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Abstract

For an integer k ≥ 2, let P(k)
n be the k-generalised Pell sequence, which starts with 0, . . . , 0, 1 (k terms),

and each term thereafter is given by the recurrence P(k)
n = 2P(k)

n−1 + P(k)
n−2 + · · · + P(k)

n−k. We search for perfect
powers, which are sums or differences of two k-generalised Pell numbers.
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1. Introduction

The Pell sequence {Pn}n≥0 is the binary recurrence sequence given by

Pn+2 = 2Pn+1 + Pn for n ≥ 0,

with the initial terms P0 = 0 and P1 = 1.
Let k ≥ 2 be an integer. We consider a generalisation of the Pell sequence known as

the k-generalised Pell sequence: {P(k)
n }n≥−(k−2) is given by the recurrence

P(k)
n = 2P(k)

n−1 + P(k)
n−2 + · · · + P(k)

n−k for all n ≥ 2,

with the initial terms P(k)
−(k−2) = P(k)

−(k−3) = · · · = P(k)
0 = 0 and P(k)

1 = 1. We shall refer to

P(k)
n as the nth k-generalised Pell number. This generalisation is a family of sequences,

with each new choice of k producing a unique sequence. For example, if k = 2, we get
P(2)

n = Pn, the nth Pell number.
There are several studies dealing with Diophantine equations involving perfect

powers and Pell numbers. For instance, Pethö [12] studied all perfect powers in the
Pell sequence, where he showed that the only positive integer solutions (n, y, s) to

Pn = ys

with s ≥ 2 are (n, y, s) = (1, 1, s) and (7, 13, 2). Later, Aboudja et al. [1] extended
Pethö’s work by considering two Pell numbers and, for s ≥ 2, studied the Diophantine
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equation
Pn ± Pm = ys. (1.1)

In particular, they found all solutions of (1.1) in positive integers (n, m, y, s) under the
assumption n ≡ m (mod 2). This problem is still unsolved for n � m (mod 2). Recently,
Şiar et al. [14] investigated the Diophantine equation

P(k)
n = ym (1.2)

in positive integers n, m with y, k ≥ 2. They found that (1.2) has only one solution
(n, m, k, y) = (7, 2, 2, 13) for 2 ≤ y ≤ 1000.

Motivated by these results, we study the Diophantine equation

P(k)
n ± P(k)

m = ya (1.3)

in positive integers n, m, k and a with y ≥ 2, k ≥ 3 and 1 ≤ m ≤ n. Our main result is
as follows.

THEOREM 1.1. All the solutions of the Diophantine equation (1.3) in positive integers
with 2 ≤ y ≤ 200 and k ≥ 3 are given by

P(k)
2 + P(k)

2 = 22 for all k ≥ 3, P(k)
5 + P(k)

2 = 62 for all k ≥ 3,
P(k)

3 − P(k)
1 = 22 for all k ≥ 3, P(k)

4 − P(k)
3 = 23 for all k ≥ 3,

P(k)
5 − P(k)

2 = 25 for all k ≥ 4, P(k)
7 − P(k)

6 = 122 for all k ≥ 6,
P(k)

8 − P(k)
5 = 242 for all k ≥ 7, P(3)

7 + P(3)
2 = 63, P(4)

8 + P(4)
5 = 54,

P(4)
8 + P(4)

5 = 252, P(6)
9 + P(6)

6 = 412, P(7)
12 + P(7)

10 = 215, P(7)
12 + P(7)

10 = 85,
P(7)

12 + P(7)
10 = 323, P(3)

5 − P(3)
1 = 25, P(3)

8 − P(3)
5 = 29, P(3)

8 − P(3)
5 = 83,

P(4)
9 − P(4)

6 = 382, P(4)
10 − P(4)

2 = 632, P(6)
11 − P(6)

7 = 223.

We briefly describe our method before going into more detail. We first obtain an
upper bound for n and m in terms of k by applying Matveev’s result on linear forms
in logarithms [11]. When k is small, we may address our problem computationally by
reducing the range of possible values using a result of Dujella and Pethö [8]. When k
is large, the dominant root of the k-generalised Pell sequence is exponentially close
to φ2 where φ = (1 +

√
5)/2 (see [4, Lemma 2]), so we apply this estimate in our

computations to complete the proof.

2. Auxiliary results

This section is devoted to gathering several definitions, notation, properties and
results that will be used in the rest of this study.

2.1. Linear forms in logarithms. Let γ be an algebraic number of degree d with
minimal primitive polynomial

f (Y) := b0Yd + b1Yd−1 + · · · + bd = b0

d∏
j=1

(Y − γ(j)) ∈ Z[Y],
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where the bj are relatively prime integers, with b0 > 0, and the γ(j) are the conjugates
of γ. Then, the logarithmic height of γ is given by

h(γ) =
1
d

(
log b0 +

d∑
j=1

log(max{|γ(j)|, 1})
)
.

THEOREM 2.1 (Matveev [11]; see also [7, Theorem 9.4]). Let η1, . . . , ηs be positive
real algebraic numbers in a real algebraic number field L of degree dL. Let a1, . . . , as
be nonzero integers such that

Λ := ηa1
1 · · · η

as
s − 1 � 0.

Then,

log |Λ| ≥ −1.4 · 30s+3 · s4.5 · d2
L(1 + log dL)(1 + log D) · B1 · · ·Bs,

where

D ≥ max{|a1|, . . . , |as|}
and

Bj ≥ max{dLh(ηj), |log ηj|, 0.16} for j = 1, . . . , s.

2.2. The reduction method. Our next tool is a version of the reduction method of
Baker and Davenport (see [2]). Here, we use a slight variant of the version given by
Dujella and Pethö (see [8]). For a real number x, we write ||x|| for the distance from x
to the nearest integer.

LEMMA 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction
of the irrational τ such that q > 6M, and A, B, μ be some real numbers with A > 0 and
B > 1. Furthermore, let

ε := ||μq|| −M · ||τq||.
If ε > 0, then there is no solution to the inequality

0 < |uτ − v + μ| < AB−w

in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ε)
log B

.

2.3. Properties of the k-generalised Pell sequence. The characteristic polynomial
of the k-generalised Pell sequence is

Φk(x) = xk − 2xk−1 − xk−2 − · · · − x − 1.

This polynomial is irreducible over Q[x] and it has one positive real root γ := γ(k)
which is located between φ2(1 − φ−k) and φ2 and lies outside the unit circle (see [6]).
The other roots all lie inside the unit circle. To simplify the notation, we will omit the
dependence of γ on k whenever no confusion may arise.
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For an integer k ≥ 2, the Binet formula for P(k)
n found in [6] is

P(k)
n =

k∑
i=1

gk(γi)γn
i , (2.1)

where the γi are the roots of the characteristic polynomial Φk(x) and the function gk is
given by

gk(z) :=
z − 1

(k + 1)z2 − 3kz + k − 1
.

It is also shown in [6, Theorem 3.1] that the roots located inside the unit circle have
minimal influence on (2.1), giving the approximation

|P(k)
n − gk(γ)γn| < 1

2 for all n ≥ 2 − k. (2.2)

Furthermore, from [6, Theorem 3.1],

γn−2 ≤ P(k)
n ≤ γn−1 for all n ≥ 1.

LEMMA 2.3 [4, Lemma 1]. Let k ≥ 2 be an integer. Then,

0.276 < gk(γ) < 0.5 and |gk(γi)| < 1 for 2 ≤ i ≤ k.

Furthermore, the logarithmic height of gk(γ) satisfies

h(gk(γ)) < 4k log φ + k log(k + 1) for all k ≥ 2. (2.3)

LEMMA 2.4 [3, Lemma 2.2]; see also [4, Lemma 2]. If k ≥ 30 and n ≥ 1 are integers
such that n < φk/2, then

gk(γ)γn =
φ2n

φ + 2
(1 + ξ) where |ξ| < 4

φk/2 .

2.4. Useful lemmas. We conclude this section by recalling two lemmas that we will
need.

LEMMA 2.5 [5, Lemma 8]. For any nonzero real number x:

(a) 0 < x < |ex − 1|;
(b) if x < 0 and |ex − 1| < 1/2, then |x| < 2|ex − 1|.
LEMMA 2.6 [13, Lemma 7]. If m ≥ 1, S ≥ (4m2)m and x/(log x)m < S, then
x < 2mS(log S)m.

3. Proof of Theorem 1.1

3.1. Preliminary considerations. We begin our analysis of (1.3) for 1 ≤ n ≤ k + 1.
In this case, it is known that P(k)

n = F2n−1, and thus (1.3) becomes

F2n−1 ± F2m−1 = ya,

which has no solution for 1 ≤ m ≤ n according to the results of [9] and [10]. From now
on, we assume that n ≥ k + 2 and k ≥ 3.
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Let us now get an initial relation between a and n. Combining (1.3) with the fact
φ2(1 − φ−3) < γ(k) < φ2 for all k ≥ 3, we have

ya ≤ γn−1 ± γm−1 < φ2(n−1) ± φ2(m−1) = φ2(n−1)(1 ± φ2(m−n)) < 2 · φ2(n−1).

We deduce that

a <
( log 2

log y

)
+ 2(n − 1)

( log φ
log y

)
,

which leads to

a < 1.4n − 0.4 < 1.4n for n ≥ 5. (3.1)

3.2. Bounding n in terms of k. In this subsection, we will bound n in terms of k by
proving the following lemma.

LEMMA 3.1. If (n, m, k, y, a) is a solution of (1.3) with k ≥ 3 and n ≥ m ≥ 1, then

n < 9.67 × 1029k9 log5 k.

PROOF. By using (1.3), (2.2) and taking absolute values, we obtain

|ya − gk(γ)γn| < 1
2 ± P(k)

m ≤ 1
2 + γ

m−1.

Dividing both sides of this inequality by gk(γ)γn and using gk(γ) > 0.276, we obtain

|yaγ−n(gk(γ))−1 − 1| < 1.82
γn +

1.82
γn−m <

3.64
γn−m . (3.2)

Let

Λ1 := yaγ−n(gk(γ))−1 − 1. (3.3)

From (3.2),

|Λ1| < 3.64 · γ−(n−m). (3.4)

If Λ1 = 0, then gk(γ) = yaγ−n, which implies that gk(γ) is an algebraic integer, which
is a contradiction. Hence, Λ1 � 0. To apply Theorem 2.1 to Λ1 given by (3.3), we take
the parameters

η1 := y, η2 := γ, η3 := gk(γ), a1 := a, a2 := −n, a3 := −1.

Note that the algebraic numbers η1, η2, η3 belong to the field L := Q(γ), so we can
take dL = [L : Q] ≤ k. Since h(η1) = log y, we find h(η2) = (log γ)/k < (2 log φ)/k and
h(η3) < 4k log φ + k log(k + 1) < 5k log k for all k ≥ 3. So it follows that B1 := k log y,
B2 := 2 log φ and B3 := 5k2 log k. In addition, by (3.1), we can take D := 1.4n. Then,
by Theorem 2.1,

log |Λ1| > −1.432 × 1011(k)2(1 + log k)(1 + log 1.4n)(k log y)(2 log φ)(5k2 log k).
(3.5)

Combining the inequality (3.5) with (3.4) gives

(n − m) log γ − log 3.64 < 6.9 × 1011k5(1 + log 1.4n)(1 + log k)(log y)(log k).
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Using the facts 1 + log k < 2 log k for all k ≥ 3 and 1 + log 1.4n < 1.9 log n for all
n ≥ 5, we obtain

(n − m) log γ < 2.64 × 1012k5 log2 k log n log y.

Now from (1.3),

|ya − gk(γ)γn(1 ± γm−n)| ≤ |P(k)
n − gk(γ)γn| ± |P(k)

m − gk(γ)γm| ≤ 1.

Dividing both sides of the above inequality by gk(γ)γn(1 ± γm−n) yields

|yaγ−n(gk(γ)(1 ± γm−n))−1 − 1| < 1.82
γn , (3.6)

where

Λ2 := yaγ−n(gk(γ)(1 ± γm−n))−1 − 1.

For the left-hand side, we apply Theorem 2.1 with the parameters

η1 := y, η2 := γ, η3 := (gk(γ))(1 ± γm−n), a1 := a, a2 := −n, a3 := −1.

As before, L := Q(γ) contains η1, η2, η3 and has degree k. Here, Λ2 � 0. Indeed, if it
were zero, we would get

ya = gk(γ)(γn−1 ± γm−1).

Conjugating this relation by an automorphism σ of the Galois group of Φk(x) over Q
such that σ(γ) = γ(i) for some i > 1 and then taking absolute values,

ya = |gk(γ(i))||γ(i)n−1 ± γ(i)m−1| < 2,

which is impossible. Hence, Λ2 � 0. Since h(η1) = log y and h(η2) = (log γ)/k <
(2 log φ)/k, it follows that B1 := k log y and B2 := 2 log φ. Therefore, by the estimate
(2.3) and the properties of the logarithmic height, it follows that for all k ≥ 3,

h(η3) < h(gk(γ)) + h(1 ± γm−n)
< 4k log φ + k log(k + 1) + |m − n|h(γ) + log 2
< 5k log k + (n − m) log γ + log 2

< 2.65 × 1012k5(log n)(log y)(log2 k).

Hence, we obtain B3 := 2.65 × 1012k6(log n)(log y)(log2 k). In addition, by (3.1), we
can take D := 1.4n. Then, by Theorem 2.1,

− log |Λ2| < 3.66 × 1023k9(1 + log k)(1 + log 1.4n)(log2 k)(log n)(log2 y). (3.7)

Combining the inequality (3.7) with (3.6) gives

n log γ − log 1.82 < 3.66 × 1023k9(1 + log k)(1 + log 1.4n)(log2 k)(log n)(log2 y).

Using the facts 1 + log k < 2 log k for all k ≥ 3, 1 + log 1.4n < 1.9 log n for all n ≥ 5
and y ≤ 200, it follows that

n < 5.9 × 1025k9 log3 k log2 n.
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This leads to
n

log2 n
< 5.9 × 1025k9 log3 k. (3.8)

Thus, putting S := 5.9 × 1025k9 log3 k and using Lemma 2.6 in (3.8), and noting that
59.33 + 9 log k + 3 log(log k) < 64 log k for all k ≥ 3,

n < 4(5.9 × 1025k9 log3 k)(log(5.9 × 1025k9 log3 k))2

< (2.36 × 1026k9 log3 k)(59.33 + 9 log k + 3 log(log k))2

< 9.67 × 1029k9 log5 k.

This completes the proof of Lemma 3.1. �

3.3. The case when 3 ≤ k ≤ 570. In the previous section, we obtained a very large
upper bound of n. We apply Lemma 2.2 to reduce the upper bound by means of the
following lemma.

LEMMA 3.2. If (n, m, k, y, a) is an integer solution of (1.3) with 3 ≤ k ≤ 570 and
n ≥ k + 2, then n ≤ 314.

PROOF. To apply Lemma 2.2, we define

Γ1 := a log y − n log γ − log gk(γ). (3.9)

Then, eΓ1 − 1 := Λ1, where Λ1 is defined by (3.3). Therefore, (3.4) implies that

|eΓ1 − 1| < 3.64
γ−(n−m) . (3.10)

Note that Γ1 � 0. Thus, we distinguish the following cases. If Γ1 > 0, then we can
apply Lemma 2.5(a) to obtain

0 < Γ1 < eΓ1 − 1 < 3.64 · γ−(n−m).

If Γ1 < 0, then from (3.10), |eΓ1 − 1| < 1/2 and therefore, e|Γ1 | < 2. Thus, by
Lemma 2.5(b),

0 < |Γ1| ≤ e|Γ1 | − 1 = e|Γ1 ||eΓ1 − 1| < 7.28 · γ−(n−m).

So in both cases,

0 < |Γ1| < 7.28 · γ−(n−m). (3.11)

Inserting (3.9) into (3.11) and dividing both sides by log γ,∣∣∣∣∣a
( log y
log γ

)
− n +

log gk(γ)
log γ

∣∣∣∣∣ < 10.51 · γ−(n−m). (3.12)

With

τ = τ(k) :=
log y
log γ

, μ = μ(k) :=
log gk(γ)

log γ
, A := 10.51 and B := γ,
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the inequality (3.12) yields

0 < |aτ − n + μ| < A · B−(n−m).

Note that τ is an irrational number. We take Mk := �9.67 × 1029k9 log5 k	 which is an
upper bound on n. Then, by Lemma 2.2, for each k ∈ [3, 570],

n − m <
log(Aq/ε)

log B
,

where q = q(k) > 6Mk is a denominator of a convergent of the continued fraction of τ
with ε = ε(k) := ‖μq‖ −Mk‖τq‖ > 0. A computer search with Mathematica found that
for k ∈ [3, 530], the maximum value of log(Aq/ε)/ log B is < 233.

Assuming 1 ≤ n − m ≤ 232, we consider

Γ2 := a log y − n log γ − log μ(k, n − m),

where μ(k, n − m) := gk(γ)(1 ± γn−m). Therefore, (3.6) can be written as

|eΓ2 − 1| < 1.82
γn .

In this case, Γ2 � 0. If Γ2 > 0, we apply Lemma 2.5(a) to obtain |Γ2| < 1.82 · γ−n.
If Γ2 < 0, then |eΓ2 − 1| < 1/2 for all n ≥ 2. Thus, by Lemma 2.5(b), |Γ2| < 2|eΓ1 − 1| <
3.64 · γ−n. In any case,

0 < |Γ2| < 3.64 · γ−n. (3.13)

Replacing Γ2 in (3.13) by its formula and dividing through by log γ yields

0 < |aτ − n + μ| < A · B−n, (3.14)

where

τ = τ(k) :=
log y
log γ

, μ = μ(k) := − log μ(k, n − m)
log γ

, A := 5.26 and B := γ.

Here, we put Mk := �9.67 × 1029k9 log5 k	 and as we explained before, we apply
Lemma 2.2 to inequality (3.14) to obtain an upper bound on n. Indeed, with the help of
MATHEMATICA, we find that if k ∈ [3, 570] and n − m ∈ [1, 232], then the maximum
value of log(Aq/ε)/ log B is < 315. �

3.4. The case when k > 570. In this subsection, our goal is to prove the following
lemma which shows that there are no solutions when k > 570 and n ≥ k + 2.

LEMMA 3.3. The Diophantine equation (1.3) has no solution for n ≥ k + 2 and
k > 570.

PROOF. After Lemma 3.1, for k > 570,

n < 9.67 × 1029k9 log5 k < φk/2.
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[9] k-generalised Pell numbers 9

It follows from (1.3) and (2.2) that

|ya − gk(γ)γn − gk(γ)γm| = |P(k)
n − gk(γ)γn| ± |P(k)

m − gk(γ)γm| < 1.

The above inequality together with Lemma 2.4 give
∣∣∣∣∣ya − φ

2n

φ + 2
(1 + ξ) − φ

2m

φ + 2
(1 + ξ)

∣∣∣∣∣ < 1.

This implies that
∣∣∣∣∣ya − φ

2n

φ + 2
− φ

2m

φ + 2

∣∣∣∣∣ < 1 +
φ2n

φ + 2
· 4
φk/2 +

φ2m

φ + 2
· 4
φk/2 .

Dividing both sides of the above inequality by φ2n/(φ + 2),
∣∣∣∣∣
ya(φ + 2)
φ2n − 1 − φ2(m−n)

∣∣∣∣∣ <
φ + 2
φ2n +

4
φk/2 +

4 · φ2(m−n)

φk/2 . (3.15)

Since n ≥ k + 2 and n ≥ m, (3.15) becomes∣∣∣∣∣1 + φ2(m−n) − ya(φ + 2)
φ2n

∣∣∣∣∣ <
11.618
φk/2 .

However, the above inequality is impossible for all y ∈ [2, 200] and k > 570. �

3.5. The final computation. As a result of Lemmas 3.2 and 3.3, if (n, m, k, y, a) is a
solution of the Diophantine equation (1.3), then

3 ≤ k ≤ 570, k + 2 ≤ n ≤ 314 and 1 ≤ m ≤ n.

We checked this range using MATHEMATICA to conclude that all the solutions to the
Diophantine equation (1.3) are listed in the statement of Theorem 1.1. This completes
the proof of Theorem 1.1.
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