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Nonnative, invasive plants are becoming increasingly widespread and abundant throughout the southwestern United

States, leading to altered fire regimes and negative effects on native plant communities. Models of potential invasion

are pertinent tools for informing regional management. However, most modeling studies have relied on occurrence

data, which predict the potential for nonnative establishment only and can overestimate potential risk. We compiled

locations of presence and high abundance for two problematic, invasive plants across the southwestern United States:

red brome (Bromus rubens L.) and African mustard (Brassica tournefortii Gouan). Using an ensemble of five climate

projections and two types of distribution model (MaxEnt and Bioclim), we modeled current and future climatic

suitability for establishment of both species. We also used point locations of abundant infestations to model current

and future climatic suitability for abundance (i.e., impact niche) of both species. Because interpretations of future

ensemble models depend on the threshold used to delineate climatically suitable from unsuitable areas, we applied

a low threshold (1 model of 10) and a high threshold (6 or more models of 10). Using the more-conservative high

threshold, suitability for Bromus rubens presence expands by 12%, but high abundance contracts by 42%, whereas

suitability for Brassica tournefortii presence and high abundance contract by 34% and 56%, respectively. Based on

the low threshold (worst-case scenario), suitability for Bromus rubens presence and high abundance are projected to

expand by 65% and 64%, respectively, whereas suitability for Brassica tournefortii presence and high abundance

expand by 29% and 28%, respectively. The difference between results obtained from the high and low thresholds is

indicative of the variability in climate models for this region but can serve as indicators of best- and worst-case

scenarios.

Nomenclature: Red brome, Bromus rubens L.; African mustard, Brassica tournefortii Gouan.

Key words: Bioclimatic envelope modeling, ecological niche, fire regime, invasive plants.

The spread of nonnative, invasive plants can alter
landscapes and degrade native ecosystem function (Mack
et al. 2000). An invasive plant colonizes or is introduced to
a novel location, establishes a self-sustaining population,
and spreads into surrounding, uncolonized ecosystems
(Lockwood et al. 2013; Richardson et al. 2000). Invasive

plants can decrease species richness of native plants and

animals (Vitousek et al. 1996), alter nutrient availability

(Ehrenfeld 2003), and contribute to changes in disturbance

regimes (Brooks et al. 2004). The recent, unprecedented

increases in global temperature and changes in precipitation

regimes predicted to occur during this century (Stocker et al.

2013) are likely to create novel environmental conditions

and may increase opportunities for invasion by nonnative

plant species (Bradley et al. 2010; Dukes and Mooney

1999). Spatially explicit invasion risk assessments (Peters and

Lodge 2013; Rouget et al. 2002) could improve manage-

ment by targeting high-risk areas for monitoring and

control.
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The greatest potential damage to an ecosystem occurs
not only where a nonnative species can establish but also
where it can spread and become abundant (Parker et al.
1999). Populations of species occur at varying levels of
abundance across landscapes, influenced by biotic and
abiotic conditions (Brown 1995). Areas where invasive
plants reach high abundance have the greatest probability
of detrimental ecosystem effects (Brooks et al. 2004; Parker
et al. 1999). For example, in the arid and semiarid
ecosystems that characterize the southwestern United
States, isolated occurrences of invasive annual grasses, such
as red brome (Bromus rubens L.), are unlikely to cause
significant damage. However, high abundance of these
plants can reduce native plant biomass (Brooks 2000) and
increase fire frequency (Balch et al. 2013) because of
continuous cover of fine fuels (Brooks 1999; D’Antonio

and Vitousek 1992). Forecasting invasive plant abundance
will increase our ability to manage regional invasions in
a changing climate by identifying emerging areas of high
risk for monitoring and control.

Bioclimatic envelope models (BEMs) have become an
increasingly common tool for quantifying the relationship
between occurrences of a species and regional-scale climate
conditions. BEMs are used to estimate the geographic
range of climatic suitability and to understand how that
range might shift as climate changes. However, although
abundance is arguably more important for prioritizing
management, most BEM studies have modeled suitability
for invasive plant presence only because of the scarcity of
abundance information across broad regions (see for
examples Bradley 2013). Unfortunately, models based on
invasive plant presence vastly overestimate potential
abundance and associated impact (Bradley 2013).

Previous studies have argued that modeling the “impact
niche” (Leibold 1995) or “damage niche” (McDonald et al.
2009) associated with locations of high abundance gives
more realistic information about environmental effects
than does modeling occurrences alone. For example,
McDonald et al. (2009) used surveys of weed experts to
identify states where cropping systems were highly affected
by velvetleaf (Abutilon theophrasti Medik.) or johnsongrass
[Sorghum halepense (L.) Pers.] and modeled the impact
niche under current and future climate, based on these
high-impact locations. Similarly, Bradley (2013) used
surveys of invasive plant managers to identify locations
with high invasive plant abundance to model the impact
niche. In the absence of regional, continuous cover data
(which are exceedingly rare for any species), point
locations of high abundance can be used to model climatic
conditions that describe the impact niche (Bradley 2013;
Estes et al. 2013; McDonald et al. 2009), a subset of the
total potential range.

Here, we used BEMs to project the current and potential
future distributions of two of the most common and
problematic, invasive species in the southwestern United
States: Bromus rubens and African mustard (Brassica
tournefortii Gouan.). Bromus rubens is an invasive, annual
grass, native to southern Europe, which was first recorded
in the United States in the 1880s (Salo 2005). High
abundance of Bromus rubens is most likely to occur
following average or above-average winter rainfall (Brooks
2000). When growing in high abundance, Bromus rubens is
able to dominate available water and nitrogen (Brooks
2000) and reduce native plant biomass (Brooks 2000; Salo
2005).

Brassica tournefortii is an annual forb, native to the
semiarid and arid regions of northern Africa and to the
Mediterranean regions of southern Europe, and was first
collected in the United States in 1927 (Minnich and
Sanders 2000). Brassica tournefortii produces prolific seeds

Management Implications
In the arid and semiarid regions of the southwestern United

States, two nonnative, invasive plant species, red brome (Bromus
rubens L.) and African mustard (Brassica tournefortii Gouan) occur
at varying levels of abundance. Within the study region (i.e., the
area from which presence and high abundance data were
collected), bioclimate envelope models (BEMs) indicate current
widespread climatic suitability for the presence of both species.
However, central and northwest Arizona, southern Nevada, and
Baja California, Mexico, are currently most climatically suitable
for high abundance of Bromus rubens. Hot, dry regions of southern
California are currently most climatically suitable for high
abundance of Brassica tournefortii. Based on a high threshold
(6 or more of 10 models project suitability), climatic suitability is
projected to increase only for Bromus rubens presence (+12%),
whereas climatic suitability for Brassica tournefortii presence
could decrease (234%). Similarly, climatic suitability for high
abundance of Bromus rubens (242%) and Brassica tournefortii
(256%) could also decrease. For Brassica tournefortii, areas of
contraction (i.e., projected loss of climatic suitability) appear in
southern Arizona and California, and in Baja California and
Sonora, Mexico. For high abundance of Bromus rubens,
contraction is projected to occur along the southern edges of
climatically suitable area, primarily in Arizona and Nevada.
Climatic suitability for Brassica tournefortii is projected to contract
mainly in western Nevada, southeastern California, and Baja
California, Mexico. Based on an ensemble of future models and
a low threshold (any 1 of 10 models projects suitability), climatic
suitability for the presence of Bromus rubens and Brassica
tournefortii could increase by up to 65% and 29%, respectively,
by 2050. Climatic suitability for high abundance of Bromus rubens
could expand northward into Nevada and Utah by up to 64%,
indicating that these areas might be at an elevated risk for impact
from this species in the future. Area suitable for Brassica
tournefortii high abundance could expand by up to 28% by
2050 with slight increases in suitable area projected in southern
Nevada, California, and Arizona. Efforts to minimize the impact
of Bromus rubens and Brassica tournefortii would be more effective
if focused on the areas identified as suitable for high abundance
(rather than suitable for presence only) and likely to maintain or
expand climatic habitat according to multiple projections.
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that germinate when conditions are favorable (Bangle et al.
2008). Following periods of high precipitation, Brassica
tournefortii populations reach higher abundances than they
do in years with low or average precipitation (Minnich
and Sanders 2000). Brassica tournefortii seeds germinate
earlier than seeds of native species, and plants can grow
and monopolize resources before native species emerge
(Minnich and Sanders 2000).

Invasion of both Bromus rubens and Brassica tournefortii
is a concern because of alteration to regional fire cycles.
Historically, large-scale fires in the desert regions of the
southwestern United States were infrequent because of the
scarcity of fine fuels and the patchy native vegetation cover
(Brooks and Pyke 2001). The addition of nonnative
annuals increases aboveground biomass and the continuity
of fine fuels among native plants (Brooks 1999). Invasions
of alien species that produce prolific biomass lead to
a “grass–fire cycle” that has been identified in many
ecosystems globally (Brooks et al. 2004; D’Antonio and
Vitousek 1992). In areas in which they reach high
abundances, Bromus rubens and Brassica tournefortii have
the potential to increase fire frequency.

BEMs based on all locations of species presence and
BEMs based on the subset of high abundance points were
created to separately model suitability for presence and
suitability for high abundance. We applied the two BEMs
to future climate-change scenarios based on five climate
models to test how invasive species presence and high
abundance are projected to change by 2050. Relative to
current climate, we also identified locations of expanded
risk (climatic suitability) of presence and high abundance.

Materials and Methods

Presence and High Abundance Data. Presence data for
Bromus rubens and Brassica tournefortii were compiled from
regional data sets (CalFlora; http://www.calflora.org/ and
Cal-IPC http://www.cal-ipc.org/), surveys by managers with
the Bureau of Land Management and the Mojave Desert
Network Parks, records from local and regional biologists,
and herbaria. These existing datasets were supplemented
with two field surveys focused on roadsides only in southern
Nevada, southern California, and Arizona (Appendix 1;
http://dx.doi.org/10.1614/IPSM-D-14-00040.S1). For both
species, some abundance data were available from land
managers and herbarium records as values of percent cover
and from field surveys as qualitative descriptions of relative
abundance at each site. Abundance data tended to be
collected within more-restricted areas where each species is
problematic and, therefore, are likely representative of
climatic conditions in heavily invaded landscapes.

We transformed these data into two groups for each
species: presence and high abundance. We classified
locations as high abundance if the species had at least

10% cover, if the area was described qualitatively as having
continuous ground cover (categorical rank data), or if the
target species was observed in abundance (percent cover or
rank data) beyond the road corridor. We included all
available presence data, including points with high
abundance, in the presence data sets. Records for both
species were restricted to the southwestern United States
(i.e., the region from which Bromus rubens and Brassica
tournefortii are problematic invaders). Therefore, we limited
the extents of our study regions using a convex hull around
the presence locations of each species. Absence data
comparable in extent to the presence/high-abundance data
were not available for either species. To remove duplicate
entries and reduce sampling bias, we resampled each of the
four data sets to include only one point per 2.5 arcmin
climate-grid cell (see below). If more than one point within
a grid cell had abundance data, we assumed that the grid cell
was climatically suitable for the highest level of abundance,
and the maximum abundance value was retained.

Even if comprehensively collected, invasive species
distribution data might still underestimate climatic suit-
ability because the species has not yet spread to the full
range it could potentially invade (Araújo and Pearson
2005). High abundance points might further underesti-
mate climatic suitability for abundance because species are
less abundant following dry growing season conditions
(Abatzoglou and Kolden 2011). Nonetheless, numerous
studies have used an envelope-modeling approach to
estimate potential range for invasive plants with the
assumption that the distribution data reasonably approx-
imate the climatic space in which the species could establish
or become abundant (see for examples, Bradley 2013). The
data compiled for this analysis extend across broad climatic
gradients of the southwest region and, therefore, encompass
a high proportion of available climate space, making this
analysis consistent with other envelope-modeling studies.
However, incomplete data could still lead to an un-
derestimation of potential range for presence, high
abundance, or both. Our results are also limited by the
spatial extent of our models. To improve model perfor-
mance, we limited the models to the area enclosed by the
presence locations of each species. It is possible that current
or future climatic suitability could extend beyond these
boundaries and allow the distributions of Bromus rubens
and Brassica tournefortii to expand further than what we
have shown. Therefore, these and all envelope models
should be interpreted as having fairly high confidence that
areas modeled at risk are indeed at risk, but lower
confidence that areas modeled as not at risk are indeed not.

Climate Data. We obtained data representing global
current and projected future climate from WorldClim
(http://www.worldclim.org/) as interpolated climate sur-
face layers of mean monthly temperature and precipitation
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at 2.5-min spatial resolution. Current climate data for the
period of 1950 to 2000 are available through WordClim as
interpolated layers of monthly averages of mean, mini-
mum, and maximum monthly temperature and mean
monthly precipitation (Hijmans et al. 2005).

We used future climate projections from five atmosphere–
ocean general circulation models (AOGCMs) from the
Fifth Intergovernmental Panel on Climate Change (IPCC)
report that were downscaled using the WorldClim 1.4
current climate data as a baseline (Hijmans et al. 2005).
We chose climate-model projections based on those that
predicted Pacific Northwest temperature and precipitation
with the lowest error (Rupp et al. 2013). We assumed that
this accuracy also held for the southwest because no
comparable assessment for the southwest region is
currently available. We selected AOGCMs based on their
performance as assessed by Rupp et al. (2013) and
availability of relative concentration pathways (RCPs) in
WorldClim. In the Fifth IPCC assessment report, RCPs
replace the previously used emissions scenarios (Nakice-
novic and Swart 2000). We included AOGCM projections
based on RCP4.5 and RCP8.5. RCP4.5 is the “medium-
low” pathway in the Fifth IPCC report and is character-
ized by a stabilization of radiative forcing at 4.2 W m22 by
2100, which corresponds to atmospheric CO2 concentra-
tions of 650 ppmv. RCP8.5 is the “high” pathway and
projects a stabilization of radiative forcing at 8.3 W m22

by 2100, which corresponds to atmospheric CO2

concentrations of 900 ppmv (Stocker et al. 2013). Climate
projections were based on five AOGCMs from the
following modeling groups: National Center of Atmo-
spheric Research, National Centre of Meteorological
Research, Met Office Hadley Center, Atmosphere and
Ocean Research Institute, National Institute for Environ-
mental Studies, and Japan Agency for Marine-Earth
Science and Technology, and Norwegian Climate Center.

We used four climate-variable predictors derived from
the climate data: mean monthly temperature for the coldest
(January) and warmest (July) months of the year and
accumulated precipitation for two quarters (March, April,
May; and June, July, August). Precipitation for the winter
quarter (December, January, February) and fall quarter
(September, October, November) were not included
because they were highly correlated with other precipitation
predictors within the study region and were the least-
important precipitation variables in MaxEnt models. These
predictors were selected to encompass climatic conditions
that likely influence both native and invasive species growth
and reproduction. The timing and relative importance of
climatic conditions that facilitate Brassica tournefortii
growth are largely untested. Bromus rubens is thought to
be limited by winter temperatures (Bykova and Sage 2012)
and fall precipitation (Beatley 1966; Salo 2004). Both
species likely interact with native perennial species that

respond to spring and summer (monsoonal) precipitation.
By using climate data that covered the range of seasonal
climate conditions in the study regions, we allow the model
fit to define climate conditions that influence species
distribution and high abundance.

Modeling Presence and Abundance under Current
Climate Conditions. Many techniques for BEM (also
referred to as species-distribution modeling, habitat-suitability
modeling, or environmental-niche modeling) have been
developed. BEMs are used to understand the relationship
between the geographic location where species occur and the
climatic conditions at those locations (Franklin 2009). A
model of suitable climate can then be projected back into
geographic space to identify the spatial extents of the
potential for invasive plant establishment or abundance.
Suitable climate conditions can also be projected spatially
based on the geographic distribution of future climate
associated with climate change. For Bromus rubens and
Brassica tournefortii, we used two BEM methods (MaxEnt
and Bioclim) to predict the current and future geographic
distributions of presence and high abundance.

We used MaxEnt (Version 3.3.3k), an implementation of
maximum entropy modeling (Phillips et al. 2006), to model
climatic suitability for the two coverage groups: presence and
high abundance. MaxEnt relies on presence-only data, but
generates pseudoabsences drawn from the study area to
construct probabilistic relationships between climate and
species distribution. Pseudoabsence points drawn from too
far afield from occurrences can lead to underestimates of
climatic habitat, whereas pseudoabsences too close and not
distinct from occurrences can lead to overestimates of
climatic habitat (VanDerWal et al. 2009). To include
climate conditions with enough difference from occurrences
to define suitability, but also where the species’ could
plausibly have been introduced, we selected pseudoabsence
points in MaxEnt within a convex hull around each species’
occurrences. To account for uneven sampling of occurrence
points (Kramer-Schadt et al. 2013), we included a bias file
for each of the species based on the presence of National
Parks and distance to roads. Each MaxEnt model was
evaluated by performing a 10-fold cross-validation (the
default setting) to evaluate model fit. MaxEnt creates
a different function for each climatic predictor variable
related to the suitability of climate conditions for species
presence based on data for the locations in which the species
has been detected. This process generates a spatial model
with continuous values associated with climatic suitability
for occurrence. We transformed this continuous model into
a binary suitable/unsuitable map based on a threshold value
that encompassed 95% of the location points. Using this
threshold assumes that the species’ status at almost all of the
locations was correctly identified, which is consistent with
a goal of broadly characterizing invasion risk.

344 N Invasive Plant Science and Management 8, July–September 2015

https://doi.org/10.1614/IPSM-D-14-00040.1 Published online by Cambridge University Press

https://doi.org/10.1614/IPSM-D-14-00040.1


To reduce potential bias introduced by using a single
BEM, we also created Bioclim models of climatic
suitability for Bromus rubens and Brassica tournefortii.
Bioclim identifies thresholds for each climatic predictor
that encompass the distribution data (Busby 1991; Pearson
and Dawson 2003). We used ArcGIS 10.1 (ESRI,
Redlands, CA 92373) to extract the values of the four
climate variables to all the known locations and then
calculated climatic limits that encompassed 95% of the
distribution data set. This threshold was created by
excluding the climate values associated with the upper
and lower 2.5% of presence or high abundance points. We
calculated Bioclim climatic suitability as areas identified as
suitable by all four climate layers. The MaxEnt and Bioclim
results were combined to quantify the spatial extent of
climatic suitability in either model.

We evaluated MaxEnt model performance based on the
area under the curve (AUC) values, which are widely
applied to determine agreement between predicted species
distributions and occurrence records (Fielding and Bell
1997; Pearson et al. 2006; Thuiller 2003). AUC values are
based on the receiver operating curve (ROC), which plots
the rate of true-positive predictions (sensitivity) against
false-positive predictions (specificity) with values ranging
from 0.5 (no better than random) to 1 (perfect model
prediction). For all models, we also calculated true-skill
statistic (TSS). TSS (Allouche et al. 2006) provides
a measure of the accuracy of presence–absence predictions
based on calculations of sensitivity (proportion of true
positives) and specificity (proportion of true absences).
Values range from +1 to 21, with zero indicating model
performance no better than expected by chance. These
statistics are typically used to evaluate the accuracy of land-
cover maps not projected-suitability models. Therefore,
TSS values typically used to define good map accuracy are
not applicable to suitability modeling because BEM
projections aim to model climatic suitability for invasion,
not the current distribution of invasive species.

Modeling Presence and Abundance under Future
Climate Conditions. After establishing the climate condi-
tions suitable for Bromus rubens and Brassica tournefortii
based on current climate, we projected those conditions
onto future climate models using the same thresholds used
to describe current climatic suitability. We repeated this
process for the five AOGCM projections.

We created ensemble models of future presence and high
abundance of Bromus rubens and Brassica tournefortii by
summing all of the binary climatic suitability maps (i.e.,
those created by MaxEnt and Bioclim for each AOGCM)
to create models ranging from zero (unsuitable in all
models) to 10 (suitable in all models). Combining models
of suitability made with multiple BEMs and AOGCMs
(Araújo and New 2007) reduces the effect of any single

model or scenario, and the degree of model overlap
provides a measure of confidence associated with model
agreement. For example, there is less uncertainty about the
future climatic suitability for presence or high abundance
of areas that are projected to be suitable by a greater
number of AOGCMs (greater model agreement). We
created separate ensemble models for the two relative
concentration pathways.

To identify climatic suitability for invasion by Bromus
rubens and Brassica tournefortii in the future, we created
maps of range shift that show areas of future expansion,
maintenance, and contraction. We simplified this analysis
by considering any area projected to have suitable climate
conditions currently by either MaxEnt or Bioclim as
suitable. We created two sets of range shift maps by
applying a low and a high threshold for identifying
suitability. The low threshold provided a very liberal
interpretation of the data in which areas projected to be
suitable by any one of the 10 models in the ensemble were
considered suitable. The high threshold provided a more-
conservative interpretation in which suitable areas had to be
projected as suitable by 6 or more of the 10 models in the
ensemble. We compared current and future suitability to
measure the spatial extent of projected contraction and the
maintenance and expansion of invasion risk by 2050 within
the study region defined for each species.

Results and Discussion

Distribution Data. The spatial locations of high abun-
dance, low abundance, and presence with unknown
abundance are shown in Figure 1. At the 2.5-arcmin
resolution, we compiled 3,303 occurrences of Bromus
rubens and 1,855 occurrences of Brassica tournefortii.
Within these data sets, we identified 110 locations of
highly abundant Bromus rubens and 218 locations of highly
abundant Brassica tournefortii. Further information on the
data sources is presented in Appendix 1 (http://dx.doi.org/
10.1614/IPSM-D-14-00040.S1).

Current Climatic Suitability for Invasion. Current
climatic suitability for Bromus rubens and Brassica
tournefortii presence extends throughout the study region,
consistent with known location points (Figure 2A). Suit-
able climate for Bromus rubens high abundance is currently
limited to relatively small areas of southern California,
Nevada, and Utah and a larger region of central and
northwestern Arizona (Figure 2B). Suitable climate for
Brassica tournefortii high abundance occurs primarily in
southern California (Figure 1B). Based on the AUC
statistic for MaxEnt models and on TSS for all models,
the projected models performed better than expected by
random chance (Table 1). The smaller suitable range for
high abundance (relative to presence) for both species
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supports previous findings that models of potential
establishment overestimate potential impact (Bradley
2013).

Based on the MaxEnt models, different climate condi-
tions influence species presence vs. high abundance. For
both Bromus rubens and Brassica tournefortii, temperature
was by far the strongest predictor of presence (minimum
temperature for Bromus rubens and maximum temperature
for Brassica tournefortii). For Bromus rubens, this result
suggests that freezing tolerance may limit the species’
survival over winter, which is consistent with experimental
studies (Bykova and Sage 2012). For Brassica tournefortii,
this result suggests that the species effectively establishes
under hot conditions, which is consistent with its measured
heat tolerance (Suazo et al. 2012).

In contrast, minimum temperature and spring pre-
cipitation were both strong predictors of abundance for
Bromus rubens, and summer precipitation was the strongest
predictor of abundance for Brassica tournefortii. Both
invasive species are likely to compete better against native
species (e.g., Barrows et al. 2009) and have stronger
population growth (Beatley 1974; Salo 2004) under wetter
conditions. Thus, although temperatures limit the overall

range, precipitation may be more influential on invader
abundance.

Future Range Shifts with Climate Change. Projections of
future climatic suitability for Bromus rubens and Brassica
tournefortii presence and abundance under the RCP4.5
emissions pathway are shown in Figure 2C and 2D,
respectively. The model projections based on RCP4.5 vs.
RCP8.5 were similar both in overall magnitude of calculated
range shift and spatial pattern. For simplicity, we present
results from RCP4.5 in the main text and present the same
results for RCP8.5 in Appendix 2 (http://dx.doi.org/10.
1614/IPSM-D-14-00040.S1). An analysis of future climate
conditions indicates that they are climatically similar to
current conditions. That is, we are not extrapolating model
fits into novel climate conditions (Appendix 3; http://dx.doi.
org/10.1614/IPSM-D-14-00040.S1), which would increase
uncertainty in model projections if it were the case.

Most models agreed that large areas will be suitable for
Bromus rubens presence in the future (Figure 2C). Future
suitability for Bromus rubens abundance is projected to be
greatest in northwest Arizona, southwest Nevada, and Baja
California, Mexico, based on ensemble model overlap

Figure 1. Spatial locations of data collection for each species. We classified locations as high abundance if the species was recorded as
having at least 10% cover, if the area was described as having continuous ground cover, or if the species was observed in abundance
beyond the road corridor. Points are shown as low abundance if they do not meet these criteria but have some description of abundance
associated with them. Points lacking a description of abundance level are considered unknown. At the 2.5-arcmin resolution, we
compiled 110 high-abundance occurrences for Bromus rubens and 218 for Brassica tournefortii; 243 points were classified as low
abundance for Bromus rubens and 565 for Brassica tournefortii. Unknown abundance was found for 2,950 Bromus rubens points and
1,072 Brassica tournefortii points.
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(Figure 2D). Based on the high threshold (six or more
models projecting suitability), climatic suitability for
Bromus rubens presence could expand by 12% along the
northern edge of the currently suitable range (Table 2;
Figure 3A). However, contraction along the southern edge
is also predicted, with areas primarily in Arizona becoming

unsuitable. Using the more-inclusive low threshold (one or
more models projecting suitability), climatic suitability for
Bromus rubens presence could expand northward up to
65% (Figure 3B). In the model projections, northward
expansion is primarily driven by warming temperatures,
which is consistent with experimentally derived limitations.

Figure 2. Species distribution models for Bromus rubens and Brassica tournefortii. Point locations indicate where (A) presence and
(B) high abundance data were collected. The predicted current climatic suitability for (A) presence and (B) high abundance include the
MaxEnt and Bioclim projections and encompass 95% of the original distribution data. Future ensemble models are based on RCP4.5.
The future-ensemble models for (C) presence and (D) high abundance were created by combining the projections of 10 models: two
bioclimate envelope models and five Atmosphere–Ocean General Circulation models. Values indicate how many of the 10 models
projected climatic suitability.
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Bykova and Sage (2012) show that Bromus rubens is
sensitive to freezing temperatures and is not as cold tolerant
as the related species Bromus tectorum.

High abundance of Bromus rubens based on the high
threshold could decrease by 42% (Table 2; Figure 3C).
However, using the more-inclusive low threshold, climatic
suitability for high abundance could expand northward by
as much as 64% (Figure 3D). The large differences in
potential future range illustrate uncertainty associated with
both differences between BEMs and climate projections as
well as the importance of choosing a threshold for
delineating suitable from unsuitable. Areas of expansion
in southern Nevada, northwestern Arizona, and Baja
California, Mexico, show the highest model agreement
(Figure 2). Therefore, these areas might see a shift toward
high abundance of Bromus rubens with climate change.
Interestingly, Bromus rubens is already present throughout
southern Nevada, making it likely that populations will not
be limited by propagules and could expand rapidly once
climate conditions become suitable.

The future presence model of Brassica tournefortii shows
high model agreement in southern California and Nevada
and throughout much of Arizona (Figure 2C). Future
climatic suitability for Brassica tournefortii is projected by
most models to occur in southern California (Figure 2D).
Based on the high threshold (six or more models
projecting suitability), climate conditions suitable for
Brassica tournefortii presence are projected to decrease by
34% overall, with areas in southern California, eastern
Nevada, and Mexico becoming unsuitable (Table 2;
Figure 3A). Using the more-inclusive low threshold
(one or more models projecting suitability), climatic
suitability for Brassica tournefortii could expand up to
29% (Figure 3B).

In contrast, climatic suitability for high abundance of
Brassica tournefortii is projected to decrease by 56% (Table 2;
Figure 3C). Using the inclusive low threshold, climatic
suitability for high abundance expands by 28% (Figure 3D).
The difference between these two projections can primarily
be attributed to how MaxEnt vs. Bioclim interpret high
temperatures for Brassica tournefortii (Appendix 4; http://dx.

Table 2. Projected increases in distribution size (km2 3 1,000) within the study areas based on the low (one or more model projecting
climatic suitability) and high (six or more models projecting climatic suitability) thresholds under future climate conditions for RCP4.5

Low threshold High threshold

Area % Change Area % Change

Bromus rubens Presence Current 736 736
Future 1219 65 826 12

High abundance Current 475 475
Future 780 64 273 242

Brassica tournefortii Presence Current 410 410
Future 531 29 270 234

High abundance Current 135 135
Future 173 28 59 256

Table 1. Model validation indicating agreement between the projected distribution and observations for each species for the current
projections. Statistics were calculated for models based on presence data (P) and high-abundance data (HA). The true skill statistic
(TSS) measures the map accuracy of presence–absence predictions and ranges in value from +1 to 21, with +1 indicating perfect
model agreement and 0 indicating performance no better than expected by random chance. The area under the receiver operating curve
(AUC) measures overall model accuracy and ranges from 0 to 1 with 0.5 indicating no better than random. AUC can only be
calculated for models with continuous predictions of suitability (MaxEnt in this case).

Bromus rubens Brassica tournefortii Bromus rubens Brassica tournefortii

MaxEnt Bioclim

P HA P HA P HA P HA

TSS 0.50 0.76 0.39 0.75 0.54 0.66 0.56 0.79
Mean test AUC (SD)a 0.752 (0.008) 0.914 (0.037) 0.752 (0.020) 0.909 (0.017) NA NA NA NA

a Abbreviation: SD, standard deviation.
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doi.org/10.1614/IPSM-D-14-00040.S1). Bioclim identifies
a high temperature threshold, above which conditions
become unsuitable, whereas MaxEnt considers all high
temperatures suitable. Although Brassica tournefortii has
a broad tolerance for warm temperatures (Suazo et al. 2012),
it is not clear whether it is approaching its high temperature
limit within its current range. Further experimental analyses

are required to enable better interpretation of the model
results.

Suitable Area. Interpretations of future ensemble models
strongly depend on how suitable area is differentiated from
unsuitable area. The overall spatial extent of climatic
suitability varies depending on the choice of an acceptable

Figure 3. Distribution models showing maintenance, expansion, and contraction of suitable climate under future climate conditions
for RCP4.5. Maintenance indicates that a location was climatically suitable both under current and future climate conditions.
Expansion indicates that a location was climatically suitable under future, but not current climatic conditions. Contraction indicates
that a location was climatically suitable under current, but not future climatic conditions. The high-threshold models (A and C) are
based on a more conservative view of future climatic suitability, where six or more models must agree for a location to be included as
future potential habitat. Low-threshold models (B and D) include all areas where at least one future model indicates suitable habitat.
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threshold for identifying climatic suitability (Figure 4).
Areas of high model overlap have less uncertainty. Despite
differences in climate changes projected by these AOGCMs
(Rupp et al. 2013), areas of high overlap maintain climatic
suitability. For prioritizing management and control
efforts, greater overlap is better than less overlap for
identifying the most likely areas with future invasion risk
(Figure 2). However, even areas with low overlap could still
maintain or expand risk if undersampled distribution data
cause models to underpredict climatic suitability. We
suggest that locations of expansion, particularly using the
high threshold (Figure 3A,C), are likely to be at the
greatest risk, but contraction using the same high threshold
may be overpredicted.

Conclusions

It is currently unknown whether the impact niche of
invasive plants will respond to climate change in a similar
direction and magnitude as the overall range. Based on the
low threshold of model overlap, climatic suitability for
presence and high abundance for Bromus rubens and
Brassica tournefortii are projected to shift in a similar
magnitude and direction under climate change. However,
based on the high threshold of model overlap, climatic
suitability for presence and high abundance are projected to
vary considerably in magnitude and direction under
climate change. Differences between shifts in modeled
establishment niche and impact niche between the species
highlight the need for considering both presence and high
abundance in models of invasion risk. Overall, high
abundance of nonnative, invasive plant species threatens
native plant species and has the potential to alter ecosystem

function (e.g., increased fire threat in areas with high
abundance of Bromus rubens and Brassica tournefortii).
Given the importance of understanding where the greatest
threat is likely to occur, future analysis of range shifts for
invasive plants should include suitability for high abun-
dance where possible.

The relatively sparse amount of abundance data in this
study highlights the need for a different focus in field data
collection. Presence data are useful, but information on the
relative abundance of invasive species, even qualitative
information, is more directly related to their potential
ecological effects (Bradley 2013; Leibold 1995; McDonald
et al. 2009; Parker et al. 1999). Continuous cover data
collected across broad climatic or latitudinal gradients
would provide the most accurate representation of
community composition at each location and would allow
for more-comprehensive models of the response of species
to climate change. In lieu of time-intensive continuous
cover data, qualitative descriptions or cover ranks, such as
those used here, can be used for identifying the impact
niche of an invasive species.

Current models of the distributions of presence and
abundance can be used to guide data collection by
identifying areas projected to be climatically suitable but
not previously sampled. They can also help to identify
those regions with the greatest risk of impact from
invasion, assuming that abundance and impact are
positively correlated (Parker et al. 1999). Future research
is needed to quantify whether and how abundance relates
to impact, thereby enabling managers to use regional
models to better target management action. Nonetheless,
potential for an abundant infestation is likely to be of
greater concern than potential for presence only and

Figure 4. Predicted suitable land area for the target species currently and by 2050 under RCP4.5. Darker gray indicates higher
ensemble model overlap.
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focusing management in areas with current and future
climatic suitability for abundance is a good approach for
mitigating future invasions.

Acknowledgments

We thank L Pelech and L. Zachmann for collecting and
compiling distribution data sets. Thanks also to S. Abella,
J. Cipra, K. Kain, C. Norman, the National Park Service
Mojave Desert Network Inventory and Monitoring Program,
the National Park Service National Vegetation Mapping
Program, C. Powell and the California Invasive Plant Council
(Cal-IPC) mapping team for contributing additional distri-
bution data sets. This research was supported by the
Department of Defense through the Strategic Environmental
Research and Development Program (SERDP) grant number
RC-1722 and by Cooperative Agreement H8C07080001
between the National Park Service and University of
California, Davis.

Literature Cited

Abatzoglou JT, Kolden CA (2011) Climate change in western us deserts:
potential for increased wildfire and invasive annual grasses. Rangeland
Ecol Manag 64:471–478

Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of
species distribution models: prevalence, kappa and the true skill
statistic (TSS). J Appl Ecol 43:1223–1232
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