are reported. It is interesting to note that the mechanisms that
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(d )(c)(b)(a)

2 mm 4 mm 2 mm 2 mm

FIGURE 21. (a) Triangular pattern for s = 20 mm, f = 200 Hz and φ ≈ 0°. (b) S-shaped pattern
for a = 40 mm, b = 20 mm, f = 100 Hz and φ ≈ 0°. (c) Pattern with alternating crests and troughs
for a = 20 mm, b = 10 mm, f = 100 Hz and φ ≈ 90°. (d) Swirling pattern for stadium geometry
for f = 165 Hz and φ ≈ 0°. Supplementary movie 5 provides additional insight for (d).

generate instability on the free surface in both cases, horizontal and vertical vibrations,
are entirely different. As stated previously, vertical vibrations affect the gravitational
acceleration and hydrostatic pressure gradient, while horizontal vibrations cause a shear
flow phenomenon along the axes of vibrations. In our understanding, once instability
develops on the free surface of the liquid in the form of waves, it is the interaction and
superposition of the waves that appear in the shape of different patterns especially for the
vertical vibrations. The similar pattern formation also indicates that in vertical vibrations,
although the container moves up and down, the liquid free surface may be moving laterally
as well (sloshing), and thus developing counter-propagating travelling waves which meet
and reinforce in such a way to produce a square pattern or a spiral. The excitation amplitude
and frequency of the vertical vibrations also directly affect the motion and strength of the
waves which are the primary driver for differently shaped patterns.

Other patterns that were observed for various geometries under 2-D vibrations are
shown in figure 21. For the triangular substrate, application of 2-D excitations along
x- and y-axes induced waves from every side of the triangle. The waves then travelled from
all boundaries towards the centre and a triangular pattern was formed by the superposition
of the travelling waves (figure 21a). For the elliptical substrate, an S-shaped pattern and
a pattern with alternating crests and troughs were formed for the phase difference φ ≈ 0°
(figure 21b) and φ ≈ 90° (figure 21c), respectively. For the stadium geometry, a swirling
motion emerged from the two semicircular portions of the substrate. In the rectangular
portion, a line pattern was formed. In figure 21(d), two swirls are present on the top and
bottom side of the substrate. The swirl and line patterns then interact forming combined
patterns at some areas of the stadium.

In a recent study (Sanli, Lohse & van der Meer 2014), self-organization was observed
for small hydrophilic spherical floaters – slightly denser than water – on a standing square
pattern in a Faraday experiment. For low concentrations, i.e. small amount of floaters on
the surface, these floaters assembled themselves around the anti-nodes, while at higher
concentrations the accumulation started around the nodal lines. Given the new patterns
reported in the current study, it would be interesting to observe such self-assembly of
floaters especially on the line-switching and alternating crest and trough pattern, among
others.

3.4. Ultrasonic vibrations
As mentioned in § 2, ultrasonic horizontal vibrations were used in the frequency range
20–170 kHz, i.e. of the order of 104 Hz and higher, much larger than the low frequencies

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.468


900 A30-22 T. Khan and M. Eslamian

used in the previous discussions (§§ 3.1–3.3). For frequencies of 20, 40 and 68 kHz, we
observed that the travelling waves produced on the liquid film surface, for all geometries,
had nearly the same frequency of 250 Hz (order of ∼102 Hz). For 170 kHz, no waves were
detected and the film surface remained stable. Stability of the film at 170 kHz is attributed
to the very low amplitude of excitations created at this high frequency, since at a given
input power to the ultrasonic transducer, the amplitude decreases with an increase in the
frequency. In addition, the impedance mismatch between the ultrasonic transducer and the
liquid film increases with an increase in the excitation frequency; therefore, the ultrasonic
radiation cannot effectively transmit into the liquid film (Gholampour et al. 2018) and a
larger portion of it will be reflected.

The frequency of the surface waves (∼102 Hz) generated on the liquid film through
ultrasonic excitation (∼104 Hz) is not harmonic, unlike the low-frequency vibrations. It
is pertinent to note that such a response has also been reported for very-high-frequency
surface acoustic waves imposed on a sessile droplet (Qi, Yeo & Friend 2008; Tan et al.
2010). The applied surface acoustic wave frequency was of the order of ∼106–107 Hz,
while the free surface of the droplet undulated with capillary waves having frequency
∼102–103 Hz, several orders of magnitude lower than the excitation frequency. It is
clear from our experimental observations, the work of Rahimzadeh et al. (2018) and the
surface-acoustic-wave-driven experiments mentioned above that the response of the free
surface under high-frequency vibrations is far from being harmonic or even subharmonic.
We explain this frequency mismatch in the context of the forces acting on these capillary
waves.

The forces acting upon the fluid due to the surface tension, viscosity and inertia can be
scaled as follows:

Capillary force ∼ σL,

Viscous force ∼ μL2

t
,

Inertia force ∼ ρL4

t2
,

where the surface tension (σ ) is scaled with the characteristic length (L) and the dynamic
viscosity (μ) is scaled with the characteristic time (t). On the liquid surface, the surface
tension force is the main cause of the formation of the capillary waves, which should
be balanced by either or both of the other two forces. Yeo et al. (2004) have suggested
different characteristic capillary resonant frequencies ( fr) depending upon the balance
between the capillary forces with either the viscous damping or the inertia force. By
equating the capillary and viscous forces, one obtains

fr ∼ σ

μL
, (3.10)

whereas, by equating the capillary and inertia forces, one gets

fr ∼
√

σ

ρL3
. (3.11)

Equations (3.10) and (3.11) represent a characteristic resonant frequency (s−1) based on
a balance between the capillary and viscous forces and between the capillary and inertia
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forces, respectively. Employing an order-of-magnitude analysis for the current case, we
find the corresponding resonant frequencies. For a water film, μ ∼ 10−3 Pa s, surface
tension σ ∼ 10−2 N m−1 and density ρ ∼ 103 kg m−3. The wavelength, surface curvature
or film thickness may be considered as reasonable candidates for the characteristic
length of the problem at hand, where all these lengths are comparable, thus L ∼ 10−3 m.
From (3.10), the capillary–viscous resonant frequency fr ∼ 104 Hz, while from (3.11),
the capillary–inertia resonant frequency fr ∼ 102 Hz. Our experimental results for the
capillary wave frequency are in line with (3.11), implying that the free-surface waves are
formed by a balance between the capillary forces and the inertia of the fluid, as indeed
expected. This is because of the low viscosity of water and the fact that on the free surface
a potential flow approximation pertains. The thickness of the viscous boundary layer as
obtained from the Stokes second problem, δl ∼ √

μ/2πρf , where f is the frequency of
vibration, can provide a better estimate of the effect of the viscous forces on the liquid
film surface. For the ultrasonic frequencies used in this work, δl is of the order of 1 μm,
suggesting that the major part of the liquid film remains outside the Stokes boundary layer,
and can be considered as a potential flow region (inviscid).

The above discussion and results elucidate the varied response of the free-surface waves
for low-frequency horizontal vibrations and ultrasonic excitations, one being harmonic and
the other several orders of magnitude lower than the excitation frequency, respectively.
With our current experimental set-up and vibration devices, we were not able to find
the conditions at which this transition of the responses takes place. However, it is an
open question and it would be interesting to determine the threshold frequency where the
capillary waves atop the free surface start behaving non-harmonically from low-frequency
to high-frequency regime.

For ultrasonic frequencies, the pattern formation by the surface waves was also quite
different from that for the low-frequency vibrations. In §§ 3.2 and 3.3, we noted that the
waves produced in those cases were parallel along the boundary edges and consequently
the patterns formed out of such waves were regular in nature. For ultrasonic vibrations,
we find that although the waves form along the substrate boundaries, the amplitude of
the waves is not equal in a particular region of space. This difference in wave intensity is
supposedly due to the way that ultrasonic vibrations are (unevenly) transmitted to the film
and the turbulence created by the high-frequency excitations that cause uneven patterns to
form on the film surface.

Figure 22 shows three different patterns formed on a circular substrate with d = 50
mm at three frequencies. Horizontal ultrasonic vibrations were applied in the direction
of the x-axis only. For f = 20 kHz, we find that the strength or amplitude of the
surface waves is higher along three lines or regions. The regions with high-amplitude
waves are darker in greyscale in comparison to the other parts. Around these lines
or regions, waves are still present but in a diminished form. The standing waves are
formed in the middle of the film surface by interference of these travelling waves. For
f = 40 kHz, we see that the waves are again strong in certain areas. Near the centre, a
pentagon-shaped pattern of standing waves is formed. Similar formation of patterns and
travelling waves are seen for f = 68 kHz. However, at this frequency, we can clearly see
that the intensity of the waves (even for the regions where it is the highest) is lower than
the intensity of the 20 and 40 kHz cases. This gradual decrease in the wave amplitude
with increasing excitation frequency and then the complete disappearance of waves at
f = 170 kHz agree with the fact that the amplitude of excitation decreases with frequency
(Gholampour et al. 2018).

Similar uneven transmission of vibration energy was seen when a small substrate was
used. A representative circular case (d = 15 mm) at f = 40 kHz is shown in figure 23. The
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20 kHz 40 kHz 68 kHz

5 mm 5 mm5 mm

FIGURE 22. Travelling and standing waves for the large circular substrate (d = 50 mm) at three
different frequencies. The regions (lines) where the greyscale image is darker indicate strong
waves due to the irregular distribution of ultrasonic energy. The arrows point to the standing
waves surrounded by the travelling waves. Horizontal ultrasonic vibrations were applied in the
direction of the x-axis. Supplementary movie 6 provides additional insight for 20 kHz.
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FIGURE 23. Pattern formed on the circle with d = 15 mm at f = 40 kHz and the surface profiles
along the x and y directions. The abscissa is the location along the circle (passing through the
mid-plane as shown by the dashed line in greyscale image) and the ordinate is the wave amplitude
in greyscale units. Horizontal ultrasonic vibrations were applied in the direction of the x-axis.

wave profiles are shown along the centreline in both axes. Along the x-axis, we see that
from the left side to the centre of the substrate, the waves are weak (low amplitude). The
amplitude of standing waves in the middle becomes higher due to the interference of waves
coming from different directions. On the right side of the centre, the waves have higher
amplitude as compared to the left side. Following the centreline along the y-axis shows
that, below the centre, the waves have high amplitude and as we move towards the upper
half of the circle, waves are present in an attenuated form. As discussed above, variations in
the wave amplitude may be attributed to the uneven transmission of the ultrasonic energy
from the transducer to the film, as well as to the interaction between the induced waves in a
chaotic manner, due to the turbulent nature of the fluid motion. A high-precision ultrasonic
vibration generator might provide a more uniform pattern.

For the square substrate subjected to horizontal ultrasonic vibration along the x-axis
at f = 40 kHz (figure 24), simultaneous lines (on the sides) and squares (in the middle)
on the film surface were observed. The square pattern formed in the centre is due to the
interference of the waves parallel to the x- and y-axes and is present only at a certain
region in space, where both original waves are strong enough. The lines are travelling in
nature, while the square pattern moves up and down with time (transient standing wave).
The wave profiles in figure 24 represent the wave amplitude in arbitrary greyscale units.
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FIGURE 24. Travelling and standing patterns on a square substrate (s = 25 mm) at f = 40 kHz
horizontal vibration along the x-axis, where simultaneous line and square patterns are observed.
The wave profile along the x-axis shows a smooth wavy structure with slightly increased
amplitude near the edges while along the y-axis, high wave amplitude is seen on the upper half
of the film surface.

4 mm 4 mm 4 mm

20 kHz 40 kHz 68 kHz

FIGURE 25. Hexagonal pattern observed in the long shot for triangular substrates with
s = 40 mm. For f = 68 kHz, we have shown one such hexagon with red dashed lines. In all
cases, horizontal ultrasonic vibrations were applied in the direction of the x-axis only.

Along the x-axis, the wave amplitude is slightly higher on the boundary edges and
decreases gradually when the waves move towards the centre. Along the y-axis, we see
that the waves have high amplitude near the top edge of the substrate and the amplitude
gradually decreases as the wave moves towards the bottom side. The profile is somewhat
distorted at the top edge due to the reflection from the high-intensity light used during the
experiments.

On a triangular substrate, complex interactions of travelling waves take place resisting
the formation of any specific pattern in a close-up view. However, a careful observation
suggested the presence of a hexagonal pattern in the long shot, as shown in figure 25. In
low-frequency cases for the triangular substrate (figures 10 and 21), we saw diamond- and
triangular-shaped patterns with smooth waves following the line of the substrate edges.
With ultrasonic vibrations, the waves are more chaotic and intense in specific areas thus
yielding a travelling hexagonal pattern in the long shot.

Finally, table 4 summarizes the various patterns reported in this study (1-D and 2-D
horizontal vibrations) with a brief description alongside the conditions under which they
are formed.
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Pattern

Condition
(geometry – axis

of vibration/
phase) Description

Line/stripe Square, 1-D (x-axis) A standing pattern forms covering the entire film surface for a small substrate,
while for a larger substrate, travelling waves form near the edges and
standing waves form only in the middle. For vertical vibrations, line pattern
was observed by Edwards & Fauve (1994) with a single forcing frequency

Circular Circle, 1-D (x-axis) For a small substrate, a complete circular pattern forms, while for a large
substrate, a broken circular pattern is formed with the standing waves in the
middle. For vertical vibrations, Edwards & Fauve (1994) found circles and
spirals when the threshold amplitude was abruptly increased

Diamond/lozenge Triangle, 1-D (x-axis) The resultant surface wave has the combined characteristics of the travelling
and standing waves, the x-component showing standing and the y
component showing travelling behaviour

Square Square, 2-D / 0, π The entire surface oscillates up and down in a square pattern for a small
substrate. Classic squares have been reported for vertical vibrations
(Douady & Fauve 1988; Douady 1990)

Switching patterns Square, 2-D / π/2 Line pattern switches from one axis to another during a complete cycle. In
between the transitions, an instantaneous square pattern is also formed that
quickly subsides

Spiral Circle, 2-D / π/2 Complete spiral is formed when the excitation frequencies in both axes are the
same or close to each other, while broken spiral shapes up for non-similar
frequencies. For vertical vibrations, Edwards & Fauve (1994) found circles
and spirals when the threshold amplitude was abruptly increased

Tilted circular Circle, 2-D / 0, π For a large substrate, a broken tilted circle is formed with standing waves in
the middle. The direction of the tilt depends on the phase difference. For
φ = 0°, the pattern is tilted to the right of the y-axis and for φ = 180°, it is
tilted to the left of the y-axis

TABLE 4. For caption see next page.
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Pattern

Condition
(geometry – axis

of vibration/
phase) Description

Triangular Triangle, 2-D / 0, π/2, π A mixed characteristic of standing and travelling waves is observed. The
waves along the y-axis remain travelling in nature, while the waves along
the x-axis show a standing behaviour in time. For vertical vibrations,
Müller (1993) reported equilateral triangular patterns for two-frequency
forcing

Swirl Stadium, 2-D / 0, π Semicircular sides of a stadium geometry produce a swirling motion, while
the lines are generated from the rectangular sides

Simultaneous line and square Square, 1-D (ultrasonic) Irregular distribution of ultrasonic energy causes travelling lines and transient
standing squares to form simultaneously

Pentagon Circle, 1-D (ultrasonic) Standing pattern of pentagon is formed at f = 40 kHz. Waves travel from the
circular boundary with different intensities at different locations

Long-shot hexagon Triangle, 1-D (ultrasonic) Complex interaction of waves. For vertical vibrations Edwards & Fauve
(1993) first observed the hexagonal pattern. Later Müller (1993) reported
triangles for two-frequency forcing and found that by introducing a third
frequency, transition between hexagons and triangles can be enforced

TABLE 4 (cntd). Summary of the observed patterns formed on the liquid surface subjected to 1-D or 2-D horizontal vibrations. In the descriptions,
substrate size, i.e. ‘small’ or ‘large’, depends on the vibration characteristics.
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4. Conclusion

In this work, we have experimentally studied the response of a liquid film under the
effect of low-frequency (55–333 Hz) multi-axis (x and y) horizontal vibrations. To have
a close approximation with the ideal theoretical case that considers a film of infinite
lateral length, plain glass substrates without physical walls were used. The ‘soft walls’
were formed or created by the liquid contact lines pinned to the edges of the substrates. It
was found that different geometrical shapes of the substrate and the path followed by the
vibrating device play a significant role in determining the pattern formed on the surface.
The path of the vibrating plate and subsequently of the liquid film was dependent upon
the phase angle φ between the two simultaneously vibrating axes. Ultrasonic horizontal
vibration, with frequencies ranging between 20 and 170 kHz, was also applied on the liquid
film to study the characteristics of the induced surface waves and patterns. It was observed
that low-frequency excitations (∼100 Hz) produce harmonic surface waves and patterns.
However, in the ultrasonic frequency range (∼40 kHz), the surface waves do not behave
harmonically and the observed frequency of the waves (∼102 Hz) is far lower than the
excitation frequency. Subharmonic cross-waves that are common in rectangular channels
were not observed in our experiments. In addition, we observed, analysed and explained
the formation of both travelling and standing waves and patterns in multiple geometries.
As another previously unreported phenomenon, we described line pattern switching on a
square substrate, subjected to 2-D horizontal vibrations with a phase difference of 90°.

A summary of our observations is given in table 4. For a square substrate under
multi-axis lateral oscillations, a perfect standing square pattern was observed similar to
the classic squares reported in Faraday experiments for vertical vibrations (e.g. Douady &
Fauve 1988; Douady 1990). Further, circular and spiral-like patterns were also observed in
single- and multi-axis excitations, respectively, which were reported in Edwards & Fauve
(1994) for vertical vibrations as well. Similar formation of patterns from two mechanisms
having entirely different physics can shed light on the complexities of the problem.
Other patterns reported in this study include lines, diamonds, pentagons, triangles and
long-range hexagons.

This study was limited to pinned liquid films subjected to 1-D and 2-D horizontal
vibrations. For future work, the stability behaviour and pattern formation of pinned liquid
films under mild vertical vibrations would also be of interest given all the experimental
work on vertical vibrations performed previously for fluids bounded in containers having
physical walls. It can be expected, in the light of the current work, that the pinned liquid
film will be closer to the theoretical (unbounded film) vertical vibration case, as well. In
addition, the idea of combined excitations using two lateral axes (x and y), employed in
this study, can be extended to combined excitations of normal and lateral axes to explore
the pattern formation in such a setting. Finally, the response of liquid films and droplets to
ultrasonic vibrations is quite complex and deserves additional experimental and theoretical
studies.
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Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2020.468. See
supplementary material for six movies showing the wave formation on the liquid film.
Movie 1 is for an elliptical substrate (a = 20 mm, b = 10 mm) under 1-D vibration ( f = 200
Hz). Movie 2 shows the spiral pattern in a circular substrate (d = 50 mm, f = 165 Hz,
φ ≈ 90°). Movie 3 shows the standing square pattern in a square substrate (s = 25 mm,
f = 55 Hz, φ ≈ 0°). Movie 4 shows the line switching pattern in a square substrate (s = 25
mm, f = 55 Hz, φ ≈ 90°). Movie 5 is for the stadium-shaped substrate showing a swirl
pattern ( f = 165 Hz, and φ ≈ 0°). Movie 6 is for the ultrasonic vibrations at 20 kHz.

Appendix A. Theory of pinned liquid film subjected to horizontal vibrations

Considering the 2-D framework, the continuity and Navier–Stokes equations are given
as follows:

∂x u + ∂zw = 0, (A 1)

ρ(∂tu + u∂x u + w∂zu) = −∂x p + μ∇2u, (A 2)

ρ(∂tw + u∂x w + w∂zw) = −∂zp + μ∇2w + ρg, (A 3)

where u and w are the liquid velocity in x and z directions, respectively, p is the pressure,
∇2 is the Laplacian and g is the gravitational acceleration in the z direction. The substrate
is vibrated in the horizontal direction only, and therefore the velocity components at z = 0
are written as follows:

u = aω cos(ωt), w = 0, (A 4a,b)

where a is the vibration amplitude and ω is the angular frequency (rad s−1). At the
interface, z = h(x, t), and the fluid velocity is written as follows, known as the kinematic
boundary condition:

w = ∂th + u∂x h. (A 5a)

The dynamic boundary condition, which is a force balance on the interface, is written as
follows:

T · n = −cσ n + ∂σ

∂r
t + f , (A 5b)

where T is the stress tensor, n is the outward pointing unit normal vector, t is the tangential
unit vector, c is the mean curvature of the interface, r is arc length along the interface and
f is the force at the interface having two components τ (tangential) and Π (normal).

The variables are grouped to create the following dimensionless parameters for further
analysis:

X = x

l
, Z = z

ho
, U = u

Uo
, W = w

δUo
,

T = Uot
l

, G = ρho
2δg

μUo
, P = δhop

μUo
, (τ o,Πo) = ho

μUo
(τ , δΠ),

where l is the lateral length of the liquid film, ho is the mean film thickness, Uo is a
characteristic velocity in the horizontal direction and δ = ho/l. With the above scaling
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variables, we arrive at the following dimensionless governing equations:

∂XU + ∂ZW = 0, (A 6)

δRe(∂TU + U∂XU + W∂ZU) = −∂XP + ∂2
ZU + δ2∂2

XU, (A 7)

δ3Re(∂TW + U∂XW + W∂ZW) = −∂ZP + δ2(∂2
ZW + δ2∂2

XW) + G. (A 8)

The boundary conditions take the following form:
At Z = 0,

U = AΩ cos(ΩT), W = 0. (A 9a,b)

At Z = h(x, t),

W = ∂TH + U∂XH, (A 10a)

(∂ZU + δ2∂XW)[1 − δ2(∂XH)2] − 4δ2(∂XH)(∂XU)

= τo[1 + δ2(∂XH)2] + ∂X
√

[1 + δ2(∂XH)2] ,
(A 10b)

−P − Πo + 2δ2

1 + δ2(∂XH)2 [∂XU(δ2(∂XH)2 − 1) − ∂XH(∂ZU + δ2∂XW)]

=
C−1δ3 ∂2H

∂X2
3
2
√

1 + δ2(∂XH)2
,

(A 10c)

where

A = aω

ho
, Ω = ωho

δUo
, H = h

ho
, Σ = δσ

μUo
, Re = Uoho

ν
, C = μUo

σ
.

For the case of infinite lateral length of the fluid, periodic boundary conditions are assumed
along the horizontal direction (e.g. Or 1997). For a pinned liquid film, at the pinned contact
lines x = ±L, as shown in figure 1, we have

H = 0. (A 11)

Likewise, we impose the contact angle condition in the following form:

∂XH(±L, T) = ∓ tan θ. (A 12)

Equations (A 6)–(A 12) govern the motion of a 2-D pinned liquid film subjected to
horizontal vibrations along the x-axis. Although it includes the parameter δ through
scaling, the above equations are applicable to arbitrary δ and contain the subset of the
relevant nonlinear effects. Using the lubrication approximation – assuming δ and Re
small – these governing equations can be linearized and solved numerically, performing
the Floquet linear analysis, e.g. by employing a fourth-order Runge–Kutta scheme
(Bestehorn 2013).

With the linear Floquet analysis, using the lubrication approximation, the instability
criteria based on the amplitude and frequency of the lateral vibrations for the free surface
could be established. Likewise, in the nonlinear regime, by solving the Navier–Stokes
equations, it is desirable to compute the pattern formation numerically for a pinned liquid
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Crest Trough
(a)

(b)

(c)

(d )

FIGURE 26. (a) Side-view images of the top part of a given film during a cycle showing peaks
and valleys indicated by arrows. (b) Raw images were converted to binary (black-and-white)
images to help find the oscillation amplitude with better accuracy. (c) Greyscale image as
obtained from the binary images. (d) Half of the peak-to-valley distance yields the wave
amplitude. Such measurements were conducted over at least three wavelengths and were
averaged out.

film case, as future work. The pinned contact line case has, to the best of our knowledge,
not been studied numerically in this particular context.

Appendix B. Measurement of the wave amplitude

For measuring the wave amplitude, two side-view images, from the same cycle, were
taken in which the waves were present at their extreme positions as shown in figure 26(a).
A specific anti-node on the wave is highlighted with the red arrow showing a crest and a
trough in the two images. The raw images were converted to binary images (figure 26b)
to have a precise shape of waves. The two binary images were then subtracted from each
other to generate an image shown in figure 26(c). The distance between the maximum and
minimum points as shown in figure 26(d) was measured, where one half of this distance
yields the wave amplitude. The image resolution of this camera used for side-view imaging
is 1 pixel ≈ 5 μm in the xz plane, so the uncertainty in values of wave amplitude is ±2.5
μm. The typical measured amplitudes of the wave varied from 30 to 100 μm.

For some of the single-axis (1-D) vibration cases (square and circle), calibration of
the arbitrary greyscale units of the surface plot of the top view was also done against
the surface wave amplitude as obtained from the side-view images. The wave amplitude
values at certain specific points along the length were compared with the greyscale values
and an average was taken to minimize the uncertainty. A scaling factor was obtained that
related the greyscale unit with the wave amplitude.

Appendix C. Spatiotemporal evolution of representative patterns

Figure 27 shows the evolution of a standing square pattern that moves up and down with
the same frequency as the excitation frequency. A square substrate with s = 25 mm was
forced horizontally along the x- and y-axes at f = 55 Hz with φ ≈ 0°. The shown images
were taken after the initial disturbances created by the starting motion of the vibrator had
subsided. The start of a certain cycle is shown as time t = 0 ms. The surface profile along
the x-axis passing through the mid-plane is also provided at each instant. At t = 0 ms,
we observe that the surface is smooth and without any pattern. At t = 0.5 ms, the square
pattern emerges. During t = 0.5–4 ms, the pattern amplitude increases as is visible from
the images and the profiles. The bright and dark regions indicate the crests and troughs,
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FIGURE 27. Spatiotemporal evolution of a harmonic square pattern at f = 55 Hz, φ ≈ 0° for a
square substrate with s = 25 mm. The shown images are 21 × 21 mm2 in size (∼2 mm cropped
from each side). The graphs show the surface profile along the x-axis passing through the
mid-plane. The abscissa shows the length (mm) in the x direction, while the ordinate represents
the wave amplitude in arbitrary greyscale units. At t = 0, the cycle starts with a rather smooth
surface. During t = 0.5–4 ms, the amplitude of the standing pattern increases. At t = 5 ms, it
reaches a maximum. During t = 5–8.5 ms, it starts to diminish. At t = 9 ms, the crests and troughs
get aligned and the surface smoothens momentarily. From t = 9.5 ms, the pattern re-emerges but
now the crests are replaced by troughs which can be seen in the instantaneous images and their
surface profiles. At t = 18 ms, the cycle ends.

respectively. After t = 5 ms, the pattern amplitude decreases and at t = 9 ms, we see that
the surface momentarily smoothens out. This is also corroborated by the signal from the
surface profile that shows an almost straight line at this instant. At t = 9.5 ms, the pattern
emerges again with the crests and troughs changing their positions, i.e. at a certain spatial
location, a crest has been replaced by a trough. This is also observed through the surface
profiles. The pattern grows in amplitude until t = 13–14 ms, after which it again starts to
decrease and at t = 18 ms, the cycle completes, and a new cycle begins. It is evident that
the frequency of the standing pattern is the same as the excitation frequency ( fstanding =
1/0.018 s = 55 Hz).
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FIGURE 28. Wave field and x and y surface profile during the line transitioning from one axis
to another as shown in figure 20. Momentarily a square pattern can be observed at t = 2–3 ms. In
the surface profiles, the abscissa shows the distance along the mid-plane from left to right (x-axis
profile) and top to bottom (y-axis profile) while the ordinate depicts the greyscale unit.
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